```
AUTHOR Loomis, Elisha Scott
TITLE The Pythagorean Proposition, Classics in Mathematics
Education Series.
INSTITUTION National Council of Teachers of हैathematics, Inc.,
Washington, D.c.
6 8
310p.
National Council of Teachers of Mathematics, 1201
Sixteenth Street, Nuk., Washingtor, D.C. 20036
EDRS PRICE
DESCRIPTORS
EDRS Price MF-\$1.25 HC Not Available from EDRS.. Algebra, Geometric Concepts, *Geometry, *History, Mathematical Models, *Mathematiciars, Mathematics, *Secondary School Mathematics
```


ABSTRACT

This book is a reissue of the second edition which appeared in 1940. It has the distinction of being the first vintage mathematical work published in the NCTM series "Classics in Mathematics Eaucation." The text includes a biography of Pythagoras and an account of historical data pertaining to his proposition. The remainder of the book shows 370 different proofs, whose origins range from 900 B.C. to 1940 A. D. They are grouped into the four categories of possible froofs: Algebraic (109 proofs): Geometric (255): Quaternionic (4); and those based on mass and velocity, Dynamic (2). Alş - included are five Pythagorean magic squares; the formulas of Pythagoras; Plato, Euclid, Maseres, Dickson, and Martin for producing Pythagorean triples; and a bibliography with 123 entries." (FS)

PROCESS WITH MICROFICHE
AND PUBLISHER'S PRICES MICROFICHE REPRODUCTION ONLY.
\because
1
(1)

Fe:massion to reproduce this copyrighted work has been grianted to the Educational Resources information Center (ERILC) and to the organization operating under contract with the office or Education to reproduce documents included in the ERTE-8ystent by means of microfiche only but this right is not conferred to any users of the microfiche received from the ERIC Document Heproduction Service. Further reproduction of any part requires permission of the copyright owner.

Its Demonstrations Analyzed and Classified and
Bibliography of Sources for Data of the
Four Kinds of "Proofs"

Ellsha Scorl Loomis

$$
\Leftrightarrow
$$

About the Author
Elisha Scott Loomis, Ph.D., LL.B., was professor of mathematics at Baldwin University for the period 1885-95 and head of the mathematics department at West High School, Cleveland, Ohio, for the period 1895-1923. At the time when this second edition was published, in 1940, he was professor emeritus of mathematics at Baldwin-Wallace Collège.

About the Book
The second edition of this book (published in Ann Arbor, Michigan, in 1940) is here reissued as the first title in a series of "Classics in Mathematics Education."

PREFACE

Some mathematical works of considerable vintage have a timeless quality about them. Like classics in any field, they still bring joy and guidance to the reader. Substantial works of this kind, when they concern fundamental principles and properties of school mathematics, are being sought out by the Supplementary Publications Committee. Those that are no longer readily available will be reissued by the National Council of Teachers of Mathematics. This book is the first such classic deemed worthy of once again being made available to the mathematics education community.

The initial manuscript for The Pythagorean Proposition was prepared in 1907 and first published in 1927. With permission of the Loomis family, it is presented here exactly as the-second edition appeared in 1940- Except for such necessary changes as providing new title and copyright pages and adding this Preface by way of explanation, no attempt has been made to modernize the book in any way. To do so would surely detract from, rather than add to, its value.
"In Mathematics the man who is ignorant of what Pythagoras said in Croton in 500 B. C. about. the square on the longest side of a right-angled triangle, or who forgets what someone in Czechoslovakia proved last week about inequalities, is likely to be lost. The whole terrific mass of wellestablished Mathematics, from the ancient Babylonians to the modern Japanese, is as good today as it ever was."
E. T. Pell, Ph.oD., 19-91
vi

FOREWORD

According to Hume, (England's thinker who interrupted Kant's "dogmatic slumbers"), arguments may be divided into: (a) demonstrations; (b) proofs; (c) probabilities.

By a demonstration, (demonstro, to cause to see), we mean a reasoning consisting of one or more catagorical propositions "by which some proposition brought into question is shown to be contained in some other proposition assumed, whose truth and certainty being evident and acknowledged, the proposition in question must also be admitted certain. The result is science, knowledge, certainty." The knowledge which demonstration gives is fixed and unalterable. It denotes necessary consequence, and is synonymous with proof from first principles.

By proof, (probo, to make credible, to demonstrate.), we mean 'such an argument from experience as leaves no room for doubt or opposition'; that is, evidence confirmatory of a proposition, and adequate to establish it.

The object of this work is to present to the future investigator, simply and concisely, what is known relative to the so-called Pythagorean Proposition, (known as the 47 th proposition of Euclid and as the "Carpenter's Theorem"), and to set forth certain established facts concerning the algebraic and geometric proofe and the geometric figures pertaining thereto.

It establishes that:
First, that there are but four kinds of demons.trations for the Pythagorean proposition, viz.:
I. Those based upon Linear Relations (implying the Time Concept) the Algebraic Proofs.
II. Those based upon Comparison of Areas (implying the Space Concept)--the Geometric Proofs.
III. Those based upon Vector Operation (implying the Direction Concept)--the Quaternionic Proofs.
IV. Those based upon Mass and Velocity (implying the Force Concept)--the Dynamic Proofs.

Second, that the number of Algebraic proofs is limitless.

Third, that there are only ten types of geometric figures from which a Geometric Proof can be "deduced.

This third fact is not mentioned nor implied by any work consulted' by the author of this treatise, but which, once established, becomes the basis for the classification of all possible geometric proofs.

Fourth, that the number of geometric proofs is limitless.

Fifth, that no trigonometric proof is possible.

By consulting the Tabie of Contents any investigator can determine in what field his proof. falls, and then, by reference to the text, he can find out wherein it differs from what has already been established.

With the hope that this simpie exposition of this historically renowned and mathematically fundamental proposition, without which the science of Trigonometry and all that it implies would be impossible; may interest many minds and prove helpful and suggestive to the student, the teacher and the future original investigator, to each and to all who are seeking more light, the author, sends it forth.

CONTENTS

Figures Page
Foreword vil
Portraits xi
Acknowledgments xili
Abbreviations and Contractions xv
The Pythagorean Proposition 3
Brief Biographical Information 7
Supplementary Historical Date 11
An Arithmetico-Algebraic Point of View 17
Rules for Finding. Integral Values for a, b and h. 19
Methods of Proof--4 Methods 22
I. Algebraic Proofi Through Linear Relations 23
A. Similar Right Triangles--several thousand proofs posaible 1- 35 23
B. The Mean Proportional Principle 51
C. Through the Use of the Circle 60
(I) Through the Use of One Circle 54-85 60
(1) The Method of Chorde 54-68 61
(2) The Method by Secants 68
(3) The Method by Tangents 74
(II) Through the Use of Two Circles 80
D. Through the Ratio of Areas 83
E. Through the Theory of Limits 86
F. Algebraic-Geometric Complex 88
G. Algebraic-Geometric Proofs Through Similar Polygons, Not Squares 100-103 91
II. Geometric Proofs--10 Types 97
A-Type. All three sq's const'd exterior 104-171 98
B-Type. The h-square const'd interior 172-193 144
C-Type. The b-square const'd interior 194-209 158
D-Type. The a-square const'd interior 165
E-Type. The h - and $b-s q$'s const'd interior 217-224 169
F-Type. The h- and a-sq's const'd interior 225-228 174
G-Type. The a - and $\mathrm{b}-\mathrm{sq}$'s const'd interior 229-247 176
H-Type. All three sq's const'd interior 248-255 185
Figures Page
I-Type. One or more squares translated, giv-
ing 7 olasses covering 19 different cases 189
(1) Four cases 191
(2) Four cases 261-276 193
(3) Four cases 277-288 201
(4) Two cases 206
(5) Two cases 208
(6) Two cases 209
(7) One case 306 215
J-Type. One or more of the squares not graphically represented--Two sub-types 216
(A) Proof derived through a square, giv- ing 7 classes covering 45 distinct cases 216
(1) Twelve cases, but 2 givan 307-309 218
(2) Twelve cases, but l given 310.-311 219
(3) Twelve cases, none given 0
(4) Three cases, 312-313 221
(5) Three cases, none given 0
(6) Three cases, all 3 given 314-328 222
(B) Proof based upon a triangle through calculations and comparisons of 230
equivalent areas 329-346 230
Why No Trigonometric, Analytic Geometry Nor Calculus Proof Possible 244
III. Quaternionic Proofs 246°
IV. Dynamic Proofs 248
A Pythagorean Curiosity 252
Pythagorean Magic Squares 254
Addenda 258
Bibliography 271
Testimonials 277
Index 281

PORTRAITS

1. Loomis, Elisha S Frontispiece
2. Copernicus facing page 88
3. Descartes 11 244
4. Euclid 118
5. Galileo 188
6. Gauss " 16
7. Leibniz " 58
8. Lobachevsky " 210
9. Napler " 744
10. Newton $11 \quad 11$ 168
11. Pythagoras II. 11 8
12. Sylvester " " 266

Every man butlds upon his predecessors.

My predecessors made this work possible, and may those who make further investigations relative to this renowned proposition do better than their predecessors have done.

The author herewith expresses his obligations:

To the many who have preceded him in this field, and whose text and proof he has acknowledged herein on the page where such proof is found;

To those who, upon request, courteously granted him permission to make use, of such proof, or refer to the same;

To the following Journals and Magazines whose owners so kindly extended to him permission to use proofs found therein, viz...

The American Mathematical Monthíy;
Heath's Mathematical Monographs;
The Journal of Education;
The Mathematical Magazine;
The School Visitor;
The Scientific American Supplement; Science and Mathematics; and Science.

To Theodore H. Johnston, Ph.D., formerly Principal of the West High School, Cleveland, Ohio, for his valuable stylistic suggestions after reading the original manuscript in 1907.

To Professor Oscar Lee Dustheimer, Professor of Mathematics and Astronomy, Baldwin-Wallace College, Berea, Ohio, for his professional assistance and advice; and to David P. Simpson, 33°, former Principal of West High School; Cleveland, Ohio, for his brotherly encouragement, and helpful suggestions, 1926.
xili

To Dr. Jehuthiel Ginsburg, publisher of Scripta Mathematica, New York City, for the right to reproduce the photo plates of ten of his "Portraits of Emineht Mathematicians."

To Elatus G. Loomis for his assistance in drawing the 360 figures which appear in this Second Edition.

And to "The Masters and Wardens Association of The 22nd Masonic District of the Most Worshipful Grand Lodge of Free and Accepted Masons of Oh1o," owner of the Copyright granted to it in 1927, for its generous permission to publish this Second Edition of The Pythagorean Proposition, the author agreeing that a complimentary copy oi' it shall be sent to the known Mathematical Libraries of the World, for private research work, and also to such Masonic Bodies as it shall select. (April 27, 1940)

abbreviations and contractions

Am. Math. Mo. = The American Matheriatical Monthly, 100 proofs, 1894.
a-square $=$ square upon the shorter leg.
b-square = " ." " longer leg.
Colbrun = Arthur R. Colbrun, LL.M., Dist. of Columbia Bar.
const. $=$ construct.
const'd = constructed.
cos = cosine.
Dem. $=$ demonstrated, or demonstration.
Edw. Geom. = Edward's Elements of Geometry, 1895.
eq. = equation.
eq's = equations.
Fig. or fig. = figure.
Fourrey $=$ E. Fourrey's Curiosities Geometriques.
Heath $=$ Heath's Mathematical Monographs, 1900, Parts I and II--26 proofs.
h-square $=$ square upon the hypotenuse.
Jour. Ed'n $=$ Journal of Education.
Legendre = Davies Legendre, Geometry, 1858.
Math. $=$ mathematics
Math. Mo. = Mathematical Monthly, 1858-9.
Mó. $=$ Monthly.
No. or no. = number.
Olney's Geom. $=0.1$ ney's Elements of Geometry, University Edition.
outw'ly = outwardly.
par. = parallel.
paral. = parallelogram.
perp. = perpendicular.
p. = page.
pt. = point.
quad. = quadrilateral.
resp'y $=$ respectively.

Richardson $=$ John M. Richardson--28 proofs.
rt. = right.
rt. tri. = right triangle.
rect. = rectangle.
Sci. Am. Supt. $=$ Scientific American Supplement, 1910; Vol. 70.
sec $=$ secant.
sin = sine.
sq. = square.
sq's. = squares.
tang $=$ tangent.
$\therefore=$ therefore.
tri. $=$ triangle.
tri's = triangles.
trap. $=$ trapezoid.
V . or v . $=$ volume.
Versluys $=$ Zes en Negentic (96) Beweijzen Voor Het Theorema Van Pythagoras, by J.Versluys, 1914.
Wipper = Jury Wipper's "46 Beweise der Pythagoraischen Lehrsatzes," 1880.
' HE^{2}, or any like symbol: = the square of, or upon, the line HE , or like symbol.
$A C \mid A F$, or like symbol $=A C+A F$, or $\frac{A C}{A F}$. See proof 17 .

$\dot{\delta} \mu c \lambda \epsilon i ̂ \nu \tau \hat{\varrho} \Theta \Theta \epsilon \hat{\omega}$

GOD GEOMETRIZES CONTINUALLY~PLATO.

This celebrated proposition is one of the most important theorems in the whole realm of geometry and is known in history as the 47 th proposition, that being its number in the first book of Eucild's Elements.

It is also (erroneously) sometimes called the Pons Asinorum. Although the practical application of this theorem was known long before the time of Pythagoras he, doubtless, generalized it from an Egyptian rúle of thumb $\left(3^{2}+4^{2}=5^{2}\right)$ and first demonstrated it about 540 B.C., from which fact it is generally known as the Pythagorean Proposition. This famous theorem has always been a favorite with geometricians.
(The statement that Pythagoras was the inventor of the 47 th proposition of Euclid has been denied by many students of the subject.)

Many purely geometric demonstrations of this famous theorem are accessible to the teacher, as well as an unlimited number of proofs based upon the algebraic method of geometric investigation. Also quaternions and dynamics furnish a few proofs.

No doubt many other proofs than these now known will be resolved by future investigators, for the possibilities of the algebraic and geometric relations implied in the theorem are limitiess.

This theorem with its many proofs is a striking illustration of the fact that there is more than one way of establishing the same truth.

But before proceeding to the methods of demonstration, the following historical account translated from a monograph by Jury Wipper, published in 1880, and entitled "46 Beweise des Pythagoralschen. Lehrsatzes," may prove both interesting and profitable.

Wipper acknowledges his indebtedness to F. Graap who translated it out of the Russian. It is as follows: "One of the weightiest propositions in geometry if not the weightiest with reference to its deductions and applications is doubtless the socalled Pythagorean proposition."

The Greek text is as follows:

 $\tau \varepsilon \tau \rho \alpha \gamma \omega ้ \nu \circ$ เऽ.

The Latin reads: In rectangulis triangulis quadratum, quod a latere rectum angulum subtendente describitur, aequale est eis, quae a lateribus rectum angulum continentibus describuntur.

German: In den rechtwinkeligen Dreiecken ist das Quadrat, welches von der dem rechten Winkel gegenuber liegenden Seite beschrieben Wird, den Quadraten, welche von den ihn umschliessenden Seiten beschrieben werden, gleich.

According to the testimony of Proklos the demonstration of this proposition is due to Euclid who adopted it in his elements ($I, 47$). The method of the Pythagorean demonstration remains unknown to us. It is undecided whether Pythagoras himself discovered this characteristic of the right triangle, or learned it from Egyptian priests, or took it from. Babylon: regarding this opinions vary.

According to that one most widely disseminated Pythagoras learned from the Egyptian priests the characteristics of a triangle in which one leg $=3$ (designating Osiris), the second $=4$ (designating Isis), and the hypotenuse $=5$ (designating Horus.): for which reason the triangle itself is also named the Egyptian or Pythagorean.*

[^0]The characteristics of such a triangle, however, were known not to the Egyptian priests alone, the Chinese scholars also knew them. "In Chinese history," says Mr. Skatschkow, "great honors are awarded to the brother of the ruler Uwan, Tschou-Gun, who lived 1100 B.C.: he knew the characteristics of the right triangle, (perfected) made a map of the stars, discovered the compass and determined the length of the meridian and the equator.

Another scholar (Cantor) saỹs: this emperor wrote or shared in the composition of a mathematical treatise in which were discovered the fundamental features, ground lines, base lines, of mathematics, in the form of a dialogue between 'Ischou-Gun and Schau-Gao. The title of the book is: Tschaou pi; 1.e., the high of Tschao. Here too are the sides of a triangle already named legs as in the Greek, Latin, German and Russian languages.

Here are some paragraphs of the lst chapter of the work. Tschou-Gun once said to Schau-Gao: "I learned, sir, that you know numbers and their applications, for which reason I would like to ask how old Fo-chi determined the degrees of the celestial sphere. There are no steps on which one can climb up to the sky, the chain and the bulk of the earth are also inapplicable; I would like for this reason, to know how he determined the numbers."

Schau-Gao replied: "The art of counting goes
back to the circle and square."
If one divides a right triangle into its parts the line, which unites the ends of the sides
(Footnote continued) to the time of the Twelfth Dynasty, we find the following equations: $1^{2}+\left(\frac{3}{4}\right)^{2}=\left(1 \frac{1}{4}\right)^{2} ; 8^{2}+6^{2}$ $=10^{2} ; 2^{2}+\left(1 \frac{1}{2}\right)^{2}=\left(2 \frac{1}{2}\right)^{2} ; 16^{2}+12^{2}=20^{2}$; all of which are forms of the 3-4-5 triangle. We also find that this triangle was to them the symbol of universal nature. The base 4 represented Osiris; the perpendicular 3, Isis; and the hypote-
 two principies, male and female.)
when the base $=3$, the altitude $=4$ is 5 .
Tschou-Gun cried out: "That is indeed excellent."

- It is to be observed that the relations between China and. Babylon more than probably led to the assumption that this characteristic was already known to the Chaldeans. As to the geometrical demonstration it comes dountless from Pythagoras himself. In busying with the addition of the series he could very naturally go from the triangle with sides 3,4 and 5 , as a single instance to the general characteristics of the right triangle.

After he observed that addition of the series of odd number $(1+3=4,1+3+5=9$, etc.) gave a series of squares, Pythagoras formulated the rule for finding, logically, the sides of a right triangle: Take an odd number (say 7) which forms the shorter side, square it ($7^{2}=49$), subtract one ($49-1=48$), halve the remainder ($48-2=24$); this half is the longer side, and this increased by one $(24+1=25)$, is the hypotenuse.

The ancients recognized already the significance of the Pythagorean proposition for which fact may serve among others as proof the account of Diogenes Laertius and Plutarch concerning Pythagoras. The latter is said to have offered (sacrificed) the Gods an $o x$ in gratitude after he learned the notable char. acteristics of the right triangle. This story is without doubt a fiction, as sacrifice of animals, 1.e., blood-shedding, antagonizes the Pythagorean teaching.

During the middle ages this proposition which was also named inventum necatombe dignum (in-as-much as it was even believed that a sacrifice of a heca-tomb--100 oxen--was offered) won the honor-designation Magtster matheseos, and the knowledge thereof was some decades ago still the proof of a solid mathematical training (or education). In examinations to obtain the master's degree this proposition was often given; there was indeed a time, as is maintained,

When from every one who submitted himself to the test εs master of mathematics a new (original) demonstration was required.

This latter circumstance, or rather the great significance of the proposition under consideration was the reacon why numerous demonstrations of it were thought out.

The collection of demonstrations which we bring in what follows,* must, in our opinion, not merely satisfy the simple thirst for knowledge, but also as impcrtant aids in the teaching of geometry. The variety of demonstrations, even when some of them are finical, must demand in the learners the development of rigidiy logical thinking, must show them now many sidedly an object can be considered, and spur them on to test their abilities in the discovery of like demonstrations for the one or the other proposition."

Brief Biographical Information Concerning Pythagoras

"The birthplace of Pythagoras was the island of Samos; there the father of Pythagoras, Mnessarch, obtained citizenship for services which he had rendered the inhabitants of Samos during a time of famine. Accompanied by his wife Pithay, Mnessarch frequently traveled in business interests; during the year 569 A.C. he came to Tyre; here Pythagoras was born. At eighteen Pythagoras, secretly, by night, went from (left) Samos, which was in the power of the tyrant Polycrates, to the island Lesbos to his uncle who weicomed him very hospitably. There for two years he received instruction from Ferekid who with Anaksimander and Thales had the reputation of a philosopher.

[^1]After Pythagoras had made the religious ideas. of his teacher his own, he went to Anaksimander and Thales in Miletus (549 A.C.). The latter was then already 90 years old. With these men Pythagoras studied chiefly cosmography, i.e., Physics and Mathemat1cs.

Of Thales it is known that he borrowed the solar year from Egypt; he knew how to calculate sun and moon eclipses, and determine the elevation of a pyramid from its shadow; to him also are attributed the discovery of geometrical projections of great import; e.g., the characteristic of the angle which is inscribed and rests with its sides on the diameter, as well as the characteristics of the angle at the base of an (equilateral) isosceles triangle.

Of Anaksimander it is known that he knew the use of the dial in the determination of the sunts elevation; he was the first who taught geography and drew geographical maps on copper. It must be observed too, that Anaksimander was the first prose writer, as down to his day all learned works were written in verse, a procedure which continued longest among the East Indians.

Thales directed the eager youth to Egypt as the land where he could satisfy his thirst for knowledge. The Phoenician priest college in Sidon must in some degree serve as preparation for this journey. Pythagoras spent an entire year there and arrived in Egypt 547.

Although Polikrates who had forgiven Pythagoras' nocturnal flight addresses to Amasis a letter in which he commended the young scholar, it cost Pythagoras as a foreigner, as one unclean, the most incredible toil to gain admission to the priest caste which only "unwillingly initiated even their own people into their mysteries or knowledge.

The priests in the temple Heliopolis to whom the king in person brought Pythagoras declared it impossible to receive him into their midst, and directed him to the oldest priest college at Memphis, this

PYTHAGORAS
From a Fresco by Raphael
commended him to Thebes. Here somewhat severe coñdtions were laid upon Pythagoras for his reception into the priest caste; but nothing could deter him. Pythagoras performed all the rites, and all tests, and his study began under the guidance of the chief priest Sonchis.

During his 21 years stay in Egypt Pythagoras succeeded not only in fathoming and absorbing all the Egyptian but also became sharer in the highest honors of the priest caste.

In 52.7 Amasis died; in the following (526) year in the reign of Psammentt, son of Amasis, the Persian king Kambis invaded Egypt and loosed all his fury against the priest caste.

Nearly all members thereof féll into captivity, among them Pythagoras, to whom as abode Babylon was assigned. Here in the center of the world commerce where Bactrians, Indians, Chinese, Jews and other folk came togother, Pythagoras had during 12 years stay opportunity to acquire those learnings in which the Chaldeans were so rich.

A singular accident secured Pythagoras liberty in consequence of which he returned to his native land in his 56th year. After a brief stay on the 1sland Delos where he found his teacher Ferekid still alive, he spent a half year in a visit to Greece for the purpose of making himself familiar with the religious, scientific and social condition thereof.

The opening of the teaching activity of Pythagoras, on the island of Samos, was extraordinarily sad; in order not to remain wholly without pupils he was forced even to pay his sole pupil, who was also named Pythagoras, a son of Eratokles. This led him to abandon his thankless land and seek a new home in the highly cultivated cities of Magna Graecia (Italy).

In 510 Pythagoras came to Kroton. As is known it was a turbulent year. Tarquin was forced to flee from Rome, Hippias from Athens; in the neighborhood of Kroton, in Sibaris, insurrection broke out.

The first appearance of Pythagoras before the... people of Kroton began with an oration to the youth
wherein he rigorously but at the same time so convincingly set forth the duties of young men that the elders of the city entreated him not to leave them without guidance (counsel). In his second oration he called attention to law abiding and purity of morals as the butresses of the family. In the two following orations he turned to the matrons and children. The result of the last oration in which he specially condemned luxury was that thousands of - costly garments were brought to the temple of Hera, because no 䒽tron could make up her mind to appear in them on the street.

Pythagoras spoke captivatingly, and it is for this reason not to be wondered at that his orations brought about a change in the morals of Kroton's inhabitants; crowds of listeners streamed to him. Besides the youth who listened all day long to his teaching some 600 of the worthiest men of the city, matrons and maidens, came together at his evening entertainments; among them was the young, gifted and beautiful Theana, who thought it happiness to become the wife of the 60 year old teacher.

The listeners divided accordingly. into disciples, who formed a school in the narrower sense of the word, and into auditors, a school in the broader sense. The former, the so-called mathematicians were given the rigorous teaching of Pythagoras as a scientific whole in logical succession from the prime concepts of mathematics up to the highest abstraction of philosophy; at the same time they learned to regard evērything fragmentary in knowledge as more harmful than ignorance even.

From the mathematicians must be distinguished the auditors (university extensioners) out of whom subsequently were formed the Pythagoreans. These took part in the evening lectures oniy in which nothing rigorously scientific was taught. The chief themes of these lectures were: ethics, immortality of the soul, and transmigration--metempsyihology.

About the year 490 when the Pythagorean school reached its highest splendor--brilliancy--a
certain Hypasos who had been expelled from the school as unworthy put himself at the head of the democratic party in Kroton and appeared as accuser of his former colleagues. The school was broken up, the property of Pythagoras was confiscated and he himself exiled.

The subsequent. 16 years Pythagoras lived in Tarentum, but even here the democratic party gained the upper hand in 474 and Pythagoras a 95 -year old man must flee again to Metapontus where he dragged out his poverty-stricken existence 4 years'more. Finally democracy triumphed there also; the house in which was the school was burned, many disciples died a death of torture and Pythagoras himself with difficulty having escaped the flames died soon after in his 99th year."*

Supplementary Historical Data

To the following (Graap's) translation, out of the Russian, relative to the great master Pythagoras, these interesting statements are due.
"Fifteen hundred years before the time of Pythagoras, (549-470 B.C.), ** the Egyptians constructed right angles by so placing three pegs that a rope measured off into 3,4 and 5 units would just reach around them, and for this purpose professional 'rope fasteners' were employed.
"Today carpenters and masons make right angles by measuring off 6 and 8 feet in such a manner that a 'ten-foot pole' completes the triangle.
"Out of this simple Nile-compelling problem. of these early Egyptian rope-fasteners Pythagoras is said to have generalized and proved this important and famous theorem,--the square upon the hypotenuse

[^2]of a-right triangle is equal to the sum of the squares upon its two legs,--of which the right triangle whose sides are 3,4 and 5 is a simple and particular case; and for having proved the universal truth implied in the $3-4-5$ triangle, he made his name immortal--written indelibly across the ages.

In speaking of him and his philosophy, the Journal of the Royal Society of Canada, Section II, Vol. 10, 1904, p. 239, says: "He was the Newton, the Galileo, perhaps the Edison and Marconi of his Epoch.....'Scholars now go to Oxford, then to Egypt, for fundamentals of the past.....The philosophy of Pythagoras is Asiatic--the best of India--in origin, in which lore he became proficient; but he committed none of his views to, writing and forbid his followers to do so, insisting that they listen and hold their tongues." "

He was indeed the Sarvonarola of his epoch; he excelled in philosophy, mysticism, geonetry, a writer upon music, and in the field of astronomy he anticipated Copernicus by making the sun the center 'of the cosmos. "His most original mathematical work however, was probably in the Greek Arithmetica, or theory of numbers, his teachings being followed by all subsequent Greek writers on the subject."

Whether his proof of the famous theorem was wholly original no one knows; but we now know that geometers of Hindustan knew this theorem centuries before his time; whether he knew what they knew is also unknown. But he, of all the masters of antiquity, carries the honor of its place and importance in our Euclidian Geometry.

On'account of its extensive application in the field of trigonometry, surveying, navigation and astronomy, it is one of the most, if not the most, interesting propositions in elementary plane geometry.

It has been variously denominated as, the Pythagorean Theorem, The Hecatomb Proposition, The: Carpenter's Theorem, and the Pons Asinorum because of its supposed difficulty. . But the term "Pons Asinorum"
also attaches to Theorem V, properly, and to Theorem XX erroneously, of'Book I of Euclid's Elements of Geometry.

It is regarded as the most fascinating Theorem of all Euclid, so much so, that thinkers from ail classes and nationalities, from the aged philosopher in his armchair to the young soldier in the trenches next to no-man's-land, 1917, have whiled away hours seeking a new proof of its truth.

Camerer, ${ }^{*}$ in his notes on the First Six Books of Euclid's Elements gives a collection of 17 different demonstrations of this theorem, and from time to time others have made collections,--one of 28, another of 33 , Wipper of 46 , Versluys of 96 , the American Mathematical Monthly has 100, others of lists ranging from a few to over 100, all of which proofs, with credit, appears in this (now, 1940) collection of over 360 different proofs, reaching in time, from 900. B.C., to 1940 A.D.

Some of these 367 proofs,--supposed to be new--are very old; some are short and simple; others are long and complex; but each is a way of proving the same truth.

Read and take your choice; or better, find a new, a different proof, for there are many more proofs possible, whose figure will be different from any one found herein.

[^3]Come and take choice of all my Library.
-Titus Andronicus.

Viam Inveniam aut Faciam.
x
"Mathematics is queen of the sciences and arithmetic is queen of Mathematics. She often condescends to render service to astronomy and other natural sciences, but under all circumstances thé first pláce is her due."

Gauss (1777-1855)

CARL FRIEDRICH GAUSS
1777-1855

Dr. J.W. L. Glashier in his address before Section A of the British Association for the Advancement of Science, 1890, said: "Many of the greatest masters of the Mathematical Sciences were first attracted to mathematical inquiry by problems concerning numbers, and no one can glance at the periodicals of the present day which contains questions for solution without noticing how singular a charm such problems continue to exert."

One of these charming problems was the determination of "Triads of Arithmetical Integers" such that the sum of the squares of the two lesser shall equal the square of the greater number.

These triads, groups of three, represent the three sides of a right triangle, and are infinite in number.

Many ancient master mathematicians sought general formulas for finding such groups, among whom worthy of mention were Pythagoras (c. 582-c. 501 B.C.), Plato (429-348 B.C.), and Euclid (living 300 B.C.), because of their rules for finding such triads.

In our public'ilbraries may be found many publications containing data relating to the sum of two square numbers whose sum is a square number among which the following two mathematical magazines are especially worthy of notice, the first being "The Mathematical Magazine," 1891, Vol. II, No. 5, in which, p. 69, appears an article by that master Mathematical Analyst, Dr. Artemas Martin, of Washington, D.C.; the second being. "The American Mathematical Monthly," 1894, Vol. I, Ne. 1, in which, p. 6, appears an article by Leonard E. Dickson, B.Sc., then Fellow in Pure Mathematics, University of Texas.

Those who are interested and desire more data relative to such numbers than here culled therefrom, the same may be obtained from these two Journals.

From the article by.Dr. Martin. "Any number of square numbers whose sum is a square number can be found by various rigorous methods of solution."

Case I. Let it be required to find two square numbers whose sum is ä square number.

First Method. Take the well-known identity $(x+y)^{2}=x^{2}+2 x y+y^{2}=(x-y)^{2}+4 x y .--(1)$

Now if. we can transform $4 x y$ into a square we shall have expressions for two square numbers whose sum is a square number.

Assume $x=m p^{2}$ and $y=m q^{2}$, and we have $4 x y=4 m^{2} p^{2} q^{2}$, which is a square number for all valwes cf m, p and q; and (1) becomes, by substitution, $\left(m p^{2}+m q^{2}\right)^{2}=\left(m p^{2}-m q^{2}\right)^{2}+(2 m p q)^{2}$, or striking out the common square faction m^{2}, we have $\left(p^{2}+q^{2}\right)^{2}$ $=\left(p^{2}-q^{2}\right)^{2}+(2 p q)^{2} \cdot--(2)$

Dr. Martin follows this by a second and a third method, and discovers that both (second and third) methods reduce, by simplification, to formula (2).

Dr. Martin declares, (and supports his declaration by the investigation of Matthew Collins: "Tract on the Possible and Impossible Cases of Quadratic Duplicate Equalities in the Diophantine Analysis," published at Dublin in 1858), that no expression for two square numbers whose sum is a square can be found which are not deducible from this, or reducible to this formula, - that $(2 \overline{p q})^{2}+\left(p^{2}-q^{2}\right)^{2}$ is always equal to $\left(p^{2}+q^{2}\right)^{2}$.

His numerical illustrations are:

```
    Example l. Let \(p=2\), and \(q=1\); then
\(p^{2}+q^{2}=5, p^{2}-q^{2}=3,2 p q=4\), and we have \(3^{2}+4^{2}\)
\(=5^{2}\).
    Example 2. Let \(p=3, q=2\); then \(p^{2}+q^{2}\)
\(=13, \mathrm{p}^{2}-\mathrm{q}^{2}=5,2 \tilde{\mathrm{~F}}=12 . \therefore 5^{2}+12^{2}=13^{2}\), etc.,
ad infinitum.
```

From the article by Mr. Dickson: 'Let the three integers used to express the three sides of a right triangle be prime to each other, and be symbolized by a, b and $h . '$ Then these facts follow:

1. They can not all be even numbers, otherwise they would stili be divisible by the common divisor 2 .
2. They can not all be odd numbers. For $a^{2}+b^{2}=h^{2}$. And if a and b are odd, their squares are odd, and the sum of their squares is even; 1.e., ha is even. But if h^{2} is even h must be even.
3. h must always be odd; and, of the remaining two, one must be even and the other odd. So two of the three integers, a, b and h, must always be odd. (For proof, see p. 7, Vol. I, of said Am. Math. Monthly.)
4. When the sides of a right triangle are integers, the perimeter of the triangle is always an even number, and its area is also an even number.

Rules for finding integral values for a, b and h.
2. Rule of Pythagoras: Let n be odd; then $n, \frac{n^{2}-1}{2}$ and $\frac{n^{2}+1}{2}$ are three such numbers. For $n^{2}+\left(\frac{n^{2}-1}{2}\right)^{2}=\frac{4 n^{2}+n^{4}-2 n^{2}+1}{4}=\left(\frac{n^{2}+1}{2}\right)^{2}$.
2. Plato's Rule: Let-m-be-any even number divisible by 4; then $m, \frac{m^{2}}{4}-1$, and $\frac{m^{2}}{4}+1$ are three such numbers. For $m^{2}+\left(\frac{m^{2}}{4}-1\right)^{2}=m^{2}+\frac{m^{4}}{16}-\frac{m^{2}}{2}+1$ $=\frac{m^{4}}{16}+\frac{m^{2}}{2}+1=\left(\frac{m^{2}}{4}+1\right)^{2}$.
3. Euclid's Rule: Let x and y be any two even or odd numbers, such that x and y contain no common factor greater than 2 , and $x y$ is a square. Then $\sqrt{x y}$, $\frac{x-y}{2}$ and $\frac{x+y}{2}$ are three such numbers. For

$$
(\sqrt{x y})^{2}+\left(\frac{x-y}{2}\right)^{2}=x y+\frac{x^{2}-2 x y+y^{2}}{4}=\left(\frac{x+y}{2}\right)^{2}
$$

4. Rule of Maseres (1721-1824): Let m and n be any
two even or odd, $m>n$, and $\frac{m^{2}+n^{2}}{2 n}$ an integer.
Then $m^{2}, \frac{m^{2}-n^{2}}{2 n}$ and $\frac{m^{2}+n^{2}}{2 n}$ are three such numbers.
For $m^{2}+\frac{m^{2}-n^{2}}{2 n}=\frac{4 m^{2} n^{2}+m^{4}-2 m^{2}+n^{2}+n^{4}}{4 n^{2}}$ $=\left(\frac{m^{2}+n^{2}}{2 n}\right)^{2}$.
5. Dickson's kule: Let m and n be any two prime integers, one even and the other odd, $m>n$ and $2 m n$ a square. Then $n+\sqrt{2 m n}, n+\sqrt{2 m n}$ and $m+n$ $+\sqrt{2 m n}$ are three such numbers. For $(m+\sqrt{2 m n})^{2}$ $+(n+\sqrt{2 m n})^{2}+m^{2}+n^{2}+4 m n+2 m \sqrt{2 m n}+2 n \sqrt{2 m n}$ $=(m+n+\sqrt{2 m n})^{2}$.
6. By inspection it is evident that these five rules, --the formulas of Pythagoras, Plato, Euclid, Maseres and Dickson, --each reduces to the formula of Dr. Martin.

In the Rule of Pytrragoras: multiply by 4 and square and there pesults $(2 n)^{2}+\left(n^{2}-1\right)^{2}=\left(n^{2}+1\right)^{2}$, in which $p=n$ and $q=1$.

In the Rule of Plato: multiply by 4 and square and there results $(2 m)^{2}+\left(m^{2}-2^{2}\right)^{2}$ $=\left(m^{2}+2^{2}\right)^{2}$, in which $p=m$ and $q=2$.

In the Rule of Euclid: multiply by 2 and square there results $(2 x y)^{2}+(x-y)^{2}=(x+y)^{2}$, in which $p=x$ and $q=y$.

In. the Rule of Maseres: multiply by $2 n$ and square and results are $(2 m n)^{2}+\left(m^{2}-n^{2}\right)^{2}$ $=\left(m^{2}+n^{2}\right)^{2}$, in which $p=m$ and $q=n$.

In Rule of Dickson: equating and solving $p=\sqrt{\frac{m+n+2 \sqrt{2 m n}}{2}+\sqrt{m-n}}$ and
$q=\sqrt{\frac{m+n+2 \sqrt{2 m n}}{2}-\sqrt{m-n}}$.

Or if desired, the formulas of Martin, Pythagoras, Plato, Euclid and Maseres may be reauced to that of Dickson.

The advantage of Dickson's Rule is this: It gives every possible set of values for a, b and h in their lowest terms, and gives this set but once.
: To apply his rule, proceed as follows: Let m be any odd square whatsoever, and n be the double of any square number whatsoever not divisible by m.

Examples. If $m=9, n$ may be the double of $1,4,16,25,49$, etc.; thus when $m=9$, and $n=2$, then $m+\sqrt{2 m n}=15, n+\sqrt{2 m n}=8, m+n+\sqrt{2 m n}=17$. So $a=8, b=15$ and $h=17$.

If $m=1$, and $n=2$, we get $a=3, b=4$, $h=5$.

If $m=25$, and $n=8$, we get $a=25, b=45$, $h=53$, etc., etc.

Tables of integers for values of $a ; b$ and h have been calculated.

Halsted's Tabie (in his "Mensuration") is absolutely complete as far as the 59 th set of values.

METHODS OF PROOF

Method is the following of one thtng throuth another. order is the following of one thtng after another.

The type and form of a figure necessarily determine the possible argument of a derived proof; hence, as an aid for reference, an order of arrangement of the proofs is of great importance.

In this exposition of some proofs of the Pythagorean theorem the aim has been to classify and arrange them as to method of proof and type of figure used; to. give the name, in case it has one, by which the demonstration is known; to give the name and page of the journal, magazine or text wherein the proof may be found, if known; and occasionally to give other interesting data relative to certain proofs.

The order of arrangement herein is, only in part, my own, being formulated after a study of the order found in the several groups of proofs eremined, but more especially of the order of arrangement given in The American Mathematical Monthly, Vols. III and IV, 1896-1899.

It is assumed that the person using this work will know the fundamentals of plane geometry, and that, having the figure before him, he will readily supply the "reasons why" for the steps taken as, often from the figure, the proof is obvious; therefore only such statements of construction and demonstration are set forth in the text as is necessary to establish the agrument of the particular proof.

The Methods of Proof Are:

I. ALGEBRAIC PROOFS THROUGH LINEAR RELATIONS

A. Stmilar Right Triangles

From linear relations of similar right triangles it may be proven that, The square of the hypotenuse of a right triangle is equal to the sum of the squares of the other two sides.

And since the algebraic square is the measure of the geometric square, the truth of the proposition -as just stated involves the truth of the proposition as stated under Geometric Proofs through comparison of areas. Some algebraic proofs are the following:

One

In rt. tri. ABH, draw HC

Fig. 1 perp. to $A B$. The tri's $A B H, A C H$ and HCB are similar. For convenience; denote $B H, H A, A B, H C, C B$ and $A C$ by a, b, h, x, y and $h-y$ resp'y. Since, from three similar and related tri- argles, there are possible nine simple proportions, these proportions
and their resulting equattons are:
(1) $a: x=b: h-y \therefore a h-a y=b x$.
(2) $a: y=b: x \therefore a x=b y$.
(3) $\mathrm{x}: \mathrm{y}=\mathrm{h}-\mathrm{y}: \mathrm{x} \therefore \mathrm{x}^{2}=\mathrm{hy}-\mathrm{y}^{2}$.
(4) $a: x=h: b: a b=h x$.
(5) $a: y=h: a \therefore a^{2}=h y$.
(6) $x: y=b: a \therefore a x=b y$.
(7) $b: h-y=h: b \therefore b^{2}=h^{2}-h y$.
(8) $b: x=h: a \therefore a b=h x$.
(9) $h-y: x=b: a \therefore$ ah $-a y=b x$. See Versluys, p. 86, fig. 97, Wm. W. Rupert.
S.Ince equations (1) and (9) are identical, also (2) and (6), and (4) and (8), there remain but six different equations, and the problem becomes,
how may these six equations be combined so as to give the desired relation $h^{2}=a^{2}+b^{2}$, which geometrically interprested is $A B^{2}=B H^{2}+H A^{2}$:

In this proof one, and in every case hereafter, as in proof Sixteen, $p .41$, the symbol $A B^{2}$, or a like symbol, signifies $\overrightarrow{A B}^{2}$.

Every rational solution of $h^{2}=a^{2}+b^{2}$ affords a Pythagorean triangle: See "Mathematical Monograph, No. 16, Diophe tine Analysis," (1915), by R. D. Carmichael.

1st.--Legendre's Solutton

a. From no single equation of the above nine can the desired relation be determined, and there is but one combination of two equations which will give it; viz., (5) $\mathrm{a}^{2}=$ hy; (7) $\mathrm{b}^{2}=\mathrm{h}^{2}$ - hy; adding these gives $h^{2}=a^{2}+b^{2}$.

This is the shortest proof possible of the Pythagorean Proposition.
b. Since equations (5) and (7) are implied in the principle that homologous sides of similar triangles are proportional it follows that the truth of this important proposition is but a corollary to the more general truth--the law of similarity.
c. See Davis Legendre, 1858, p. 112, Journal of Education, 1888 , V. XXV, p. 404, fig. V.
Heath's Math. Monograph, 1900, No. 1, p. 19, proof III, or any late text on geometry.
d. W. W. Rouse Ball, of Trinity College, Cambridge, England seems to think Pythagoras knew of this proof.

2nd.--Other Solutions

a. By the law of combinations there are possible 20 sets of three equations out of the six different equations. Rejecting all sets containing (5) and (7), and all sets containing dependent equations, there are remaining 13 sets from which the elimination of x and y may be accomplished in 44 different
ways, each giving a distinct proof for the relation $h^{2}=a^{2}+b^{2}$.
b. See the American Math. Monthly, 1896,
V. III, p. 66 or Edward's Geometry, p. 157, fig. 15.

Iwo
Produce $A H$ to C so that $C B$ will be perpendicular to $A B$ at B. Denote $B H, H A, A B, B C$ and CH by a, b, h, x and y resp'y.

The triangles $A B H, C A B$ and BCH are similar.

From the continued proportion $b: h: a=a: x: y=h: b$ $+y: x$, nine different simple proportions are possible, viz.:
(1) $i, h=a: x$.
(7) $a: x=h: b+y$.
(2) $b: a=a: y$.
(8) a: $\mathrm{y}=\mathrm{h}: \mathrm{x}$.
(3) $h: a=x: y$.
(4) $b: h=h: b+y$.
(5) $b: a=h: x$.
(6) $h: a=b+y: x$.
(9) $x: b+y=y: x$, from which six different equations are possible as in One above.

1st.--Solutions From Sets of Two Equations
a. As in One, there is but one set of two equations, which will give the relation $h^{2}=a^{2}+b^{2}$.
b. See Am. Math. Mo., V. III, p. 66.

2nd.--Solution From Sets of Three Equations
a. As in 2nd under proof one, fig. 1, there are 13 sets of three eq's, giving 44 distinct proofs that give $h^{2}=a^{2}+b^{2}$.
b. See Am. Math. Mo., V. III, p. 66.
c. Therefore from three similar, rt. 'tri's so reiated that any two have one side in common there are 90 ways of proving that $i^{2}=a^{2}+b^{2}$.

Three

Take $B D=B H$ and at D draw $C D$ perp. to $A B$ forming the two similar tri's $A B H$ and CAD.
a. From the continued proportion $a: x=b: h=h: b-x$ the simple proportions and their resulting eq's are:
(1) $a: x=b: h-a \therefore a h-a^{2}=b x$.
(2) $a: x=h: b-x \therefore a b-a x=h x$.
(3) $b: h-a=h: b-x \therefore b^{2}-b x=h^{2}-a h$.

As there are but three equations and as each equation contains the unknown x in the lst degree, there are possible but three solutions giving h^{2} $=a^{2}+b^{2}$.
b. See Am. Math. Mo., V. III, p. 66, and Math. Mo., 1859, V. II, No. 2, Dem. Fig. 3; on p. 45 by Richardson.

Eour

In Fig. 4 extend $A B$ to C making $B C=B H$, and draw $C D$ perp. to AC. Produce $A H$ to D, forming the two similar tri's $A B H$ and $A D C$.

From the continued proportion $b: h+a=a: x$ $=h: b+x$ three equations are possible giving, as in fig. 3, three proofs.
a. See Am. Math. Mo., V. III, p. 67.

Eive

Draw AC the bisector of the angle $H A B$, and $C D$ perp. to $A B$, forming the similar tri's $A B H$ and $B C D$.
Fig. 5 Then $C B=a-x$ and $D B=h-b$.

From the continued proportion h : a - x $=\mathrm{a}: \mathrm{h}-\mathrm{b}=\mathrm{b}^{\prime}: \mathrm{x}$ three equations are possible $\approx i v-$ ing, as in fig. 3, three proofs for $h^{2}=a^{2}+b^{2}$.
a.: Original with the author, Feo. 23, i926. $\underline{s} \underline{i} \underline{x}$

Throuch D, any pt. in either

Fig. 6 leg of the rt. triangle $A B H$, draw $D C$ perp. to $A B$ and extend it to E a pt. in the other les produced, thus forming the four similar rt. tri's $A B H, B E C, A C D$ and EHD. From the continued proportion ($A B=h$)
: $(B E=a+x):(E D=v)$
$:(D A=b-y)=(B H=a):$
$(B C=h-z):(D H=y):(D C=w)$
$=(H A=b):(C E=v+w):(H E=x):(C A=z)$, eighteen simple proportions and eighteen different equations are possible.

From-no single equation nor from any set of two eq's can the relation $h^{2}=a^{2}+b^{2}$ be found but from combination of eq's involving three, four or five of the unknown elements u, w, x, y, z, solutions may be obtained.

> 1st. $=-$ Proofs From Sets. Involving Three Uñत̄own Elements
a. It has been shown that there is possible but one combination of equations involving but three of the unknown elements, viz., x, y and z which will give $h^{2}=a^{2}+b^{2}$.
b. See Am. Math. Mo., V. III, p. 111.

2nd.--Proofs From Sets Involving Four Unknown Elements
a. There are possible 114 combinations involving but four of the unknown elements each of which will give $h^{2}=a^{2}+b^{2}$.
b. See Am. Math. Mo., V. III, p. 111.

3rd.--Proofs From Sets Involving All ftue Unknown Rlements

a. Similarly, there are 4749 combinations involving all five of the unknowns, from each of which $h^{2}=a^{2}+b^{2}$ can be obtained.
b. See Am. Math. Mo., V. III, p. 112.
c. Therefore the total no. of proofs from.
the relitions involved in fig. 6 is 4864.

Seven

Produce $A B$ to E, fig. 7,

Fig. 7
froduce $A B$ to E, fig. 7, and through E draw, perp. to $A E$, the line CED meeting AH produced in C and $H B$ produced in D, forming the four similar rt. tri's ABH, DBE, CAE and CDH.
a. As in fig. 6, eighteen different equations are possible irom which there are also 4864 proofs.
b. Therefore the total no. of ways of proving that h^{2} $=a^{2}+b^{2}$ from 4 similar rt. tri's related as in fig's 6 and
7 is 9728.
c. As the pt. E approaches the pt. B, fig. 7 approached fig. 2, above, and becomes fig. 2, when E falls on B.
d. Suppose E falls on $A B$ so that $C E$ cuts $H B$ between H and $B ;$ then we will have 4 similar rt. tri's involving 6 unknowns. How many proofs will result?

Eight

In fig. 8 produce $B H$ to D, making $B D=B A$, and E, the middle pt. of $A D$, draw EC parallel to $A H$, and join $B E$, forming the 7 similar rt. triangles $A F D$, ECD, BED, BEA, BCE, BHF and AEF, but six of which
need consideration, since tri's BED

Fig. 8 and BEA are congruent and, in symbolization, identical.

See Versluys, p. 87, fig. 98, Hoffmann, 1818.

From these 6 different rt. triangles, sets of 2 tri's may be selected in 15 different ways, sets of 3 tri's may be selected in 20 different ways, sets of 4 tri's may be selected in 15 different ways, sets of 5 tri's may be selected in 6 different ways, and sets of 6 tri's may be selected in 1 way, giving, in all, 57 different ways in which the 6 triangles may be combined.

But as all the proofs derivable from the sets of $2,3,4$, or 5 tri's are also found among the proofs from the set of 6 triangles, an investigation of this set will suffice for all.

In the 6 similar rt. tri's, let $A B=h, B H$ $=\mathrm{a}, \mathrm{HA}=\mathrm{b}, \mathrm{DE}=\mathrm{EA}=\mathrm{x}, \mathrm{BE}=\mathrm{y}, \mathrm{FH}=\mathrm{z}$ and $\mathrm{BF}=\mathrm{v}$, whence $E C=\frac{b}{2}, D H=h-a, D C=\frac{h-a}{2}, E F=y-v$, $B E=\frac{h+a}{2}, A D=2 x$ and $A F=b-z$, and from these data the continued proportion is

$$
\begin{aligned}
& b: b / 2: y:(h+a) / 2: a: x \\
& =h-a:(h-a) / 2: x: b / 2: z: y-v \\
& =2 x: x: h: y: v: b-z
\end{aligned}
$$

From this continued proportion there result 45 simple proportions which give 28 different equations, and, as groundwork fr, determining the number of proofs possible, they are here tabulated.
(1) $b: b / 2=h-a:(h-a) / 2$, where $1=1$. Eq. I.
(2) $b: b / 2=2 x: x$, whence $1=1$. Eq. 1 .
(3) $h-a:(h-a) / 2=2 x: x$, whence $1=1:$ Eq. 1^{3}.
(4) $b: y=h-a: x$, whence $b x=(h-a) y$. Eq. 2 .
(5) $\mathrm{b}: \mathrm{y}=2 \mathrm{x}: \mathrm{h}$, whence $2 \mathrm{xy}=\mathrm{bh}$. Eq: 3 .
(6) $h-a: x=2 x: h$, whence $2 x^{2}=h^{2}$ - ah. Eq. 4.
(7) $b:(a+h) / 2=h-a: b / 2$, whence $b^{2}=h^{2}-a^{2}$. Eq. 5.
(8) $b:(h+a) / 2=2 x: y$, whence $(h+a) x=b y$. Eq. 6.
(9) $h-a: b / 2=2 x: y$, whence $b x=(h-a) y$. Eq. 2.
(10) $b: a=h-a: z$, whence $b z=(h-a) a$. Eq. 7 .
(11) $\mathrm{b}: \mathrm{a}=2 \mathrm{x}: \mathrm{v}$, whence $2 \mathrm{ax}=\mathrm{bv}$. Eq. 8 .
(12) $h-\varepsilon: z=2 x: v$, whence $2 x z=(h-a) v$. Eq. 9 .
(13) $b: x=h-a: y-v$, whence $(h-a) x=b(y-v)$. Eq. 10.
(14) $\mathrm{b}: \mathrm{x}=2 \mathrm{x}: \mathrm{b}-\mathrm{z}$, whence $2 \mathrm{x}^{2}=\mathrm{b}^{2}-\mathrm{bz}$. Eq. 11 .
(15) $h-a: y-v=2 x: b-z$, whence $2(y-v) z$ $=(h-a)(b-z)$. Eq. 12 .
(16) $b / 2: y=(h-a) / 2: x$, whence $b x=(h-a) y$. Eq. 2.
(17) $\mathrm{b} / 2: \mathrm{y}=\mathrm{x}: \mathrm{h}$, whence $2 \mathrm{xy}=\mathrm{bh}$. Eq. 3 .
(18) $(h-a) / 2: x=x: h$, whence $2 x^{2}=h^{2}-a h$. Eq. 4^{2}.
(19) $h / 2:(h+a) / 2=(h-a) / 2: b / 2$, whence b^{2} $=h^{2}-a^{2} \cdot$ Eq. 5^{2}.
(20) $b / 2:(h+a) / 2=x: y$, whence, $(h+a) x=b y$. Eq. 6.
(21) $(h-a) / 2: b / 2=x: y$, whence $b x=(h-a) y$. Eq. 2^{4}.
(22) $b / 2: a=(h-a) / 2: z$, whence $b z=(h-a) a$. Eq. 7^{2}.
(23) $\mathrm{b} / 2: \mathrm{a}=\mathrm{x}: \mathrm{v}$, whence $2 \mathrm{ax}=\mathrm{bv}$. Eq. 8^{2}.
(24) $(h-a) / 2: z=x: v$, whence $2 x z=(h-a) v$. Eq. 9^{2}.
(25) $b / 2: x=(h-a) / 2: y .-v$, whence $(h-a) x$ $=\mathrm{b}(\mathrm{y}-\mathrm{v})$. Eq. 10^{2}.
(26) $b / 2: x=x: b-z$, whence $2 x^{2}=b^{2}-b z$. Eq. 11^{2}.
(27) $(h-a) / 2: y-v=x: b-z$, whence $2(y-v) x$ $=(h-a)(b-z)$. Eq. 12^{2}.
(28) $y:(h+a) / 2=x: b / 2$, whence $(h+a) x=b y$. Eq. 6^{3}.
(29) $y:(h+a) 2=h: y$, whence $2 y^{2}=h^{2}+a h$. Eq. 13.
(30) $\mathrm{x}: \mathrm{b} / 2=\mathrm{h}: \mathrm{y}$, whence $2 \mathrm{xy}=\mathrm{bh}$. Eq. 3^{3}.
31) $y: a=x: z$, whence $a x=y z$. Eq. 14 .
(32) $y: a=h: v$, whence $v y=a h$. Eq. 15 .
(33) $\mathrm{x}: \mathrm{z}=\mathrm{h}: \mathrm{v}$, whence $\mathrm{vx}=\mathrm{hz}$. Eq. 16 .
(34) $y: x={ }^{*} x: y-v$, whence $x^{2}=y(y-v)$. Eq. 17 .
(35) $y: x=h: b-z$, whence $h x=y(b-z)$. Eq. 18.
(36) $x: y-v=h: b-z$, whence $(b-z) x$ $=h(y-v) . E q$. 19.
(37) $(h+a) / 2: a=b / 2: z$, whence $(h+a) z=a b$. Eq. 20.
(38) $(h+a) / 2: x=y: v$, whence $2 a y={ }^{\prime}(h+a) v$. Eq. .21,
(39) $b / 2: z=y: v$, whence $2 y z=b v . E q .22$.
(40) $(h+a) / 2: x=b / 2: y-v$, whence $b x=(h+a)$ (y-v). Eq. 23.
(41) $(h+a) / 2: x=y: b-z$, whence $2 x y=(h+a)$ (b-z). Eq. 24.
(42) $b / 2: y-v=y: b-z$, whence $2 y(y-v)=b$ $=b^{2}-b z$. Eq. 25 .
(43) a : $x=z: y-v$, whence $x z=a(y-v)$. Eq. 26.
(44.) $\mathrm{a}: \mathrm{x}=\mathrm{v}: \mathrm{b}-\mathrm{z}$, whence $\mathrm{vx}=\mathrm{a}(\mathrm{b}-\mathrm{z})$. Eq. 27.
(45) z: $y-v=v: b-z$; whence $v(y-v)$
$=(b-z) z$. Eq. 28 .
The symbol 2^{4}, see (21), means that equation. 2 may be derived from, 4 different proportions. Similarly for 6^{3}, etc.

Since a definite no. of sets of dependent equations, three equations in each set, is derivable from a given continued proportion and since these sets must be known and dealt with in establishing the no. of possible proofs for $h^{2}=a^{2}+b^{2}$, it becomes necessary to determine the no. of such sets. In any continued proportion the symbolization for the no. of such sets, three equations in each set, is $\frac{n^{2}(n+1)}{2}$ in which n signifies the no. of simpie ratios in a member of the continued prop'n. Hence for the above continued proportion there are derivable 75 such sets of dependent equations. They are:

These 75 sets expressed in the symbolization of the 28 equations give but 49 sets as follows:
$1,1,1 ; 2,3,4 ; 2,5,6 ; 7,8,9 ; 10,11,12 ; 6$, 13, 3; 14, 15, 16; 17, 18, 19; 20, 21, 22; 23, 24, 25; 26, 27, 28; 1, 2, 2; 1, 5, 5; 1, 7, 7; 1, 10; 10; $1,6,6 ; 2,7,14 ; 2,10,17 ; 5,7,20 ; 5,10,23 ; 7$, 10,$26 ; 6,14,20 ; 6,17,23 ; 14 ; 17,26 ; 20,23,26 ;$ $1,3,3 ; 1,8 ; 8 ; 1,11,11 ; 3,8,15 ; 3,11,18 ; 6$, 8, 21; 6, 11, 24; 8, 11, 27; 13, 15, 21;.13, 18, 24; 15, 18, 27; 21, 24, 27; 1, 4, 4; 1, 9, 9; 1, 12, 12; 4, 9, 1.6; 4, 12, 19; 2,.9, 22; 2; 12, 25; 9, .12, 28; 3, 16, 22; 3, 19, 25; 16, $19, \ldots 28 ; 22,25,28$.

Since eq. 1 is an identity and eq. 5 gives, at once, $h^{2}=a^{2}+b^{2}$, there are remaining 26 equations involving the 4 unknowns x, y, z and v, and
proofs may be possible from sets of equations involving x and y, x and z, x and v, y and z, y and v, z and v, x, y and z, x, y and v, x, z and v, y, z and v, and x, y, z and v.

1st.--Proofs From Sets Involving Two Unknowns

a. The two unknowns, x and y, occur in the following five equations, viz., 2, 3, 4, 6 and 13 , from which but one set of two, viz., 2 and 6, will give $h^{2}+a^{2}=b^{2}$, and as eq. 2 may be derived from 4 different proportions and equation 6 from 3 different proportions, the no. of proofs from this set are 12.

Arranged in sets of three we get,
$2^{4}, 3^{3}, 13$ giving 12 other proofs;
(2, 3, 4) a dependent set--no proof;
$2^{4}, 4^{2}, 13$ giving 8 other proofs;
($3,6,13$) a dependent set'-no proof;
$3^{3}, 4^{2}, 6^{3}$ giving 18 other proofs;
$4^{2}, 6^{3}, 13$ giving 6 other proofs;
$3^{3}, 4^{2}, 13$ giving 6 other proofs.
Therefore there are 62 proofs from sets involving x and y.
b. Similariy, from sets involving x and z there, are 8 proofs, the equations for which are 4,7 , 11; and 20.
c. Sets involving x and v give no additional
proofs.
d. Sets involving y and z give 2 proofs, but the equations were used in a and b, hence cannot be counțed again, thèy are 7,13 and 20.
e. Sets involving y and v give no proofs.
f. Sets lnvolving z and v give same results as d.

Therefore the no. of proofs from sets involving two unknowns is 70 , making, in all 72 proofes so far, since $h^{2}=a^{2}+b^{2}$ is obtained directly from two different prop's:

2nd.--Proofs From Sets Involving Three Unknowns a. The three unknowns x., y and z occur in the following 11 equations, viz., $2,3,4,6,7,11$, 13, 14, 18, 20 and 24, and from these 11 equations sets of four can be selected in $\frac{11 \cdot \frac{10 \cdot 9 \cdot 8}{4}}{4}=330$ ways, each of which will give one or more proofs for $h^{2}=a^{2}+b^{2}$. But as the 330 sets, of four equations each, include certain sub-sets heretofore used, certain dependent sets of three equations each found among those in the above 75 sets, and certain sets of four dependent equations, all these must be determined and rejected; the proofs from the remaining sets will be proof's additional to the 72 afready determined.

Now, of 11 consecutive things arranged in sets of 4 each, any one will occur in $\frac{10.9 .8}{\frac{3}{3}}$ or 120 of the 330 sets, any two in $\frac{9.8}{\frac{2}{2}}$ or $\frac{3}{36}$ of the 330 , and any three in $\frac{8}{1}$; or 8 of the 330 sețs. Therefore any sub-set of two equations will be found in 36 , and any of three equations in 8 , of the 330 sets.

But some one or more of the 8 may be some one or more of the 36 sets; hence a sub-set of two and a sub-set of three will not necessarily cause a rejection of $36+8=44$ of the 330 sets.

The sub-sets which gave the 70 proofs are:
2, 6, for which 36 sets must be rejected;
7 , 20, for which 35 sets must be rejected, since
7 , 20, is found in one of the 36 sets above;
2, 3, 13, for which 7 other sets must be rejected, since
2, 3, 13, is found in one of the 36 sets above;
2, 4, 13, for which 6 other sets must be rejected;
3. 4, 6, for rhich 7 other sets must be rejected;

4, 6, 13, for which 6 other sets must be rejected;
3, 4, 13, for which 6 other sets must be rejected;
4, 7, 11, for which 7 other sets múst be rejected; and

4, 11, 20, for which 7 other sets must be rejected; for all of which 117 sets must be rejected.

Similarly the dependent sets of three, which are $2,3,4 ; 3,6,13 ; 2,7,14 ; 6,14,20 ; 3,11$, 18; 6., 11,24 ; and $13,18,24$; cause a rejection of $6+6+6+6+8+7+8$, or 47 more sets.

Also the dependent sets of four, and not already rejected, which are, 2, 4, 11, 18; 3, 4, 7, 14; $3,6,18,24 ; 3,13,14,20 ; 3,11,13,24 ; 6,11$, 13, 18; and 11, $14,20,24$, cause a rejection of 7 more sets. The dependent sets of fours are discovered as follows: take any two dependent sets of threes having a common term as 2, 3, 4, and 3, 11, 18; drop the common term 3, and write the set $2,4,11,18 ;$ a little study will disclose the 7 sets named, as well as other sets already rejected; e.g., 2, 4, 6, 13. Rejecting the $117+49+7=171$ sets there remain 159 sets, each of which will give one or more proofs, determined as follows. Write down the 330 sets, a thing easily done, strike out the 171 sets which must be rejected, and, taking the remaining sets one by one, determine how many proof's each will give; e.g., take the set $2,3,7,11$; write it thus $2^{4} ; 3^{3}, 7^{2}$, 11^{2}, the exponents denoting the different proportions from which the respective equations may be derived; the product of the exponents, $4 \times 3 \times 2 \times 2=48$, is the number of proofs possible for that set. The set $6^{3}, 11^{2}, 18^{1}, 20^{1}$ gives 6 proofs, the set $14^{1}, 18^{1}$, $20^{1}, 24^{i}$ gives but l proof; etc.

The 159 sets, by investigation, give 1231 proofs.
b. The three unknowns x, y and v occur in the following twelve equations, $--2,3,4,6,8,10,11$, 13, 15, 17, 21 and 23, which give 495 different sets of 4 equations each, many of which must be rejected. for same reasons as in a. Having established a method In a, we leave details to the one interested.
c. Similarly for proofs from the eight equations containing x, z and v, and the seven eq's containing y, z and v.

3ra.--Proofs From Sets Involving the Four Unknowns x, y, z anà u.
a. The four unknowns occur in 26 equations; hence there are $\frac{26 \cdot 25 \cdot 24 \cdot 23 \cdot 22}{\frac{5}{2}}=65780$ different sets of 5 equations each. Kejecting all séts containing sets heretofore used and also all remaining sets of five dependent equations of which $2,3,9$, 19, 28, is a type, the remaining sets will give us many additional procfs, the determination of which involves a vast amount of time and labor if the method given in the preceding pages is followed. If there be a shorter method, I am unable, as vet, to discover it; neither am I able to find anything by any other investigator.

4th.--Spectal Solutions
a. By an inspection of the 45 simple proportions given above, it is found that certain proportions are worthy of special consideration as they give equations from which very simple solutions follow.

From propertions (7) and (19) $h^{2}=a^{2}+b^{2}$ follows immediately. Also from the pairs (4) and (18), and (10) and (37, , solutions are readily obtained.
b. Hoffmann's solution.

* Joh. Jos. Ign. Hoffmanin made a collection of 32 proofs, publishing the same in "Der Pythagoraische Lehrsatz," 2nd edition Mainz, 1821, of which the solution from (7) is one. He selects the two triangles, (see fig. 8), AHD and BCE, from which $b:(h+a) / 2$ $=h-a: b / 2$ follows, giving at once $h^{2}=a^{2}+b^{2}$.

See Jury Wipper's 46 proofs, 1880, p. 40, fig. 41. Also see Versluys, p. 87, fig. 98, credited to Hoffmernn, 1818. Also see Math. Mo., Vol. II, Nó. II, p. 45, as givien in Notes and Queries, Vol. 5, No. 43, p. 41 .
c. Similarly from the two triangles $B C E$ and $\operatorname{ECD} b / 2:(h+a) / 2=(h-a) / 2: b / 2, h^{2}=a^{2}+b^{2}$.

Also from the three triangles AHD, BEA and BCE proportions (4) and (8) follow, and from the three triangles $\mathrm{AHD}, \mathrm{BHE}$ and BCE proportions: (10) and. (37) give at once $h^{2}=a^{2}+b^{2}$.

See Am. Math. Mo., V. III, pp. 169-70.

Nine

Produce $A B$ to any pt.

Fig. 9 From D draw DE perp. to AH produced, and from E drop the perp. EC, thus forming the 4 similar rt. tri's ABH, AED, ECD and ACE.

From the homologous sides of these similar triangles the following continued proportion results:

$$
(A H=b):(A E=b+v):(E C=w):(A C=h+x)
$$

$$
=(B H=a):(D E=y):(C D=z):(E C=w)
$$

$=(A B=h):(A D=h+x+z):(D E=y):(A E=b+v)$. Note--B and C do not coincide.
a. From this continued prop'n 18 simple pro(pertions are possible, giving, as in fig. 6, several thousand proofs.
b. See Am. Math. Mo., V. III, p. 171.

follows giving 9 simple proportions from which many more proofs for $h^{2} \equiv a^{2}+b^{2}$ may be obtained. a. See Am. Math. Mo., V. III, p. 171.

Eleven

From D in HH, so that DH $=\mathrm{DC}$, draw $D C$ par. to $H B$ and $D E$ perp. to $A B$, forming the 4 similar rt. tri's $A B H, A C D, C D E$ and $D A E$, from which the continued proportion
$(\mathrm{BH}=\mathrm{a}):(\mathrm{CD}=\mathrm{DH}=\mathrm{v}):(\mathrm{EC}=\mathrm{y})$ $:(D E=x)=(H A=b):(D A=b--v)$
Fig. 11

$$
\begin{aligned}
& :(D E=x):(A E=z)=(A B=h) \\
& :(A C=z+y):(C D=v):(A D=b-v)
\end{aligned}
$$

follows; 18 simple proportions are possible from which many more proofs for $h^{2}=a^{2}+b^{2}$ result.

By an inspection of the 18 froportions it is evident that they give no simple equations from which easy solutions follow, as was found in the investigation of fig. 8, as in a under proof Elisht.
a. See Am. Math. Mo., V. III, p. 171.

Iwelve

The construction of fig. 12 gives five similar rt. triangles, which are: $A B H, A H D, H B D, A C B$ and $B C H$, from which the continued prop'n

$$
(B H=a):(H D=x):(B D=y)
$$

Fig. 12
$:\left(C B=\frac{a^{2}}{x}\right):\left(C H=\frac{a y}{x}\right)=(H A=b)$
$:(D A=h-y):(D H=x):(B A=h):(H B=a)$

$$
=(A B=h):(A H=b):(H B=a):\left(A C=b+\frac{a y}{x}\right)
$$

$$
: \quad\left(B C=\frac{a^{2}}{x}\right)
$$

follows; giving 30 simple proportions from which only 12 different equations result. From these 12 equations several proofs for $h^{2}=a^{2}+b^{2}$ are obtainable.
a. In fig. 9, when C falls on B it is obvious that the graph become that of fig. 12. Therefore, the solution of fig. l2, is only a particular case of fig. 9; also note that several of the proofs of case 12 are identical with those of case l, proof One.
b. The above is an original method of proof by the author of this work.

Ihirteen

Complete the paral. and draw

Fig. 13
F perp. to, and EF par. with $A B$ resp'ly; forming the 6 similar tri's, BHA, HCA, BCH, AEB, DCB and DFE, from which 45 simple proportions are obtainable, resulting in several thousand more possible proof for $h^{2}=a^{2}$ $+b^{2}$, only one of which we mention.
(1) From tri's DBH and BHA, $\mathrm{DB}:(\mathrm{BH}=\mathrm{a})=(\mathrm{BH}=\mathrm{a}):(\mathrm{HA}=\mathrm{b}) ; \therefore \mathrm{DB}=\frac{\mathrm{a}^{2}}{\mathrm{~b}}$ and $(2) \mathrm{HD}:(\mathrm{AB}=\mathrm{h})=(\mathrm{BH}=\mathrm{a}):(\mathrm{HA}=\mathrm{b})$;

$$
\therefore H D=\frac{a h}{b} .
$$

(3) From tri's DFE and BHA,

$$
D F:(E B-D B)=(B H=a):(A B=h),
$$

$$
\text { or } D F: b^{2}-\frac{a^{2}}{b}: a: h ; \therefore D F=a\left(\frac{b^{2}-a^{2}}{b h}\right) \text {. }
$$

(4) Tri. $\mathrm{ABH}=\frac{1}{2}$ par. $\mathrm{HE}=\frac{1}{2} \mathrm{AB} \times \mathrm{HC}=\frac{1}{2} \mathrm{ab}$

$$
\begin{gathered}
=\frac{1}{2}\left[A B\left(\frac{A C+C F}{2}\right)\right]=\frac{1}{2}\left[A B\left(\frac{H D+D F}{2}\right)\right] \\
=\frac{1}{4}\left[h\left(\frac{a h}{b}+\left(a \frac{b^{2}-a^{2}}{b h}\right)\right)\right] \\
=\frac{a h^{2}}{4 b}+\frac{a b}{4}-\frac{a^{3}}{4 b} \quad \therefore(5) \frac{1}{2} a b=\frac{a h^{2}+a b^{2}-a^{3}}{4 b},
\end{gathered}
$$

whence (6) $h^{2}=a^{2}+b^{2}$.
a. This particular proof was produced by

Prof. D. A. Lehman, Prof. of Math. at Baldwin Universify, Berea, O., Dec. 1!99.
b. Also see Am. Math. Mo., V. VII, No. 10, p. 228.

Fourteen

Take $A C$ and $A D=A H$

Fig. 14 and draw HC and HD.

Proof. Try's CAH and HAD are isosceles. Angle CHD is a rt. angle, since A is equidistant from C, D and H. Angle $\mathrm{HDB}=$ angle CHD + angle DCH.
$=$ angle $\mathrm{AHD}+2$ angle $\mathrm{CHA}=$ angle CHB .
\therefore try's HDB and CHB are similar, having angie: DBH in common and angle $\mathrm{DHB}=$ angle ACH .
$\therefore C B: B H=B H: D B$, or $h+b: a=a: h-b$. Whence $h^{2}=a^{2}+b^{2}$.
a. See Math. Teacher, Dec., 1925. Credited to Alvin Knoer, a Milwaukee High School pupil; also Versluys, p. 85, fig. 95; also Encyclopadie der Enementar Mathematic, van H. Weber und J. Wellstein, Vol. II, p. 242, where, (1905), it is credited to C. G. Sterkenburg.

Fifteen

In fig. 15 the constr's is

Whence $h^{2}=a^{2}+b^{2}$.

Fig. 15
 obvious giving four similar right triangles $A B H, A H E ; H B E$ and $H C D$, from which the continued proportion $(\mathrm{BH}=\mathrm{a}):(\mathrm{HE}=\mathrm{x}):(\mathrm{BE}=\mathrm{y})$ $:(C D=Y / 2)=(H A=b):(E A=h-Y)$ $:(E H=x):(D H=x / 2)=(A B=h)$ $:(A H=b):(H B=a):(H C=a / 2)$ follows, giving 18 simple proportions.
a. From the two simple proportions
(1) $a: y=h: a$ and
(2) $b: h-y=h: b$ we get easily $h^{2}=a^{2}+b^{2}$.

- b. This solution is original with the author, but, like cases 11 and li, it is subordinate to case 1.
c. As the number of ways in which three or more similar right triangles may be constructed so as to contain related linear relations with bu't few unknowns involved is unlimited, so the number of possible proof's therefrom must be unlimited.

Sixteen

The two following proofs,

Fig. 16

1st.--This proof rests on the differing so much, in method, from those preceding, are certainly worthy of a place among selected proofs. axiom, "The whole is equal to the sum of its parts."

Let. $A B=h, B H=a$ and $H A=b$, in the rt. tri. ABH , and let HC, C being the pt. where the perp. from H intersects the line $A B$, be perp. to $A B$. Suppose $h^{2}=a^{2}+b^{2}$. If $h^{2}=a^{2}+b^{2}$, then $a^{2}=x^{2}+y^{2}$ and $b^{2}=x^{2}+(h-y)^{2}$, or $h^{2}=x^{2}+y^{2}+x^{2}+(h-y)^{2}$ $=y^{2}+2 x^{2}+(h-y)^{2}=y^{2}+2 y(h-y)+(h-y)^{2}$ $=y+[(h-y)]^{2}$
$\therefore h=y+(h-y)$, i.e., $A B=B C+C A$, which 1s"true.
\therefore the supposition is true, or $h^{2}=a^{2}+b^{2}$.
a. This proof 1 s one of Joh. Hoffmann's 32
proofs. See Jury W1pper, 1880, p: 38, fig. 37
2nd.--This proof is the "Reductio ad Absurdum"
proof.

$$
h^{2}<,=, \text { or }>\left(a^{2}+b^{2}\right) . \text { Suppose it is less. }
$$

Then, since $h^{2}=[(h-y)+y]^{2}+\left[(h-y)+x^{2}\right.$ $+(h-y)]^{2}$ and $b^{2}=[a x \div(h-y)]^{2}$, then $\left[(h-y)+x^{2}+(h-Y]^{2}<[a x+(h-y)]^{2}+a^{2}\right.$. $\therefore\left[x^{2}+(h-y)^{2}\right]^{2}<a^{2}\left[x^{2}+(h-y)^{2}\right]$.
$\therefore a^{2}>x^{2}+(h-y)^{2}$, which is absurd. For,
if the supposition be true, we must have $a^{2}<x^{2}$ $+(h-y)^{2}$, as is easily shown.

Similarly, the supposition that $h^{2}>a^{2}+b^{2}$,
will be proven false.
Therefore it follows that $h^{2}=a^{2}+b^{2}$.
a. See Am. Math. Mo., V. III, p. 170.

Seventeen

Take $A E=1$, and draw $E F$

Fig. 17 pep. to $A H$, and $H C$ perry. to $A B$. $\mathrm{HC}=(\mathrm{AC} \times \mathrm{FE}) / \mathrm{FE}, \mathrm{BC}=(\mathrm{HC} \times \mathrm{FE}) / \mathrm{AF}$ $=(A C \times F E) / A F \times F E / A F=A C \times \mathrm{FE}^{2} / A F^{2}$ and $A B=A C \times C B=A C+A C \times \mathrm{FE}^{2} / A F^{2}$ $=A C\left(1+\mathrm{FE}^{2}\right) / A \mathrm{~F}^{2}=\mathrm{AC}\left(\mathrm{AF}^{2}+\mathrm{FE}\right)^{2} / \mathrm{AF}^{2}$. (1).

But $A B: A H=1: A F$, whence $A B=A H / A F$, and $\mathrm{AH}=\mathrm{AC} / \mathrm{AF}$. Hence $\mathrm{AB}=\mathrm{AC} / A F^{2}$. (2). $\therefore A C\left(A F^{2}+E F^{2}\right) / A F^{2}=A C / A F^{2} \quad \therefore A F^{2}+F E^{2}=1$. $\therefore A B: 1=A H: A F . \therefore A H=A B \times A F$. (3). and $B H=A B \times F E$. (4)
$(3)^{2}+(4)^{2}=(5)^{2}$, or, $\mathrm{AH}^{2}+\mathrm{BH}^{2}=\mathrm{AB}^{2} \times \mathrm{AF}^{2}+\mathrm{AB}^{2}$ $\times \mathrm{FE}^{2}=A B^{2}\left(A F^{2}+\mathrm{FE}^{2}\right)=A B^{2} . \quad \therefore A B^{2}=H B^{2}+\dot{H} A^{2}$, or $h^{2}=a^{2}+b^{2}$.
a. See Math. Mo., (1859), Vol. II, Nc. 2, Dem. 23, fig. 3.
b. An indirect proof follows. It is:

If $A B^{2} \neq\left(H B^{2}+H A^{2}\right)$, let $x^{2}=H B^{2}+H A^{2}$ then
$x=\left(H B^{2}+H A^{2}\right)^{1 / 2}=H A\left(1+H B^{2} / H A^{2}\right)^{1 / 2}=H A$
$\left.\left(1+\mathrm{FE}^{2} / \mathrm{FA}^{2}\right)^{1 / 2}=\mathrm{HA} \cdot\left(\mathrm{FA}^{2}+\mathrm{FE}^{2}\right) / \mathrm{FA}^{2}\right]^{1 / 2}=\mathrm{HA} / \mathrm{FA}$
$=A B$, since $A B:^{\circ} A H=1: A F$.
\therefore if $x=A B, x^{2}=A B^{2}=H B^{2}+H A^{2}$. Q.E.D.
c. See said Math. Mo., (1859), Vol. II, No. 2, Dem. 24; fig. 3.

ELehteen

From sim. tri's ABC and BCH, $H C=a^{2} / b$. Angle $A B C=$ angle CDA = rt. angle. From sim. tri's AHD and $D H C, C D=a h / b ; C B=C D$. Area of tri. $A B C$ on base $A C=\frac{1}{2}\left(b+a^{2} / b\right) a$. Area of $A C D$ on base $A D=\frac{1}{2}(a h / b) h$.
Fig. 18
$\therefore\left(b+a^{2} / b\right) a=a h^{2} / b=\left(b^{2}+a^{2}\right) / b$ $\times a=\frac{a b^{2}+a^{3}}{b}$.
$\therefore h^{2}=a^{2}+b^{2}$.
a. See.Versluys, p. 72, fig. 79.

Mineteen

Tri's l, 2 and 3 are sim1lar. From tri's 1 and 2, AC $=h^{2} / a$, and $C D$ $=\mathrm{hb} / \mathrm{a}$. From tri's 1 and 3, $\mathrm{EP}=\mathrm{ha} / \mathrm{b}$, and $F B=h^{2} / b$. Tri. CFH
Fig. 19 $=\operatorname{tri}, 1+\operatorname{tri}$. $2+\operatorname{tri} \cdot 3+s q$. AE.
So $\frac{1}{2}\left(a+h^{2} / b\right) \left\lvert\,\left(b+h^{2} / a\right)=\frac{1}{2} a b+\frac{1}{2} h^{2}(b / a)+\frac{1}{2} h^{2}(a / b)\right.$ $+h^{2}$, or $a^{2} b^{2}+2 a b h^{2}+h^{4}=a^{2} b^{2}+h^{2} a+h^{2} b+2 a b h^{2}$, or $h^{4}=h^{2} a^{2}+h^{2} b^{2}: \quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Versluys, p. 23, fig. 80.

Imenty

Draw HC perp. to $A B$ and $=A B$, Join $C B$ and CA. Draw CD and CE perp. resp'y to HB and HA.

Fig. 20

Area BHAC = area ABH + area $A B C=\frac{1}{2} h^{2}$. But area tri. $\mathrm{CBH}:=\frac{1}{2} a^{2}$, and of tri. CHA $=\frac{1}{2} b^{2}$. $\therefore \frac{1}{2} h^{2}=\frac{1}{2} a^{2}+\frac{1}{2} b^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$.
A. See Versluys, p. 75; f1g. 82, wherfe credited to P. Armand Měer, $\mathbf{I} 876$.

- Imenty=2ne

$H C=H B=D E ; H D=H A$. Join EA and EC. Draw. EF and HG perp. to
$A B$ and EK perp. to $D C$.

- Area of trap. $A B C D=$ area
$(A B H+H B C+C H D+A H D)=a b+\frac{1}{2} a^{2}$
$+\frac{1}{2} b^{2}$. (I)
$=\operatorname{area}(E D A+E B C+A B E+C D E)$
$=\frac{1}{2} a b+\frac{1}{2} a b+\left(\frac{1}{2} A B \times E F=\frac{1}{2} A B \times A G\right.$
as tri's BEF and HAG are congruent)

$$
=a \dot{D}+\frac{1}{2}(A B=C D)(A G+G B)_{2}=a b+\frac{1}{2} h^{2}, \quad(2)
$$

$$
\therefore a b+\frac{1}{2} h^{2}=a b+\frac{1}{2} a^{2}+\frac{1}{2} b^{2} . \therefore h^{2}=a^{2}+b^{2} \text {. Q.E.D. }
$$

a. See Versluys, p. 74, fig. 81.

Iwenty=Iwo

In fig. 22., it is obvious

Fig. 22
that:
(1) Tri. $E C D=\frac{1}{2} h^{2}$, (2) Tri. $\overline{\mathrm{DBE}}$ $=\frac{1}{2} a^{2}$. (3) Tri. HAC $=\frac{1}{2} b^{2}$. $\therefore(1)=(2)+(3)=(4) \frac{1}{2} h^{2}=\frac{1}{2} a^{2}$ $+\frac{1}{2} b^{2} \quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Versluys, p. 76, fig. '83, credited to Meyer, (1876); also this work, p. 181, fig. 238 for a similar geometric proof.

INenty=Ihree

For figure, usé fig. 22 above, omitting lines $E C$ and $E D$. Area of sq. $A D=(2$ area of tri. DBH $=$ rect. $B F)+(2$ area of tri. HAC $=$ rect. AF) $=2 \times \frac{1}{2} a^{2}+2 \times \frac{1}{2} b^{2}=a^{2}+b^{2}=h^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$. Or use similar parts of fig. 315, in geometric proofs.
a. See. Versluys; p. 76, proof 66, credited to Meyer's, 1876, collection.

Iwenty=Equr

In fig. 22, denote HE D. x. Area of. tri. ABH +area of sq. $A D=\frac{1}{2} h x+h^{2}=a r e a$ of (tri. ACH + tri. $\mathrm{CDH}+\operatorname{tr} 1 . \mathrm{DBH})=\frac{1}{2} \mathrm{~b}^{2}+\frac{1}{2} h(h+x)+\frac{1}{2} \mathrm{a}^{2}=\frac{1}{2} \mathrm{~b}^{2}+\frac{1}{2} h^{2}$ $+\frac{1}{2} h x+\frac{1}{2} a^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Versluys; p. 76, proof 67, and there credited to P. Armand Meyer's collection made in 1876.
b. Proofs Twenty-Two, Twenty-Three and TwentyFour are only variations of the Mean Proportional Principle,--see p. 51, this book.

Iwenty:Five

At A erect $A C=$ to, and

Fig. 23 perp. to $A B$; and from C drop ($C D$ $=A H$) perp. to AH. Join CH, CB and DB. Then $A D=H B=a$, Tri. CDB $=\operatorname{tr} 1 . \mathrm{CDH}=1 \frac{1}{2} C \mathrm{D} \times \mathrm{DH}$.
$\mathrm{Tr} 1 . \mathrm{CAB}=\operatorname{tr} 1 . \mathrm{CAD}+\operatorname{tr} 1$.
$\mathrm{DAB}+(\operatorname{tr} 1 . \mathrm{BDC}=\operatorname{tr} 1 . \quad \mathrm{CDH}=\operatorname{tr} 1$. $C A H+\operatorname{tr} 1 . \operatorname{DAB}) . \quad \therefore \frac{1}{2} h^{2}=\frac{1}{2} a^{2}+\frac{1}{2} b^{2}$. $\therefore h^{2}=a^{2}+b^{2}$.
a. See Versluys, p. 77, fig. 84, one of Meyer's, 1876, collection.

$$
\text { 1. } \quad \text { Iwent } y=\underline{S} \underline{x}
$$

From A draw $A C$ perp. to, and $=$ to $A B$. Join $C B$, and draw $B F$ parallel and $=$ to HA, and $C D$ parallel to AH and $=$ to HB . Join $C F$ and $B D$.

Trín $C B A=\operatorname{tr} 1$. BAF $+\operatorname{tr} 1$.
$\mathrm{FAC}+\mathrm{tr} 1 . \mathrm{CBF}=\operatorname{tr} 1 . \mathrm{BAF}+\operatorname{tr1} . \mathrm{FAC}$ + tri. FDB (since tri. ECF $=$ tri: $\mathrm{EDB})_{2}=\operatorname{tri}$. FAC $+\operatorname{tr1}$. ADB. $\therefore \frac{1}{2} \mathrm{~h}^{2}$. $=\frac{1}{2} a^{2}+\frac{1}{2} b^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Versluys, p. 77, f1g. 35, being one of Meyer's collection.

Fig. 24

Inenty=Edxen

From A. draw AC perp. to,
 and $=$ to $A B$. From C draw CF equal to $H B$ and parallel to $A H$. Join $C B$; $A F$ and $H F$ and draw BE parallel to HA. $\quad C F=E B=B H=8 . \quad A C F$ and $A B H$ are congruent; so are CFD and BED.

Quad. BHAC- $=t r 1 . \mathrm{BAC}+t \overline{\mathrm{r}} 1$. $\mathrm{ABH}=\operatorname{tr} 1 . \mathrm{EBH}+\operatorname{tri}$. H HPA + tri. ACF $+\operatorname{tr} 1 . \operatorname{FCD}+\operatorname{tr} 1 . \mathrm{DBE} . \therefore \frac{1}{2} h^{2}+\frac{1}{2} \mathrm{ab}$ $=\frac{1}{2} a^{2}+\frac{1}{2} b^{2}+\frac{1}{2} a b . \quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Versluys, pi. 78, fig.

86; also see "Vriend de Wiskunde," 1898, by F. J. Vaes.

Inenty=ELint

Draw PHK perp. to AB and make $\mathrm{PH}=\mathrm{AB}$. Join PA, PB, AD and AB .

Trilis BDA and BHP are congruent $;$ so are tri's GAB : and AHP. Quad. $A H B P=$ tri. . $\mathrm{BHP}+\operatorname{tr} 1$. $\mathrm{AHP} . \therefore \frac{1}{2} \mathrm{~h}^{2}=\frac{1}{2} \mathrm{a}^{2}$ $+\frac{1}{2} b^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Versluys, p. 79, fig. 88. Also the Scientifique Revue, Feb. 16, 1889, H. Renán;
al:so Fourrey, p. 77 and p. 99,--Jal de Vuibert, 18798c.

Iwenty=Vine

Through H draw PK perp. to

Fig. 27
$A B$, making $P H=A B$, and join $P A$ and PBCAB:
'since area AHBP = [area PHA + area $\mathrm{PHB}=\frac{1}{2} \mathrm{~h} \times \mathrm{AK}+\frac{1}{2} \mathrm{~h} \times \mathrm{BK}$
$=\frac{1}{2} \mathrm{~h}(\mathrm{AK}+\mathrm{BK})=\frac{1}{2} \mathrm{~h} \times / \mathrm{h}=\frac{1}{2} \mathrm{~h}^{2} \mathrm{j}=$ (area
AHP + area BHP $=\frac{1}{2} b^{2}+\frac{1}{2} \mathrm{a}^{2}$). $\quad \therefore \frac{1}{2} \mathrm{~h}^{2}$ $=\frac{1}{2} a^{2}+\frac{1}{2} b^{2} \therefore \therefore h^{2}=a^{2}+b^{2}$.
a. See Versluys, p. 79, fig. 89, being one of Meyer's, 1876, collection.

Inicty

Draw PH perp. to AB , making .
$\mathrm{PH}=\mathrm{CD}=\mathrm{AB}$. Join PA, PB, CA and CB.

Tri. $A B C=(t r i . A B H+q u a d$.
$A H B C)=(q u a d . ~ A H B C+$ quad. $A C B P$),
since $P C=H D$. In tri. BHP, engle $\mathrm{BHP}=180^{\circ}$ - (angle BHD $=90^{\circ}+$ angle HBD). So the alt. of tri. BHP from the vertex $P=a$, and its area $=\frac{1}{2} a^{2}$; likewise tri. AHP $=\frac{1}{2} b^{2}$. But as in fig. 27 above, area AHBP $=\frac{1}{2} \mathrm{~h}^{2} . \therefore \mathrm{h}^{2}$ $=a^{2}+b^{2}$. Q.E.D.
a. See Versluys, p. 80, fig. 90 , as one of Meyer's, 1876, collections.

Ihlety=0ne

Tri's ABH and BDH are similar, so $D H=a^{2} / \mathrm{b}$ and $D B=a b / h . \quad \operatorname{Tr} 1 . A C D=2 \operatorname{tr} 1 . A B H+2 \operatorname{tr} 1 . \mathrm{DBH}$.

Fig. 29

ThLCty=Ine

Another Reductio ad Absurdum

Fig. 30
see proof Sixteen above.
shppose $a^{2}+b^{2}>h^{2}$. Then $A C^{2}+p^{2}>b^{2}$, and $C B^{2}+p^{2}>a^{2}$.
$\therefore A C^{2}+C B^{2}+2 p^{2}>a^{2}+b^{2}>h^{2}$. $2 p^{2}=2(A C \times B C)$ then $A C^{2}+C B^{2}+2 A C$ $x C B>a^{2}+b^{2}$, or $(A C+C B)^{2}>a^{2}$ $+b^{2}>h^{2}$ or $h^{2}>a^{2}+b^{2}>h^{2}$, or $h^{2}>h^{2}$, an $a b=$ surdity. Similarly, if $a^{2}+b^{2}<h^{2} . \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. Sée Versluys, p. 60, fig. 64.

Thirty=Inres

Sq. $A D=$ (area of 4 trils
$=4 \times$ tri. $A B H+$ area of sq. Kr)
$=4 \times \frac{1}{2} a b+(b-a)^{2}=2 a b+b^{2}$
$-2 a b+a^{2}=a^{2}+b^{2} . \therefore h^{2}=a^{2}+b^{2}$.
a. See Math. Mo., 1858-9;

Vol. I, p. 361, and it refers to this proof as given by Dri Hutton, (Tracts, London, 1812, 3 Vol., 800) in his History of Algebra.
Fig. 31

IhLety=Fqur

Let $B H=x$, and $H F=y$;
then $A H=x+y ; s q . A C=4$ tri.

F1g. 32
$A B H+s q \cdot H E=4\left[\frac{x(x+y)}{2}\right]+y^{2}$
$=2 x^{3}+2 x y+y^{2}=x^{2}+2 x y+y^{2}$
$+x^{2}=(x+y)^{2}+x^{2} \quad \therefore$ sq. on $A B$
$=s q$. of $A H^{+}+s q$. of BH. $\therefore h^{2}$
$=a^{2}+b^{2}$. Q.E.D.
a This proof is due to
Rev. J. G. Excell, Lakewood, 0., July., 1928; also given by R. A. Bell, Cleveland, 0., Dec. 28, 1931. And it appears in "Der. Pythagoreisch Lehrsatz" -(1930), by Dr. W. Leitzmann, in Germany.

Ihirtwe: Eve
In fig. 33a, sq. CG
$=s q \cdot A F+4 \times \operatorname{tri} \cdot A B H=h^{2}$
$+2 a b .--(1)$
In fig. 33b, sq. $K D$
$=\mathrm{sq} . \mathrm{KH}+\mathrm{sq} . \mathrm{HD}+4 \times \mathrm{tri}$. $A B H=a^{2}+b^{2}+2 a b--(2)$
But-sq. $C G=s q . K D$, by const'n. $\therefore(1)=(2)$ or h^{2} $+2 a b=a^{2}+b^{2}+2 a b . \quad \therefore h^{2}$ $=a^{2}+b^{2}$. Q.E.D.
a. See Math. Mo., 1809, dem. 9, and there, p:. 159, Vol. I, credited to Rev. A. D. Wheeler, of Brunswick, Me.; also see Fourrey, p. .80, fig's a and b; also see "Der Pythagoreisch Lehrsatz"
(1930), by Dr. W: Leitzmann.
b. Using fig. 33a, a second proof 1s: Place 4 rt. triangles $B H A, A C D, D E F$ and FGB so that their legs form a
square whose side is HC. Then it is plain that:

1. Area of sq. $H E=a^{2}+2 a b+b^{2}$.
2. Area of tri. BHA $=a b / 2$.
3. Area of the 4 tri's $=2 a b$.
4. Ares of ag. AF $=$ area of sq. HE - area of the 4 $\operatorname{tr} 1^{\prime} s=a^{2}+2 a b+b^{2}-2 a b=a^{2}+b^{2}$.
5. But ares of sq. $A F=h^{2}$.
6. $\therefore h^{2}-a^{i}+b^{2}$ Q.E.D.

This proof was devised by Maurice Laisnez, a high school boy in the Junior-Senior High School of South Bend, Ind., and sent to-me, May 16, 1939, by his cless teacher, Wilson Thornton.

Ihirty $=$ six

Fig. 34

Sq. $A E=s q \cdot K D-4 A B H$ $=(a+b)^{2}-2 a b$; and $h^{2}=s q$. $\mathrm{NH}+4 \mathrm{ABH}=(\mathrm{b}-\mathrm{a})^{2}+2 \mathrm{ab}$. Adding, $2 h^{2}=(a+b)^{2}$
$+(b-a)^{2}=2 a^{2}+2 b^{2} . \quad \therefore h^{2}$ $=a^{2}+b^{2}$. Q.E.D.
a. See Versluys, p. 72, fig. 78; also given by Saunderson (1682-1750); also see Fourrey, p. 92, and A. Marre. Also assigned to Bhaskarg, the Hindu Mathematician, letil century A.D. Also said to have been known in China 1000 years before the time of Christ.

Inirty=Seven

Since tri's $A B H$ and $C D H$ are similar, and $C H$ $=b-a$, then $C D=h(b-a) / b$, and $D H=a(b-a) / b$. Draw GD. Now area of tri. $C D H=\frac{1}{2}(b=a) \times a(b-a) / b$ $=\frac{1}{2} a(b-a)^{2} / b \cdot \cdots(1)$

Area of tri. $D G A=\frac{1}{2} G A \times A D=\frac{1}{2} b$

a. See Versluys, p. 73-4, solution 62.
b. An Arabic work of Annairizo; 900 N.C. has a"similar proof.
c. As last 5 proofs show, figures for geometric proof are figures for algebraic proofs also. Probably for ${ }^{\circ}$ each geometric proof there -1 s an alge braic proof.

B.--The Mean Proportional Frinciple

The mean proportional principle legding to equivaleney of areas of triangles and parallelograms, is very prolific in proofs,

By rejecting all similar right triangles other than those obtained by dropping a perpendicular from the vertex of the right angle to the hypotenuse of a right triangle and omitting a,ll equations resulting from the three similar right triangles thus formed, save only equations (3), (5) and (7), as given in proof one, we will have limited our field greatly. . But in this limited field the proofs possible are many, of which a few very interesting ones will now be given.

In every figure under B we will let $h=$ the hypotenuse, $a=$ the shorter leg, and $b=$ the longer leg of the given right triangle ABH.

Thlrty=Elght

Fig. 36

Since $A C: A H=A H: A B, A H^{2}$ $=A C \times A B$, and $B H^{2}=B C \times B A$. Then $B H^{2}+H A^{2}=(A C+C B) H B=A B^{2} . \quad \therefore h^{2}$ $=a^{2}+b^{2}$.
a. See Versluys, p. 82, fig. 92, as given by Leonardo Pisano, 1220, in Practica Geometrize; Wallis, Oxford, 1655; Math: Mo. 1859, Dem. 4, and credited to Legendre's Geom.; Wentworth's. New Plane Geom.', p. 158 (1895); also Chauvenet's Geom. 1891, p. I17, Prop. X. Also Dr. Leitzmann's work (1930), p. 33, fig. 34. Also "Mathematics for the Million," (1937), p. 155, fig. 51 (i), by Lancelot Hogben: F.R.S.

Ihirty=Mine

Extend $A H$ and $K B$ to L,

Fig. 37
C draw CD pay. to $A L, A G$ through C draw $C D$ pas. to $A L$, and extend HB to F .
$\mathrm{BH}^{2}=\mathrm{AH} \times \mathrm{HL}=\mathrm{FH} \times \mathrm{HL}=\mathrm{FDLH}$ $=a^{2} . S q . A K=$ paral. HCEL
$=$ paral. AGDL $=a^{2}+b^{2} . \quad \therefore h^{2}$
$=a^{2}+b^{2}$. Q.E.D.
a. See Versluys, p. 84, fig. 94, as given by Jules Camirs, 1889 in S. Revue

Energy

Draw AC. Through C draw

Fig. 38- - $C D$ par. to $B A$;' and the pert's $A D$, HE and BF 。:

Trip. $A B C=\frac{1}{2} \mathrm{sq} . \mathrm{BG}$
$=\frac{1}{2}$ rect. $B D . \therefore$ sq. $B G=a^{2}$
$=$ rect $. B D=$ sq. $E F+$ rect.$E D$
$=s q \cdot E F+\left(E A \times E D=E H^{2}\right)=s q$.
AF + EHf ${ }^{2}$: But mri's ABH and BHE
are similar. \therefore, if in fri. BHE, $\mathrm{BH}^{2}=\mathrm{BE}^{2}+\mathrm{EH}^{2}$, then in its similar, the fri. $A B H, A B^{2}=B H^{2}+H A^{2}$. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.

> a. See Sci. Am. Sup., Vol. 70, p. 382, Dec. 10, 1910, fig. 7--one of the 108 proofs of Arthur E. Colburn, LلL.M., of Dist. of Columbia Bar.

Ferty=0ne

Const'n obvious. Rect.

$L F=2$ tri. F FSH +2 try. ADB
$=s q \cdot H D=s q \cdot L G+$ (rect. $K F$
$\left.=K C \times C F=A L \times L B=H L^{2}\right)$
$=s q . L G+H L^{2}$.
But ti's ABH and BHL
are similar. Then as in fig. 36, $h^{2}=a^{2}+b^{2}$.
a. See Sci. Am. Sup., V. 70, p. 359, one of Colburn's 108.

Fig. 39

Eerty=Tw2

Construction as in fig.

38. Paral. $B D K A=$ rect. $A G=A B$ $\times B G=A B \times B C=B H^{2}$. And $A B$ $\times \mathrm{AC}=\mathrm{AH}^{2}$. Adding $\mathrm{BH}^{2}+\mathrm{AH}^{2}$
$=A B \times B C+A B \times A C=A B(A C+C B)$
$=A B^{2}$. $\quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Kipper, 1880, p.

Fig. $40 \quad 39$, fig. 38 and there credited to Oscar Werner, as recorded in
"Archiv. d. Math. und Phys.," Grunert, 1855; also see Versluys, p. 64, fig. 67, and Fourrey, p. 76.

Eqr ty=Three

Two squares, one on AH

Fig. 41 const'd outwardly, the other on HB overlapping the given triangle.

Take $H D=H B$ and cons't rt. tri. CDG. Then tri's CDH and ABH are equal: Draw GE par. to $A B$ meeting $G K A$ produced at $E:-$

Rect. $G K=$ rect. $G A+s q$. $H K=(H A=H C) H G+s q, H K=H D$? + sq. HK.

Now GC: $D C=D C:(H C=G E)$
$\therefore D^{2}=G C \times G E=$ rect $. G K=s q$. $H K+s q . \quad D B=A B^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. Seè Sci. Am. Sup.; V. 70, p. 382, Dec. 10, 1910. Credited to A. E. Colburn.

Egrty-Egur

$A K=s q$. on $A B$.

Fig. 42

Through G draw GD par. to H. and meeting FL produced at D and draw EG.

Tri. AGE is common to sq. $A K$ and rect. AD. \therefore tri. $A G E=\frac{1}{2}$ sq. $A K=\frac{1}{2}$ rect. $A D$.
\therefore sq. $A K=$ rect. $A D$. Rect. $A D$
$=$ sq. $\mathrm{HF}+$ (rect. $\mathrm{HD}=\mathrm{sq} . \mathrm{HC}$, see argument in proof 39). \therefore sq. $\mathrm{BE}=\mathrm{sq} . \mathrm{HC}+\mathrm{HF}$, or h^{2} $=a^{2}+b^{2}$.
a. See Sci. Am. Sup., V. 70, p. 382, Dec. 10, 1910. Credited to A. E. Colburn.
b. I regard this proof, wanting ratio, as a geometric, rather than an algebraic proof: E. S. Loomis.

Eqrty=Elve

HG = sq. on AHi. Extend

Fig. 43
$K B$ to M and through M draw $M L$ par. to HB meeting GF extended at L åd draw CM.

Tri. $A C G=$ tri. $A B H$.
Tri. $M A C=\frac{1}{2}$ rect. $A L=\frac{1}{2}$ sq. $A K$.
\therefore sq. $A K=$ rect. $A L=s q . H G+$
(rect. $\mathrm{HL}=\mathrm{ML} \times \mathrm{MH}$) $. \doteq \mathrm{HA} \times \mathrm{HM}$
$=\mathrm{HB}^{2}=\mathrm{sq} \cdot \mathrm{HD} \mathrm{H}^{\mathrm{Q}}=\mathrm{sq} \cdot \mathrm{HG}+\mathrm{sq} \cdot \mathrm{HD}$.
$\therefore h^{2}=a^{2}+b^{2}$.
a. See Am. Sci. Sup., V.

70, p. 383, Dec. 10, 1910. Credited to A. E. Colburn.

Egrty=six

Extend KB to 0 in HE .
Through 0 , and par. to $H B$ draw 'NM, making $O M$ and $O N$ each $=$ to HA. Extend GF to N. GA to L, making $A L=$ to $A G$ and draw $C M$.

Tri. ACL $=$ tri. OPM
$=\operatorname{tri} . A B H$, and tri. CKP $=\operatorname{tri} . A B O$.
\therefore rect. $\mathrm{OL}=\mathrm{sq} . \mathrm{AK}^{\text {, }}$ having polygon ALPB in common.
\therefore sq. $A K=$ rect. $A M=s q . H G$ + rect. $\mathrm{HN}=\mathrm{sq} . \mathrm{HG}+\mathrm{sq} . \mathrm{HD}$; see proof Forty-Four above. $\therefore h^{2}=a^{2}+b^{2}$ Q.E.D.
a. See Am. Sci. Sup.,
V. 70, p. 383. Credited to
A. E. Colburn.

Transposed sq. $L E=$ sq. on

Fig. 45
$A B$.
Draw through H, perp. to $A B$, $G H$ and produce it to meet MC produced at F. Take $H K=G B$; and through K draw LN par. and equal to $A B$. Complete the transposed sq. LE. Sq. $\operatorname{LE}=$ rect. $D N+$ rect. $D I=(D K \times I N=L N \times K N=A B \times A G$ $\left.=H B^{2}\right)+$ (rect. $L D=$ paral: AF =sq. $A C$) for tri. $F C H=t r i$. RMA and tri. $C P R=$ tri. SLA. $\therefore s q . L E$ $=H B^{2}+s q$. $A C$, or $h^{2}=a^{2}+b^{2}$ a. Original with the author of this work, Feb. 2, 1926.

Egity=E1ght

Construct
tri. $\mathrm{BHE}=$ tri. BHC and tri. $\mathrm{AHF}=\mathrm{tri}$.
 AHC, and through pts. F. F , and E draw the line GHL, making FG and $E L$ each $=A B$, and complete the rect's FK and ED, and draw the 1_{1} ies HD and HK.

Tri. HKA $=\frac{1}{2} A K \times A F=\frac{1}{2} \cdot A B$
$\times \mathrm{AC}-\frac{1}{2} \mathrm{AH}^{2} . \quad \mathrm{Tr} 1 . \mathrm{HBD}=\frac{1}{2} \mathrm{BD} \times \mathrm{BE}=\frac{1}{2} \mathrm{AB} \times \mathrm{BC}=\frac{1}{2}$ $H B^{2}$. Whence $A B \times A C=A H^{2}$ and $A B \times B C=H B^{2}$. AddIng, we get $A B \times A C+A B \times B C=A B(A C+B C)=A B^{2}$, or $A B^{2}=B H^{2}+H A^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. Original with the author, discovered Jan. 31, 1926.

Egrty=1nine

Construction. Draw HC, AE
 and $B F$ each perp. to $A B$; making each equal to AB. Draw EC and FCD. Tri's ABH and HCD are equall and similar.

F1gure FCEBHA $=$ paral. $C B$ + paral. $\mathrm{CA}=\mathrm{CH}{ }^{\prime} \times \mathrm{XB}+\mathrm{CH} \times \mathrm{GA}$ $=A B \times G B+A B \times A G=H B^{2}+H A^{2}$ $=A B(A B+A G)_{0}=A B \times A B=A B^{2}$.
a. See Math. Teacher, V. XVI, 1915. Credited to Geo. G. Evans,

Fig. 47 Charleston High School, Boston, Mass.; aliso Versluys, p. 64, fig. 68, and
p. 65, f1g. 69; also Journal de Mathein, 1888,
F. Fabre; and found in "De Vriend der Wirk, 1889," by A. E. B. Dulfer.

Elfty

I am giving this figure of Cecil Hawkins as it appears in Versluys' work, --not reducing it to my scale of $\mathrm{h}=\mathrm{I}^{\prime \prime}$.

Let $H B^{\prime}=H B=a$, and
HA' $=H A=b$, and draw $A^{\prime} B^{\prime}$ to D in $A B$.

Then angle BDA' is a rt. angle, since trils BHA and EHA! are congruent having base and altitude of the one res'ly perp. to base and altitude of the other.

$A^{\prime} A^{\prime}=\operatorname{tr} 1 . \mathrm{BAA}^{1}-\operatorname{tri} . \mathrm{BB}^{\prime} \mathrm{A} . \quad \therefore \frac{1}{2} \mathrm{a}^{2}+\frac{1}{2} \mathrm{~b}^{2}$ $=\frac{1}{2}\left(A B \times A \cdot D-\frac{1}{2}\left(A B \times B^{\prime} D\right)=\frac{1}{2}\left[A B^{2}\left(A^{\prime} B^{\prime}+B^{\prime} D\right)\right]\right.$
$-\frac{1}{2}\left(A B \times B^{\prime} D\right)=\frac{1}{2} A B \times A \cdot B I+\frac{1}{2} A B \times B D-\frac{1}{2} A B \times B D$ $=\frac{1}{2} A B \times A^{\prime} B^{\prime}=\frac{1}{2} h \times h=\frac{1}{2} h^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$. Q.R.D:
a. See Versluys, p. 71, fig. 76, as given by Ceo1l Hawkins, 1909, of England.

ELfty=2ne

Tri. $A C G=$ tri. $A B H$.

\therefore sq. HG $=$ quad. $A B F C=b^{2}$. Since angle $B A C=r t$. angle. $\therefore \operatorname{tri} . C A B=\frac{1}{2} h^{2} . \quad \therefore b^{2}=$ quad. $A B F C=\frac{1}{2} h^{2}+\operatorname{tr} 1 . B F C=\frac{1}{2} h^{2}$ $+\frac{1}{2}(b+a)(b-a) \cdot--(1)$
Sq. $H D=s q \cdot H D^{\prime} . \operatorname{Tr} 1$. OD'B
$=\operatorname{tri} \cdot{ }^{\cdot}$ RHB. $\quad \therefore$ sq. $H D^{\prime}=q u a ̣ d$.
BRE'O $=a^{2}+\operatorname{tri} . A B L-\operatorname{tr} 1$.
AEL. $\quad \therefore a^{2}=\frac{1}{2} h-\frac{1}{2}(b+a)$ $(b-a)--(2)(1)+(2)$
$=(3) a^{2}+b^{2}=\frac{1}{2} h^{2}+\frac{1}{2} h^{2}=h^{2}$.
$\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
Or from (1) thus: $-\frac{1}{2} h^{2}+\frac{1}{2}(b+a)(b-a)=b^{2}$
$=\frac{1}{2} b^{2}+\frac{1}{2} h-\frac{1}{2} a$. Whence $h^{2}=a^{2}+b^{2}$.
a. See Versluys, p. 67, fig. 71 , as one of Meyer's collection, of 1876.

ELfty=Iwo

Given the rt. tri. ABH. Through B draw $B D=2 B H$ and par.

Fig. 50 to $A H$. From D draw perp. $D E$ to $A B$. Find mean prop'l between $A B$ and $A E$ which is BF. From A, on $A H$, lay off $A T=B F$. Draw TE and TB, forming the two similar tri!s AET and ATB, from which $A T: T B=A E: A T$, or $(b-a)^{2}=h(h-E B)$, whence $E B=\left[h-(b-a)^{2}\right] / h,--(l)$

Also EB: $A H=B D: A B$.
$\therefore E B=2 a b / h .-(2)$ Equating (1) and (2) gives $\left[h-(b-a)^{2}\right] / h$
$=2 \mathrm{sb} / \mathrm{h}$; whence $h^{2}=a^{2}+b^{2}$.
a. Devised by the author, Feb. 28, 1926.
b. Here we introduce the circle in finding the mean proportional.

Elfty=Three

An indirect algebraic
proof, said, to be due to the great Leibniz (1646-1716). If (1) $\mathrm{HA}^{2}+\mathrm{HB}^{2}=\mathrm{AB}^{2}$, then (2) $H A^{2}=A B^{2}-H B^{2}$, whence (3) $H A^{2}=(A B+H B)$ (AB - HB).

Take BE and BC each equal to $A B$, and from B as center describe the semicircle CA'E. Join AE and AC, and draw BD perp. to AE. Now (4) $\mathrm{HE}=\mathrm{AB}+\mathrm{HB}$, and (5.) $\mathrm{HC}=\mathrm{AB}$ -HB . (4) \times (5) gives HE \times HC $=H A^{2}$, which is true only when triangles AHC and EHA are similar.
\therefore (6) angle CAH $=$ angle AEH, and so (7) HC : HA = HA : HE; since angle HAC = angle E, then angle $\mathrm{CAH}=$ angle EAF. \therefore angle ABH + angle $\mathrm{EAH}{ }^{\circ}=90^{\circ}$ and angle CAH + angle EAH $=90^{\circ} . \quad \therefore$ angle EAC $=90^{\circ} . \quad \therefore$ vertex A lies on the semicircle, or A coincides with $A^{\prime} . \therefore$ EAC is inscribed in a semicircle and is a rt. angle. Since equation (1) leads through the data derived from it to a rt. triangle, then starting with such a triangle and reversing the argument we arrive at $h^{2}=a^{2}+b^{2}$.
a. See Versluys, p. 6l, fig. 65, as given by von Leibniz.

ELfty-Eque

Fig. 52

Let $C B=x, C A=y$ and $H C$
$=p \cdot p^{2}=x y ; x^{2}+p^{2}=x^{2}+x y$
$=x(x+y)=a^{2} \quad y^{2}+p^{2}=y^{2}+x y$
$=y(x+y)=b^{2} \quad x^{2}+2 p^{2}+y^{2}$
$=a^{2}+b^{2} \quad x^{2}+2 x y+y^{2}=(x+y)^{2}$
$=a^{2}+b^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. This proof was sent to me by J. Adams of The. Hague, Holland. Received it March 2, 193.4, but the author was not given.

ELfty=Elve

Assume (1) $\mathrm{HB}^{2}+\mathrm{HA}^{2}=A B^{2}$.

Fig. 53 Draw HC perp. to AB. Then (2) $A C^{2}$ $+\mathrm{CH}^{2}=\mathrm{HA}^{2}$. (3) $\mathrm{CB}^{2}+\mathrm{CH}^{2}=\mathrm{HB}^{2}$, (4). Now $A B=A C+C B$, so (5) $A B^{2}$ $=A C^{2}+2 A C \times C B+C B^{2}=A C^{2}+2 H C^{2}$ $+\mathrm{CB}^{2}$. But (6) $\mathrm{HC}^{2}=\mathrm{AC} \times \mathrm{CB} . \quad \therefore$ (7) $A B^{2}=A C^{2}+2 A C \times C B+C B^{2}$ and (8) $A B=A C+C B$. \therefore (9) $A B^{2}=A C^{2}+2 A C \times C B+C B^{2}$. (2.) $+(3)=(10) \mathrm{HB}^{2}+\mathrm{HA}^{2}=A C^{2}+2 H C^{2}+\mathrm{CB}^{2}$, or (11) $A B^{2}=H B^{20}+H A^{2}$. $\quad \therefore$ (12) $h^{2}=a^{2}+b^{2}$. Q.E.D. a. See Versluys, p. 62, f1g. 66.
b. This proof is one of Hoffmann's, 1818; collection, C.--The Circle in Connection with the Right Trianele. (I). --Through the Use of One Circle

From certain Linear Relations of the Chord, Secant and Tangent in conjunction with a right tri'angle, or with similar related right triangles, it may also be proven that: The square of the hypotenuse of a right triangle ts equal to the sum of the squares of the other two sides.

And since the algebraic is the measure or transliteration of the geometric square the truth by any proof through the algetraic method involves the truth of the geometric method.

Furthermore these proofs through the use of circle elements are true, not because of straightline properties of the circle, but because of the law of similarity, as each proof may be reduced to the proportionality of the homologous sides of similar triangles, the circle being a factor only in this, that the homologous angles are measured by equal arcs.
(1) The Method by Chords.

Elf ty $=\underline{S l} \underline{x}$

H is any pt. on the semicircle BHA. \therefore the fri. ABH is a rt. triangle. Complete the sq. AF and draw the perp. EHC.
$\mathrm{BH}^{2}=\mathrm{AB} \times \mathrm{BC}$ (mean propertional)
$A H^{2}=A B \times A C$ (mean proportional)
Sq. $A F=$ rect. $\mathrm{BE}+$ rect. $\mathrm{AE}=\mathrm{AB} \times \mathrm{BC}$
Fig. 54
$+\mathrm{AB} \times \mathrm{AC}=\mathrm{BH}^{2}+\mathrm{AH}^{2} . \quad \therefore \mathrm{h}^{2}=\mathrm{a}^{2}$
$+b^{2}$.
a. See Sci. Am. Sup., V. 70, p. 383, Dec. 10, 1910: Credited to A. E. Colburn.
b. Also by Richard A. Bell, --given to me Feb. 28, 1938. He says he produced it on Nov. .18, 1933.

Elfty-Seven

Take ER = ED and

Fig. 55

Bisect HE. With Q as center describe semicircle AGR. Complete sq. EP. Rect. $\mathrm{HD}=\mathrm{HC} \times \mathrm{HE}=\mathrm{HA}$ $\times \mathrm{HE}=\mathrm{HB}^{2}=\mathrm{sq} . \mathrm{HF}$. EG is a mean proportional between $E A$ and ($E R=E D$). \therefore sq. $E P=$ rect. $A D=s q$. $A C+s q$. HF. But $A B$ is a mean prop'l between. EA and $(E R-E D) . \quad \therefore E G=A B$. sq. $B L=s q . A C+s q . H F$. $\therefore h^{2}+a^{2}+b^{2}$.
a: Sèe Sci. Am. Sup., V. 70, p. 359, Dec. 3, 1910. Credited to A. E. Colburn.

ELfty=ELght

In any circle upon

Fig: 56 any diameter, EC in fig. 56; take any distance from the center less than the radius, as BHi. At H draw a chord $A D$ perp. to the diameter, and join $A B$ forming the rt. tri. ABH.
B. NOW HA $\times H D=H C$ x HE, or $b^{2}=(h \& a)(h-a)$. $\therefore h^{2}: a^{2}+b^{2}$.
b. By joining A and C, and E and D, two similar rt. tri's are formed, giving HC : HA $=H D: H E$, or, again, $b^{2}=(h+a)(h-a) . \therefore h^{2} \equiv a^{2}+b^{2}$.

But by joining C and D, the tri. $D H C=t r i$. AHC, and since the tri. DEC is a particular case of One, fig. 1 , as is obvious, the above proof is subordinate to, being but a-particular case-of the-proof of, One.
c. See Edwards' Ceometry, p. 156, fig. 9, and Journal of Education, 1887, V. XXV, p. 404, fig. VII.

Elfty=Mine

Fig. 57

With B as center, and radius $=A B$, describe circle ABC.

Since CD is a mean proportional betw̌een $A D$ and $D E$; and as $C D=A H, b^{2}$ $=(h-3)(h+a)=h^{2}-a^{2}$. $\therefore h^{2}=a^{2}+b^{2}$.
a. See Journal of Education, 1888, Vol. XXVI, p. 327, 2lst proof: also Heath's Máth. Monograph,

No. 2, D. 30, 17 th of the 26 proofs there given. b. By analysis and comparison it is obvious, by substituting for ABM its equal, tri. CBD, that above solution is subordinate to that of Fifty-Six.

Sixty

F18. 58

In any circle draw any chord as AC perp. to any diameter as $B D$, and join A and B, B and C, and C and D, forming the three similar rt. tri's $A B H$; CBH and DBC .

Whence $\mathrm{AB}: \mathrm{DB}=\mathrm{BH}$
: BC , giving $\mathrm{AB} \times \mathrm{BC}=\mathrm{DB} \times \mathrm{BH}$
$=(\mathrm{DH}+\mathrm{HB}) \mathrm{BH}=\mathrm{DH} \times \mathrm{BH}+\mathrm{BH}^{2}$
$=A H \times H C+B^{2}$; or $h^{2}=a^{2}$ $+b^{2}$.
a. Fig. 58 is closely related to Fig. 56.
b. For solutions see Edwards' Geom., p. 156, f1g. 10, Journal of Education, 1887, V. XXVI, p. 21, fig. 14, Heath's Math. Monographs, No. 1, p. 26 and Am. Math. Mọ., V. III, p. 300, solution XXI.

Sixty=Qne

Let H be the center of a

Fig. 59 circle, and $A C$ and $B D$ two dlameters perp. to each other. Since $H A=H B$, we have the case particular, same as in fig. : under Geometric Solutions.

$$
\text { Proof 1. } \mathrm{AB} \times \mathrm{BC}=\mathrm{BH}^{2}
$$

$+A H \times C H . \quad \therefore A B^{2}=H B^{2}+H A^{2} . \quad \therefore$ $h^{2}=a^{2}+b^{2}$.

Proof 2- $A B \times B C=B D \times B H$ $=(\mathrm{BH}+\mathrm{HD}) \times \mathrm{BH}=\mathrm{BH}^{2}+(\mathrm{HD} \times \mathrm{HB}$
$=H A \times H C)=\mathrm{BH}^{2}+\mathrm{AH}^{2} . \quad \therefore \mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.
a. These two proofs are from Math: Mo., 1859, Vol. 2, No. 2, Dem. 20 and Dem. 21, and are applications of Prop. XXXI, Book IV, Davies Legendre, (1858), p. 119; or Book III, p. "173, Exercise 7, Schuyler's Geom., (1876), or Book III, p. 165, Prop. XXIII, Wentworth's New Plane Geom., (1895).
b. But it does not follow that being true when $H A=H B$, it will be true when $H A>$ or $\langle H B$. The author.

Fig. 60

Sixty=Three

From the figure 1t is evident that $\mathrm{AH} \times \mathrm{HD}$ $=H C \times H E$, or $b^{2}=(h+a)$ $(h-a)=h^{2}-a^{2} . \quad \therefore h^{2}$ $=a^{2}+b^{2}$. Q.E.D.
a. See Versluys,
p. 92, fig. 106, and credited to Wm. W. Rupert, 1900.

F1g... 61

SIxty=Equr

With CB as radius

Fig. 62

describe semicircle BHA cut-

 ting HL at K and AL at M. Arc $\mathrm{BH}=$ arc $\mathrm{KM} . \quad \therefore \mathrm{BN}=\mathrm{NQ}$ $=A O=M R$ and $K B=K A$; also arc $\mathrm{BHK}=$ arc $\mathrm{AMR}=\mathrm{MKH}=90^{\circ}$. So tri's BRK and KLA are congruent. $\mathrm{HK}=\mathrm{HL}-\mathrm{KL}=\mathrm{HA}$- OA. NOw HL : KL = HA: OA. So $\mathrm{HL}-\mathrm{KL}: \mathrm{HL}=\mathrm{HA}-\mathrm{OA}: \mathrm{HA}$, or $(\mathrm{HH}-\mathrm{KH}) \div \mathrm{HL}=(\mathrm{HA}-\mathrm{OA})$. $\div H A=(b-a) / b . \quad \therefore K \dot{K} Q=(H K \div N L) L P=[(b-a) \div b]$ $\times \frac{1}{2} b=\frac{1}{2}(b-a)$.

Now tri. KLA $=\operatorname{tri}$. HLA $-\operatorname{tri} . ~ A H K=\frac{1}{4} b^{2}$
$-\frac{1}{2} b \times \frac{1}{2}(b-a)=\frac{1}{4} b a=\frac{1}{2} \operatorname{tr} 1 . A B H$, or tri. $A B H$
$=\operatorname{tri} . \operatorname{BKR}+\operatorname{tr} 1 . \mathrm{KCA}$, whence triap. LABR - tri. ABH
$=$ trap. $\mathrm{LABR}_{-}(\operatorname{tr} 1 . \mathrm{BKR}+\operatorname{tr1} . K \mathrm{KL} A)=$ trap. LABR

- (tri. HBR + tri. HAL $)=$ trap. LABR $-\operatorname{tri}$. ABK.
tri. $A B K=$ tri. $H B R+\operatorname{tri} . \operatorname{HAL} ;$ or 4 trif $A B K=4$ tri. HBR +4 tri. HAL. $\therefore h^{2}=a^{2}+b^{2}$: Q.E.D.
a. See Versluys, p. 93, fig. 10̂̃; and found in Journal de Mathein, 1897, credited to Brand. (10/23,133, 9 p. m. E. S. L.).

SLXEy=Eive

Fig. 63

The construction is obvious. From the similar triangles HDA and HBC, we have $\mathrm{FD}: \mathrm{HB}=\mathrm{AD}: \mathrm{CB}$, or $H D \times C B=H B \times A D .-(1)$

In like manner, from the similar triangles $D H B$ and AHC, $H D$ $\times \mathrm{AC}=\mathrm{AH} \times \mathrm{DB}, \cdots(2)$ Adding (1) and (2), $H D \times A B=H B \times A D+A H$ \times DB. $-\cdots(3) . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Halsted's Elementary

Geom., 6th Ed'n, 1895 for Eq. (3), p. 202; Edwards Geom., p. 158, fig. 17; Am. Math. Mo., V. IV, p. 11.
b. Its first appearance in print, it seems, was in Runkle's Math. Mo., 1859; and by Runkle credited to C. M. Raub, of Allentow, Pa.
c. May not a different solution be obtained from other proportions from these same triangles?

SIXty $\underline{s} \underline{s} \underline{x}$

Fig. 64

Ptolemy's Theorem (A.D. 87168). If $A B C D$ is any cyclic (inscribed) quadrilateral, then $A D \times B C$ $+A B \times C D=A C \times B D$.

As appears in Wentworth's Geometry, revised edition (1895), p. 176, Theorem 238. Draw DE making $\angle C D E=\angle A D B$. Then the tri's $A B D$ and CDE are similar; also the tri's $B C D$ and ADE are similar. From these pairs of similar triangles it follows that $A C \times B D=A D \times B C+D C \times A B$. (For full demonstration, see Teacher's Edition of Plane and Solid Geometry (1912), by Geo. Wentworth and David E. Smith, p. 190, Proof 11.)

In case the quad. ABCD be-

comes a rectangle then $A C=B D, B C$
$=A D$ and $A B=C D$. So $A C^{2}=B C^{2}$ $+A D^{2}$, or $c^{2}=a^{2}+b^{2} \therefore \therefore$ a special case of Ptolemy's Theorem gives a proof of the Pyth. Theorem.
a. As formulated by the

Pig 65 author.-Also see-"A Compantion to Elementary School Mathematics (1924), by F. C. Boon, B.A., p. 107, proof 10.

SLxty-Seven

Circumscribe about tri. ABH circle BHA. Draw $A D=D B$. Join $H D$. Draw $C G$ perp. to $H D$ at H, and $A C$ and $B G^{3}$ each perp. to $C G$; also $A E$ and BF perp. to $H D$. Quad's CE and FG are squares. Tri's HDE and

F18. 66

DBF are congruent. $\therefore \mathrm{AE}=\mathrm{DF}=\mathrm{EH}$ $=A C . \quad H D=H P+F D=B G+A C$. Quad. $A D B H=\frac{1}{2} H D(B F+A E)=\frac{1}{2} H D \times C G$.
Quad. $A B C C=\frac{1}{2}(A C+B G) \cdot x C G=\frac{1}{2} H D$ \times CO: $\quad \therefore$ tri. $A D B=$ tri. $A H C+t r i$. HBG. $\therefore 4$ tri. $A D B=4$ tri. $A H C+4$ tri. HBG: $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D. a. See E. Fourrey's C. Geom., 1907; credited to P1ton-Bressant; see Versluys, p. 90, fig. 103.
b. See fig. 333 for Geom. Proof--so-called.

sixty=Eight

T18. 67

Construction same as in fig. 66, for points C, D and G.

 Join DG. From H draw HE perp. to $A B$, and join EG and ED. From G draw CL perp. to HE and GF perp. to $A B$, and extend $A B$.to F. $K F$ is a square, with diag. GE. \therefore angle $B E G=$ angle $\mathrm{FBD}=45^{\circ} . \therefore$ GE and $B D$ are parallèl. Trı. $B D G=t r 1$. BDE. $--(1)$ Tri. BGH = tri. BGD. -.-(2) $\therefore(1)=(2)$, or tri. BGH$=$ tri. BDE. Also tri. HCA $=$ tri. ADE. \therefore tri. $B G H$ $+\operatorname{tri} . H C A=\operatorname{tri} . A D B . S O 4$ tri. $A D B=4$ tri. $B H G$ +4 tri. HCA. $\quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Versluys, p. 91, 11g. 104, and crédit.ed also to Piton-Bressant; as found in E. Fourrey's Geom., 1907, p: 79, IX.
b. See fig. 334 of Geom. Proofs.

In fig. 63 above it is obvious that $A B \times B H$ $=A H \times D B+A D \times B H M A B^{2}=H A^{2}+H B^{2} \therefore h^{2}=a^{2}$ $+b^{2}$ 。
a. See Math. Mo., 1859, by Runkle, Vol. II, No. 2, Dem. 22,; 1ig. 11.

```
b. This is a particular case of Prop. XXXIII, Book IV, p. 121, Davies Legendre (1858) which is Exercise 10, in Schuyler's Geom. (1876), Book III, p. 173, or Exercise 238, Wentworth's New Plane Geom. (1895), Book III, p. 176.
```


Seventr.

On any diameter as AE
 $=2 \mathrm{AH}$, const. rt. tri. ABH , and produce the sides to chords. Draw ED. From the sim. tri's $A B H$ and $A E D, A B: A E=A H: A D$, or $h: b+H E=b: h+B D . \quad \therefore$ $h(h+B D)=b^{\prime}\left(b+H E=b^{2}+b\right.$ $\times \mathrm{HE}=\mathrm{b}^{2}+\mathrm{HF} \times \mathrm{HC}=\mathrm{b}^{2}+\mathrm{HC}^{2}$. (1). Now concelve AD to revolve on A as a center until D coincides with C, when $A B=A D$ $=A C=h, B D=0$, and $H B=H C$ $=a .$. Substiuuting in (1)• we have $h^{2}=a^{2}+b^{2}$.
a. This is the solution of G. I. Hopkins of Manchester, N.H. See his Plane Geom., p: 92, art. 427; also see Jour. of Ed., 1888, V. XXVII, p. 327, 16th prob. Also Heath's Math. Monographs, No. 2, p: 28; proof XV.
b. Special case. When H coincides with 0 we get $(1) B C=(b+c)(b-a) / h$, and $(2) B C=2 b^{2} / h-h$. Equating, $\therefore h^{2}=a^{2}+b^{2}$.
c. See Am. Math. Mo., V. III, p. 300.
(2) The Method by Secants.

Seventy=2ne

With H as center and $H B$ as radius describe the circle EBD.

The secants and their external segments bring reciprocally proportional, we have, $A D: A B=A F: A E$,
or $b+a: h=\left(h-2 C B=h-\frac{2 a^{2}}{h}\right)$

F1g. 69
$: b_{0}-a$, whence $h^{2}=a^{2}+b^{2}$.
a. In case $\mathrm{b}=\mathrm{a}$, the
points A, E and F coincide and the proof still hoids; for substituting b for a the-above prop'n reduces to $h^{2}-2 a^{2}=0 ; \therefore h^{2}=2 a^{2}$ as $1 t$ should.
b. By joining E and B, and
F and D, the similar triangles upon which the above rests are formed.

Sesenty=Iwe

W1th H as center and HB as radius describe circle FBD, and draw $H E$ and $H C$ to middle of EB .
$A E \times A B=A F \times A D$, or
$(A D=2 B C) A B=(A H-H B)(A H+H B)$. $\therefore A B^{2} \rightarrow 2 B C \times A B \equiv A H^{2}-H B^{2}$. And as $\mathrm{BC}: 3 \mathrm{H}=\mathrm{BH}: \mathrm{AB}$, then $\mathrm{BC} \times \mathrm{AB}$ $=H B^{2}$, or $2 B C \times A B=2 B H^{2}$. So $A B^{2}$
Fig. 70

$$
-2 \mathrm{BH}^{2}=\mathrm{AH}^{2}-\mathrm{BH}^{2} . \therefore \mathrm{AB}^{2}=\mathrm{HB}^{2}
$$

$$
+H A^{2}
$$

$\therefore h^{2}=a^{2}+\nu^{2}$.
Q.E.D.
a. Math. Mo., Vol. II, No. 2, Dem. 25, fig. 2. Derived from: Prop. XXIX, Book IV, p. 118, Davies Legendre (1858); Prop. XXXIII, Book III, p. 171, Schuyler's Geometry (1876); Prop. XXI, Book III, p. 163, Wentworth's New Plane Geom. (1895).

Seyenty=Ihree

Fig. 71
a. See Math. Mo..,
(1859); Vol. II, No. 2, Dem. 26, p. 13; derived from Prop. XXX, p. 119, Davis Legendre; Schuyler's deom., Book III, Prop. DXXII, Cor. p. 172 (1876); Wentworth's Geom., Book III, Prop. XXII; p. I64. It is credited to C. J. Kemper, Harrisonburg, Va., and Prof. Charles A. Young (1859), at Hudson; O. Also found in Fourrey's collection, p. 93, as given by J. J. I. Hoffmann, 1821.

Serenty-Equr

In fig. 72, E will fall between A and F at F, or between F and B, as $H B$ is less than, equal to, or greater than HE. Hence there are three cases; but investigation of one case--when it falls at middle point of $A B--1 s$ sufficient.

Join L and B, and F and- C making the two similar triangles APC and ALB; whence $h: b+a=b$ $-a: A P ; \therefore A F=\frac{b^{2}-a^{2}}{h}$
Join F and G, and B and D making the two sim1lar tri's FGE and BDE, whence $\frac{1}{2} h: a-\frac{1}{2} h=a+\frac{1}{2} h-$: FE, whence $F E=\frac{a^{2}-\frac{1}{\frac{1}{2}} h^{2}}{\frac{t}{2} h},-(2)$. Adding (1) and (2) gives $\frac{1}{2} h=\frac{a^{2}+b^{\frac{2^{2}}{2}}-\frac{3}{2} h^{2}}{h}$; fhence $h^{2}=a^{2}+b^{2}$.
a. The above solution is given by Krueger, in "Aumerkungen uber Hrn. geh. R. Wolf's Auszug aus der Geometrie," 1746. Also see Jury Wipper, p. 41, fig. 42, and Am. Math. Mo:, V. IV, p. 11.
b; When G falls inldway between F and B, then 11g. 72 becomes fig. 69. Therefore-cases 69. and 72. are closely related.

Seventy=Elve

Fig. 73a

F1g. 736

In fig. 73a, take HF $=$ HB. With B as center, and BF as radius describe semicircle DEG, G being the pt. where the circie intersects $A B$. Produce $A B$ to D, and draw FG, FB, BE to AR produced, and DE, forming the similar tri's AGF and AED, from which $(A G=x):(A F=y)$ $=(A E=J+2 F H):(A D=x$ $+2 B G)=y+2 z: x+2 r$ whence $x^{2}+2 r x=y^{2}+2 y z$. --- (1).

But 1f, see f1g. 73b, $H A^{-1}=H B$, (sq: $G E=h^{2}$) (Lq . $\left.H B=a^{2}\right)+(4 \operatorname{tri} . A H G=s q$. $H A=b^{2}$), whence $h^{2}=a^{2}+b^{2}$; then, (see fig. 73a) when $B F=B G$, we will have $B G^{2}=H B^{2}+H F^{2}$, or r^{2} $=z^{2}+2^{2}$, (since-2-ME)-(2)

$$
\text { (1) }+(2)=(3) x^{2}+2 r x+r^{2}=y^{2}+2 y z+z^{2}
$$

$$
+z^{2} \text { or (4) }(x+r)^{2}=(y+z)^{2}+z^{2} . \quad \therefore(5) h^{2}=a^{2}
$$ $+b^{2}$, since $x+r=A B=h, y+z=A H=b$, and $z=H B=a$.

a. See Jury Wipper, p. 36, where Wipper also credits it to Joh. Hoffmann. See also Wipper, p. 37, fig. 34, for another-statement of same proof; and Fourrey; p. 94, for Hoffmann's prooi.

Seventy=Stx -

In fig. 74 in the circle whose center is 0 , and whose diameter is $A B$, erect the perp. DO, join D to A and B, produce $D A$ to F, making $A F=A H$, and produce $H B$ to 0 -making $B G=B D$, thus forming the two isosceles tri's FHA and DAB; also the two isosceles tri's ARD and BHS. As angle DAF $=2$ angle at F, and angle $H B D=2$ angle at G, and as angle DAF and angle

Fig. 74

HBD are measured by same arc HD , then angle at $F=$ angle. at G. \therefore arc $A P=a r c Q B$.

And as angles ADR and BHS have same measure, $\frac{1}{2}$ of arc $A P Q$, and $\frac{1}{2}$ of arc $B Q P$, respectively, then tri's ARD and BHS are similar, R is the intersection of AH and DG, . and S the intersection of $B D$
and HF. Now since tri's FSD and GHR are similar, being equiangular, we have, $D S: D F=H R: H G . \therefore D S$ $:(D A+A F)=H R:(H B+B G)$.
$\therefore D S:(D A+A H)=H R:(H B+B D)$,
\therefore DS : $(2 B R+P H)=H R:(2 B S+S D)$.
\therefore (1) $\mathrm{DS}^{2}+2 \mathrm{DS} \times \mathrm{BS}=\mathrm{HR}^{2}+2 \mathrm{HR} \times \mathrm{BR}$.
Andal(2) $H A^{2}=(H R+R A)^{2}=H R^{2}+2 H R \times R A!+R A^{2}=H R^{2}$ $+2 H R \times R A^{*}+A D^{2}$
(3) $\mathrm{HB}^{2}=\mathrm{BS}^{2}=(\mathrm{BD}-\mathrm{DS})^{2}=\mathrm{BD}^{2}-2 \mathrm{BD} \times \mathrm{DS}+\mathrm{DS}^{2}$ $=A D^{2}-\left(2 B D \times D S-D S^{2}\right)=A D^{2}-2(B S+S D) D S+D S^{2}$
$=A D^{2}-2 B S \times S D-2 D S^{2}+D S^{2}=A D^{2}-2 B S \times D S$
$-D S^{2}=A D^{2}-\left(2 B S \times D S-D S^{2}\right)$
(2) $+(3)=(4) \mathrm{HB}^{2}+H A^{2}=2 A D^{2}$. But as in proof, fig. 73b, we found, (eq. 2), $\mathrm{r}^{2}=z^{2}+z^{2}=2 z^{2}$. $\therefore 2 A D^{2}$ (in fig. 74) $=A B^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Jury Wipper, p. 44, f1g. 43, and there credited to Joh. Hoffmann, one of his 32 solutiońs.

Seventy=Seven

In fig. 75; let BCA be any triangle, and let $A D, B E$ and $C F$ be the three perpendiculars from the three verticles, A, B and C, to the three sides, $B C$, $C A$ and $A B$, respectively. Upon $A B, B C$ and $C A$ as diameters describe circumferences, and since the angles $A D C, B E C$ and CFA are rt. angles, the circumferences pass through the points D and E, F and E, and F and D, respectively.

Fig. 75a

Fig. 75b

Since $B C \times B D=B A \times B F, C B \times C D=C A \times C E$, and $A B \times A F=A C \times A E$, therefore
$\left[B C \times B D+C B \times C D=B C(B D+C D)=B C^{2}\right]$
$=\left[B A \times B F+C A \times C E=B A^{2} \pm A B \times A F+C A^{2} \pm A C \times A E\right.$
$=A B^{2}+A C^{2}+2 A B \times A \bar{F}$ (or $2 A C \times A E$)].
When the anglé A is acute (fig. 75a) or obtuse (fig. 75b) the sign is - or + respectively. And as angle A approaches $90^{\circ}, A F$ and $A E$ approach 0 , and at 90° they become 0 , and we have $B C^{2}=A B^{2}+A C^{2} . \therefore$ when $A=a$ rt. angle $h^{2}=a^{2}+b^{2}$.
a. See Olney's Elements of Geometry, University Edition, Part III, p: 252, art. 671, and Heath's Math. Monographs, No. 2, p. 35, proof XXIV.

Seventy $=$ Elight

Fig. 76

Produce KC and
HA to M, complete the rect. MB, draw BF par. to $A M$, and draw CN and AP perp. to HM.

Draw the sem1circle ANC on the diameter $A C$. Let $M N=x$. Since the area of the paral. $\mathrm{MFBA}=$ the area of the sq. $A K$, and since, by the Theorem for the
measurement of a parallelogram, (see fig. 308, this text), we have (1) sq. $A K=(B F \times A P=A M \times A P$) $=a(a+x)$. But, in tri. MCA, CN is a mean proportional between $A N$ and NM. \therefore (2) $\mathrm{b}^{2}=a x$. (1) - (2) $=(3) h^{2}-b^{2}=a^{2}+a x-a x=a^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. This proof is No. 99 of A. R. Colburn's 108 solutions, being devised Nov. 1, 1922:
(3) The Method by Tangents

18t. --The HyDotenuse as a Tansent

Seventy=M1ie

Draw HC perp. to $A B$, and

Fig. 77 with H as a center and HC as a radius describe circle GDEF.

From the similar tri's s ACG and AEC, AC : AE = AG : AC, or $A C: b+r=b-r: A C ; \therefore$ (1) $A C^{2}$ $=b^{2}-r^{2}$... From the similar tri's $C B D$ and BFC, we get (2) $C D^{2}=a^{2}-x^{2}$ From the similar rt. tri's BCH and HCA, we get (3) $B C \times A C=r^{2}$. \therefore (4) $2 B C \times A C=2 r^{2}$ (1) $+(2)+(4)$ gives (5) $A C^{2}$ $+2 A C \times B C+B C^{2}=a^{2}+b^{2}=(A C+B C)^{2}=A B^{2} . \quad \therefore h^{2}$ $=a^{2}+b^{2}$.
a. See Am. Math. Mo., V. III, p. 300.

ELinty

0 , the center of the circle,

Fig. 78 lies on the bisector of angle B, and on AH.

With the construction completed, from the similar tri's ACD and AHC, we get, calling $O C=r$, $(A C=h-a):(A H=b)=(A D=b-2 r)$ $\therefore(A C=h-a) . \quad \therefore(1)(h-a)^{2}=b^{2}$ - 2br. But (2) $a^{2}=a^{2}$. (1) $+(2)=(3)(h-a)^{2}$ $+a^{2}=a^{2}+b^{2}-2 b r$, or $(h-a)^{2}+2 b r+a^{2}=a^{2}+b^{2}$.
$A l s o(A C=h-a):(A H=b)=(O C=O H=r):(X B=a)$, whence
(4) $(h-a) a=b r$.
$\therefore(5)(h-a)^{2}+2(h-a) r+a^{2}=a^{2}+b^{2}$
\therefore (6) $\mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.
Or, in (3) above, expand and factor gives
(7) $h^{2}-2 a(h-a)=a^{2}+b^{2}-2 b r$. Sub. for $a(h-a)$ its equal, see (4) above, and collect, we have
(8) $h^{2}=a^{2}+b^{2}$.
a. See Am. Math. 'Mo., ,V. IV, p'. 81.

2nd.--The Hypotenuse a Secant which Passes Throush the Center of the circle and One or Both Le@s Tangents

ELahty=Qne

Having HB, the shorter leg,

Fig. 79 a tangent at C, any convenient pt. on $H B$, the construction is evident.

From the similar tri's BCE and $B D C$, we get $B C: B D=B E: B C$, whence $B C^{2}=B D \times B E=(B O+O D) B E$ $=(B O+O C) B E:--(1) \quad$ From similar tri's $O B C$ and $A B H$, we get $O B: A B$ $=O C: A H$, whence $\frac{\mathrm{OB}}{\mathrm{h}}=\frac{\mathrm{r}}{\mathrm{b}} ; \quad \therefore \mathrm{BO}$
$=\frac{h r}{b} \cdot--(2) \quad B C: B H=O C: A H$, whence $B C=\frac{a r}{b},-\ldots(3)$
Substituting (2) and (3) in (1), gives,
$\frac{a^{2} r^{2}}{b^{2}}=\left(\frac{A r}{b}+r\right) B E=\left(\frac{h r+b r}{b}\right)(B O-O C)=\left(\frac{h r+b r}{b}\right)$ $\left(\frac{h r+b r}{b}\right) \cdot-(4)$ whence $h^{2}=a^{2}+b^{2}$. Q.E.D.
a. Special case is: when, in Fig. 79, 0 coincides with A, as in Fig. 80.

ELghty=Iw

With A as center and
 Af as radius, describe the semicircle BHD.

From the similar triangles BHC and BDH, we get, $h-b: a=a: h+b$, whence directly $h^{2}=a^{2}+b^{2}$.
a. This.case is found Int Heath's Math. Monographs, No. 1, p. 22, proof VII; Hopkins' Plane Geom., p. 92, fig. IX; Journal of Education, 1887, V. XXVI, p. 21, fig. VIII; Am. Math. Mo., V. III, p. 229; Jury Wipper, 1880, p. 39, fig. 39, where he says it is found in Hubert's Elements of Algebra, Wurceb, 1792, also in Wipper, p. 40, fig. 40 , as one of Joh. Hoffmann's 32 proofs. Also by Richardson in Runkle's Mathematical (Journal) Monthly, No. 11, 1859 --one of Richardsion's 28 proofs; Versluys, p. 89, fig. 99.
b. Many persons, independent of above sources, have found this proof.
c. When 0 , in fig. 80 ; is the middle pt. of AB , it becomes a special case of fig. 79.

Elqhty=Three

Assume $\mathrm{HB}<\mathrm{HA}$, and employ

Fig. 81 tang. HC and secant HE, whence HC^{2} $=H E \times H D=A D \times A E=A G \times A F=B F$ $\times B G=B C^{2}$. Now employing like argument as in proof Eighty-One we get $h^{2}=a^{2}+b^{2}$.
a. When 0 is the middle point of $A B$, and $H B=H A$, then $H B$ and $H A$ are tangents, and $A G=B F$, secants, the argument is same as (c), proof EightyTwo, by applying theory of limits.
b. When 0 is any pt. in $A B$, and the two legs
are tangents. This is only another form of fig. 79 above, the general case. But as the general case gives, see proof, case above, $h^{2}=a^{2}+b^{2}$, therefore the special must be true, whence in this case (c) $h^{2}=a^{2}+b^{2}$. Or if a proof by explicit argument is desired, proceed as in fig. 79.

Elghty=Equr

By proving the general case,

Fig. 82
, proving the general case, as in fig. 79, and then showing that some case is only a particular of the general; and therefore true immediately, is here contrasted with the following long and complex solution of the assumed particular case.

The following solution is
given in The Am. Math. Mo., V. IV,
p. 80:
"Draw OD perp. to $A B$. Then, $A T^{2}=A E \times A F=A O^{2}-E O^{2}$ $=A O^{2}-\mathrm{TH}^{2} \ldots-(1)$
$\mathrm{BP}^{2}=\mathrm{BF} \times \mathrm{BE}=\mathrm{BO}^{2}-\mathrm{FO}^{2}=\mathrm{BO}^{2}-\mathrm{HP}^{2} \ldots(2)$
Now, $A O: O T=A D: O D$;
$\therefore A O \times O D=O T \times A D$.
And, since $O D=O B, O T=T H=H P$, and $A D=A T+T D$

$$
=A T+B P
$$

$\therefore \mathrm{AT} \times \mathrm{TH}+\mathrm{HP} \times \mathrm{BP}=\mathrm{AO} \times \mathrm{OB}, \ldots(3)$
Adding (1), (2), and $2 \times(3)$,
$A T^{2}+B P^{2}+2 A T \times T H+2 H P \times B P=A O^{2}-T H^{2}+B O^{2}$ $-\mathrm{HP}^{2}+2 A O \times O B ;$
$\therefore \mathrm{AT}^{2}+2 \mathrm{AT} \times \mathrm{TH}+\mathrm{FH}^{2}+B P^{2}+2 B P \times H P+\mathrm{HP}^{2}=A O^{2}$
$+2 A O \times O B+B O^{2}$.
$\therefore(A T+T H)^{2}+(B P+C P)^{2}=(A O+O B)^{2}$.
$\therefore \mathrm{AH}^{2}+\mathrm{BH}^{2}=A B^{2}$." Q.E.D.
$\therefore h^{2}=a^{2}+b^{2}$.

> 3rd. -- The Hypotenuse a Secant Not Passins Throush the Center of the Ctrcle, and Both Less Tangents

Fig. 83

ELghty=ELx

Through B draw BC parallel to HA, making $B C=2 B H$; with 0 , the middle point of $B C$, as center, describe a circumference", tangent at B and E, and draw $C D$, forming the two similar rt. tri's $A B H$ and $B D C$, whence $\mathrm{BD}:(\mathrm{AH}=\mathrm{b})=(\mathrm{BC}=2 a)$: $\left(A B=h\right.$) from which, $D B=\frac{2 a b}{h}$. (1)
Now, by the principal of tang. and sec. relations, $\left(A E^{2}=[b-a]^{2}\right)=(A B=h)(A D=h-D B)$, whence

$$
D B=h-\frac{(b-a)^{2}}{h} \cdot--(2)
$$

Pquating (1.) and (2) gives $h^{2}=a^{2}+b^{2}$.
a. If the legs HB and HA are equal, by theory of limits same result obtains.
b. See Am. Math. Mo., V. IV, p. 8i, No. XXII.
c. See proof fifty-Two above, and observe that this proof Fighty-Five is superior to it.

4th.--Hypotenuse and Both Less Tansents

Eighty=SLx

The tangent points of the
 three sides are C, D and' E.

Let $O D=T=O E=O C, A B=h$,
$\mathrm{BH}=\mathrm{a}$ and $\mathrm{AH}=\mathrm{b}$.
(1) $h+2 r=a+b$.

Fig. 84
(2) $h^{2}+4 h r+4 r^{2}=a^{2}+2 a b=b^{2}$.
(3) Now if $4 \mathrm{hr}+\mathrm{L}^{2}=2 \mathrm{ab}$; then $h^{2}=a^{2}+b^{2}$
(4.) Suppose $4 \mathrm{hr}+4 \mathrm{r}^{2}=2 \mathrm{ab}$.
(5) $4 r(h+r)=2 a b ; \therefore 2 r(h+r)={ }_{r} a b$; $(1)=(6) 2 r=a+b-h$.. (6) in (5) gives
(7) $(a+b-h)(h+r)=a b$.
(8) $h(a+b-h-r)+a r+b r=a b$.
$(1)=(9) r=(a+b-h-r)$
(9) in (8) gives
(10) $\mathrm{hr}+\mathrm{ar}+\mathrm{br}=\mathrm{ab}$.
(11) But $\mathrm{hr}+\mathrm{ar}+\mathrm{br}=2$ area tri. ABC.
(12) And $a b=2$ area tri. ABC.
\therefore (13) $\mathrm{hr}+\mathrm{ar}+\mathrm{br}=\mathrm{ab}=\mathrm{hr}+\mathrm{r}(\mathrm{a}+\mathrm{b})=\mathrm{hr}$ $+r(h+2 r)$
\therefore (14) $4 \mathrm{hr}+4 \mathrm{r}^{2}=2 \mathrm{ab}$.
\therefore the supposition in (4) is true.
\therefore (15) $\mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$. Q.E.D.
a. This solution was devised by the author

Dec. 13, 1901, before receiving Vol. VIII, 1901, p.
258, Am. Math. Mo., where a like solution is given; also see Fourrey, p. 94, where credited.
b. - By drawing a line OC, in fig. 84 , we have the geom. fig. from which, May; 1891, Dr. L. A. Bauer, of Carnegie Institute, Wash., D.C., deduced a proof through the equations
(1) Area of tri $\mathrm{ABH}=\frac{1}{2} \mathrm{r}(\mathrm{h}+\mathrm{a}+\mathrm{b})$, and
(2) $\mathrm{HD}+\mathrm{HE}=\mathrm{a}+\mathrm{b}-\mathrm{h}$. See pamphlet: on

Rational Right-Angled Triangles, Aug., '1912, by Artemus Martin for the Bauer proof. In same periphlet. is still another proof attributed to Lucius Brown of Hudson, Mass.
c. See Olney's Elements of Geometry, University Eaition, p. 312, art. 971, or Schuyler's Elements of Geometry, p. 353, exercise 4; also Am. Math. Mo.', V. IV, p. Ie, proof XXVI; also Versluys, p. 90, fig. 102; also Crunert's Archiv. der Mathein, \approx and Physik; 1851, credited to Mollmann.
d. Remark.--By ingenious devices, some if not all, of these in which the circle has been employed can be proved without the use of the circle-not nearly so easily perhaps, but proved. The figure, without the circle, would suggest the device to be employed. By so doing new proofs may be discovered.

ELehty=Seyen

Complete rect. HG. Produce DO to F and EO to K. Designate AC $=A E$ by $p, B D=B C$ by q and $H E=H D$ by r.
-When $a=q+r, b=p+r$, and $h=p+q$. Tri. $F M A=$ tri. OMC and tri. COL $=\operatorname{tri}$. KHB.
Fig. 85°
\therefore tri. $A G B=$ rect. FGKO $=\operatorname{tr} 1 . \mathrm{ABH}=\frac{1}{2}$ rect. HG. Rect. FGKO
$=$ rect. $A F O E+s q \cdot E D+$ rect. OKBD.
So $p q=p r+r^{2}+q r$.
Whence $2 p q=2 q r+2 r^{2}+2 p r$.
But $p^{2}+a^{2}=p^{2}+q^{2}$.
$\therefore p^{2}+2 p q+q^{2}=\left(q^{2}+2 q r+r^{2}\right)+\left(p^{2}+2 p r+p^{2}\right)$
or $(p+q)^{2}=(q+r)^{2}+(p+r)^{2}$
or $(p+q)^{2}=a^{2}+b^{2}$.
a. Sent to me by J. Adams, from The Hague, and credited to J. F. Vaes, XIII, 4 (1917).
(II). - Through the Use of Two Circles.

Elahty=Elght

Construction. Upon the legs of the rt. tri. ABH, as diameters, construct circles and draw HC, forming three similar rt. tri's $A B H, H B C$ and HAC.
Whence $\mathrm{h}: \mathrm{b}=\mathrm{b}: \mathrm{AC}$. \therefore hAC

$$
=b^{2} \cdot--(1)
$$

Also h : $a=a: B C . \quad \therefore h B C$

$$
\begin{aligned}
& \text { (1) }+(2)=(3) h^{2}=a^{2}+b^{2}, \text { Q.E.D. } \\
& \text { a. Another form 1s: } \\
& \text { (1) } H A^{2}=H C \times A B .(2) B H^{2}=B C \times A B . \\
& =A B(A C+B C)=A B^{2} \quad \therefore H^{2}+B H^{2}=A C \times A B+B C \times A B
\end{aligned}
$$

b. See Edwards' Elements of Geom., p. 161, fig. 34 and Am. Math. Mo., V. IV, p. 1l; Math. Mo. (1859), Vol. II, No. 2, Dem. 27, fig. 13; Davies Legendre, 1858, Book IV, Prop. 'XXX, p. 119; Schuyler's Geom. (1876), Book III, Prop: XXXIII, cor., p. 172; Wentworth's New Plane Geom. (1895), Book III, Prop. XXII, p. 164, from each of said Propositions, the above proof Elghty-Eight may be derived.

Eighty=Mine

With the legs

 of the rt. tri. ABH as radil describe circumferences, and extend $A B$ to C ani F. Draw HC, HD, HE and HF. From the similar tri's AHF' and HDH ,$$
\begin{aligned}
& A F: A H=A H: A D \\
& \therefore b^{2}=A F \times A D .-(I)
\end{aligned}
$$

From the similar tri's CHB and HEB,
$\because \quad C B: H B=H B: B E . \quad \therefore a^{2}=C B \times B E$
(1) $+(2)=(3) a^{2}+b^{2}=C B \times B E+A F \times A D$ $=\left(h+b^{j}\right)(h-b)+(h+a)(h-a)$ $=h^{2}-b^{2}+h^{2}-a^{2}$;
\therefore (4) $2 h^{2}=2 a^{2}+2 b^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. Am. Math. Mo., V. IV, p. 12; also on p. 12 is a proof by Richardson. But it is much more dif:ficult than the above method.

Minety

For proof Ninety use fig. 87.
$\mathrm{AH}^{2}=\mathrm{AD}(\mathrm{AB}+\mathrm{BH}),--(1), \mathrm{BH}^{2}=\mathrm{BE}(\mathrm{BA}+\mathrm{AH}) .-(2)$
$(1)+(2)=(3) \mathrm{BH}^{2}+\mathrm{AH}^{2}=\mathrm{BH}(\mathrm{BA}+\mathrm{AH})+\mathrm{AD}(\mathrm{AB}+\mathrm{BH})$.
$=\mathrm{BH} \times \mathrm{BA}+\mathrm{BE} \times \mathrm{AH}+\mathrm{AD} \times \mathrm{HB}+\mathrm{AD} \times \mathrm{BH}$
$=\mathrm{HB}(\mathrm{BE}+\mathrm{AD})+\mathrm{AD} \times \mathrm{BH}+\mathrm{BE} \times \mathrm{AH}+\mathrm{BE} \times \mathrm{AB}-\mathrm{BE} \times \mathrm{AB}$
$=\mathrm{AB}(\mathrm{BE}+\mathrm{AD})+\mathrm{AD} \times \mathrm{BH}+\mathrm{BE}(\mathrm{AH}+\mathrm{AB})-\mathrm{BE} \times \mathrm{AB}$
$=A B(B E+A D)+A D \cdot \times B H+B E(A H+A E+B E)-B E \times A B$
$=A B(B E+A D)+A D E X B H+B E(B E+2 A H)-B E \times A B$
$=A B(B E+A D)+A D \times B H+B E^{2}+2 B E \times A H-B E \times A B$
$=A B(B E+A D)+-A D \times B H+B E^{2}+2 B E \times A E-B E(A D+B D)$
$=A B(B E+A D)+A D \times B H+B E^{2}+2 B E \times A E-B E \times A D$ $1 \mathrm{BE} \times \mathrm{BD}$
$=A B(B E+A D)+A D \times B H+B E(B E+2 A E)-B E(A D+B D)$
$=A B(B E+A D)+A D \times B H+B E(A B+A H)-B E(A D+B D)$
$=A B(B E+A D)+A D \times B H+\left(B E \times B C=B H^{2}=B D^{2}\right)$
$-\mathrm{BE}(\mathrm{AD}+\mathrm{BD})$
$=A B(B E+A D)+(A D+B D)(B D-B E)$
$=A B(B E+A D)+A B \times D E=A B(B E+A D+D E)$
$=A B \times A B=A B^{2}$. $\quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Math. Mo. (1859), Vol. II, No. 2, Dem. 28, fig. 13--derived from Prop. XXX, Book IV, p. 119, Davies Legendre, 1858; also Am. Math. Mo., Vol. IV, p. 12, pro̊of xav.

Ninety=0ne

For proof Ninety-One use fig. 87. This proof is known as the "Harmonic Proportion Proof."

From the similar tri's AHF and ADH,
whence
or
$\mathrm{AH}: \mathrm{AD}=\mathrm{AF}: \mathrm{AH}$; or $\mathrm{AC}: \mathrm{AD}=\mathrm{AF}: \mathrm{AE}$ $A C+A D: A F+A E=A D: A E$
and
or $C D: C F=A D: A E$,

$$
A C-A D=A F-A E=A D: A E,
$$ $D E: E F=A D: A E$.

$\therefore O D: C F=D C: E F$.
or $(h+b-a):(h+b+a)=(a-h+b):(a+h+b)$
\therefore by expanding and collecting, we get

$$
h^{2}=a^{2}+b^{2}
$$

a. See Olney's Elements of Geom., University Ed'n, p. 312, art. 971, or Schuyler's Elements of Geom., p. 353, Exercise 4; also Am. Math. Mo., V. IV, p. 12, proof XXVI.

ALCGBRRAIC PROOFS

D. --Ratio of Areas

As in the three preceding divisions, so here in D we must rest our proofs on similar rt. triangles.

MLnety=Twe

Draw HC perp. to $A B$, form-

Fig. 88

Since similar surfaces are proportional to the squares of their homologous dimensions, therefore,

$$
\begin{gathered}
{\left[\frac{1}{2}(x+y) z_{1}^{2}+\frac{1}{2} y z=h^{2}+a^{2}\right]=\left[\frac{1}{2} y z+\frac{1}{2} x z=a^{2}+b^{2}\right]} \\
=\left[\frac{1}{2}(x+y) z+\frac{1}{2} y z=\left(a^{2}+b^{2}\right) a^{2}\right] \\
\therefore h^{2}+a^{2}=-\left(a^{2}+b^{2}\right)+a^{2} \\
\therefore h^{2}=a^{2}+b^{2}
\end{gathered}
$$

a. See Jury Wipper, 1880 , p. 38, fig. 36 as found in Elements of Geometry of Bezout; Fourrey, p. 91, as in Wallis' Treatise of Algebras (Oxford), 1685; p. 93 of Cours de Mathematiques, Paris, 1768. Also Heath's Math. Monographs, No. 2, p. 29, proof.: XVI; Journal of Education, 1888, V. XXVII, p. 327, 19th proof, where it is credited to L. J. Bullard, of Manchester, \cdot N.H.

Hinety=Ihree

As the tri's ACH, HCB and $A B H$ are similar, then tri. HAC : tri. BHC : tri. $\mathrm{ABH}=\mathrm{AH}^{2}: \mathrm{BH}^{2}: \mathrm{AB}^{2}$, and so tri. AHC + tri. BHC : tri. $\mathrm{ABH}=\mathrm{AH}^{2}+\mathrm{BH}^{2}: \mathrm{AB}^{2}$. Now tri. AHC $+\operatorname{tr1} . \mathrm{BHC}: \operatorname{tri} . \mathrm{ABH}=1 . \quad \therefore \mathrm{AB}^{2} \ldots$: $=\mathrm{BH}^{2}+\mathrm{AH}^{2} . \quad \therefore \mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$:Q.E.D.
a. See Versluys, $\mathbf{~ p . ~ 8 2 , ~ p r o o f ~ 7 7 , ~ w h e r e ~ c r e d - ~}$ Ited to Bezout, 1768; also Math. Mo., 1859, Vòl. II, Dem. 5, p. 45; also credited to Oliver; the School

Visitor, Vol. 20, p. 167, says Pythagoras gave this proof--but no documentary evidence.

Also Stanley Jashemski a school boy, age 19, of So. High School, Youngstown, 0., in 1934, sent me same proof, as an original discovery on his part.
b. Other proportions than the explicit one as given above may be' deduced, and so other symbolized proofs, from same figure, are derivable-see Versluys, p. 83, proof 78.

Minety=Equr

Try's ABH and ABH' are con-
 gruent; also fri's AHL and AHP: also try's BKH and BPH. Try. $A B H=$ try. $\mathrm{BHP}+\mathrm{tri} . \mathrm{HAP}=$ try. $\mathrm{BKH}+\mathrm{tri}$. AWL. \therefore try. $A B H: \operatorname{tri}$. $B K H: \operatorname{tri}$. $A H L=h^{2}$: $a^{2}: b^{2}$, and so try. $A B \bar{H}$: (try. $B K H+\operatorname{tri}$. AWL) $=h^{2}: a^{2}+b^{2}$, or $1=h^{2}+\left(a^{2}+b^{2}\right) . \quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Versluys, p. 84, fig. 93, where it is attributed to Dr. H. A. Naber, 1908. Also see Dr. Leitzmann's work, 1930 ed'n, p. 35, fig. 35.

KInety=Eive

Complete the paral. HC, and the rect. AE, thus forming the simplar ti's BHE, HAD and BAG. Denote the areas of these ti's by x, y and z respectively.

Then $z: y: x=h^{2}: a^{2}: b^{2}$.
But it/ is obvious that 2
Fig. 91

$$
\therefore h^{2}=a^{2}+b^{2} .
$$

a. Original with the author, March 26, 1926, 10 p.m.

Hinety=six

Draw HL perp, to AB.

Fig. 92 Since the tri's ABH, AHL, and HBL are similar, so also the squares $A K, B E$ and $H G$, and since similar polygons are to each other as the squares of their homologous dimensions, we 'have
tri. ABH : tri. HBL : tri. AHL $=h^{2}: a^{2}: b^{2}$
$=$ sq. $\cdot \mathrm{AK}$.: sq. BE : sq. HG .
But tri. $\mathrm{ABH} \equiv \mathrm{tr} 1 . \mathrm{HBL}+\operatorname{tr} 1$: AHL. $\therefore \mathbf{s q} \cdot A \bar{K}=\mathbf{s q} . \mathrm{BE}+\mathbf{s q}$. HG. $\quad \therefore h^{2}=a_{1}^{2}+b^{2}$:
a. Devised by the author, July 1, 1901, and afterwards, Jan. 13, 1934, found in Fourrey's Curio Geom., p. 91, where credited to R. P. Lamy, 1685.

4 Le日t $x=$ Sexen

Use fig. 92 and 18.1 .
Since, by equation (5), see fig. 1, Proof , $\frac{O n e}{A H^{2}}, B H^{2}=B A \times B L=$ reot, IK, and in like manner, $\overline{A H^{2}}=A B \times A L=$ rect. $A C$, therefore sq. $A K=$ rect. $\mathrm{LK}+$ rect. $A C=s q . \mathrm{BR}+\mathrm{sq} . \mathrm{HG}$.
$\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. Devised by the author July 2, 1901.
b. This principle of "mean proportional" can be made use of in many of the here-in-after figures among the Geometric Proofs, thus giving variations as to the proof of said figures. Also many other figures may be constructed based upon the use of the "mean proportional" relation; hence all such proofs, since they result from an algebraic relationship of corresponding lines of similar triangles, must be classed as algebraic proofs. .

E. --Algebraic Proof, Through Theory of Limits

Mine ty $=$ EIght

The so-called Pythagorean Theorem, in its simplest form is that in which the two legs are equal. The great Socrates (b. 500. B.C.), by drawing replies from a slave, using his staff as a pointer and a figure on the pavement (see fig. 93) as a model, made him (the slave). see that the equal triangles in the squares on HB and HA were just as many as like equal fri's in the sq. on $A B$, as is evident by inspection. (Seë Plato's Dialogues, Keno, Vol. I, pp. 256-260, Edition of 1883, Jowett's translation, Chis. Scribner and Sons.)
a. Omitting the lines $A K, C B, B E$ and $F A$, which eliminates the numbered triangles, there remains the figure which, in Free Masonry, is called the Classic Form, the form usually found on the master's carpet.
b. The following rule is credited to Pythagores. Let n be any odd number, the short side; square it, and from this square subtract 1 ; divide the remainder by 2, which gives the median side; add 1 to this quotient, and this sum is the hypotenuse; egg., $5=$ short side; $5^{2}-1=24 ; 24+2=12$, the median side; $12+1=13$ the hypotenuse. see said Rule of Pythagoras, above, on p. 19.

Minety=Vine

Starting with fig. 93 , and decreasing the length of AH, which necessarily increases the length
of AH, which necessarily in-
 creases the length of $H B$, since $A B$ remains constant, we 'decrease the $s q$. $H D$ and increase the sq. HC (see rig. 94a).

Now we are to prove that the sum of the two variable squares, sq. $H D$ and sq. HC will equal the constant sq. HF.

We have, fig. 94a,
Fig. 94a $h^{2}=a^{2}+b^{2} \cdots(1)$

But let side AH, fig.
93, be diminished as by x,

thus giving $A H, f i g k . ~ 9 " 4 a, ~ o r ~ b e t-~$ ter, FD, fig. 94b, and let DK be increased by y, as determined by the hypotenuse h remaining constant.

Now, f1g. 94b, when $\mathrm{a}=\mathrm{b}$,
$\dot{a}^{2}+b^{2}=2$ area of sq. DP. And
When $a<b$, we have $(a-x)^{2}$
$=$ area of sq. DN, and $(b+y)^{2}$
= area of sa. DR.
Also $c^{2}-(b+y)^{2}$
$D A=A B=c \quad=(a-x)^{2}=$ area of MABCLR, or
$D E=D K=a=b$
$(a-x)^{2}+(b+y)^{2}=c^{2}---(2)$
$D F=a$? \quad Is this true? Suppose it is;
$\mathrm{DL}=\mathrm{b}+\mathrm{y} \quad$ then, after reducing (2) -(1).
$\mathrm{FE}=\mathrm{HK}=\mathrm{x} . \quad=(3)-2 \mathrm{ax}+\mathrm{x}^{2}+2 \mathrm{~b} y+\mathrm{y}^{2}=0$,
$\mathbb{C L}=\mathbf{M}=\mathrm{J} \quad$ or (4) $2 a x-x^{2}=2 \mathrm{by}+\mathrm{y}^{2}$, which
$E K=F L=h \quad$ shows that the area by which
($a^{2}=s q$. DP) is diminished $=$ the
area by which b^{2} is increased. See graph 94b. \therefore the increase always equals the decrease.

But $a^{2}-2 \dot{x}(a-y)-x^{2}=(a-x)^{2}$ approaches 0 when x approachess a in ivalue.
$\therefore(5)(a-x)^{2}=0$, when $x=a$, which is true \qquad Ir and $(5) \ddot{b}^{2}+2 b y+j^{2}=(b+\dot{y})^{2}=c^{2}$, when $x=a$, for when x becomes $a,(b+y)$ becomes c, and so, we
have $c^{2}=c^{2}$ which is true.
\therefore equation (2) is true; it rests on the eq's (5) and (6), both of which are true.
\therefore whether $a<=$ or $>b, h^{2}=a^{2}+b^{2}$.
a. Devised by the author, in Dec. 1925. Also a like proof to the above is that of A. R. Colburn, devised Oct. 18, 1922, and is No. 96 in his collection of 108 proofs.
F.--1l bebratc-Geometric Proofs

In determining the equivalency of areas these proofs are algebraic; but in the final comparison of areas they are geometric.

One_Hundred

The construction, see

F18. 95 sq. $\mathrm{FE}=(\mathrm{a}+\mathrm{b})^{2}$.

But sq. $\mathrm{FE}=\mathrm{sq} . \mathrm{AC}$ +4 tri. ABH
$=h^{2}+4 \frac{a b}{2}=h^{2}+2 a b$.
Equating, we have
$h^{2}+2 a b=(a+b)^{2}=a^{2}+2 a b$ $+b^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Sci. Am. Sup., v. 70, p. 382, Dec. 10, 1910, credited to A. R. Colburn, Washingtọ, D.C.

Qne_Hyndred_Qne

Let $A D=A G=x, H G=H C=y$, and $B C=B E$
$=z$. Then $A H=x+y$, and $B H=y+z$.
With A as center and $A H$ as radius describe árc HE; with B as center and BH as radius describe arc HD ; with B as center, BE as radius desoribe arc $E C$; with A as center, radius $A D$, describe arc $D G$.

Draw the parallel
 ines as indicated. By inspecting the figure it becomes evident that if $\mathrm{y}^{2}=2 \mathrm{xz}$, then the theorem holds. Now, since r AH is a tangent and AR is a chord of same circle,
$\mathrm{AH}^{2}=\mathrm{AR} \times \mathrm{AD}$, or $(\mathrm{x}+\mathrm{y})^{2}$
$=x(2 y+2 z)=x^{2}+2 x y+2 x z$.
Whence $\mathrm{y}^{2}=2 x z$.
\therefore sq. $A K=\left[\left(x^{2}+y^{2}+2 x y\right)\right.$
$=$ sq. $A L]+\left[\left(z^{2}+2 y z+\right.\right.$
$\left.\left(2 x z=\mathrm{y}^{2}\right)\right]=$ sq. HP. $\quad \therefore \mathrm{h}^{2}$ $=a^{2}+b^{2}$.
a: See Sci. Am. Supt., V. 84, p. 362, Dec. 8, 1917, and credited tot. R. Colburn. It is No. 79 in his (then) 91 proofs.
b:. This proof is a fine illustration of the flexibility of geometry. Its value lies, not in a repeated proof of the many times established fact, but in the effective marshaling and use of the elevments of a proof, and even more also in the better insight which it gives us to the interdependence of the various theorems of geometry.

Rne_Hundred_Two

Fig. 97

Draw the bisectors of angles A, B and H, and from their common point C draw the pert's CR, $C X$ and CT; take AN $=A U=A P$, and $B Z=B P$, and draw lines $U V$ par. to $A H, N M$ par. to $A B$ and $S Y$ par. to $B H$. Let $A J=A P=x, B Z=B P=y$, and $\mathrm{HZ}=\mathrm{HJ}=\mathrm{z}=\mathrm{CJ}=\mathrm{CP}$ $=C Z$.

Now 2 try. $A B H=H B$.
$\times H A=(x+z)(y+z)=x y$
$+x z+y z+z^{2}=$ rect. $P M$

+ rect. $H W .+$ rect. $H Q+s q . S X$.

But 2 tri. $A B H=2 A P \times C P+2 B P \times C P+(2 \mathrm{sq}$. $\left.H C=2 P C^{2}\right)=2 x z+2 y z+2 z^{2}$ $=2$ rect. $H W+2$ rect. $H Q+2$ sq. $S X$.
\therefore rect. $\mathrm{PM}=$ rect. $\mathrm{HW}+$ rect. $\mathrm{HQ}+\mathrm{sq} . \mathrm{KX}$.
Now sq. $A K=$ (sq. $A O=$ sq. $A W)+$ (sq. $O K$ $=s q . B Q)+$ (2 rect. $P M=$ rect. $H W+2$ rect. $H Q$ +2 sq. SX) \pm sq. $H G+s q . H D . ~ \therefore h^{2}=a^{2}+b^{2}$.
a. This proof was produced by Mr. F. S. Smedley, a photographer, of Berea, 0., June 10, 1901.

Also see Jury Wipper, 1880, p. 34, fig. 31, credited to E. M8ilmann, as. given in "Archives d. Mathematik, u. Ph. Grunert," 1851, for fundamental.ly the same proof.

2ne_Hyndred_Ihres

Let $H R=H E=a=S G$.

Then rect. $G T=$ rect. $E P$, and rect. $R A=$ rect. $Q B$.
\therefore tri's $2,3,4$ and 5 are all equal. \therefore sq. AK $=\mathrm{h}^{2}=$ (area of 4 tri . ABH + area sq. $O M)=2 b a$ $+(b-a)^{2}=2 a b+b^{2}-2 b a$ $+a^{2}=b^{2}+a^{2} \quad \therefore h^{2}=a^{2}$ $+b^{2}$. Q.E.D.
a. See Math. Mo., 1858-9, Vol: I, p. 361; where above proof is given by Dr. Huttion (tracts, London, 1812, 3 vol's, 820) in his History of Algebra.

Qne_Hyndred_Equr

Take $A N$ and $A Q=A H$, $K M$ and $K R=B H$, and through P and Q draw $P M$ and $Q L$ parallel to $A B$; also draw $O R$ and NS par. to $A C$. Then $C R=h-a, S K=h$ $-b$ and RS $=a+b-h$.

Qne -Hyndred_Eive

Tri!s ACB, BDH and

Fig. 100 HEA are three similar tri's constructed upon AB, BH and $H A$, and $A K, B M$ and HO are three corresponding rect's, double in area to tri's ACB, BDH and HEA respectively:

Tri. ACB : tri: BDH
$: \operatorname{trI} \mathrm{HEA}=h^{2}: a^{2}: b^{2}$
$=2$ tri. ACB : 2 tri. BDA
$=2$ tri. $\mathrm{HEA}=$ rect. AK
: rect. $B M$: rect. HO. Produce $L M$ and $O N$ to their intersection P, and draw PHG. It is perp. to $A B$, and by the Theorem of Pappus, see fig. 143, $\mathrm{PH}=\mathrm{QG} . \quad \therefore$, by said theorem, rect. $\mathrm{BM}+$ rect. $\mathrm{HO}=$ rect. $\mathrm{AK} . \quad \therefore$ tri. $\mathrm{BDH}+\mathrm{tri}$. HEA $=$ tri. ACB. $\quad \therefore \mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.
a. Devised by the author Dec. 7, 1933.

2ne_Hundred_sLx

In fig. 100 extend $K B$ to R, intersecting LM at S, and draw $P R$ and $H T$ par: to $A B$. Then rect. BLMH $=$ paral. $B S P H=2 \operatorname{tri} . B P H=2 \operatorname{tri}(B P H=P H \times Q B)$ $=$ rect. QK. - In like manner, 2 tr'. HRA = rect. AG.

Now try. ABH : try. BHQ : try. HAQ $=h^{2}: a^{2}: b^{2}$ $=\operatorname{tri} . A C B: \operatorname{tri} . \mathrm{BDH}^{\circ}:$ try. HEA.

But try. $\mathrm{ABH}=\mathrm{tri} . \mathrm{BHQ}+\operatorname{tri} . \mathrm{HAQ} . \quad \therefore$ trio. $A C B=$ trig. $B D H+$ tri. HEA. $\quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D. a. Devised by author Dec: 7, 1933.

Qne_Hundred_Seven

Since in any triangle with sides a, b and $c--c$ being the base, and h^{\prime} the aititude--the formula for $h^{\prime \prime}$ is:
$h^{\prime 2}=\frac{2 s \times 2\left(s-a^{\prime}\right) 2\left(s-b^{\prime}\right) 2\left(s-c^{\prime}\right)}{4 c^{\prime 2}}$
and having, as here, $c^{\prime}=2 a, h^{\prime}=b$, $a^{\prime}=b^{\prime}=h$, by substitution in formula for $h^{\prime 2}$, we get, after reduring, $b^{2}=h^{2}-a^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Versluys, p. 86, fig. 96, where, taken from "De Vriend ides Wiskunde" it is attributed to J. J. Posthumus.

2nd.--Stmilar Polygons of More Than Four St ides.

Regular Polygons

Any regular poly-* gens can be resolved into as many equal isosceles ti's as the polygon has sides. As the fri's are similar fri's so whatever relations are established. among these mri's AOB, BPH and HRA, the same relations will exist among the poly-: gone ' 0 ', P and R.

As tri's $A O B$, BFH and HRA are similar isosceles tri's, it follows that these tri's are a particular case of proof One Hundred Six.

And as tri. $\mathrm{ABH}: \operatorname{tri} . \mathrm{BHQ}: \operatorname{tri} . \mathrm{HAQ}=\mathrm{h}^{2}$ $: a^{2}: b^{2}=\operatorname{tri} . A O B: \operatorname{tri} . B P H: \operatorname{tri} . H R A=$ pentagon 0 : pentagon P : pentagon R, since tri. ABH $=$ tri. $\mathrm{BHQ}^{+}+$tri. HAQ. \therefore polygon $0=$ polygon P + polygon $R, \quad \therefore h^{2}=a^{2}+b^{2}$.
a. Devised by the author Dec. 7, 1933:

Qne_Hundred_Nine
Upon the three sides of the rt. tri. ABH are constructed -

Fig. 103 the three similar polygons (having five or more sides--five in fig. 103), ACDEB, BFGKH and HLMNA. Prove algebraically that $h^{2}=a^{2}$ $+b^{2}$, through proving that the sum of the areas of the two lesser polygons = the area of the greater polygon.

In general, an algebraic proof is impossible before transformation. But granting that h^{2} $=a^{2}+b^{2}$, it is easy to prove
that polygon (1) + polygon (2) = polygon (3), as we know that polygon. (1) : polygon (2) : polygon (3) x $a^{2}: b^{2}: h^{2}$. But from this it does not follow that $a^{2}+b^{2}=h^{2}$.

See Beman and Smith's New Plane and Solid Geometry (1899), p. 211, exercise 438.

But an algebraic proof is always possible by transforming the three similar polygons into equivalent similar paral's and then proceed as in proof One Hundred Six.

Knowing that tri. $A B H: t r i$. BHQ : tri. HAQ $=h^{2}: a^{2}: b^{2}$: $-{ }^{-1}(1)$
Bnd that P. (3) : P.~~ (1) : P. (2). [$P=$ poljgon $]$ $=h^{2}: a^{2}: b^{2} .--(2) ;$ by equating tri. $A B H: \operatorname{tri}$. $B H Q:$ tri. $H A Q=$ P. (3) : P. (1): P. (2). But
tri. $\mathrm{ABH}=\operatorname{tri} . \mathrm{BHQ}+\operatorname{tr} 1 . \mathrm{HAQ} . \therefore \mathrm{P}:(3)=\mathrm{P}$. (1)
+P. (2). $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. Devised 'by the author Dec. 7, 1933.
b. Many more algebraic proofs are possible.

To evolve an original demonstration and put it in a form free from criticism is not the work of a tyro.

All geometric demonstrations must resuit from the comparison of areas--the foundation of which is superposition.

As the possible number of algebraic proofs has been shown to be limitless, so it will be conclusively shown that the possible number of geometric proofs through dissection and comparison of congruent or equivalent areas is also "absolutely unlimited."

The geometric proofs are classified under ten type forms, as determined by the figure, and only a limited number, from the indefinite many, will be given; but among tho'se given will be found all heretofore (to date, June 1940), recorded proofs which have come to me,-together with ail recently devised of new proofs.

The references to the authors in which the proof, or figure, is found or suggested, are arranged chronologically so far as possible.

The idea of throwing the suggested proof into the form of a single equation is my own; by means of it every essential element of the proof is set forth, as well as the comparison of the equivalent or equal." areas.

The wording of the theorem for the geometric proof 1s: The square described upon the hypotenuse of a right-angled triansle is equal to the sum of the squares described upon the other two sides.

TYPES

It is obvious that the three squares constructed upon the three sides of a right-angled triangle can have eight different positions, as per selections. Let us designate the square upon the
hypotenuse, by h, the square upon the shorter side by a, and the square upon the other side by b, and set forth the eight arrangements; they are:
A. All squares h, a and b exterior.
B. a and b exterior and h interior.
G. h and a exterior and b interior.
D. h and b exterior and a interior.
E. a exterior and h and b interior.
F. b exterior and h and a interior.
G. h exterior and a and b interior.
H. All squares h, a and b interior.

The arrangement designated above constitute the first eight of the following ten geometric types, the other two being:
I. A translation of one more squares.
J. One or more squares omitted.
Also for some selected figures for proving Euclid I, Proposition 47, the reader is referred to H. d'Andre, N. H. Math. (1846), Vol. 5, p. 324.

Note. "By "exterior" is meant constructed outwardly.

By "interior" is meant constructed overlapping the given right triangle.

A

This type includes all proofs derived from the figure determined by constructing squares upon each side of a right-angled triangle, each square being constructed outwardiy from the given triangle.

The proofs under this type are classified as follows:
(a) Those proofs in which pairs of the dissected parts are congruent.

Congruency implies superposition, the most fundamental and self-evident truth found in plane geometry.

As the ways of dissection are so various, it follows that the number of "dissection proofs" is unlimited.
(b) Those proof's in which pairs of the dissected parts are shown to be equivalent.

As geometricians at large are not in agreement as to the symbols denoting "congruency" and. "equivalency" (personally the author prefers \equiv for congruency, and $=$ for equivalency), the symbol used herein shall be $=$, the context deciding its import.
(a) PROOFS IN WHICH PA. RS OF THE DISSECTED PARTS ARE CONGRUENT.

Paper Folding "Proofs," Only Illustrative

One

Fig. 104

Cut out a square piece of paper EF, and on its edge, using the edge of a second small square of paper, EH, as a measure, mark off EB; ED, LK, LG, FC and QA. Fold on DA, BG, KN, KC, $C A, A B$ and $B K$. Open the sq. EF and observe three sq's, EH, HF and $B C$, and that sq. $E H=s q$; $K G$.

With scissors cut of f
tri. CFA from sq. HF, and lay it on sq. BC in position BHA, ob-
serving that it covers fri. BHA of sq. BC; next cut off KLC from sq's $N L$ and HF, and lay it on sq. $B C$ 'in position of KNB so that MG falls on PO. Now, observe that fri. KMN is parton sq. KG and sq. $B C$ and that the part HMCA is part of sq. HF and sq. $B C$, and that all of sq. ${ }^{\text {. } B C \text { is now covered by the two parts of sq. }}$ KG and the twi parts ion sq. HF. .

Therefore the (sq. $\mathrm{EH}=\mathrm{sq} . \mathrm{KG})+\mathrm{sq} . \mathrm{HF}$
$=$ the sq. BC. Therefore the sq. upon the side $B A$ which is sq. $B C=$ the sq. upon the side $B H$ which is
sq. $B D+$ the sq. upon the side $H A$ which is sq. HF. $\therefore h^{2}=a^{2}+b^{2}$, as shown with paper and scissors, and observation.
a. See "Geometric Exercises in Paper Folding," (T. Sundra Row's), 1905, p. 14, fig. 13, by Beman and Smith; also School Visitor, 1882, Vol. III, p. 209; also F. C. Boon, B.H., in "A Companion to Elementary School Mathematics," (1924), p. 102, proof 1.

Iw2

FIg. 105
Cut cut three sq's EL whose edge is HB, FA whose edge HA, and BC whose edge is $A B$, making $A H=2 H B$.

Then fold sq. FA
along $M N$ and $O P$, and separate into 4 sq's MP, QA, ON and $F Q$ each equal to sq. EL.

Next fold the 4 paper sq's (U, R, S and T being middle pt's), along HU, PR, QS and MT, and cut, forming parts, 1, 2, 3, 4, 5, 6; 7 and 8.

Now place the 8 parts on sq. BC in positions as indicated, reserving sq. 9 for last place. Observe that sq. FA and EL
exactly cover sq. $B C . \quad \therefore$ sq. upon $B A=s q$. upon ($H B$
$=E L)+$ sq. upon $A H$. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.F.
a. Beman and Smith's Row's (1905), work,
p. 15, f*g. 14; also Şchool Visitor, 1882, Vol. III, p. 208; also F. C. Boón, p. 102, proof. 1.

Ihree

F1g. 106

Cut. out three'sq's as in fig. 105. Fold small sq. 9 (fig. 105) along middle and cut, form1ng 2 rect's; cut each rest. along diagonal, forming 4 rt . tri's, 1, 2, 3 and 4. But from each corner of sq. FA (fig. 105), a rt. tri. each having a base HL $=\frac{1}{2} \mathrm{HP}$ (fig. 105; $\mathrm{FT}=\frac{1}{2} \mathrm{FF}$), giving 4 rt . tri's 5, 6, 7 and 8 (fig. 106), and a center part 9 (fig. 106), and arrange the pieces as in fig. 106, and observe that sq. $H C=s q . E L+s q . H G$, as in fig. 105. $\quad \therefore \mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.
a. See "School V1sitor," 1882, Vọ. III, p. 208.
b. Proofs Two and Three are particular and illustrative--not general--but useful as a paper and scissors exercise.
c. With paper and scissors, many other proofs, -true under all conditions, may be produced, using figs. 110, 111, etc. as models of procedure.

Equir

Particular case-willustrative rather than demonstrative:

The sldes are to each other as 3; 4, 5 units. Then sq. AK contains 25 sq. units, HD 9: sq. units and HG 16 sq. units. Now it is evident. that the no. of unit squeres in the sq. $A K=$ the sum of the unit squares in the squares $H D$ and HG.
\therefore square $A K=s q . H D+s q . H G$.
' a. That by the use of the lengths 3, 4, and 5, or length having the ratio of $3: 4$; 5, a rightangled triangle is formed was known to the Egyptians as early as 2000 B.C., for at the the the there existed professional "rope-fasteners"; they were employed to construct right angles which they did by placing three pegs so that a rope measuring off 3, 4*and 5 units would just reach around them. This method is in use today by carpenters and masons; sticks 6 and 8 feet long form the two sides and a "ten-foot". stick forms the hypoteńuse, thus completing a right-angled triangle, hence establishing the right angle.

* But granting that the early Egyptians formed right angles in the "rule of thumb" manner described above, it does not follow; in fact It is not believed, that they knew tile apea of the square upon the hypotenuse to be equal to the sum of the areas of ,the squares upon the other two sides.

The discovery of this fact is credited to Pythágoras, a renowned philosopher and teacher, born at Samos about 570 B.C., after whom the theorem is called "The Pythagorean Theorem." (See p. 3).
b. Sge Hill's Geometry for Beginners, p. 153; Ballis History of Mathematics, pp. 7-10; Heath's Math. Monographs, No. 1, pp: 15-17; The School Visitor, Yol. 20, p. 167.

Fig. 108

Elve

Another particular case is illustrated by fig. 108, in which $B H=H A$, showing 16 equal triangles.

Since the sq. AK contains 8 of these triangles, \therefore sq. $A K=$ sq. $H D+$ sq. $H G$.
$\therefore h^{2}=a^{2}+b^{2}$.
a. For this and many other demonstrations by dissection, see H. Perigal, in Messenger of Mathematics,

1873, V. 2, p. 103; also see Fourrey, p. 68.
b. See Beman and Smith's New Plane and Solid Geometry, p. 103, fig. l.
c, Also:R. A. Bell, Cleveland, O., using sq. $A K$ and lines $A K$ and $B C$ only.

six

In fig. 108, omit lines AF, BE, LM and NO, and draw line FE; this gives the fig. used in "Grand Lodge Bulletin," Grand Lodge of Iowa, A.F. and A.M., Vol. 30, Feb. 1929, No. 2, p. 42. The proof is obvious, for the 4 equal isosceles rt. tri's which make up sq. FB = sq. AK. $\therefore h^{2}=a^{2}+b^{2}$.
a. This gives another form for a folding paper proof.

Seven

In fig. 108, omit lines as in proof S1x, and it is obvious that tri's 1, 2, 3 and 4 , in sq's HG and $H D$ will cover tri's $1,2,3$ and 4 in sq. $A K$, or sq. $A K=s q . H D+s q . H G . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Versluys (1914), fig. 1, p. 9 of h1s 96 proofs.

Eloht

In fig. 109, let

Fig. 109 HAGF denote the larger sq. HG. Cut the smaller sq. EL into two equal rectangles $A N$ and $M E$, fig. 109, and form with these and the larger sq. the rect. HDEF. Produce DH so that $H R=H F$. On RD as a diameter describe a semicircle DCR. Produce

HF. to C in the arc. Join CD, cutting $F G$ in P, and ${ }^{2}$
AG in S. Complete the sq. HK.
Now ti's CPF and LBD are congruent as are try's CKL and PED. Hence sq. KH = (sq. EL, fig. 105 = rect. AN + rect. $\mathrm{ME}, \mathrm{fig} . \operatorname{l09)}$ +(sq. HG, fig. 105
= quad. HASPF + t ri. SGP, fig. log). $\therefore h^{2}=a^{3}+b^{2}$.
a. See Scinool Visitor, 1882, Vol. III, p. 208.
b. This method, embodied in proof Eight, will
transform any rect. into a square.
c. Proofs Two to Eight inclusive are illus-
trative rather than demonstrative.

Demonstrative Proofs

Mine

In fig. 110, through

Fig. 110 P, Q, R and S; the centers of
the sides of the sq. AK draw PT and RV par. to AH, and QU. and SW par. to BH , and through 0 , the center of the sq. HG, draw XH par. to $A B$ and IY par. to $A C$, forming 8 congruent quadrilaterals; viz.,. 1, 2,3 and 4 in $\mathrm{sq} . \mathrm{AK}$, and 1 , 2, 3 and. 4 in sq. $H G$, and sq. 5 in sq. $A K=$ sq. $\quad(5=H D)$. The proof of their congruency is evident, since, in the . aral. $\mathrm{OB},(\mathrm{SB}=\mathrm{SA})=(\mathrm{OH}$ $=O G=A P$ since $A P=A S)$.
(Sq. $A K=4$ quad: $A P T S+s q \cdot T V$) $=$ (sq. $H G=4$ quad. OYHZ) $+s q . H D . \quad \therefore$ sq. on $A B=s q$. on $B H+s q$. on $A H$. $\therefore h^{2}=a^{2}+b^{2}$.
a. See Mess, Math., Vol. 2, 1873, p. 104; by Henry Perigal, F. R. A. S., etc., Macmillan and Coo., London and Cambridge. Here H. Perigal shows the great value of proof by dissection, and suggests its application to other theorems also. Also "see" Jury

Wipper, 1880, p. 50, fig. 46; Ebene Geometrie, Von G. Mahler, Leipzig, 1897, p. 58, fig. 71, and School Visitor, V. III, 1882, p. 208, fig. l, for a particular application of the above demonstration; Versluys, 1914, p. 37, f1g. 37 taken from "Plane Geometry" of J. S. Mackay, as given by H. Perigal, 1830"; Fourrey, p. 86; F. C. Boon, proof ; p. 105; Dr. Leitzmann, p. 14, fig. 16.
b. See Todhunter's Euclid for a simple proof extracted from a paper by De Morgan, in Vol. I of the Quarterly Journal of Math., and reference is also made there to the work "Der Pythagoralsche Lehrsatz," Mainz, 1821, by J. J. I. Hoffmann.
c. By the above dissection any two squares may be transformed into one square, a fine puzzle for pupils in plane geometry.
d. Hence any case in which the three squares are exhibited, as set forth under the first 9 types of II, Geometric Proofs, A to J inclusive (see Table of Contents for said types) may be proved by this method.
c. Proof Nine is unique in that the smaller sq. $H D$ is not dissected.

Ien

In flg. 1ll, on CK construct tri. CKL = tri. ABH; produce CL to P making $\mathrm{LP}=\mathrm{BH}$ and take $\mathrm{LN}=\mathrm{BH}$; draw NM, AO and BP each perp. to CP; at any angle of the sq. GH, as F, construct a tri. GSF $=$ trí . ABH , and from any angle of the sq. $H D$, as H; with a radius $=K M$, determine the $\mathrm{pt} . \mathrm{R}$ and drew HR, thus dissecting the sq's, as per figure.

It is readily shown
that sq. $A K=($ tri,$C M N=\operatorname{tri} . B T P)+($ trap. NMKL
= trap. $D R H B$) + (tri. $K M M=$ tri. HRE $)+$ (quad. $A O T B$

+ $\operatorname{tri} . \mathrm{BTP}=$ trap. GAHS $)+($ tri. $A C O=$ trí. GSF $)$
$=$ (trāp. DRHB + tri. $\operatorname{HRE}=$ sq. $B E$) + (trap. GAHS
$+\operatorname{tri} \cdot \mathrm{GSF}=\mathrm{sq} \cdot \mathrm{AF})=\mathrm{sq} \cdot \mathrm{BE}+\mathrm{sq} \cdot \mathrm{AF} \cdot \therefore \mathrm{sq} \cdot$ upon $A B=s q$. upon $B H+s q$. upon AH. $\therefore h^{2}=a^{2}+b^{2}$.
a. This dissection and proof were devised by the author, on March 18, 1926, to establish a Law of Dissection, by which, no matter how the three squares are arranged, or placed, their resolution into the respective parts as numbered in fig. lil, can be read- . 117 obtained:
'b. In many of the geometric proofs herein the reader will observe that the above dissection, wholly or partially, has been employed. Hence these proofs are but variation of this general proof.

Eleven

In fig. 112, conceive rect. ins cut off from sq. AF and placed in position of rect. $Q E$, AS coinciding with $H E$; then DEP is a. st. line since these rect. were equal by construction. The rest of the construction and dissection is evident.
sq. $A K=$ (tri. $C K N=$ tri. $\mathrm{PBD})+$ (tri. $\mathrm{KBO}=$ tri. BPQ)
$+(\operatorname{tri}, \mathrm{BAL}=\operatorname{tri}, T F Q)$
$+($ tri. $A C M=\operatorname{tri} . ~ F T G)$

+ (sq. $I N=s q . R H)=s q \cdot B E+$ rect. $Q E+$ rect. $G Q$. $+\mathrm{sq} \cdot \mathrm{RH}=\mathrm{sq} \cdot \mathrm{BE}+\mathrm{sq}_{\mathrm{g}^{\prime}} \mathrm{GH} . \quad \therefore \mathrm{sq}$. upon $\mathrm{AB} \equiv$ sq. upon $\mathrm{BH}+$ sq. upon $\mathrm{AH} . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. Original with the author after having carefully analyzed the esoteric implications of Bhaskara's "Behold!" proof--see proof Two Hundred Twenty-Four, f18. 325.
b: The reader will notice that this dissecttion contains some of the elements of the preceding dissection, that it is applicable to all three-square figures like the preceding, but that it is not so simple or fundamental, as it requires a transposition of one part of the sq. GH, --the rect. TS--, to the sq. $H D,--$ the rect. In position $Q E--$, so as to form the two congruent rect's $G Q$ and $Q D$.
c. The student will note that all geometric proofs hereafter, which make use of dissection and congruency, are fundamentally only variations of the proofs established by proofs Nine, Ten and Eleven and that all other geometric proofs are based, either partally or wholly on the equivalency of the correspond-. ing pairs of parts of the figures under consideration.

Twelve

This proof is a sim-

Fig. 113 ale variation of the proof Ten above. In fig. lily, extend GA to M, draw CN and BO perp. to $A M$; take $N P=B D$ and draw PS par. to $C N$, and through H draw $Q R$ par. to $A B$. Then sinceqit is easily shown that-partis 1 and 4 of sq. $A K=$ parts 1 and 4 of sq. $H D$, and parts 2 and 3 of sq. $A K=2$ and 3 of sq. $H G$, \therefore sq. upon $A B=$ sq. upon $B H$ + sq. upon AH.
a. Original with the author March 28, ig26 to obtain a figure more readily constructed than fig. 111.
b. See School Visitor,' I8ל̣2, Vol. III, p. 208-9: Dr. Leitzmann, p. 15, fig. 17, 4th Ed'n.

Ihirteen

Fig. 114

In fig. ll4, produce CA to $0, \mathrm{~KB}$ to M, GA to V ,. making $A V=A G, D B$ to U, and draw KX and CW par. resp. to BH and AH, GN and H^{T} par. to $A B$, and $O T$ par. to $F B$.
 (HHA = trap. BDEM + tri. NST)]

+ [tri. KBX = tri. GNF
$=$ (trap. OQNF + tri. BMH $)]$
+ (tri. BAU = tri. OAT)
$+(\operatorname{tr} 1 . A C V=\operatorname{tri} . A O G)$
+ (sq. VX $=$ paral. $S N$)
$=\mathrm{sq} . \mathrm{BE}+\mathrm{sq} . \mathrm{HG} . \therefore \mathrm{sq}$ upon $A B=$ sq. upon $B H+$ sq. upon $A H$. $\therefore h^{2} \equiv a^{2}+b^{2}$.
a. Original with author March 28, 1926, 9:30 p.m.
b. A variation of the proof Eleven above.

Egurteen

Produce CA to S , draw SP par. to FB , take HT $=H B$, draw TR par. to HA, produce GA to M, making AM = AG, produce $D B$ to L, draw KO and CN par. resp. to BH and $A H$, and draw $Q D$. Rect. $R H=$ rect. $Q B$. Sq. $A K$
$=$ (tri.. CKN $=$ tri. $A \mathbf{A S G}$)
$+(\operatorname{tri} . \mathrm{KBO}=\operatorname{tri} . \mathrm{SAQ})$

+ (tr1. $\mathrm{BAL}=\mathrm{tri} . \mathrm{DQP}$)
+ (tri. $A C M=$ tri. $Q D E$)
$+(\mathrm{sq} . \mathrm{LN}=\mathrm{sq} . \mathrm{ST})=$ rect.
$P E+$ rect. $G Q+s q . S T=s q$.
$B E+$ rect. $Q B+$ rect. $G Q$
+ sq. $\mathrm{ST}=$ sq. $\mathrm{BE}+$ sq. GH. \therefore sq. upon $\mathrm{AB}=$ sq. upon $B H+s q$. upon $A H, \quad \therefore h^{2}=a^{2}+b^{2}$.
a.m.
a. Original with author March 28, 1926, 10
b. This is another variation of fig. 112.

Fifteen

Take HR = HE and

$\mathrm{FS}=\mathrm{FR}=\mathrm{EQ}=\mathrm{DP}$ 。
Draw RTI par. to $A H, S T$ par. to FH, QP par. to $B H$, and UP par. to $A B$. Extend GA to M, making $A M$ $=A G$, and $D B$ to L and draw CN par. to $A H$ and KO par. to BH.

Place rect. GT in position of EP. Obvious that: Sq. $A K=$ parts (1 $+2+3)+(4+5$ of rect. $H P)$. \therefore Sq. upon $A B=s q$. upon $\mathrm{BH}+\mathrm{sq}$. upon AH . $\therefore h^{2}=a^{2}+b^{2}$.
a. Math. Mo., 1858-9, Vol. I, p. 231, where this dissection is credited to David W. Hoyt, Prof. Math. and Mèchanics, Polytechnic College, Phila., Pa.; also to Pliny Earle Chase, Phila., Pa.
b. The Math. Mo. was edited by J. D. Runkle, A.M., Cambridge Eng. He says this demonstration is essentially the same as the Indian demonstration found in "Bi"ja Gauita" and referred to as the figure of "The Brides Chair."
c. Also see said Math. Mo., p. 361, for another proof; and Dr. Hutton (tracts, London, i812, in his History of. Algebra).

Sixteen

In-fig. 117, the dissection is evident and shows that parts 1,2 and 3 in sq. AK are congruent to parts 1, 2 and' 3 in sq. HG; also that parts 4 and

Fig. 117

5 in sq. ak are congruent to parts 4 and 5 in sq. $H D$.
\therefore (sq. AK $=$ parts $1+2+3$ $+4+5$) $=$ (sq. $\mathrm{HG}=$ parts $1+2+3$) + (sq. $H D=$ pants $4+5) . \therefore$ sq. on $A B=s q$. on $\mathrm{BH}+\mathrm{gq}$. on AH . $\therefore \mathrm{h}^{2}$ $=a^{2}+b^{2}$.
a. See Jury Viper, 1880, p. 27, fig. 24, as given by Dr... Rudolf Wolf in "Handbooks der Mathematic, etta." 1869 ; Journal of Educatioñ, V. YXVIİ, 1888, p. 17, 27th proof, by C. W. Tyro, Louisville, Ky.; Beman-and Smith's Plane and Solid Geom.; 1895, D. 88, fig. 5; Am. Math. Mo., V. IV, 1897; p. 169 proof XXXIX: and Heath's Math. Monographs, No. 2, p. 33, proof XXII. Also The School Visitor, V. III, 1882, p. 209, for an application of it to a particular case; Fourrey, p. 87, by Ozanam, 1778, R. Wolf, 1869.
b. See also "Recreations in Math: and Phys1cs," by Ozanam; "Curiosities of Geometry," 1778, by Zie E. Fourrey; M. Kroger, 1896; Versluys, p. 39, fig. 39, and p. 41, fig. 41, and a variation is that of Versiuys (1914), p. 40, fig. 41.

Seventeen

Fig. 118

Extend $C A$ to M and $K B$ to Q, draw Mr par to $A B$. Extend $x A$ to 1 and $D E$ to 0 . Drew CP par, to AB. : Take $0 R=$ IH and drew RS per. \%o HB.

Obvious that sq. AK $=$ sum of parts $(4+5)$ $+(1+2+3)=s \underline{S D}+8$. HG. \therefore sc. upon $A B=s$. upon $\mathrm{BH}+\mathrm{Sq}$ - upon HA. $\therefore \mathrm{h}^{2}$ $=s^{2}+b^{2}$ Q.S.D.
a: Conceived by the: author, at Nashville, 0., March 26, 1933;' for a high school girl there, while present for the funeral of his cousin; also see School Visitor, Vol. $!$ '20, p. 167.
b. Proof and fig. 118, is practically the same as proof Sixteen, fig. 117.

On Dec. 17, 1939, there came to me this: Der Pythagoreische Lehrsats van Dr. W. Leltzmann, 4th Edition, of 1930 (list Ed'n, 1911, and Ed'n, 1917, Ord Ed'n,), in which appears no less than 23 proofs of the Pythagorean Proposition, of which 21 were among my proof herein.

This little book of 72 pages. is an excellent treatise, and the bibliography, pages 70, 71,072, is valuable for investigators, listing 21 works re. this theorem.

My manuscript, for and edition, credits this work for ali 23 proof therein, and gives, as new proof, the two not included in the said ?1.

Elqhteen

In fig. 119, the

Fig. 119 dissection is evident and shows the parts 1,2 and 3 in sq. HG are congruent to parts 1, 2 and 3 in rect. QC; also that parts 4, 5, 6 and 7 in sq.- HD are congruint to parts 4, 5, 6 and 7 in rect. Qr.

Therefore, sq. upon $A B=s q$. upon $H B+$ sq. upon HA. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See dissection, Tafel II, in Dr. W. Leitzmann's work, 1930 ed' n--on last leaf of said work. Not credited to any one, but is based on H. Dobriner's proofs.

ULneteen

In fig. 120 draw $G D$,
 and from F and E draw lines to $G D$ par. to $A C$; then extend $D B$ and $G A$, forming the rect. $A B$; through C and K draw lines par. respectively to AH and BH , forming tri's equal to tri. ABH. Through points-Li and M draw. line par. to $G D$: Take $K P=B D$, and draw MP, and through L draw a line par. to MF.

Number the parts as in the figure. It is obvious that the dissected sq's HG and HD. giving 8 triangles, can be arranged in sq. AK as numbered; that is, the 8 -tri's in sq. AK can be superimposed by their 8 equivalent tri's in sq's $H G$ and $H D . \therefore s q . ~ A K=s q . ~ H D ~+~ s q . ~ H G . ~$ $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See dissection, Tafel I, in Dr. W. Leitzmann work, 1930 ed'n, on 2nd last leaf. Not credited to any one, but is based on J. E. Bottcher's work.

Iventy

\qquad
In fig. 121 the construction 1s_ readily seen, as also the congruency of the corresponding dissected parts, from which sq. AK $=$ (quad. CPNA $=$ quad. LAHT)

+ (tri. CKP $=$ tri. ALG $)$
+ (tri. BOK = quad. DEHR
+ tri. TFL $)+($ trin 1. NOB $=\operatorname{tr} 1, \mathrm{RBD})^{\prime}$.

$$
\therefore \text { sq. upon } A B=\text { sq. }
$$

upon $\mathrm{BH}+$ sq. upon AH.
a. See Math. Mo., V. IV, 1897, p. 169, proof xXXVIII.

The construction

18. 122
and dissection of fig. 122 is obvious and the congruency of the corresponding parts being established, and we find that sq. $A K=$ (quad. ARNR = quad. ATWK $)+(t r i$. $C N A=\operatorname{tri} . W F G)+(t r 1 . \operatorname{CQM}$
$=\operatorname{tri} . A K A)+(\operatorname{tri}, M Q X$
$=$ Fri. EDO $)+$ (fri. POK
$=$ try. THS $)+$ (pentagon BLMOP
$=$ pentagon ETSBV) + (fri.
$B R L=$ mri. DUVV). \therefore sq. upon
$A B=s q$. upon $B H+s q$. upon AH. $\quad \therefore h^{2}=a^{2}+b^{2}$.
a. Original with the author of this work, August 9, 1900. 'Afterwards, on July 4; 1901; I found same proof in Jury Wiper, 1880, p. 28, fig. 25, as given by E. vol IIttrow in "Popularen Geometries," 1839; also see Versiuys; p. 42, fig. 43.

Imenty-Ing

Fig. 123

Extend $C A$ to $Q, B B$ to P, draw RJ through H, par. to $A B$, HS pert. to $C K$, $S U$ and ZM par. to BH , SL and ZT par. to AH and take $\mathrm{SV}=\mathrm{BP}$, $\mathrm{DN}=\mathrm{PE}$, and draw VW par. to AH and NO par. to BP.

Sq. $A K=$ parts $(1+2$ $\left.+3+4=\mathrm{sq} .{ }^{\circ} \mathrm{HD}\right)+$ parts ($5+6+7=$ sq. HG); so dissected parts of sq. HD + disseated parts of sq. HG (by superposition), equals the dissected parts of sq. AK.

```
    \(\therefore\) Sq: upon \(A B=\) sq. upon \(B H+s q\). upon AH:
\(\therefore h^{2}=a^{2}+b^{2}\) Q.E.D.
    a. See Versluys, p. 43 , flig. 44.
    b. Fig. and proof, of Twenty-Two is very much
like that of Twenty-One.
```


Iwentz=Ihres

After showing that each numbered part found in the sq's $H D$ and HG is congruent to tha corresponding numbered part In s.q. AK, which is not difficuit; it follows that the sum of the parts in sq. $A K=$ the sum of the parts of the siq. HD + the sum of the parts of the sq. HG.
\therefore the sq. upon $A K$ $=$ the sq. upon $H D+$ the sq. upon HA. $\quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Geom. of Dr. H. Dobriner, 1898; also Versiuys, p. 45, fig. 46, from Chr. N1elson; also Leitzmain, p. 13, f1g. 15, 4 th Ed'n.

Iwenty-Foyr

Fig. 125

Proceed as in fig. 124 and after congruiency is establiehed, it is evident that, since the eight dissected parts of sq. AK are congruent to the corresponding numbered parts found in sq's HD and HG, parts ${ }^{\prime}(1+2$ $+3+4+5+6+7+8$ in sq. AK $)=$ parts $(5+6+7$ $+8)+(1+2+3+4)$ in sq's HB and He .
$\therefore h^{2}=a^{\ddot{2}}+$ sq. 2. upon $A B$ sq. upon $K D+$ sq. upon $H A$.
a. See Paul Epstein's (of Straatsberg), collection of proofs; also Versluys, p. 44, fig. 45; also Dr. Leltzmann's 4 th ed'n, p. 13, fig. 14.

Imenty=EIve

Establish congruency
 of. corresponding parts; then it follows that: sq. AK ($=$ parts 1 and 2 of sq. HD

+ parts 3, 4 and 5. of sq. HG)
$=s q . H D+s q$. HG. \therefore sq. upon $A B=$ sq. upon $H D+s q$. upon HA. $\quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Versluys, p. 38, fig. 38. This fig. is similar to fig. 111.

Imenty=SLX

Since parts 1 and 2 of sq. HD are congruent to like parts i^{\prime} and 2 in sq. AK, and parts 3, 4, 5 and 6 of sq. HG to like parts 3, 4,5 and 6 in sq. AK. \therefore sq. upon $A B=$ sq. upon $H B+s q$. upon HA. $\quad \therefore h^{2}=a^{2 \%}+b^{2}$. Q.E.D
a. This dissection by the author, March 26., 1933.

Fig. 1 ? 7

Iwenty-Seven
Take AU and $\mathrm{CV}=\mathrm{BH}$

Fig. 128\%

WW par. to $A B$ and and draw UW par. to $A B$ and VI par. to BK; from T draw: BH, locating pts. L and S ; complete the sq's LN and SQQ, making sides $3 R$-and LM $\mathrm{per}_{\mathrm{t}}$. to AB. Draw SW par. to HB -and CJ par. to AH. The 10 parts found in sq's HD and HG are congruent to oresponging parts in sq. AK. the sq. upon $A B=$ sq. upon $H B$ + sq. upon HA. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. This proof, and dissection, was sent to me by J. Adams, Chassestreet 31, The Hague, Holland, April 1933.
b. All lines are either perp, or par. to the sides of the trio. ABH--a unique dissection.
c. It is a fine paper and scissors exercise.

Iwenty-Eight

Fig. 129

Draw AF and BE; profduce $G A$ to P making $A P=A G$; produce $D B$ to 0 ; draw $C Q$ par. to. AH and KR par. to BH ; constrict sq. $L N=s q$. $O Q$; draw FL and FN: take AT and KS $=$ to FM. Congruency of corresponding numbered parts hoving been established, as is easily done, it follows that: :
sq. upon $A B=s q$. upon $H B$ + sq. upon HA. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
3. Benifr vol Gutheil, oberlehrer at Nurriberg, Germany, produced the above proof. He died in the trenches in France, 1914. So wrote J. Adams (100 a, fig.-128), August 1933.
\% b. Let us call it the B. vol Gutheil World War Proof.
c. Also see Dr. Leitzmann; p. 15, fig, 18, 1930 ed'n.

Irenty=MIne

Fig. 130

Fig. 131

In fig. 130, extend CA to 0 , and draw ON and KP par. to $A B$ and $B H$ respective. ty, and extend DB to R. Take $B M=A B$ and draw $D M$. Then we have sq. $A K=$ (trap. ACKP $=$ trap. OABN $=$ pentagon OGAHN) + . (try. BRK $=$ trap. BDL + try. M HL $=$ try. OFN . $+(\operatorname{tri} . \mathrm{PRB}=\operatorname{tri} . \operatorname{LED})$.
sq. upon $A B=$ sq. upon $B H$ + sq. upon AH. $\therefore h^{2}=a^{2}+b^{2}$. a. See Math. Mo., V. IV, 1897, p. 170, proof XLIV.

Thirty

Fig. 231 objectifies the lines to be drawn and how they are drawn is readily seen.

Since trio. $O M N=\operatorname{tri}$. $\mathrm{ABH}, \mathrm{tri} . \mathrm{MPL}=\mathrm{tri} . \mathrm{BRH}$, try. $B M=$ try. AOG, and trio. ORA $=$ trip. KBS (K is the pt. of intersection of the lines MB and 0S) then sq. $A K=$ trap. ACKS. * teri. KSB $=$ try. KOM
$=$ trap. BMOS + try. OSA
$=$ quad. AHPO + try: ABH

+ tri. BMI + tri. MPI $=$ quad. $A H P O+$ tri. $O M N+$ tri. $-A 0 G+t r 1$. BRH $=$ (pentagon AHPOG + tri. OPF) + (trgp.
PMNF $=$ trap. RBDE $)+$ tri. $B R H=s q . H G+s q . H D$.
sq. upon $A B=s q$. upon $H D+$ sq. upon AH. $\therefore h^{2}=a^{2}+b^{2}$.
-ia. See Sc1. Am. Sup., V. 70, p. 383, Dec. 10,

1910. It is No. 14 of A: R. Colburn's 108 proofs.

Ihicty=0ne

F1g. 132

Extend GA making AP $=A G$; extend $D B$ making $B N$ $=B D=C P \cdot \cdot T r i . \quad C K P=$ tri. ANB $=\frac{1}{2}$ sq. $H D=\frac{1}{2}$ rect. LKK. Tri. $\mathrm{APB}=\frac{1}{2}$ sq. $\mathrm{HG}=\frac{1}{2}$ rect. AM. $S q . A K=$ rect. $A M$ + pect. LK.
\therefore sq. upon $A B=$ sq. \therefore upon $H B+$ sq. upon AH. $\therefore h^{2}$ $=a^{2}+b^{2}$. Q.E.D.
a. This is Huygens ' proof (1657); see also Versluys, p. 25,-f1g. 22.

Ihlrty-İe

Fig. 133

Extend GA making $A D$ $=A O$. Fxtend $D B$ to N, draw CL and KM . Extend BF to S making FS $=\mathrm{HB}$, complete sq. SU, draw HP par. to AB, PR par, to $A H$ and draw $S Q$. Then, obvious, sq. $A K=4 \cdot \operatorname{tri}$. BAN + sq. $N L$ $=$ rect. $A R+$ rect. $T R+s q$. $\mathrm{QQ}=$ rect. $A R+$ rect. $Q \mathrm{~F}$ + sq. $\mathrm{GQ}+$ (sq. $\mathrm{TF}=\mathrm{sq} . \mathrm{ND}$) = sq. $H G+$ sq. $H D . ~: ~ s q$. upon $A B=s q$. upon $B H+$ sq. upon AH. $\quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.

ERIC
a. This proof is credited to Miss E. A. Coolidge, a blind girl. See Journal of Education, V. XXVIII, 1888, p: 17, 26th proof.
b. The reader will note that this proof employs exactly the same dissection and arrangement as found in the solution by the Hindu mathematician, Bhaskara. See fig. 324, proof Two Hundred TwentyFive.
(b) THOSE PROOFS IN WHICH PAIRS OF THE DISSECTED PARTS ARE SHOWN, TO BE EQUIVALENT.

As the triangle is fundamental in the determination: of the equivalency of two areas, Euclid's proof will be given first place.

Thirty -Three

Draw HL perp. to CK,

Fig. 134
\qquad
For the old descriptive form of this proof see Elements of Euclid by Todhunter, 1887, Prop. 47, Book I. For a modern mod'el proof, second to none, see Beman and Smith's New Plane and Solid Geometry", 1899, p. 102, Prop. VIII, Book II. Also see Heath's Math. Monographs, No. 1, 1900, p. 18, proof I: Versluys, p. 10, fig. 3, and p. 76, proof 66 (algebraic); Fourrey, p. 70, fig. a;
also The New South Wales Freemason, Vol. XXXIII, No. 4, April 1, 1938, p. 178, for a fine proof of Wor. Bro. W. England, F.S.P., of Auckland, New Zealiand. Also Dr. Leftzmann's work ..(1930), p. 29, f1g's 29 and 30 .
b, I have noticed lately two or three American texts on geometry in which the above proof does not appear. I suppose the author wishes to show his originality or independence--possibly up-to-dateness. He shows something else. The leaving out of Euclid's proof is like the play of Hamlet with Hamlet left out.
c. About $87^{\circ} 0$ there worked for a time, in Bagdad, Arabia, the celebrated physician, philosopher and mathematician fabit ibn Qurra ibn Mervân (826801), Abû-Hasan, al-Harrânf, a natuve of Harrân in Mesopotamia. He revised Ishạq ibn Honeiu's translation of Euclid's Elements, as stated at foot of the photostat.

See David Eugene Smith's "History of Mathematics," (1923); Vol. I, pp. 171-3.
d. The figure of Euclid's proof, Fig. 134 above, 1s known by the French as pon asinorum, by the Arabs as the "Figure of the Bride."
e. "The mathematical science of modern Europe
dates from the thirteenth century, and received $1^{\prime \prime} t s$ first stimulus from the Moorish Schools in Spain and Africa, where the Arab works of Euclid, Archimedes, Appollonius and Ptolemy were not uncommon....."
"First, for the geometry. As early as 1120 an English monk, named Adelhard (of Bath), had obtained a copy of a Moorish edition of the Elements of Euclid; and another specimen was secured by Gerard of Cremona in 1186. The first of these was translated by Adelhard, and a copy of this fell into the hands of Giovanni Campano or Companus, whe in 1260 reproduced it as his own. The first printed edition was taken from it and was issued by Ratdolt at Venice in 1482." A History of Mathematics at Cambridge, by W. W. R. Ball, edition 1889, pF. 3 and 4.

10

المراز
اكزذلت

نـبَ
رй

لن

PYTHAGORILAN THEOREM IN TAABIT IBN QORRA'S TRANSLATION OF EUCLDD

The translation was made by Ishâq ibn Honein (died 910) but was ferised by Tâbit ibn Qorra, c. 890. This manuscript was written In 1350 .

Thirty $=$ Equr

Extend HA to I making
$A L=H E$, and ${ }^{2} H B$ to N making $\mathrm{BN}=\mathrm{HF}$, draw the perp. HM , and join LC, HC, and KN. Ob\therefore viously tri's ABH, CAL and $B K N$ are equal. \therefore sq. upon $A K$ $=$ rect. $A M+$ rect. $B M=2$ tri. $H A C+2$ tri. $\mathrm{HBK}=\mathrm{HA} \times \mathrm{CL}$ $+H B \times K N=s q . H G+s q . H D .--$
\therefore sq. upon $A B=$ sq. upon $H B$
\div sq. upon HA. $\therefore h^{2}=a^{2}+b^{2}$.
a. See Edwards' Geom,
p. 155, fig. (4); Versluys,
p. 16; fig. 12 , credited to De Gelder (1806).
b. "To illumine and enlarge the fleld of consclousness, and to extend the growing self, 1 s one reason why we study geometry.".
"One of the chief services which mathematics has renderea the human race in the past century is to put 'common sense' where it belongs, on the topmost shelf' next to the dusty canister labeled 'discarded nonsense.'" Bertrand Russell.
c. "Pythagoras and his followers found the ultimate explanation of things in their mathematical relations."

Of Pythagoras, as of Omar Khayyam:
"Myself when young did eagerly frequent Doctor and Saint, and heard great argument

About it and about; but evermore
Came out by the same door where in I went."

1. "Pythagoras, level-headed, wise man went quite mad ovêr seven. He found seven sages, seven wonders of the worid, seven gates to Thebes, seven heroes against Thebes, seven sleepers of Ephesus, seven dwarfs beyond the mountains--and so on up to seventy times seven." .
2. "Pythagoras was inspired-a saint, prophet, founder of a fanaticaliy religious society."
3: "Pythegoras visited Ionia, Phonecia and Egypt; studied. in Babylon, taught in Greece, committed nothing to writing and founded a philosophical society."
3. "Pythagoras declared the earth to be a sphere, and had a movement in space."
4. "Pythagoras was one of the nine saviors of civilization."
5. "Pythagoras was one of the four protagonists of modern science."
'7. "After Pythagoras, because of the false dicta of Plato and Aristotle, it took twenty centuries to
P prove that this earth is neither fixed nor the center of the universe."
6. "Pythagoras was something of a naturalist--he" was 2500 years ahead of the thoughts of Darwin."
7. "Pythagoras was a bellever in the Evolution of man."
8. "The teaching of Pythagoras opposed the teaching of Ptolemy."
9. "The solar system as we know it today' ' the one Pythagoras knew 2500 years ago."
10. "What touched Copernicus off? Pythagoras who taught that the earth moved around the sun, a great central ball of fire:"
11. "The cosmology of Pythagoras contradicts that of the Book of Genesis--a barrier to free thought and scientific progress."
12. "Pythagoras saw man--not a cabbage, but an ant-mai-a bundle of possibilities-a rational animai."
13. "The teaching of Pythagoras rests upon the Social, Ethical and Aesthéticai Laws of Nature."

Ihtrty $=$ Five

Draw HN par. to AC, KL par. to BF, CN par, to AH , and extend $D B$ to M. It is evident that sq. $A K=$ hexagon ACNKBH = par. ACNH + par. HNKB $=\mathrm{AH} \times \mathrm{LN}+\mathrm{BH} \times \mathrm{H}$ $=s q . H G+s q . H D$.
\therefore sq. upon $A B=s q$. upon $\mathrm{BH}+$ sq. upon AH.
a. See Edwards' Geom., 1895, p. 161, f1g. (32); Versluys, p. 23, fig. 21 , credited to Van Vieth (1805) also, as an original proof, by Joseph Zelson a sophomore in West Phila., Pa., High School, 1937.
b. In each of the 39 figures given by Edwards the author hereof devised the proofs as found herein.

Ihirty=Six

In fig. 136, produce HiN to P. Then sq. AK
$=$ (rect. $\mathrm{BP}=$ paral. $\mathrm{BHNK}=$ sq. HD) + (rect. $A P$
= paral. HACN = sq. HG).
\therefore sq. upon $A B=$ sq. upon $B H+$ sq. upon $A H$.
$\therefore h^{2}=a^{2}+b^{2}$.
a. See Math. Mo. (1859), Vol. 2, Dem. 17, fig. 1.'

Thirty-Seven

In fig. 137, the construction is evident.
Sq. $A K=$ rect. $B L+$ rect. $A L=$ paryai. $B M+$ paral. $A M$ $=$ paral. $B N+$ paral. $A O=$ sq. $B E+s q . A F$.
\therefore sq. upon $A B=s q$. upon $B H+s q$. upon AH.
a. See Edwards' Geom., 1895, p. 160, fig.
(28); Ebene G̣eometrie von G. Mahler, Leipzig; 1897,
p. 80, f-1g. 60; and-Ma.th Mo., V. IV, 1897, p. 168, proof XXXIV; Versluys, p. 57., ${ }^{\circ} \mathrm{fig}$. 60, where it is credited to Hauff's work, 1803.

InCty=Elght

In $f 1 \mathrm{~g}$. 138 , the construction is evident, as well as the parts containing like numerals.
. Sq. AKK $=$ Tri. BAI

+ tri. CKiN + sq. IN + (tri. ACM
$+\operatorname{tr1} . K B P)+\operatorname{tri} . H Q A+\operatorname{tri}$.
QHS + sq. $R F+$ (rect. $H E=s q$.
$H P+$ rect. $A P=$ sq. $H D+$ rect.
$G R)=s q \cdot H D+s q \cdot H G$
\because sq. upon $A B=$ sq.
upon $\mathrm{BH}+\mathrm{sq}$. upon AH .
a. See Heath's Math.

Fig. 138
Monographs, No. 2, p. 33, proof XXI.

Inirty=Mine

Próduce CA to P, dráw PHN, join NE, draw HO perp. to CR, CM par. to AH, join NK and MA and produce DB to L. From this dissection there results: Sq. $A K=$ rect. $A O+$ rect. $B O=(2$ tri $\cdot M A C=2$ tri. $A C M=2 \operatorname{tri}$. HAM $=2$ tri. $A H P=$ sq. HG) + (rect. BHMK $=2$ tri. $N H L=2$ tri. $\mathrm{HLN}=2$ tri. NEH $=\mathrm{sq} . \mathrm{HD})$.

Fig. 139

\therefore sq. upon $A B=s q$
upon $H B+s q$. upon $H A, . \quad \therefore h^{2}$ $=a^{2}+b^{2}$. Q.E.D.
a. Devised by the author Nov. 16., 1933.

Forty

Fig. 140. suggests its construction, as all Ines drawn are either perp. or par. to a side of the given tori. ABH. Then we have sq. $A K=$ rect. $B L+$ rect. $A L$ = paral. BHMK + paral. AHMC = paral. BHNP + paral. AHNO $=s q . H D+s q . H G . \quad \therefore$ sq. upon $A B=\cdot$ sq. upon $B H+s q$. upon -AH

a. This is known as

 Haynes proof; see Math. Magazine, Vol. I, 1882, p." 25, and School Visitor, V. IX, 1888, p. 5, proof IV; also see Fourrey, p. 72, fig. a, in Edition arab dee Elements. d'Euclides.Fig. 140

Eorty=0ne

Draw $B Q$ perp. to $A B$ meeting $G F$ extended, $H N$ par. to $B Q, N P$-par. to $H F$, thus forming OARQ; draw OL par. to $A B, C M$ par. to $A H, A S$ and $K T$ perp. to $C M$, and $S U$ par. to $A B$, thus dissecting sq. AK into parts 1, 2, 3, 4 and 5.

Sq. $A K=$ paral. $A E Q O$, for sq. $A K=$ [(quad.
$A S M B=$ quad. $A H L O)+($ try. $C S A=\operatorname{tr} 1 . N F H=$ try. $O G H)$ + (try. SUUT $=$ try. OLF $)=$ sq. HG $]+[$ (trap. CKUS

$$
\begin{aligned}
& \text { = trap. NHRP = tri. NVW } \\
& \text { + trap. EWVH, since tri. } \\
& =\text { tri. WRR } \\
& \text { + (tri. } N P Q=\text { trap. BDER) } \\
& + \text { tri. HBR })=\text { sq. }
\end{aligned}
$$

$$
H D]=\text { sq. HG. }+ \text { sq. } H D
$$

\therefore sq. upon $A B=s q$.
upon $\mathrm{BH}+\mathrm{sq}$: upon HA. $\therefore \mathrm{h}^{2}$. $=a^{2}+b^{2}$.
a. This proof and fig. was formulated by the author Dec. 12, 1933, to show that, having given a paral. and a sq. of equal areas., and dimensions of paral. = those of the sq., the paral. can be dissected. into parts, each equivalent to a like part in the square.

Egrty=Iwg

Fig. 142

The construction of fig. 142 is easily seen. Sq. $A K=$ rect. $B L+$ rect. $A L$ = paral. $\mathrm{HBMN}+$ paral. AHNO $=s q . H D+s q . H G, \quad \therefore$ sq. upon $A R=s q$. upon $B H+s q$. upon AH. $\quad \therefore h^{2}=a^{2}+b^{2}$.
a. This is Lecchio's proof, 1753. Also see Math. Mag., 1859, Vol. 2, No. 2,亡em. 3, and credited to Charles Young, Hudson, O., (afterwards Prof. Astronomy, Princeton College, N.J.); Jury Wipper, 1880, p. 26, fig. 22 (Hișioricai Note);
Olney's Geom.' 1872, Part III, p. 25I, 5th method; Jour. of Education, V. XXV, 1887, p. 404, fig. III; Hopkins' Plane Geom., 1891, p. 91, fig. II; Edwards'

Geom., 1895, p. 159, fig. (25); Am. Math. Mo., V. IV. 1897, p. 169, 茹; Heath's Math. Monographs, No. 1, 1900 , p. 22, proof VI; Versluys, 1914; p. 18, f1g. 14.
b. One reference says: "This proof is but a particular case of Pappus' Theorem.".
c. Pappus was a Greek Mathematician of Alexandria, Egypt, supposed to have Ilved between 30,0 end 400 A.D.
d. Theorem of Fappus: "If upon any two sides of any triangle, parallelograms are constructed, (see fig. 143), thẹir sum equals the possible resulting parailelogram determined upon the third side of the triangle."
e. See Chauvenet's Elem'y Geom. (1890), p. 147, Theorem 17. Also see F. C. Boon's proof, 8a, p. 106.
f. Therefore the so-called Pythagorean Proposition is only a particular case of the theorem of Pappus; see fig. 144 herein.

Theorem of Pappus

Let ABH be any triangle; upon BHi and AH construct any two dissimilar paralielograms BE and HG ; produce $G F$ and $D E$ to C, their point of intersection; join C and

Fig. 143

H and produce CH to I making KL
$=\mathrm{CH}$; through A and B draw MA to
N making $\mathrm{AN}=\mathrm{CH}$, and OB to P makling $\mathrm{BP}=\mathrm{CH}$.

Since tri. GAM = tri. FHC;
*being equiangular and side GA
$=\mathrm{FH} . \quad \therefore \mathrm{MA}^{\prime}=\mathrm{CH}=\mathrm{AN}$; also BO
$=\mathrm{CH}=\mathrm{BP}=\mathrm{KC}$. Paral. EHBD

+ paral. $\mathrm{HFGA}=$ paral. CHBO
+ paral. $\mathrm{HCMA}=$ paral. KLBP
+ paral. ANLK = paral. AP.
Also paral. HD + paral. HG
$=$ paral. MB , as paral. $\mathrm{MB}=$ paral.
AP.
a. As paral. HD and paral. HG are not similar, 1.t follows thai $\mathrm{BH}^{2}+\mathrm{HA}^{2} \neq \mathrm{AB}^{2}$.
b. See Math. Mo. (1858), Vol. I, p. 358, Dem.

8, and Vol. II, pp. 45-52, In which this theorem is given by Prof. Charles A. Young; Hudson; 0. , now Astronomer, Princeton, N.J. Also David E. Smith's Hist. of Math. V Vol.' I, pp. 136-7.
c. Also see Masonic Grand Lodge Bulletin, of Iowa, Vol. 30 (1929), No. 2, p. 44, fig.; also Fourrey, p. 101, Pappus, Collection, IV; 4 th century, A.D.; also see p. 105, proof 8, in "A Companion to Elementary School Mathematics," (1924), by F. C. Boon, A.B:; also Dr. Leitzmann, p. 31, fig. 32, 4th Edition; also Heath, History, II, 355.
d. See "Companion to Elementary School Mattemetics," by F. C. Boon, A.B. (1924), p. I-4; Pappus lived at Alexandria about A.D. 300, though date is uncertain.
e. This Theorem of Pappus is a generalization of the Pythagorean Theorem: -Therefore the Pythagorean Theorem is only a corollary of the Theorem of Pappus:

Eerty=Inise

By theorem of Pappus,
$M N=L H$. Since angle BHA is a rt. angle, $H D$ and $H G$ are rectangular, and assumed .squares (Euclid, Book I, Prop. 47.). But by Theorem of Pappus, paral: $\dot{H D}+$ aral. HG =aral. AK.
\therefore sq. upon $A B=s q$.
upon $B H+s q$. upon HG. $\therefore h^{2}$ $=a^{2}+b^{2}$.
*a. By the author, Oct. 26, 1933.

Fig. 144

Equty=Equr

Fig. 145

Produce DE to L maxing EL = HF, produce KB to 0 , and draw LN perp. to CK. Sq. $A K=$ rect. $M K+$ rect. MC $=$ [rect. BL (as $\mathrm{IH}=\mathrm{MN}$) $=$ sq. HD]. + (similarly, sq. HG).
\therefore sq. upon $A B=$ sq.
upon $H B+$ sq. upon $H G . \because h^{2}$ $=a^{2}+b^{2}$
a. See Versluys, p. 19, fig. 15, where credited to Nasir-Ed-Din (1201-1.274); also Fourrey, ,p.: 72, fig. 9.

Eqrix=Eive

In fig. 146 extend

Fig. 146 \qquad $D E$ and $G F$ to $P, C A$ and $K B$ to par. to AH and draw PL and KM perp. to $A B$ and $C N$ respecLively. Take ES $=\mathrm{HO}$ and draw DS.

Sq. $A K=$ try. $K N M$

+ hexagon $\mathrm{ACKMNB}=\operatorname{tr} 1 . \mathrm{BOH}$
+ pentagon ACNBH = try. DSE
+ pentagon QAOFP $=$ try. ES
+ papal. AHPQ + quad. PHOR
$=$ sq. HG + teri. DES + para.
BP - try. $\mathrm{BOH}=$ sq. $\mathrm{HG}+$ try.
DES + trap: HBDS $=$ sq. HG + sq. HD .
\therefore sq. upon $A B=$ sq. upon $B H+$ sq. upon $A H$.
a. See Am. Math. Mo., V. IV, 1897, p. 170, proof XLV.

EqTEY=SLx

Fig. 147

The construction
needs no explanation; from 1t we get sq: $A K+2$ tri. ABH $=$ hexagon ACLKBBH $=2$ quad. ACLH $=2$ quad. FEDG $=$ hexagon $A B D E F G=s q . H D+s q . H A+2$ tri. ABH.
\therefore sq. uppon $A B=$ sq.
upon $\mathrm{BH}+$ sq. upon $\mathrm{AH} . \quad \therefore \mathrm{h}^{2}$ $=a^{2}+b^{2}$.
a. According to F. C. Boon, A.B. (1924), p. 107 of his "Miscèllaneous Mathemat1cs," this proof is that of Leonarido da Vinci (1452-1519).
b. See Jury Wipper, 1880; p. 32, fig. 29, as found in "Aufangsgrunden der Geometrie" von Tempelhoff, 1769; Versluys, p. 56, f1g. 59, where Tempelhoff, 1769, is mentioned; Fourrey, p. 74. Also proof 9, p. 107, in "A Companion to Elementary School Mathematics," by F. C. Boon, A.B'; also Dr. Leitzmann, p. 18, fig. 22, 4th Edition.

Egrty-Seven

In fig. 148 take Bo $\equiv \mathrm{AH}$ and $\mathrm{AN}=\mathrm{BH}$, and complete the flgure; Sq. AK = rect. $B L+$ rect. $A L=$ paral. HMKB + paral. $A C M H=$ paral.. FODE + paral. GNEF $=$ sq. $D H$ + sq. GH.
\therefore sq. upon $A B=$ sq.
upon $B H+$ sq. upon AH. $\quad \therefore h^{2}$ $=a^{2}+b^{2}$.
a. See Edwards' Geom., 1895, p. 158, fig. (21), and

Am. Math. Mo., V. IV, 1897, p. 169 proof XLI.

Egrty $=$ Elaht

In fig. 149 extend
$C A$ to Q and complete sq. $Q B$. Draw GM and DP each par. to AB , and draw NO perp. to BF . This construction gives sq. $\mathrm{AB}=$ sq. $\mathrm{AN}=$ rect. $\mathrm{AL}+$ rect. $\mathrm{PN}=$ paral. $\mathrm{BDRA}+$ (rect. AM $=$ paral. $(G A B O)=s q . H D+s q$. HG.
\therefore sq. upon $A B=$ sq.
upon ${ }^{\circ} \mathrm{HH}+$ sq. upon AH. $\quad \therefore \mathrm{h}^{2}$ $=a^{2}+b^{2}$.
a. See Edwards' Geom., 1895, p. 158, fig. (29), and Ain. Math. Mo., V. IV, 1897, p. ${ }^{2} 168$, proof xxiv.

Ferty=Nine

In fig. 150 extend KB to meet DE produced at P, draw. QN par. to DE , NO par. to $B P$, GR and HT par. to $A B$, extend $C A$ to S, draw Hu par. to $A C, C V$ par. to $A H, \mathrm{KV}$ and MU par to BH, MX par. to AH , extend GA to $W, D B$ to U, and draw $A R$ and $A V$. Then we will have sq. $A K=$ tri. ACW + tri. CVL + quad. AWVI + tri. VKL $+\operatorname{tri}$. KMX + trap. UVXM $+\operatorname{tri} . \mathrm{MBU}+\operatorname{tri} . \mathrm{BUY}=$ (tri.
Fig. 150 GRF + tri. AGS + quad. AHRS) + (tris. BHT + tri. OND + trap. NOEQ + tri. $Q D N+\operatorname{tri} . H Q T)=s q . B E+s q . A F$.
$\therefore h^{2}=a^{2}+b^{2}$ upon $A B=s q$, upon $B H+s q$. upon $A H$.
a. This is E. von Littrowis proof, 1839 ; see
also Am. Math. Mo., V. IV, 1897, p. 169 , proof XXXVII.

EIfty

Extend GF and DE to P, draw PL perp. to $C K$, $C N$ par. to $A H$ meeting $H B$ extended, and KO perp. to AH. Then there results: sq. AK
[(ftrap. ACNH - tri. MNH
$=$ paral $. A C M H=$ rect.$A L)$
$=$ (trap. AHPG - tri. HPF
$=s q \cdot A G)]+[$ (trap. HOKB

- tri. $O M H=$ paral. $H M K B$
$=$ rect. $B L$) $=$ (trap. HBDP
- tri. HEP = sq. HD)].
\therefore sq. upon $A B=$ sq.
upon $B H+$ sq. upon $A H$. $\therefore h^{2}$ $=a^{2}+b^{2}$.
a. See Am. Math. Mo., V. IV, 1897 , p. 169, proof". XIII.

Fifty=0ne

Extend GA to M making
$A M=A H$, complete sq. $H M$, draw HL perp. to CK, draw CM par. to AH , and KN par. to BH ;
this construction gives: sq.
$\mathrm{AK}=$ rect: $\mathrm{BL}+$ rect. AL
= paral. HK + paral: HAGN
$=s q \cdot B P+s q \cdot H M=s q \cdot H D$

+ sq. HG.
\therefore sq. upon $A B=s q$.
upon $B H+$ sq. upon AH. $\therefore h^{2}$
Fig. $152^{\text {昞 }}$
$=a^{2}+b^{2}$.
a. V1eth's proof --see Jury Whipper, 1880, p. 24, fig. 19, as given by Vieth, in "Aufangsgrunden der Mathematik, " 1805; also Am. Math. Mo., V. TV, 1897. p. 169, proof XXXVI.

ELfty=Ive

In fig. 153 construct

Fig. 153 the sq. HT, draw GL, HM, and PN par, to $A B$; also $K U$ par. to BH , OS par. to AB , and join EP: By analysis we find that sq. $A K=$ (trap. CTSQ + try. KRU) + (try. CKO + quad. STRQ + (try. SON
$=$ try. PRQ $)+$ rect. $A Q]$
$=$ (trap. EHBV + try. EVD)

+ [try. GLF + try. HMA
+ (paral. $\mathrm{SB}=$ aral. ML $)$
= sq. $H D+$ sq. AF.
\therefore sq. upon $A B=s q$.
upon $B H+$ sq. upon $A H$. $\because h^{2}$
$=a^{2}+b^{2}$. Q.E.D.
a. After three days of analyzing and classflying solutions based on the A type of figure, the above dissection occurred to me, July 16, 1890, from which I devised above proof.

Eifty=Three

In fig. 154 through
K draw NL par. to AH , extend HB to L , GA to $0, \mathrm{DB}$ to M , draw DL and MN par. to BK , and $6 N$-par. to AO .

Sq. $\mathrm{AK}=$ hexagon $A C N K B M=$ aral. $C M+$ aral. :
$\mathrm{K} M=$ sq. $\mathrm{CO}+\mathrm{sq} . \mathrm{ML}=\mathbf{s q}$. HD + sq. HG.
\therefore sq. upon $A B=$ sq. upon $\mathrm{BH}+$ sq. upon AH .
a. See Edwaids' Geom., 1895, p. 157, f1g.

ELfty=Equr

Fig. 155

In fig. 155 extend
In fig. 155 extend $H B$ to M making $B M=A H, H A$ to P making $A P=B H$, draw CN and $K M$ each par. to $A H, C P$ and KO each perp. to AH, and draw HL perp. to AB. Sq. AK $=$ rect. $\mathrm{BL}+$ rect. $\mathrm{AL}=$ paral. $\mathrm{RKBH}+$ paral. $\mathrm{CRHA}=\mathrm{sq} . \mathrm{RM}$ $+\mathrm{sq} . \mathrm{CO}^{\circ}=\mathrm{sq} . \mathrm{HD}+\mathrm{sq}, \mathrm{HG}$. \therefore sq. upon $A B=s q$. upon $\mathrm{BH}+$ sq. upon AH. $\therefore \mathrm{h}^{2}$ $=a^{2}+b^{2}$.
a. See Am. Math. Mo., V. ${ }^{\text {IV }}$, 1897, p. 169, proof? XiIIII.

ELfty=EIVe

Extend HA to N making $A N=H B$, $D B$ and $G A$ to M, draw, through C, NO making $\mathrm{CO}=\mathrm{BH}$, and join MO and KO.
$\mathrm{Sq} \cdot \mathrm{AK}=$ hexagon ACOKBM = para. COMA + paral. OKBM $=$ sq. $\mathrm{HD}+\mathrm{sq} \cdot \mathrm{HG}$.
.. sq. upon $A B=$ sq.
upon $\mathrm{BH}+$ sq. upon AH. $\quad \therefore h^{2}$ $=a^{2}+b^{2}$.
a. This proof is.
credited to C. French, Winchester; N.H. See Journal of Education, V. XXVIII, 1888, p. 17, 23d prooff; Edwards' Geom., 1895, p. 159, f1g. (26); Heath's Math. Moncgraphs, No. 2, p. 31, proof XVIII.

ELfty $=\underline{s} L \underline{x}$

Complete the sq's OP and HiM, which are equal.

Sq. $A K=$ sq. $L N-4$ tric. $A B H=$ sq. $O P-4$ tri. $\mathrm{ABH}=\mathrm{sq} . \mathrm{HD}+\mathrm{sq}$. HG. $\therefore \mathrm{sq}$. upon $A B=$ sq. upon $B H+$ sq. upon HA. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Versluys, p. 54, f1g. 56, taken from Delboeuf's work, 1860; Math. Mo., 1859, Vol. II, No. 2, Dem. 18, fig. 8; Fourrey, Curios. Geom., p. 82, fig. e, 1683.

Fig. 157

ELfty-Seven
Complete rect. FE and construct the tri's ALC and KNB, each $=\operatorname{tri}$. ABH.'

It 1s obvious that sq. AK $=$ pentagon CKMHLI -3 tri. $A B H=$ pentagón ABDNG -3 tri. $A B H=s q . H D+s q$.
HG. \therefore sq. upon $A B=$ sq. upon $H D+s q$. upon HA. $\therefore h^{2}=a^{2}$ $+b^{2}$.
a. See Versluys, p. 55, fig. 57.

ELfty=ELght

In fig. 159 complete the squares $A K, H D$ and HG, also the paral's FE, GC, AO, PK and BL. From

these we find thet sq. AK = hexagon ACOKBP = paral. OPGN - paral. CAGN + paral. POLD - paral. BKLD = paral. IDMH - (tri. MAE + tri. LDB) + paral. GNHM - (tri. GINA
$+\operatorname{tri} \mathrm{HMF})=\mathrm{sq} . \mathrm{HD}^{(}+\mathrm{sq} . \mathrm{HG}$.
\therefore sq. upon $A B=s q$. upon $B H$.

+ sq. upon AH. $\therefore h^{2}=a^{2}+b^{2}$.
a. See Olney's Geom.,

University Edition; 1872, p.
251, 8th method;' Edivards'
Geom., 1895, p. 160, fig.
(30.); Math. Mo., Vol. II

1859, No. 2, Dem, 16, fig. 8, and W. 'Rupert; 1900.

Fig. 159

Elfty=Mine

In $r i=1$. 159, omit lines GN, LD, EM, MF and MH , then the dissection comes to: sq. AKK = hexagon ANULBP -2 tri. ANO $=$ paral. $P C+$ paral. $P K=s q . H D$ + sq. $H G_{\text {. }} \therefore$ sq. upon $A B=s q$. upon $H D+s q$. upon $H A$. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Versluys, p. 66, fig. 70.
-six́ty
In the figure draw the diag's of the sqis and draw HLL. By the arguments established by the dissection, we have quad. ALBH = quad. ABMN (see proof, fig. 334).

Sq. $A K=2$ (quad. $A K B H$

- tri. $A B H$) $=2$ (quad. $A B D G$
- tri. $\mathrm{ABH}=\frac{1}{2} \mathrm{sq} . \mathrm{EB}+\frac{1}{2} \mathrm{sq}$. FA) $=s q \cdot H D+s q \cdot H G . \quad \therefore$ sq. upon $A B=$ sq. upon $H D+s q$. upon HA. $\quad \therefore h^{2}=a^{2}+b^{2}$.
a. See E. Fourrey's Curios. Geom., p. 96, fig. 8.

SIXIty=0ne

Fig. 161

GL and. DW are each perp. to $A B$, LN par. to HB , QP. and VK par. to $B D, G R, D S$, MP , NO and KW par. to AB and $S T$ and RU perp. to $A B$. Try. $D K V=$ tr. $B P Q . \quad \therefore A N=M C$.

Sq. $A K=$ rect. $A P$

+ rect. $A O=$ (paral. ABDS
$=s \dot{q}, \mathrm{HD})+$ (rect. GU = aral.
GAR $=$ sq. GH). $\quad \therefore$ sq. upon
$A B=$ sq. upon $H B+s q$: upon HA. $\quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
Q. See Versluys, p. 28, fig. 24--one of Werner's collin, credited to Dobriner.

sixty $=$ Iwo

Constructed and mumbered as here depicted, it follows that sq. $A K=[$ (trap. , $B B=$ trap. $S B D T)+($ trip. 0 QQ $=$ tr. TVD) + (quad. PWKQ
$=$ quad. USTE $)=$ sq. HD]

+ [(trio. $A C N=t r 1 . ~ F M H)$
+ (try. CWO $=$ trig. GLF $)$
+ (quad. ANOX = quad. GANL)
$=$ sq. HG].
\therefore sq. -upon $A B=$ sq.
upon $B H+$ sq. upon HA. $\therefore h^{2}$
$=a^{2}+b^{2}$ Q.E.D.
a. See Versluys, p.

33, fig. 32, as given by Jacob de Gelder, 1806.

SLxty=Three

Extend GF
and $D E$ to N, complete the square $N Q$, and extend HA to P , $G A$ to R and $H B$ to L. From these dissected parts of the sq. NQ we see that-sq. $A K+(4$ tri. $\mathrm{ABH}+\dot{\text { rect. }} \mathrm{HM}$ + rect. GE + rect. $\mathrm{OA})=\mathrm{sq} . \mathrm{NQ}=$ (rect. $P R=s q . H D+2$ tri. $\mathrm{ABH})+$ (rect. AL $=s q$. $H G+2$ tri. $\mathrm{ABH})+$ rect. HM + rect. GE + rect. $A O=s q . A K+(4$ tri. $\mathrm{ABH}+$ rect. HM + rect. $G E+$ rect. $O A-2$ tri. $A B H=\overline{2}$ tri. $A B H-$ rect. $H M=$ rect. $G E-$ rect. $O A=s q . H D+$ sq. $H G$.

$$
\therefore \text { sq. } A K=s q . H D+s q . \quad H G
$$

\therefore sq. upon $A B=$ sq. upon $B H+s q$. upon $A H$.
$\therefore h^{2}=a^{2}+b^{2}$.
a. Credited by Hoffmann, in "Der Pythagoraische Lehrsatz," 1821, to Henry Boad; of London, Eng. See Jury Wipper, 1880, p. 18, fig. 12; ${ }^{\circ}$ Versluys, p:-53, fig. 55; also see Dr. Leitzmann, p. 20, fig. 23.
b. Fig. 163 employs 4 congruent triangules, 4 congruent rectangles, 2 congruent small squares, 2 congruent HG squares and sq. $A K$, if the line $T B$ be inserted. Several variations of proof Sixty-Three may be produced from it, if difference is sought, especially if certain auxiliary lines are drawn.

SLXty=Equr

In fig. 164, produce HB to L , HA to R meeting CK prolonged, DE and GF to 0 ; CA to P , $E D$ and $F G$ to $A B$ prolonged. Draw HN par. to, and OH perp. to AB . $\mathrm{Ob}-$ piously sq. AK $=\operatorname{tri}$. -RLH - (try: RCA + try. BKL $+\operatorname{tri}: \mathrm{ABH})=\mathrm{tri}$. QMO - (try. QAP + try. OHD + try. ABH) $=$ (paral. PANO
$=$ sq. $H G$) + (para, $\mathrm{HBMN}=$ sq. HD).
\therefore sq. upon $A B=$ sq. upon $H B+$ sq. upon $H A$. $\therefore h^{2}=a^{2}+b^{2}$.

- a. See Jury Whipper, 1880, p: 30, fig. 28a; Versluys, p. 57, fig. 61; Fourrey, p. 82, Fig. c and d, by H. Bond, in Geometry, Londres, 1683 and 1733, also p. 89.

Fig. 165

HB and $C K$ to $L, A B$ and $E D$ to M, DE and GF to O, CA and $K B$ to P and N respecttively and draw PN. Now observe that sq. $A K=$ (trap. $\mathrm{ACLB}-\operatorname{tr1} . \mathrm{BLK})=$ [quad. AMNP $=$ hexagon $A H B N O P^{\prime}-(t r 1$. NAB $=\operatorname{tri} . \operatorname{BLK})=$ parsi BO $=$ sq. HD$)+$ (paral. $A 0=$ sq. AF)].
\therefore sq. upon $A B=$ sq. upon $\mathrm{BH}+\mathrm{sq}$. upon AH .
a. Devised by the author, July 7, 1901, but suggested by fig. 28b, in Jury Wipper, 1880, p. 31. b. By omittirig, from the fig., the sq. AK, and the tri's BLK and BMD; an algebraic proof through. the mean proportional is easily obtained.

In the construction make $\bar{C} M=H A=P L, L C$ $=\mathrm{FP}, \mathrm{NK}=\mathrm{DE}=\mathrm{NQ}$.
$\therefore O L=T M$ and $M N$
= NO. Then sq. AK $=\operatorname{tri} . N T M-$ (tri. LCA + tri. CMK $+\operatorname{tr} 1 . \mathrm{KNB})=\operatorname{tr} 1$. LNO - (tri. OPH $+\operatorname{tri} . \mathrm{HAB}+\operatorname{tri}$. QOH:) = paral. PLAAH + paral. HBNQ = sq. HG. + sq. $H D . ~ \therefore s q$. uppn $A B=s q$. upon $\mathrm{BH}+\mathrm{sq}$. upon HA. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Versluys, p.

22, f18. 19; by J. D: Kruitbosch.

SLxty=Seqgen.

Make $A M=A H, B P$
$=\mathrm{BH}$, complete paral. MC and
PK. Extend FG and NM to L, $D E$ and KB to S , CA to T ; OP to R, and draw MP.

Sq: $A K=$ paral. MC

+ paral. $\mathrm{PK}=$ paral. IA
+. parai. $\mathrm{RB}=\mathrm{sq} . \mathrm{GH}+\mathrm{sq}$. HD.
$\therefore h^{2}=a^{\ddot{2}}+$ sq. 2
à. Math. Mo. (1859), Vol. II, No. 2, Dem. 19, fig. 9.

Sixty=Elght

From P, the middle

Fig: 168 point of AB, draw PL, PM and YN perp. respectively to CK, DE and FG, dividing the sq's AK, DH and FA into equal rect.'s.

Draw EF, PE, OH to R, PF and PC.

Since trits BHA and EHF are congruent, $\mathrm{EF}=\mathrm{AB}$ $=A C \quad$ Since $P H=P A$, the trils PAC, HPE and PHF have equal bases.

Since tri!'s having equal bases are to each other as their altitudes: tri. ($\mathrm{HPE}=\mathrm{EHP}=$ sq. $\mathrm{HD}+4$) : tri. ($\mathrm{PHF}=$ sq. $\mathrm{HG}+4$) $=\mathrm{ER}:$ FR. \therefore tri. HPE $+\operatorname{tri} \rho \mathrm{PHF}: \operatorname{tr} 1 . \mathrm{PHF}=(\mathrm{ER}+\mathrm{FR}=\mathrm{AC}): \mathrm{FR} . \therefore \frac{1}{4} \mathrm{sq}$. $\mathrm{HD}+\frac{1}{4}$ sq. HG : tri. PHF = AC : FR. . But (tri. PAC $=\frac{1}{4}$ sq. $\left.A K\right): \operatorname{tr} 1: P H F=A C: P R .: \therefore \frac{1}{4}$ sq. $H D+\frac{1}{4}$ sq. HG: $\frac{1}{4}$ sq. $A K^{-}=$tri. PHE: tri. PHF. $\therefore \frac{1}{4}$ sq. $H D$ $+\frac{1}{4}$ ṣq. $\mathrm{HG}=\frac{2}{4}$ sq. AK .
\therefore sq. upon $A B=$ sq. upon $H B+$ sq. upon HA.
$\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. F1g. 168 is unique in that it is the first ever devised in which all auxiliary lines and all triangles used originate at the middle point of the hypotenuse of the given triangle.
b. It was devised and proved by Miss Ann. Condit, a girl, aged 16 years, of Central JuniorSenior High School, South Bend, Ind., Oct. 1938. This 16-year-old girl has done what no great mathematician, Indian, Greek, or modern, is ever reported to have done. It should be known as the Ann Condit Proot?

Prolong HB to 0 making $B Q=H A$; complete the rect. OL; on AC const. tri. $\mathrm{ACM}=\mathrm{tri}$. ABH ; on CK const. tri. CKN $=$ tri. $A B H$, Join $A N, A K, A O, G B, G D, G E$ and FE.

It is obvious that
$\operatorname{tri} . A C N=\operatorname{tr} 1 . \mathrm{ABO}=$ tri.
$\mathrm{ABG}=\operatorname{tri} . \mathrm{EFG}$; and since tri. $D E G=\left[\frac{1}{2}(D E) \times(A E=A H\right.$
$+\mathrm{HE})]=\operatorname{tr} 1 . \mathrm{DBG}=\left[\frac{1}{2}(\mathrm{DB}\right.$
$=D B) \times(B F=A E)]=\operatorname{tri}, A K O$
$=\left[\frac{1}{2}(\mathrm{KO}=\mathrm{DE}) \times(\mathrm{HO}=\mathrm{AE})\right]$
$=\operatorname{tri} . \operatorname{AKN}=\left[\frac{3}{2}(K N=D E)\right.$
$x(A N-A E)]$, then hexagon $A C N K O B-$ (tri. CNK + tri. $B O K)=(\operatorname{tr} 1, A C N=\operatorname{tr} 1 . A B O=\operatorname{tr} 1 . A B G=\operatorname{tr} 1 . E F G)$ + (tr1. AKN $=\operatorname{tri} . A K O=\operatorname{tr} 1 . \operatorname{GBD}=\operatorname{tr} 1$. GED $)-(\operatorname{tri}$. CNK + tri. BOK $)=2$ tri. ACN +2 tri. ABO -2 tri. $C N K=2$ tri. $G A B+2$ tri. $A B D=2$ tri. $A B H=s q \cdot A K$ $=s q . H G+s q . H D$.
\therefore sq. upon $A B=$ sq. upon $H B+$ sq. upon $H A$. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. This fig., and proof, is original; it was devised by Joseph Zelson, a junior in West Phila., Pa., High School, and sent to me by his uncle, Louls G, Zeison, a teacher in a college near St. Louls, Mo., on May 5, 1939. It shows a high intellẹct and a fine mentality.
b. The proof Sixty-Eight, by a girl of 16 , and the proof Sixty-Nine, by a boy of 18, are evidences that deductive reasoning is not beyond our youth.

Fig． 170
Theorem．－ If upon any con－ venient lensth； as $A B$ ，three tri－ angles are con－ structed，one havtng the angle opposite $A B$ ob－ tuse，the second having that angle right，and the third havin⿱⿱亠䒑日心土 that opposite andle acute，and upon the sides includ－ ing the obtuse， right and acute ansle squares are constructed，then the sum of the three squares are less than，equal to，or greater than the square constructed upon $A B$ ，according as the antele is ob－ tuse，right or acute．
θ
In fig．li＇0，upon $A B$ as diameter describe the semicircumference BHA．Since all triangles．whose ver－ vertex H^{\prime} lies within the circumference BHA is ob－ tuse at H^{\prime} ，all triangles whose vertex H lies on that circumference is right at H ，and all triangles whose vertex H_{2} lies without said circumference is acute at H_{2} ，let ABH ＇， ABH and ABH_{2} be such triangles，and on sides $B H^{\prime}$ and $A H{ }^{\prime}$ complete the squares $H^{\prime} D^{\prime}$ and $H^{\prime} G^{\prime} ;$ on sides $B H$ and $A H$ complete squares $H D$ and $H G$ ；on
sides BH_{2} and AH_{2} complete squares $\mathrm{H}_{2} \mathrm{D}_{2}$ and $\mathrm{H}_{2} \mathrm{G}_{2}$. Determine the points $P^{\prime}, ~ P$ and P_{2} and draw $P^{\prime} H^{\prime}$ to L^{\prime} making $\mathrm{N}^{\prime} \mathrm{L}^{\prime}=\mathrm{P}^{\prime} \cdot \mathrm{H}^{\prime}$, PH to L making $\mathrm{NL}=\mathrm{PH}$, and $\mathrm{P}_{\mathbf{2}} \mathrm{H}_{\mathbf{2}} \hat{}$ to L_{2} making $\mathrm{N}_{2} \mathrm{~L}_{2}=\mathrm{P}_{2} \mathrm{H}_{2}$.

Through A draw $A C^{\prime}, A C$ and A_{2}; similarly draw $\mathrm{BK}^{\prime}, \mathrm{BK}$ and BK_{2}; complete the parallelograms AK^{\prime}, $A K$ and AK_{2}.

Then the paral. $A K^{\prime}=s q \cdot H^{\prime D}+s q \cdot H^{\prime} A^{\prime}$. (See d under proof Forty-Two, and proof under fig. 143); the paral. (sq.) AK. $=$ sq. $H D+s q . H G$; and paral. $\mathrm{AK}_{2}=\mathrm{sq} . \mathrm{H}_{2} \mathrm{D}_{2}+\mathrm{sq} . \mathrm{H}_{2} \mathrm{G}_{2}$.

- Now the area of $A K$ is less than the area of $A K$ if (N 'L' $=P H^{\prime}$) is less than ($N L=P H$) and the area of $A K_{2}$ is greater than the area of $A K$ if $\left(N^{2} L_{2}\right.$ $=\mathrm{P}_{2} \mathrm{H}_{2}$) is greater than ($\mathrm{NH}=\mathrm{PH}$).

In fig. 171 construct

Fig. 171
rect. $\mathrm{FHEP}=$ to the rect. FHEP in fig. 170 ; take HF' $=H^{\prime} F$ in fig. 170, and complețe F'H'E'P'; in like manner construct $\mathrm{F}_{2} \mathrm{H}_{2} \mathrm{E}_{2} \mathrm{P}_{2}$ equal to same in fig. 170. Since angle AH'B is always obtuse, angle E'H'F' is always acute, and the more acute E'H'F' becomes, the shorter P'H! becomés. Likewise, since angle $\mathrm{AH}_{2} \mathrm{~B}$ is always acute, angle $\mathrm{E}_{2} \mathrm{H}_{2} \mathrm{~F}_{2}^{-}$is obtuse, and the more obtuse, it becomes the
longer $\mathrm{P}_{2} \mathrm{H}_{2}$ becomes.
So 'first: As the variable acute angle F'H'E' approaches its superior limit, 90°, the length H'P! increases and approaches the length HP; as said variable angle approaches, in degrees, its inferior limit, 0°, the length of $\mathrm{H}^{\prime} \mathrm{P}^{\prime}$ decreases and approaches, as. its inferior limit, the length of the longer of the two lines H'A or H'B, P' then coinciding with either E^{\prime} or Fl^{\prime}, and the distance of P^{\prime} (now El^{\prime} or Fl^{\prime}) from a líne drawn through H^{\prime} parallel to $A B^{\prime}$, will be the second dimension of the parallelogram $A K$ on $A B$; as
said angle FlH'E' continues to decrease, $H^{\prime} P^{\prime}$ passes through its inferior limit and increases continually and approaches its superior limit ∞, and the distance of P' from the parallel line through the corresponding point of H ! increases and again approaches the. length HP .
\therefore said distance is always less than HP and the parallelogram $A K^{\prime}$ is always less than the sq. AK.

And secondly: As the obtuse variable angle $\mathrm{E}_{2} \mathrm{H}_{2} \mathrm{~F}_{2}$ approaches its inferior limit, 90°, the length of $\mathrm{H}_{2} \mathrm{P}_{2}$ decreases and approaehes the length of HP ; -as said variable angle approaches its superior limit, 180°; the length of $\mathrm{H}_{2} \mathrm{P}_{2}$ increases and approaches ∞ in length, and the distance of P_{2} from a line through the corresponding H_{2} parallel to $A B$ increases from the length HP to ∞, which distance is the second. dimension of the parallelogram $A_{2} K_{2}$ on $A B$.
\therefore the said distance is always greater than HP and the parallelogram AK_{2} is always greater than the sq. AK.
\therefore the sq. upon $A B=$ the sum of no other two. squares except the two squares upon $H B$ and $\overline{H A}$.
\therefore the sq. upon $A B=$ the sq. upon $B H+$ the sq. upon AH.
$\because h^{2}=a^{2}+b^{2}$, and never $a^{\prime 2}+b^{\prime 2}$.
a. This proof and figure was formulated by the author, Dec. 16, 1933.

B

This type includes all proofs derived fromi the figure in which the square constructed upon the hypotenuse overlaps the given triangle and the squares constructed upon the legs as in type A, and the proofs are based on the principle of equivalency.
(1)

Seventy=2ne

Fig. 172 gives a par-

Fig. 172 titular proof. In rt. try. ABH , legs AH and BH are equal. Complete sq. AC on AB, overlapping the trio.. ABH , and extend $A H$ and $B H$ to C and D, and there results 4 equal equivalent tri's.1, 2, 3 and 4.

The sq. $A C=$ trill's $[(1+2+3+4)$, of which
try: $1+\operatorname{tri}:\left(2=2^{\prime}\right)=s q .-B C$, and $\operatorname{tr} 1.3+\operatorname{tri}$. $(4=41)=s . \operatorname{AD}$.
\therefore sq. upon $A B=$ sq. upon $B H+s q$. up lon $A H$.
$\therefore h^{2}=a^{2}+b^{2}$.
a. See fig. 73 b and fig. 91 herein.
b This proof (better, illustration), by Richard. Bell, Feb. 22, 1938. He used only ABCD of fig. 172; also credited to Joseph Houston, a high school boy of South Bend, Ind., May 18, 1939. He used the full fig.

Seventy -Iwo

Take $A L=C P$ and draw

Fig. 173 LM and CN pert. to AH. Since quad. CMNP $=$ quad. KCOH , and quad. CNHP is common to both, then quad. PHOK = mri. CMN, and we have: sq. $A K=$ (try. $A L M=\operatorname{tri} . \quad$ CF of sq. HG) + (quad. LBHM = quad. OBDE of sq. HD) + (mri. OHB common to sq's AK and HD) + (quad. $\mathrm{PHOK}=$ try. OGA of Aq. HG) + (quad. CMHP common to sq's AK and HG) $=$ sq. $H D+s q$. HG.
\therefore sq. upon $A B=s q$. upon $B H+s \dot{q}$. upon $H A$. $\therefore h^{2}=a^{2}$ $+b^{2}$. Q.E.D.
a. This proof, -with fig., discovered by the author March 26, 1934, 1 pom.

Seventy -Three

Assuming the three squares constructed, as in fig. 174 , draw GD --it must pass through H .

Sq. $A K \equiv 2$ trap. $A B M L$
$=2 \operatorname{tri}$. ALL +2 try. ABH
+2 try. $\mathrm{HBM}=2$ try. A HL
+2 (try. ACG $=$ trill. ALG + try. GLC $)+2$ tr. $\mathrm{HBM}=(2$ tr. ALL +2 try. ALG $)+(2$ try. GLC $=2 \operatorname{tr} 1$. DM.) +2 try. HBM
$=$ sq. $\mathrm{AF}+\mathrm{sq}: \mathrm{BE}$.
$\therefore h^{2}=a^{\therefore 2}$ eq. upon $A B=$ sq. upon $B H+s q$. upon $A H$.
a. See Am. Math. Mo., V. IV, 1897, p. 250, profit XLIX.

Seventy-Fgur

Fig. 175

Take $\mathrm{HM}=\mathrm{HB}$, and draw KL par. to AH and min par. to BH.

Sq. $A K=\operatorname{tri} . A N M$

+ trap. $\mathrm{MNBH}+\operatorname{tri} . \mathrm{BKL}+\mathrm{tri}$.
$\mathrm{KQL}+$ quad. $\mathrm{AHQC}=(\operatorname{tri} . \mathrm{CQF}$ $+\operatorname{tr} 1$. ACG + quad. AHQC)
+ (trap. RBDE + try. BRH)
$=\mathrm{sq} \cdot \mathrm{AF}+\mathrm{sq} . \mathrm{HD}$.

$$
\therefore \text { sq. upon } A B=s q .
$$

upon $\mathrm{BH}+$ sq. upon $A H . \quad \therefore h^{2}=\ddot{a}^{2}+b^{2}$.
a. See Am. Math. Mo., V. IV, 1897, p. 250, proof L.
b. If $O P$ is drawn in place of $M N$, $(L O=H B)$ is the proof is prettier, but same in principle: 1.. C. Also credited to R. A. Bell, Feb. 28, 1938.

Seventy -Five

In fig. 176, draw GN

Fig. 176 and $O D$ par. to $A B$.

Sq. $A K=$ rect. $A Q$ + rect. $O K=$ paras. $A D+$ rect. $A N=s q . B E+$ aral. $A M=s q$. $H D+s q . H G$.
\therefore sq. upon $A B=s q$.
upon $B H+s q$. upon $A H$. $\therefore h^{2}$
$=a^{2}+b^{2}$
a. See Am. Math. Mo., V. IV, 1897, p. 250, XLVI.

seventy -six

Fig. 177

In.fig: 177, draw GN and $D R$ par. to $A B$ and $L M$ par. to $A H$. K is the pt. of intersection of AG and DO. Sq. $A K=$ rect. $A Q$ ${ }_{0}+$ rect. $O N+$ rect. $L K=$ (paral. $D A=s q \cdot B E)+$ (paral. KM = pentagon RTHMG +.try. CSF) + (paral. GMKC = trap. GMSC $+\operatorname{tr} \cdot T R A)=s q \cdot B E+s q \cdot A F$.
$-\therefore$ sq. upon $A B=$ sq. upon $B H+$ sq. upon $A H$. $\therefore h^{2}=a^{2}+b^{2}$.
a. See Am. Math. Mo., V. IV., 1897, p. 250, proof XIVII; Versluys, 1914, p. 12, fig. 7.

Seventy -Seven

Fig. 178

In fig. 178, draw LM through H perp: to $A B$, and draw HK and HC.

Sq. $A K=$ rect. $I B$ + rect. $L A=2$ try. $K H B+2$ mri. $C A H=. s q . A D+s q \cdot{ }^{\prime} A F$.
\therefore sq. upon $A B=s q$. ran $B H+s q$, upon $A H$.
$\therefore h^{2}=a^{2}+b^{2}$.
a. Versluys, 1914, p. 12, fig. 7; Kipper, 1880, p. 12, proof V: Edw. Geometry, 1895, p. 159, fig. 23; Am. Math. Mo. ${ }^{\circ}$ Vol. IV, 1897, p. 250, proof LXXIII; E. Fourrey, Curiosities of Geometry, and Ed'n, p. 76, fig. e, credited to Peter Waring, 1762.

Seventy=Elaht

Fig. 179

Draw HL par. to BK, KM par. to $H A, K H$ and $E B$. Sq. $A K=$ (try. $A B H$ $=$ try. $A C G)+$ quad. AHPC common to sq. AK and sq. AF + (try. HQM $=. \operatorname{tri} . \quad \mathrm{CPF})+(\mathrm{tri}$. KM $=$ trig. END $)+$ [paras. QHOK $=2$ (try. HOK $=\operatorname{tri} . \mathrm{KHB}-\operatorname{tri}$. OHB = try; $\mathrm{EHB}-\operatorname{tri} .{ }^{\prime} \mathrm{OHB}$ $=\operatorname{tri}, E O B)=$ papal. OBNE] + teri. OHB common to sq. $A K$ and sq. HD .
\therefore sq. ${ }^{\circ} A K=s q . H D+s q . A F$.
\therefore sq. upon $A B=s q$, upon $B H+s q$. upon $A H$. $\therefore h^{2}=a^{2}+b^{-2}$.
a. See Am. Math. Mo., V. IV, 1897, p. 250, proof LI.
b. See Sci. Am. Sup., V. 70, 1910, p. 382, for a geometric proof , unlike the above proof, but based upon a similar figure of the B type.

Seventy= Nine

Fig. 180

In fig. 180, extend DE to K, ald draw KM perv. to FB.

* $\mathrm{Sq} . \mathrm{AK}=$ (try. ABH $=$ tr. ACG) + quad. AHLC common to sq. $A K$ and sq. AF + [(try. $K L M=$ ti. $B N H)$
$+\operatorname{tri} . B K M=\operatorname{tri}: K B D=\operatorname{tr} \varepsilon_{2}$. BDEN + (trio. KNE = tr. CLF)]. \therefore sq. $A K=s q . B E+s q . A F$.

```
    \(\therefore\) sq. upon \(A B=s q\), upon \(B H+s q\). upon \(A H\).
\(\therefore h^{2}=a^{2}+b^{2}\).
    a. See Edwards' Geom., 1895., p. 161, f1g.
```

(36); Am. Math. Mo., V. IV, 1897,' p. 251, proof LII;
Versluys, 1914, p. 36, fig. '35, credited to Jenny de Buck.

ELahty

In fig. 181, extend GF to L making $\mathrm{FL}=\mathrm{HB}$ and draw KL and KM respectively par. to BH and AH .1

Sq. $A K=$ (tri. $A B H$ $=\operatorname{tr1}$. CKY " trap. BDEN + tri. COF $)+(\operatorname{tri} 1 . \operatorname{BKM}=\operatorname{tri} . A C G)$ $+(\operatorname{tri}, \mathrm{KOM}=\operatorname{tri}, \mathrm{BNH})+$ quad. AHOC common to sq. $A K$ and sq. HD + sq. HG .
F18. 181
. See Am. Math. Mó., V. IV, 1897, p. 251, proof LVII.

Elghty=Qne

In.f1g. 182, extend DE to L making $K L=H N$, and draw ML.
$\mathrm{Sq} \cdot \mathrm{AK}=(\operatorname{tri} \cdot \mathrm{ABH}$
$=\operatorname{tri} \cdot A C G)+\left(\operatorname{tri} . \mathrm{BMK}=\frac{1}{2}\right.$ rect. $B L^{\circ}=-\mathrm{trap} . \mathrm{BDEN}+$ (tri. MKL common to sq. AK and sq. AF. $=$ sq. HD + sq. HG.

$$
\therefore \text { sq. upon } A B=\text { sq. }{ }_{2}
$$

Fig. 182
upon $\mathrm{BH}+$ sq. upon AH . $\therefore h^{2}$. $=a^{2}+b^{2}$.
(18).
a. See Edwards "Geom:,' 1895, p. 158, fig.

Elghty-Twe

In fig. 183, extend GF

FIg. 183
to L and draw LH.
and $D E$ to Sq. $A K=$ hexagon $A H B K L C$ + paral. $\mathrm{HK}+$ paral. $\mathrm{HC}=\mathrm{sq}$. HD + sq. HG.

$$
\therefore \text { sq. upon } A B=\text { sq. }
$$

upon $B H+$ sq. upon AH. $\therefore h^{2}$.
$=a^{2}+b^{2}$.

> a. Original with the
author, July 7a:1901; but old for it appears in Olney's Geom, university edition, 1872, p. 250, fig. 374; Jury Wipper, 1880, p. 25, fig. 20b, as given by M. V. Ash, in "Philosophical. Transactions," 1683; Math. Mo., V. IV, 1897, p. 251, proof LV; Heath's Math. Monographs, No. 1, 1900, p. 24, proof IX; Versluys, 1914; p. 55, fig. 58, credited to Henry Bond. Based on the Theorem of Pappus. Also see Dr. Leitizmann, p. 21, fig. 25, 4th Edition.
b. By extending $L H$ to $A B$, an algebraic proof can be readily devised, thus increasing the no. of simple proofs.

ELghty=Ihree

In fig. 184, extend GF and DE to L , and draw LH .

Sq. $\cdot A K=$ pentagon ABDLG

- (3 tri. ${ }^{\prime} A B H=$ tri. $A B H i+r e c t$. $\mathrm{LH})+\mathrm{sq} . \mathrm{HD}+\mathrm{sq} . \mathrm{AF}$.
\therefore sq. upon $A B=s q$.
upon $B H+s q$. upon AH. $\quad \therefore h^{2}$ $=a^{2}+b^{2}$.
a. See Journal of Edu-
cation, 1887, V. XXVI,' p. 21, fig. X; Math. Mo., 1855, Vol. II, No. 2, Dem. 12, fig. 2.

ELotty=Four

In fig. 185, extend H

\% Fig. 185 draw $L M$ perp: to $A B$, and draw HK and HC.

Sq. $A K=$ rect. $L B$

+ rect. IAA $=2$ try. HBK +2 trill. $\mathrm{AHC}=\mathrm{sq} . \mathrm{HD}+\mathrm{sq} . \mathrm{HG}$.
\therefore sq. upon $A B=s q$.
upon $B H+s q$. upon. $A H$. $\therefore h^{2}$ $=a^{2}+b^{2}$.
a. See Sci. Am. Sup.,
V. 70, p. 383, Dec. $10 ; 1910$, being No. 16 in A. R. Colburn's 108 proofs; Fourreỵ, p. 71, fig, e.

EIghty $=$ FIVe

In fig. 186, extend GF

Fig. 186 and DE to L , and through H draw IN, N being the pt. of intersection of $N H$ and $A B$.

Sq. $A K=$ rect. $M B$ t rect. $\mathrm{MA}=$ aral. $\mathrm{HK}+$ para. $\mathrm{HC}=\mathrm{sq} . \mathrm{HD}+\mathrm{sq} . \mathrm{HG}$.
\therefore sq. upon $A B=s q$. upon $B H+s q$. upon AH. $\therefore h^{2}$ $=a^{2}+b^{2}$.
a. See Jury Hipper, 1880, p. 13, fig. 5b, and p: 25, fig. 21, as given by Klagel in "Encyclopãedie," "-1808; Edwards' Geom., 1895, p: 156; fig. (7); Eben Geometries, vol G. Mahler, 1897, p. 87, art. 11; Am. Math. Mo., V. IV, 1897, p. 251, LIII; Math. Mo', I859, Vol. II, No. 2, fig. 2, Dem. 2, pp. 45-52, where credited to Charles A. Young, Hudson, 0., now Dr. Young, astronomer; Princeton, N.J. This proof is an applicatron of Prop. XXXI, Book IV, Davies Legendre; also Ash, M. v. of Dublin'; also Joseph Kelson, Phyla., Pa., a student in West. Chester High School, 1939.
b. This figures will give an algebraic proof.

Eighty=SLx

In fig. 186 it is evident that sq. $A K=$ hexagon $A B D K C G-2$ tri. $B D K=$ hexagon $A H B K L C=$ (paras. $K H=$ rect.$K N)+$ paral. $C H=$ rect. $C N)=s q . ~ H D+s q$. HG. \therefore sq. upon $A B=$ sq. upon $B H+s q$. upon $A H . \therefore h^{2}$ $=a^{2}+b^{2}$. Q.E.D.
a. See Math. Mo., 1858, Vol. I, p. 354; Dem. 8, where it is credited to David Trowbridge.
b. This proof is also based on the Theorem of Pappus. Also this geometric proof can easily be converted into an algebraic proof.

Eighty=Seven

Fig. 187

In fig. 187, extend DE to K, draw $F E$, and draw KM par. to AH.

Sq. $A K=$ (twi. $A B H$ $=\operatorname{tri} . A C G)+$ quad: AHOC common to sq. $A K$ and sq. $A K+$ tri. BLH common to sq. AK and sq.
$\mathrm{HD}+$ [quad. $\mathrm{OHL},=$ pentagon ORIN + (try. $P M K=t r i$. ALE $)$ $+($ ti. $M K N=$ trio. $O N F)=$ tres.

HEN $=$ (mri. $\mathrm{BDK}=$ trap. $\mathrm{BDEL}+$ (trig. COF $=$ tri. IEK)] $=s q . H D+s q . H G$.
\therefore sq. upon $A B=$ sq. upon $H D+s q$. upon $H G$.
$\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Am. Math. Mo., IV, 1897, p. 251, proof LVI.

Elghty-Eight

In fig. 188, extend $G F$ and $B K$ to L, and through H draw MN pap, to BK, 'and draw KM.

Sq. $A K^{\prime \prime}=$ parai. $A O L C=$ para. $H L+$ aral. HC $=$ (paral. $H K=s q . A D)+s q . H G$.
\therefore sq: upon $A B=$ sq. upon $B H+s q$. upon $A H$.
$\therefore h^{2}=a^{2}+b^{2}$.

Fig. 188
a. See Jury Hipper, 1880, p. 27, fig. 23, where It says that this proof was given to Joh. Hoffman, 1800, by a friend; also Am. Math. Mo., 1897, V. IV, p. 251, proof LIV; Versluys, p. 20, fig. 16, and p. 21, fig. 18; Fourrey, p. 73, fig. b.
b. From this figure ${ }^{*}$ an algebraic proof is easily devised.
c. Omit line MN , and we have R. A. Bell's fig. and a proof by congruency follows. He found it Jan. 31, 1922.

Elghty=Mine

Extend GF to L making

Fig. 189 $F L=B H$, draw $K 工$, and draw $C 0$ par. to FB and KM par. to AH .

$$
S C_{C} A K=(t r 1, A B H
$$ $=\operatorname{tr} 1 . A C G)+\operatorname{tri}$. CAO common to sq's AK and HG +isq. MH common to $s q$'s $A K$ and HG + [pentason $\mathrm{MNBKC}=$ rect. $M L+$ (sq. NL $=s q . H D /]=s q . H D+s q . H G$. \therefore sq. upon $A B=$ sq.

upon $B H+$ sq. upon HA. $\therefore h^{2}$ $=a^{2}+b^{2}$. Q.E.D.
a: Devised by the author, July 30, 1900, and afterwards found in Fourrey, p. 84, fig. c.

Ninety

In fig. 190 produce $G F$ and DE to L, and $G A$ and $D B$ to M. Sq. $A K+4$ try. $A B H=$ sq. $G D=s q$. $H D$ + sq. HG + (rect. $H M=2$ try. $A B H$) + (rect. $L H=2$ try. $A B H$) whence sq. $A K=s q . H D+s q . H G$.
\therefore sq. upon $A B=$ sq. upon $B H+$ sq. upon $A H: ~$
$\therefore \mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.

Fig. 190
a. See Jury Wipper, 1880, p. 17, fig. 10, and is credited to Henry Boad, as given by Johann Hoffmann, in "Der Pythagoraische Lehrsatz," 1821; also see Edwards' Geom., 1895, p. 157, fig. (12).
Heath's Math. Monographs, No. 1, 1900, p. 18, fig. 11; also attributed to Pythagoras, by W. W. Rouse Ball. Also see Pythagoras and his Phillosophy in Sect. II, Vol. 10, p. 239, 1904; in proceedings of Royal Society of Canada, wherein the figure appears as follows:

Fig. 191

Minety=One

Fig. 192

Tri's BAG, MBK, EMC, AEF, HDH and DLC are each $=$ to tri. ABH.
\therefore sq. $A M=$ (sq. $K F-4$
tri. ABH.$)=[$ (sq. $\mathrm{KH}+\mathrm{sq} . \mathrm{HF}$ +2 rect. $G H)-4$ tri. $A B H]=s q$. $\mathrm{KH}+\mathrm{sq}$. HF.
\therefore sq. upon $A B=$ sq. upon $H B+s q$. upon HA. $\quad \therefore \dot{h}^{2}=a^{2}+b^{2}$.
a. See P. C. Cullen's pamphlet, 11 pages, with title,
"The Pythagorean Theorem; or a New Method of Demonstrating it." Proof as above. Also Fourrey, p. 80, as the demonstration of Pythagoras according to Bretschenschneider; see Simpson, and Elements of Geometry, Paris, 1766.
b. In No. 2, of Vol. I, of Scientia Baccalauneus, p. 61, Dr. Wm. B. Smith, of the Missouri State University, gave this method of proof as new. But, see "School V1sitor," Vol. II, No. 4, 1881, for same demonstration by Wm . Hoover, of Athens, $0 .$, as "adapted from. the French of Dalseme." Also see "Math. Mo.," 1859,' Vól. I', Ňo. 5, p. 159; also the same journal, 1859, Vol. II, No. 2, pp. 45-52, where Prof. John M. Richardson, Collegiate Institute, Boudon, Ga., gives a collection of 28 proofs, among which, p. 47, is the one above, ascribed to Young.

See also Orlando Blanchard's Arithmetic, 1852; published at Cazenovia, N.Y., pp. 239-240; also Thomas Simpson!s "Elements of Geometrys" 1760, p. 33, and p. 31 of his 1821 edition.

Prof. Saradaranjan Ray of India gives it on
pp. 93-94 of Vol. I, of his Geometry, and says 16 "is due to the Persian Astronomer Nasir-udaln who flourished in the 13th century under Jengis Khan." Ball, in his "Short History of Mathematics," gives same method of proof, $p, 24$, and thinks it is probably the one originally offered by Pythagoras. Also see "Math. Magazine," by Artemas Martin, LL.D., 1892, Vol. II, No. 6, p. 997. 'Dr. Martin says: "Probably ho other theorem has received so much attention from Mathematicians or been demonstrated in so many different ways as this celebrated proposition, which bears the name of its supposed discoverer."
c. See T. Sundra Row, 1905, p..14, by paper folding, "Reader, take two equal squares of paper and a pair of scissors, and quickly may you know that $A B^{2}=B H^{2}+H A^{2} . "$

Also see Versluys, 1914, his 96 proofs, p.41, fig. 42. The titie page of Versluys. is:

RES EN NEGENTIG BEWIJZEN

For He
THEOREM VAN PYTHAGORAS

Verzameld en Gerangschikt
 Door

J. VERSLUYS

Amsterdam --1914

Ninety=Twe

In fig. 193, draw KL

Fig. 193 par. and equal to BH , through H draw LM par. to BK, and draw $A D, L B$ and $C H$.

Sq. $A K=$ rect. MK + rect. $\mathrm{MC}=$ (aral. $\mathrm{HK}=2$ try. $B K L=2$ sri: $A B D=s q$. $\mathrm{BE})+(2$ try. $\mathrm{AHC}=\mathrm{sq} . \mathrm{AF})$.
\therefore sq. upon $A B=s q$.
upon $\mathrm{BH}+$ sq. upon AH. $\therefore h_{\text {. }}^{2}$ $=a^{2}+b^{2}$.

a. This figure and

 proof is taken from the following work, now in my li-, bray; the title page of which is shown on the following page.The figures of this book are all grouped together at the end of the volume. The above figure is numbered 62; and is constructed for "Propositio XXViII," in "Librum Primus," which proposition reads, "In rectangulis triangulis, quadratum quod a latere rectum angulum subtedente describitur; equable est els, quai a lateribus rectum angulum continentibus describuntur quadratic."
"Euclides Elementorum Geometricorum
Libros Tredecim
Isidorum et"Hypsiclem
\& Recentiores de Corporibus Regularibus, \&
Procli
Propositiones Geometricas

e Societate Jesu. Sacerdos, patria Oraacensis in libero Comitatu Burgundae, \& Regius Mathematicarum
Professor: dicantique
Philippo IIII. Hispaniarum et. Indicarum Regi Cathilico.
Antwerpiae,
ex Officina Hiesonymi Verdussii. MoDC.XLV.
Cum Gratia \& Privilegio"

Then comes the following sentence:
"Proclus in hunc librum, celebrat Pythagoram Authorem huius propositionis, pro cuius demonstratione dicitur Dils Sacrificasse hecatombam Taurorum." Following this. comes the "Supposito," then the "Constructio," and then the "Demonstratio," which condensed and translated 1s: (as per fig. 293) triangle $B K L$ equals triangle $A B D$; square $B E$ equals twice triangle $A B M$ and rectangle $M K$ equais twice triangle $B K L$ therefore rectangle, MK equals square BE . Also square AG equals twice triangle AHC; rectangle $H M$ equals twice triangle CAH; therefore square AG equal rectingle HM. But square BKi equals rectangle KM plus rectangle CM. Therefore square $B K$ equals square $A G$ plus square $B D$.
$\therefore \quad$ The work from which the above is taken is a book of 620 pages, 8 inches by 12 inches, bound in vellum, and, though printed in 1645 A.D., is well preserved. It once had a place in the Sunderland Library, Blenheim Palace., England, as the book plate shows - -on the book plate is printed--" From the Sunderland Library, Blenhe1m Palace, Purchased, April, 1882."

The work has 408 diagrams, or geometric figures, is entirely in Latin, and highly embellished.

I found the book in a second-hand bookstore in Toronto, Canada, and on July 15, 1891, I purchased it. (E. S. Loomis.)

C

This type includes all proofs derived from the figure in which the square constructed upon the longer leg overlaps the given triangle and the square upon the hypotenuse.

Proofs by dissection and superposition are possible, but none were found.

Minety=Ihree

Fig. 194

In f1g. 19.4, extend KB to L, take $G N=B H$ and draw $M N$ par. to $A H . S q . A K=$ quad. $A G O B$ common to sq's $A K$ and $A F+$ (tri. $\mathrm{COK}=\mathrm{tri} . \mathrm{ABH}+\operatorname{tr} 1 . \mathrm{BLH})$

+ (trap. GGNM = trap. BDEL)
+ (tri. AMN $=$ tri. BOF) $=$ sq. HD
+ sq. HG .
\therefore sq. upon $A B=s q$. upon $\mathrm{BH}+\mathrm{sq}$. upon $\mathrm{AH} . \quad \therefore h^{2}=a^{2}+b^{2}$. a. See Ám. Math. Mo., V. IV, 1897, p. 268, proof LIX. b. In fig. 194, omit MN and draw K perp. to $O C$; then take $K S=B L$ and draw ST perp. to OC. Then the fig. is that of Richard A.

Bell, of Cleveland, O., devised July 1, 1918, and given to me Feb. 28, 1938, along with 40 other proofs through dissection, and all derivation of proofs by Mr. Bell (who knows practically nothing as to Euclidian Geometry) are found therein and credited to him, on March 2, 1938. He made no use of equivalency.

Ninety-Equr

In fig. 195, draw DL par. to $A B$, through G draw $P Q$ par. to CK, take $G N=B H$, draw $O N$ par. AH and LM perp. to AB.

Sq. $A K={ }^{\circ}$ quad. $A G R B$ common to sq's AK and AF + (try. ANO $=$ try. $B R F$) + (quad. $O P G N=$ quad. LABS $)+$ (rect. PK = aral. ABDL $=$ sq. $B E)+(\operatorname{tri} . G R Q=\operatorname{tri} . A M L)$ $=s q . B E+s q . A F$.
\therefore sq. upon $A B=$ sq. upon $B H+$ sq. upon AH. $\quad \therefore h^{2}=a^{2}+b^{2}$.
a. Devised by the author, July 20, 1900.

Ninety - Five

In fig. 196, through G

Fig. 196

Minety $=\underline{S i x}$

In fig. 197, extend FG

Fig. ${ }^{197}$
to G, draw $E B$, and through C draw HN , and draw DL par. to AB.

Sq. $A K=2$ [quad. $A C N M$ $=(\operatorname{tr} 1 . \mathrm{CGN}=\operatorname{tri} . \mathrm{DBL})+\operatorname{tri}$. AGM common to sq. AK and AF + (tri. $\mathrm{ACG}=\operatorname{tr} 1 . \mathrm{ABH}=\operatorname{tr} 1 . \mathrm{AMH}$ + tri. ELD)] $=2$ tri. AGH +2 $\operatorname{tri} . \mathrm{BDE}=\mathrm{sq} . \mathrm{HD}+\mathrm{sq} . \mathrm{HG}$.
\therefore sq. upon $A B=$ sq. upon $\mathrm{BH}+$ sq. upon $A H, \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Am. Math. Mo., V. IV, 1897, p. 268, proof LXIII.

Mine: $x=$ Segen

In fig. 198, extend FG

Fig. 198 to C, draw HL par. to $A C$, and
draw $A D$ and $H K$. Sq. $A K=$ rect. $\mathrm{BL}+$ rect. $\mathrm{AL}=$ (2 tri. $\mathrm{KBH}=2$ tri. $A B D+$ paral. $A C M H)=s q . B E$ + sq. AF .
\therefore sq. upon $A B=s q$. upon
$\mathrm{BH}+$ sq. upon AH. $\quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Jury Wipper, 1880,
p. 11, II; Am. Math. Mo., V. IV, 1897, p. 267, proof LVIII; Fourrey, p. 70, fig. b; Dr. Lisitzmann's work (1920), p. 30, f1g. 31.

Minety=Elaht

In fig. 199, through G draw $M N$ par. to $A B$, draw $H L$ perp. to $C K$, and draw $A D, H K$ and $B G$.

Sq. $A K=$ rect. $\mathrm{MK}+$ rect. $\mathrm{AN}=$ (rect. $\mathrm{BL}=2$ $\operatorname{tri} . \mathrm{KBH}=2 \operatorname{tri} . \mathrm{ABD})+2 \operatorname{tr} 1 . \mathrm{AGB}=\mathrm{sq} . \mathrm{BE}+\mathrm{sq} . \mathrm{AF}$.
\therefore sq. upon $A B=$ sq. upon
$B H+s q$. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Am. Math. Mo., V. IV, 1897, p. 268, proof IXI.

Minety=Mine

In fig. 200; extend FG to C, draw $H L$ par. to $B K$, and draw EF and $I K$. Sq. $A K=$ quad. AGMB common to sq' $s^{\prime} A K$ and $A F$ + (try. $A C G=\operatorname{tri} . A B H)+(t r i$. CKL = trap. EHBN +ti. BMF $+($ trio. KML $=\operatorname{tri} . \mathrm{END})=$ sq. HD + sq. HG.
\therefore sq. upon $A B=s q$. upon $\mathrm{BH}+\mathrm{sq}$. upon $\mathrm{AH}: \quad \therefore \mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.
ia. See Am. Math; Mo., V. IV, 1897., p. 268, proof IXIV.

- Qne_Hundred

Fig. 200

In fig. 201, draw FL par. to $A B$, extend $F G$ to C, and draw EB and FK . $\mathrm{Sq} . \mathrm{AK}=$ (rect. LK $=2$ try. $\mathrm{CKF}=2$ try. $\mathrm{ABE}=2$ try. $\mathrm{ABH}+\mathrm{tri} . \mathrm{HBE}=\mathrm{tr} 1 . \mathrm{ABH}+\mathrm{tri}$. FIG + sq. HD) + (rect. $\mathrm{AN}=$ parsi. MB). \therefore sq. upon $A B=$ sq. upon
$B H+$ sq. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Am. Math. Mo., V. IV, 1897,.p. 269, proof LXVII:

Fig. 201

Hg. 202

TIg. 203

Fig. 204

Qne_Hundred_One
In fig. 202, extend FG to C, $H B$ to I, draw K par: to AH , and take $\mathrm{NO}=\mathrm{BH}$ and draw OP and NK par. to BH .

Sq. $A K=$ quad. $A G M B$ common to sq's $A K$ and $A F+$ (tri. ACG $=\operatorname{tr} 1 . \mathrm{ABH})+(\operatorname{tri} \cdot \mathrm{CPO}=\operatorname{tr} 1 . \mathrm{BMF})^{x}$ + (trap. PKNO + tri. $\mathrm{KMN}=\mathrm{sq} . \mathrm{NL}$ $=s q \cdot H D)=s q \cdot H D+s q \cdot A F$.

$$
\therefore \text { sq. upon } A B=\text { sq. upon }
$$

$\mathrm{BH}+\mathrm{sq}$. upon $\mathrm{AH} . \quad \therefore \mathrm{h}^{2}=a^{2}+b^{2}$.
a. See Edwards' Geom., 1895, p. 157, f1g. (14).

Qne_Hundred_Iwe

In fig. 203, extend HB to L making $F L=B H$, draw HM perp. to $C K$ and draw $H C$ and $H K$.

Sq. $A K=$ rect. $B M+$ rect. $A M=2$ tri. $K B H+2$ tri: $H A C=s q$. $\mathrm{HD}+\mathrm{sq} . \mathrm{HG}$.
\therefore sq) upon $A B=$ sq. upen $B H+s q$. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Edwards' Geom.;

1895, p. 161 , fig.-(37).

Qne_Hundred_Ihree

Draw HM, LB and EF par.
to BK. Join ${ }^{-1} \mathrm{CG}, \mathrm{MB}$ and FD .
Sq. $\cdot A K=$ paral. $A C N L$
= paral. HN + paral. $H C=$ (2 tri. $B H M=2$ tri. $D E F=s q \cdot H D)+s q$. $H G=s q \cdot H D+s q . H G$.
\therefore sq. upon $A B=$ sq. upon $B H+s q$. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Am. Math. Mo., V. IV, 1897, p. 269, proof IXIX.

Qne Hundred_Equr

In fig. 205, extend FG to C, draw. KN par. to BH, take $\mathrm{NM}=\mathrm{BH}$, draw ML par. to HB , and draw MK, KF and BE .

Sq. AK $\xlongequal[=]{(\mathrm{m}}$ quad. AGOB common to sq's $A K$ and $A F+$ (tri. $A C G$ $=\operatorname{tr} 1 . \mathrm{ABH})+(\operatorname{tri} . \operatorname{CLM}=\operatorname{tri}$. BOF $)+[(\operatorname{tri} 1 . \operatorname{LKM}=\operatorname{tri}$. OKF $)$ $+\operatorname{tri} . \mathrm{KON}=\operatorname{tri} . \mathrm{BEH}]+$ (tri. MKN $=\operatorname{tri} . \operatorname{EBD})=(\operatorname{tri} . \mathrm{BEH}+\operatorname{tr1}$. $E B D)+$ (quad. $A G O B+t r i$. BOF $+\operatorname{tr} 1 . A B C)=s q . H D+$ sq. HG. \therefore sq. upon $A B=s q$. upon BH + sq.. upon AH. $\therefore h^{2}=a^{2}+b^{2}$. LXVIII.

Qne_Hyndred_Five

In fig. 206, extend FG
 to H, draw HL par. to $A C, \mathrm{KL}$ par. to $H B$, and draw $K G, L B, F D$ and EF.

Sq. $A K=$ quad. $A G L B$ com. mon to $s q$'s $A K$ and $A F+$ (tri. ACG $=\operatorname{tri} . \mathrm{ABH})+(\operatorname{tr} 1 . \mathrm{CKG}=\operatorname{tri}$. . $\mathrm{EFD}=\frac{1}{2}$ sq. HD$)+($ tri. GKL
$=$ tri: BLF $)+$ (tri. BLK $=\frac{1}{2}$ paral. HIK $\left.=\frac{1}{2} \mathrm{sq} . \mathrm{HD}\right)=\left(\frac{1}{2} \mathrm{sq} . \mathrm{HD}+\frac{1}{2} \mathrm{sq}\right.$. $\mathrm{HD})+$ (quad. $A G L B+\operatorname{tri}$. $A B H$ $+\operatorname{tri}$. BLF) $=\mathrm{sq} . \mathrm{HD}+\mathrm{t}$ sq. AF . $B H+$ sq. upon $A H$. $\quad \therefore h^{2}=a^{2^{2}}+b^{2}$. upon $A B=$ sq. upon proof LXV.

2ne_Hundred_six

F1g. 207

In fig. 207, extend FG to C and N, making $F N=B D, K B$ to 0 ., (K being the vertex opp. A in the sq. (CB) draw FD, $F E$ and FB, and draw $H H$ par. to $A C$.

Sq. $: A K=$ paral. ACMO =paral. $\mathrm{HM}+$ paral. $\mathrm{HC}=$ [(páral. EHLF = rect. EF) - (paral. EOMF $=2$ tri. $\mathrm{EBF}=2$ tri. $\mathrm{DBF}=$ rect . $D F)=s q \cdot H D]=s q \cdot H D+s q \cdot A F$. \therefore sq. upon $A \hat{B}=$ sq. upon $\mathrm{BH}+$ sq. upon $\mathrm{AH} . \quad \therefore \mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.
\&. See Am. Math. Ko., V. IV, I897, p. 268, ... proof LXVI.

Qne_Hundred_seven.

, Fig. 208
In fig: 208, through \dot{C} and K draw NP . and $P M$ par. respectively ${ }^{\circ}$ a to BH aind AH , and extend ED to M, HF" to $I, \therefore A G$ to Q, HA to N and F G to C. Sq: AK + rect. $H M$ +4 tri. $\mathrm{ABH}=$ rect. NM $=$ sq. $\dot{H D}+$ sq. $H G+$ (rect. rect. HM) + (rect. $a=2$ tri. $A B H$) + (rect. $M=2$ tri. $A B H)$. \therefore sq. $A K=$ sq. $H D$

+ sq. HG. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
$2 \quad \therefore$ sq. upon $A B=$ sq. upon $B H+$ sq. upon AH: $\therefore h^{2}=a^{2}+\dot{b}^{2}$.

3. Credited by Joh. Hoffmann, in "Der Pythagoraische Lehrsatz," 1821, to Henry Boad of London; see Jury Wipper, 1880, p. 19, 'fig. 13\%.

Qne_Hundred_Eight

By dissection. Draw HL par. to $A B, C F$ par. to $A H$ and $K 0$ par. to BH. Number parts as in figure.

Whence: sq. $\mathrm{AK}=$ parts $[(1+2)=(1+2)$ in sq. $H D)]$ $+\operatorname{parts}[(3+4+5)=(3+4+5$ in sq. $H G)]=s q: H D+s q . H G$.
\therefore sq. upon $A B=$ sq. upon

CKM-G, ${ }^{2}$
Fig. 209
$H D+s q$. upon HA. $\quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. Devised by the author to show a proof of Type-C figure,
फy dissection,. Dec. 1933.

D

This type includes all proofs derived from the figure in which the square constructed upon the shorter leg overlaps; the given triangle and the square upon the hypotenuse.

Qne_Hundred_Nine

In flig. 210, extend ED to K, dnaw Hil perp. to CK and draw HK.

Sq. $A K=$ rect. $B L+$ rect: ${ }^{\text { }}$

+ (sq. HE by Euclid's proof \%.,
\therefore sq. upon $A B=s q_{\text {, upon }}$ $\mathrm{BH}+$ sq. upon $\mathrm{AH} . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Jury Wipper, 1880,

CL- ${ }^{2}=1 / 2$ p. 11, fig. 3; Versluys, p. 12,
Fig. 210 fig. 4, given by Hoffmañ.

Fig. 211

Fig. 212.
In fig. 212, extend $F B$ and $F G$ to I and M making $\mathrm{BL}=\mathrm{AH}$ and CM $=\mathrm{BH}$, complete the rectangle FO and extend HA to N, and ED to K .
sq. $A K+$ rect. ${ }^{\mathrm{MH}}$
+4 tri. $\mathrm{ABH}=$ rect. FO^{\prime}
$=$ sq. $\mathrm{HD}+$ sq. $\mathrm{HG}+$ (rect. $\mathrm{NK}=$ rect. MH) + (rect. MA
$=2$ tri. ABH) + (rect. DL
$=2$ tri. $\widehat{A} B H$); collecting
we have sq. $A K=s q$.' $H D$
\div sq. HG:
\therefore sq, upon $A B=$ sq.
upon BH + sq. upon AH.
$\therefore h^{2}=a^{2}+\dot{b}^{2}$.
a. Credited to Henry Boad by Joh. Hoffmann, 1821; see Jury Wipper, 1880; p. 20, fig. 14.:

Qne_Hyndred_Iwelve

In fig. 213, extend ED to K, draw HL par. toxAC, and draw CM.

Sq. $A K=$ rect. $B L+$ rect. $A L=$ pargl. $\mathrm{HK}+$ paral. $\mathrm{HC}=\mathrm{sq}$. $H D+s q$. HG.
\therefore sq. upon $A B=$ sq. upon $\mathrm{BH}+\mathrm{sq}$: upon AH. $\therefore \mathrm{h}^{2}=a^{2}+b^{2}$. a. Devised by the author, Aug. 1, 1900.

Fig. 213

Qne_Hundred_Thirteen

In fig. 214, extend $E D$ to K and Q, draw CL perp. to EK, extend GA to M , také $\mathrm{MN}=\mathrm{BH}$; draw NO par. to AH, and draw Fe.

Sq. $A K=$ (tr1. $C K=$ tri. FEH1) $+(\operatorname{tri} 1 . \mathrm{KBD}=\operatorname{tri} . \mathrm{EFQ})$ + (trap. AMEP + tri. AON $=$ rect. GE $)+$ tri. BPD common to sq's AK and $B E+$ (trap. $C M N O=$ trap. BHEP $)=$ sq. HD + sq. HG.
\therefore sq. upon $A B=$ sq. upon $\mathrm{BH}+$ sq. upon AH. $\therefore \mathrm{h}^{2}=\mathrm{a}^{2}+b^{2}$.
a. Original with the author; Aug. $1,1900$.

2ne Hundred_Equrteen

Employ fig. 214, numbering the parts as there. numbered; then, at once: sq. $A K=$ sum of 6 parts $[(1+2=\mathrm{sq} . \mathrm{HD})+(3+4+5+6=\mathrm{sq} . \mathrm{HG})=\mathrm{sq}$. $\mathrm{HD}+\mathrm{sq}, \mathrm{HG}]$.

$$
\begin{aligned}
\therefore h^{2}= & \therefore \text { sq. upon } A B=\text { sq. upon } H B+\text { sq. upon } H A . \\
& \text { a. Formulated } b y \text { the author, Dec. 19, } 1933 . \\
& \text { Qne. Hundred Fifteen }
\end{aligned}
$$

In fig. 215, extend HA to 0 making $O A=H B$, $E D$ to K, and join $O C$, extend $B D$ to P and join EP. Number parts 1 to 11 as in figure. Now: sq. $A K=$ parts 1 $+2+3+4+5$; trapezoid EPCK $=\frac{E K+P C}{2} \times P D=K D \times P D=A H \times$
$A G=$ sq. $H G=$ parts $7+4+10$
$+11+1$. Sq. $\mathrm{HD}=$ parts $3+6$.
\therefore sq. $A K=1+2+3+4$
$+5=1+(2=6+7+8)+3+4$
$+5=1+(6+3)+7+8+4+5$
$=1+(6+3)+(7+8=11)+4$
$+5=1+(6+3)+11+4+5$
$=1+(6+3)+11+4+(5=2-4$, since $5+4+3$
$=2+3)=1+(6+3)+11+4+2-4=1+(6+3)$
$+11+4+(2=7+4+10)-4=1+(6+3)+11$
$+4+7+10=(7+4+10+11+1)+(6+3)=$ sq. HG + sq. HD.
\therefore sq. upon $A B=$ sq. upon $H B+{ }^{+\alpha}$ sq. upon $H A$.
$\therefore \mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$. Q.E.D.
a. This rigure and proof formulated by Joseph Zelson, see proof Sixty-Nine, E , fig. 169. It came to me on May 5, 1939.
b. In thifs proof, as in all proofs received I omitted the column of "reasons" for steps of the demonstration, and reduced the argumentation from many (in Zelson's proof over, thirty) steps to a compact sequence of essentials, thus leaving, in all cases, the reader to recast the essentials in the form go given in our accepted modern texts.

By so doing a saving of as much as 60% of page space results--also hours of time for thinker and printer.

One_Hundred_sixteen

In fig. 216, through D

draw $L N$ par. to $A B$, extend $E D$ to K, and draw HL and $C D$.

Sq. $A H=$ (rect. $A N$
$=$ paral. $A D=s q . D H)+($ rect. $M K$ $=2$ tri. $\mathrm{DCK}=$ sq. GH).
\therefore sq. upon $A B=$ sq. upon $\mathrm{BH}+\mathrm{aq}$. upon AH . $\quad \therefore \mathrm{h}^{2}=\mathrm{a}^{2}+b_{1}^{2}$.
a. Contrived by the author, August 1, 1900.
b. As in types A, B and C, many other proof's may be derived from the D type of figure.
Fig. 216

E

This type includës all proofs derived from the figure in which the squares constructed upon the hypotenuse and the longer leg overlap the given triangle.

Qne_Hundred_segenteen

F1g: 217

In fig. 2i\%, through H draw LM par. to KB , and draw GB, Hik and HC.

$$
\text { Sq. } A K=\text { rect. } L B+\text { rect } .
$$

$L A^{\prime}=(2 \operatorname{tri} . H B K=s q \cdot H D)+(2$ tri: $\mathrm{CAH}=2 \operatorname{tri} . \mathrm{BAG}=\mathrm{sq} . \mathrm{AF}$).
\therefore sq. upon $A B=$ sq. upon BH + sq. upon AH. $\quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Jury W1pper, 1880;
p. 14, VI; Edwards 'Geom., 1895,
p. 169, f1g. (38); Am. Math. Mo.,
V. V, 1898, p. 74, proof LXXV;

Versluys, p. 14, fig. 9; one of

Hoffman's collection, 1818; Fourrey, p. 71, fig. g; Math. Mo., 1859, Vol. II, No. 3, Dem. 13, fig, 5.

Qne_Hundred_Elghteen

In fig. 218, extend $D E$

Fig. 218 to K and draw $D L$ and $C M$ par. respectively to AB and BH .

Sq: $A K=$ (rect. $L B$ $=$ aral. $A D=s q .(B E)+$ (rect. $L K=$ aral. $C D=$ trap. $C M E K$ $=\operatorname{trap} . A G F B)+(\operatorname{tri} . K D N=\operatorname{tri}$. $(C L M)=s q . B E+s q: A F$.
\therefore sq. upon $A B=$ sq. upon $\mathrm{BH}+$ sq. upon $\mathrm{AH} . \quad \therefore \mathrm{h}^{2}=\mathrm{a}^{2}$. $+b^{2}$.
arm see Am. Math. Mo., V. V', 1898, p. 74, LXXIX.

Qne_Hyndred_Mineteen

In fig. 219, extend KB

FIg. 219 to $P S$ draw CN par. to $H B$, take $\mathrm{NM}=\mathrm{HB}$, and draw ML par. to AH.

Sq. $\mathrm{AK}=$ (quad. ${ }^{\text {No KC }}$ $=$ quad. GPBA$)+(\operatorname{tri} . \cdot C L M=\operatorname{tri}$. $\mathrm{BPF})+($ trap. $\mathrm{ANML}=$ trap. BDEO$)$ $+\operatorname{tr} 1 \therefore A B H$ common to sq's $A K$ and AF + try, BOH common to sq's AK and $H D=s q . H D+s q, A F$.
\therefore sq. upon $A B=$ sq. upon $\mathrm{BH}+\mathrm{sq}$. upon AH. $\therefore \mathrm{h}^{2}=\mathrm{a}^{2}$ $+b^{2}$.
a. Am. Math. Mo., Vol. V, 1898, p. 74; proof LXXVII; School Visitor, Vol. III, p. 208, No. 410.

One Hundred_Twenty

In fig. 220, extend DE

Fig. 220 to K, GA to I; draw CL par. to AH , and draw $I D$ and $H G$.

Sq. $A K=2$ [trap. $A B N M$ $=$ try. $A O H$ common to sq's $A K$ and $A F+$ (mri. $A H M=$ mri. $A G O)$ + try. HBN common to sq's AK and $H D+$ (try. $\mathrm{BHO}=$ try. BDN$)]$ = sq. $H D+$ sq. $A F$.
\therefore sq. upon $A B=$ sq. upon $B H+s q$. upon $A H$.
a. See Am. Math. Mo., Vol. V, 1898, p. 74, proof LXVI.

One Hundred Twenty -one

Fig. 221

Extend GF and ED" to 0 , and complete the rect. MO, and extend $D B$ to N.

Sq. $\mathrm{AK}=$ rect. MO

- (4 ti. $\mathrm{A} B \mathrm{BH}+$ rect. No $)$
$\doteq\{($ rect. $A L+$ rect. $A O)$
- $\{4$ try. $\mathrm{AHB}+$ rect. NO $)\}$
$=2$ (rect. $A 0=$ rect. $A D$
+ rect: NO) $=$ (2 rect. $A D$
+2 rect. NO - rect. NO
- 4 try. $A B H$) - (2 rect. $A D$
+ rect. NO - 4 try. ABH$)$
$=$ (2 rect. $A B+2$ rect. $H D$
+ rect. NF + rect. BO -4 try. ABH$)=$ [rect. AB
+ (rect. $A B+$ rect. $N F)+$ rect. $\mathrm{HD}+$ (rect. $H D+$ rect. $\mathrm{BO})-4$ ti. ABH$]=2$ try. $\mathrm{ABH}+\mathrm{sq} \cdot \mathrm{HG}+\mathrm{sq} \cdot \mathrm{HD}$
$+2 \operatorname{tri} A B H-4 \operatorname{tri} . A B H)=s q \cdot H D+s q . H G$.
\therefore sq. upon $A B=$ sq. upon $B H+s q$. upon $A H$.
$\therefore h^{2}=a^{\ddot{2}}+b^{2}$.
a. This formula and conversion is that of the author, Dec. 22, 1933, but the figure is as given in Am. Math. Mo., Vol. Y, 1898, p. 74; where see another somewhat different proof, No. LXXXIII. But same fig= ure furnishes:

2ne_Hundred_Iwenty=Iwq

In fig.. 221 , extend GF and ED to 0 and complete the rect MO Extend DB to N.

Sq. $A K=$ rect. $\mathrm{MO}+4$ tri. $A B H=$ rect. MO $=s q \cdot H D+s q \cdot A F+$ rect. $B O+$ rect. $A L=$ (rect. $H N$ $=2$ tri. $A B H$) + (sq. $H G=2$ tri. ABH: + rect. NF)], which coll'd gives sq. $A K=s q . H D+$ sq. $H G$.
\therefore sq. upon $A B=s q$. upon $B H+$ sq. upon $A H$. $\therefore h^{2}=a^{2}+b^{2}$.
a. Credited to Henry Boad by Joh. Hoffmenn, in "Der Pythagoraische Lehrsatz;" 1821; see Jury Wi.pper, 1880, p. 21, fig. 15.

Qne_Hundred Iwenty=Three

 \bar{K} par. respectively to AH land BII, , and draw, through H, IP .

Sq. AK = hexagon AHBKLC $=$ paral. $\mathrm{IB}+$ paraI. $\mathrm{IA}=\mathrm{sq} . \mathrm{HD}$ $+s q$. Ap.
\therefore sq. upon $A B=$ sq. upon.
$\mathrm{BH}+$ sq. upón $\mathrm{AH}, \quad \therefore h^{2}=a^{2}+b^{2}$.
a. Devised by the author, March 12, 1926..

Fig. 222

Qne_Hundred_Iwenty-Equr

Rect. $L M=$ [sq. $A K=$ (parts 2 common to sq. AK and sq. $\mathrm{HD}+3+4+5$ common to sq. AK and sq . HG$)$

+ parts $6+(i+8=\mathrm{aq} . \mathrm{HG})$.
$+9+1+10+11=$ ING. $A K=s q$.
$\mathrm{HG}+\mathrm{parts}\{(6 \div 2)+2=\mathrm{sq}$.
$H D\}+\operatorname{parts}\{9+10+11=2 \mathrm{tr} 1$.
$A B N+t r i=X P E]=[(\mathrm{sq}, A K=S \approx$.
$H D+s q \cdot \dot{H} G)+(2$ trad. $A B H$
+ wii. KPE)], or rect. LM - (2
 $=s q . K D+i S G, H A]$.
$\therefore S q \cdot A K=3 Q, A D+s q$. HA: \therefore sq. upon $A B=s q$. upon $H D+$ sq. upon HA. $\quad \therefore h^{2}=a^{2}$ $+b^{2}$. Q.E.D.
F18. 223
, B. Original with the author; June 17, 1939.
b. See Am. Math. Mo., Vol. V, 1898, p. 74, proof IXXVITI for another proof, winch is: (as per essontialsis:

Q ne Huridred_Iwety=Five
In fig. 223, extend CA ; HB , DE and CK to M , N, K and L respectively, and draw $M N$, LN and CO respectively par . to $A B$, $K B$ and $K B$.

Sq. AK +2 ti. AGM +3 try. GNF + trap. AGFB = rect. $C N=1 s q . H D+3 q . H G+2$ twi. $A G M+3$ ir i. GNP + trap. COEX, which colly gives sq. AK = sq. $H D$ + sq. \because HG 。
\therefore sq. upon $A B=s q \cdot$ upon
 $B X^{2}+5 G$. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$

- one Mindred_Iwenty-Six
\therefore In fig. 224 , extend $K B$ and CA respectively to 0 and N. through H draw LM par. to KB , and draw GN and MO respectively par. to AH and BH.

Sq. $A K=$ rect. $L B+$ rect. $I A=$ parál. BHMO + paral. HANM $=s q . H D+s q . A F$.
\therefore sq. upon $A B=$ sq. upon $B H+s q$. upon $A H$.
$\therefore h^{2}=a^{2}+b^{2}$.
9. Original with the author, August 1, 1900.
b_{x} Many other proofs are derivable from this
type of figure.
c. An algebraic proof is easily obtained from fig. 224.

F

This type includes all proofs derived from the figure in which the squares constructed, upon the hypotenuse and the shorter leg overlap the given friangle.

One Hundred Iwenty=Seven_

FIg. 225

In the fig. 225, draw KM par, to AH.

Sq. $A K=$ (try: $B K M=$ bris, $A C G)+($ tret. $k M=$ tr. $B N D)$ + quad. AHLC common to sq's AK and $A X+{ }^{\prime}\left(t r i,{ }^{\prime} A H E=t r 1\right.$. , OLE $)$ + trap. NBHE common to sq's AK and $\mathrm{EB}=\mathrm{sq} . \mathrm{HD}+\mathrm{sq}$. HG.
\therefore sq. upon $A B=$ sq. upon $\mathrm{BH}+$ sqq. upon $\mathrm{AH} . \quad \therefore h^{2}=a^{2}+\mathrm{b}^{2}$.
, e. The Journal of Education, V. XXVIII, 1888, p. 17, 24th proof, credits this proof to J. M. McČeaćy; of Black Hawir, Wis.; sea Edwards' Geom, 1895, p. 89, art. 73; Heathis Math. Monographs, No., 2, 1900, p. 32, proof XIX; Scientific Review, Feb. 16, 1889, p:31, fig o 30, 12. A. Bell, July I, 1938, one of his 40 proofs.
b. $3 y$ numbering the dissected parts, an obi---ous-proof is seen.

Fig. 226

In fig. 226, extend $A H$ to N making $H N=H E$, through H draw LM par. to BK, and draw BN, HK and HC.

Sq. $A K=$ rect. $L B+$ rect. $L A=\left(2^{\circ}\right.$ tr. $\mathrm{HBK}=2$ try. HBN $=s q \cdot H D)+(2$ trio. $\mathrm{CAH}=2$ try. $A H C=s q \cdot \cdot H G)=s q \cdot H D+s q \cdot H G$.
\therefore sq. upon $A B=$ sq. upon
$\mathrm{BH}=$ sq. upon AH. : $\therefore h^{2}=a^{2}$ $+b^{2}$ 。
a. Original with the author, August $1,1900$.
b. An algebraic proof may be resolved from this figure.
c. Other geometric proofs are easily derived from this form of figure.

One_Hundred Twenty -Wine

In fig. 227, draw LH

Fig. 227 pep. to $A B$ and extend it to meet ED produced and draw MB, HK and HC .

Sq. $A K=$ rect. $I B+$ rect. $L A=$ (aral. $\mathrm{HMBK}=2$ fri. $\mathrm{MBH}{ }^{\prime}$ $=s q \cdot B E)+(2$ tri. $\dot{C A H}=2$ fri. $\cdot \mathrm{AHC}=\mathrm{sq} \cdot \mathrm{AF})=\mathrm{sq} . \mathrm{BE}+\mathrm{sq} \cdot \mathrm{AF}$.
\therefore sq. upon $A B=$ sq. upon $\mathrm{BH}+$ sq. upon $\mathrm{AH} . \therefore \mathrm{h}^{2}=\mathrm{a}^{2}$ $+b^{2}$.

1880, p. 14, fig. 7; Versiuys,
p. 14, fig; 10; Fourrey, p. Fl, fig. f.
V. V, 1898, p. 73, proof LXX; A. R. Bell, Feb. 24 , 1938.
b. In Sci. Am. Sup., V. 70, p. 359, Dec. 3, 1910, is a proof by A. R. Colburn, by use of above figure, but the argument is not that given above.

Qne Hundred Thirty $=$ Iwq

Fig. 230

In fig. 230, extend FG to C and ED to K.

Sq. $A K=$ (tri. $A C G=\operatorname{tri}$. $A B H$ of sq. $H G$) + (tri. $C K L=$ trap. NBHE + tri. BMF $)+($ tri. $K B D=t r i$. $B D N$ of sq. $H D+$ trap. $L M B D$ common to sq's AK and HG) + pentagon AGLDB common to sq's $A K$ and $H G)=s q$. $H D$ $+\mathrm{sq} . \mathrm{HG}$.
\therefore sq. upon $A B=s q$. upon $B H$ + sq. upon AH. $\therefore h^{2}=a^{2}+b^{2}$.
a. See Edwards' Geom., 1895, p. 159, fig. (24); Sci. Am. Sup.; V. 70, p. 382, Dec. 10, 1910, for a proof by A. R. Cotburn on same form of figure.

Qne Hundred Thirty=Three

The construction is obvious. Also that $\mathrm{m}+\mathrm{n}=0+\mathrm{p}$; also that tri. ABH and tri. ACG are congruent. Then sq. $A K=40+4 p+q=2(o+p)$ $+2(o+p)+q=2(m+n)+2(o+p)$ $+q=2(m+o)+(m+2 n+o+2 p$ $+q)=s q: H D+s q$. HA.
\therefore sq. upon $A B=$ sq. upon $H D$ + sq. upon HA. $\therefore h^{2} \frac{\sqrt{-}}{=} a^{2}+b^{2}$. Q.E.D.
a. See Versluys, p. 48, fig. 49, where credited to R. Joan, Nepomucen Reichenberger, Philosophia et Mathesis Universa, Regensburg, 1774.
b. By using congruent tri's and trap's the algebraic appearance will vanish.

Fig. 232

Having the construction, and the parts symbolized, it is evildent that: sq. $A K=30+p+r+s$ $=(30+p)+(o+p=s)+r$
$=2(o+p)+2 o+r=(m+o)+(m$
$+2 n+o+r)=s q . H D+s q . H G$.
\therefore sq. upon $A B=$ sq. upon $H D$ + sq. upon HA. $\therefore h^{2}=a^{2}+b^{2}$. a. See Versluys, p. 48, fig. 50; Fourrey, p. 86.
b. By expressing the dimensions of m, n, o, p, i and s in terms of a, b, and h an algebraic proof results.

Que Hundred Thirty -Five

Fig. 233

Complete the three sq's AK, HG and $H D$, draw $C G, K N$, and ${ }^{\prime \prime}$ through G. Then

Sq. $A K=2[$ rap: ACLM $=\operatorname{tri}$. GMA common to sq's AK and AF + (mri. $A \hat{C} G=$ tri. $A M H$ of sq. $A F+$ trip. $H M B$ of. sq. $H D)+$ (tri. CLG $=$ trig. $B M D$ of $s q . H D)]=s q . H D+s q . H G . \quad \therefore h^{2}$ $=a^{2}+D^{2}$.
\therefore sq. upon $A B=$ sq. upon $B H$ + sq. upon AH.
a. See Am. Math. Mo., V. V, 1898, p. 73, proof LXXII.

One_Hundred_Thirty=Six

Draw CL and LK par. respectively to HB and HA, and draw HL.

Sq. $A K=$ hexagon ACLKBH -2 try. $A B H=2$ quad. $A C L H-2$ tri. $A B H=2$ tri. $A C G+(2$ ri. $C L G=s q . H D)$

One Hundred_Ihirty $=$ Seven

In fig. 235, extend FG to C ,

Fig. 235

+ (2 try. AGH = sq. $H G^{\circ}$) -2 twi. $A B H$

Fig. 234 $=s q \cdot H D+s q \cdot f: H+(2$ trig. $A C G=2$ try. $A B H-2$ fri. $A B H=s q . ~ H D-s q$. .HG.
\therefore sq. upon $A B=$ sq. upon $\dot{H} D$ + sq. upon HA. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. Original by author oct. 25, 1933. $E D$ to K and draw $H L$ par. to $B K$.

Sq. $A K=$ rect. $. B L+$ rect. $A L$ $=($ papal. $M K B H=$ sq. $H D)+($ para. $\mathrm{CMHA}=\mathrm{sq} . \dot{\mathrm{H} G}) \doteq \mathrm{sq} . \mathrm{HD}+\mathrm{sq} . \mathrm{HG}$.
\therefore sq. upon $A B=s q$. upon $B H$ + sq. upon AH. $\quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. Journal of Education, V. XXVII, 1888, p. 327, fifteenth proof by M. Dickinson, - Winchester, N.H.; Edwards' Geom., 1895', p. 158, fig. (22); Am. Math. Mo., V. V, 1898, p. 73, proof LXXI; Heath's Math. Monographs, No. 2, p. 28, proof XIV; Versluys, p. 13, fig. 8--also p. 20, fig. 17, for same figure, but a somewhat different proof, a proof credited to Jacob Gelder, 1810; Math. Mo., 1859, Vol. II, No. 2, Dem. 11; Fourrey, p. 70, fig. d.
b. An algebraic proof is easily devised from this figure.

Qne_Hundred_Ihirty=Eight

Draw HL perp. to CK and ex-

Fig. 236
and $F G$ to K and C respily.
Sq. $\mathrm{AK}=$ rect. $\mathrm{BL}+$ rect. AL
$=(\operatorname{tr} 1 . \mathrm{MLK}=$ quad. $\mathrm{RDSP}+\operatorname{tr} 1 . \mathrm{PSB})$

+ [tri. BDK - (tri. SDM = tri. ONR)
$=($ tri. $B H A-\operatorname{tri} 1$. REA $)=$ quad. RBHE]
$+[(\operatorname{tri} . \mathrm{CKM}=\mathrm{tr} 1 . \mathrm{ABH})+(\operatorname{tr} 1 . \mathrm{CGA}$
$=\operatorname{tr} 1$. MFA $)+$ quad. GMPA] $=\operatorname{tri} . \mathrm{RBD}$
+ quad. RBHE + tri. APH + tri. MEH
+ quad. $\operatorname{GMPA}=\mathrm{sq} . \mathrm{HD}+\mathrm{sq}$. HG.
\therefore sq. upon $\cdot \mathrm{AB}=$ sq. upon BH + sq. upon AH. $\because h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Versluys, p. 46, fig's 47 and 48 , as given by M. Rogot, and made known by E. Fourrey in his "Curiosities of Geometry," on p. 90.

Qne Hundred Thirty $=$ Nine

In fig. 237, extend. AG, ED,

Fig. 237 $B D$ and $F G$ to M, K, \dot{L} and C respectively.

Sq. $A K=4$ tri. $A L P+4$ quad. LCGP + sq. $P Q+\operatorname{tri}$. AOE - (tri. BNE $=\operatorname{tr} 1 . A O E)=(2$ tri. ALP +3 quad. LCGP. + sq. $P Q+$ tri. $A O E=s q . H G)$ t (2 tri. ALP + quad. LCGP - tri. AOE $=s q . H D)=s q . H D+s q, H G$.
\therefore sq. upon $A B=s q$, upon $B H^{*}$ + sq. upon AH. $\therefore h^{2}=a^{2}+b^{2}$.
a. See Jury Wipper; 1880, p. 29, fig. 26, as given by Reichenberger, in Philosoph1a et Mathesis Universa, etc.," Ratisbonae, 1774; Versluys, p. 48, fig. 49; Fourrey, p. 86.
b. Mr. Richard A. Bell, of Cleveland, 0., submitted, Feb. 28, 1938, 6 fig's and proofs of the type G, all found between Nov. 1920 and Feb. 28, 1938. Some of his figures are very simple.

Que_HEndred_Forty

Fig. 238

In fig. 238, extend ED and PG tc K and C respectively; drew HL perp." to $C X$, and draw $H C$ and $H K$,

Sq. $A K=$ rect. $E L+$ rect. AL
= (aral. $\mathrm{MKSH}=$ 2 ti. $\mathrm{KBH}=\mathrm{sq} . \mathrm{HD}$)

+ (paral. $\mathrm{CNHA}=2$ try. $\mathrm{CHA}=$ sq. HG)
$=s q . H D+s q . H G$.
$\therefore s q$. upon $A B=$ sq. upon $B H$
on $A H . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Jury Wiper, 1880, p. in, fig. 4.
b: This proof is only a varaation of the one preceding.
c. From this figure ar i algebraic proof is obtainable.

One-Hundred_Forty-One

Fig: 239

In fig. 239, extend FG to 0 , HF to L making $F L=H B$, and draw $K L_{\text {a }}$ and KM respectively parr. to AII and -BH .

Sq. $A K=\left\{\left[\begin{array}{l}\text { (trill. CKM }\end{array}\right.\right.$
$=t r 1, B K L j-\operatorname{tri} . B N F=$ trap.
OBHE] $+(\operatorname{tri}:$ MN $=$ try. BOD $)$
$=s q \cdot H D\}+[$ trina. $A C G=\operatorname{tri}, A B H)$

+ (try. BOD + hexagon AGNBDO)
$=s q \cdot H G]=s q \cdot E D+s g \cdot H G$.
\therefore sq. upon $A B=s q$. upon
$B H+$ sq. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. As taken from "philosophia et Mathesis Universa, etc.," Ratisbonae, 1774, by Reichenberger; see Jury Wipper, 1880, p. 29, fig. 27.

Qne Hundred Eq: \pm - Two

Fig. 240

In fig. 240, extend HF and HA respectively to N and L, and complete the sq. $H M$, and extend $E D$ to K and $B G$ to C. .
$\mathrm{Sq} \cdot \dot{\mathrm{A}} \mathrm{K}=\mathrm{sq} . \mathrm{HM} . .4$ tri. $A B H=$ (sq. $F R=s q . H D$) $+s q . H G+$ (rect. LG $=-2$ tri $A B H)+$ (rect. $O M=2$ tri. $A B F i)$ $=s q \cdot H D+$ sq. $\mathrm{HC}+4$ trı. ABH -4 tid. $A B H=s q \cdot H D+3 q$. HG.
$\therefore h^{2}=s^{2}+\mathrm{s}^{2}$ upon $A K=s q$. upon $B H+s q$. upon $A H$.
a: Similar to Henry Boad's proof, London, 1733; see Jury Wipper, 1880, p. 16, fig, 9; Am. Math. Mo., V. V, 1898, p. 74, proof LXXIV.

One Hundred. FortyoThrae

Fig. 242

In is.g. 24I, extend $F G$ and ED 'to C and K respectively, draw $F L$ par. to $A B$, and draw $H D$ and $F K$.

Sq. $A K=$ (rect. $A N=$ paral. $M B)+$ (nect. $L K=2$ tri, $C K F=2$ tri. GKO +2 tri. FOK = tri. FMG $+\operatorname{tri} . A B H+2 \operatorname{tri}, \mathrm{DBH})=\mathrm{sq}, \mathrm{HH}$. $+s q^{+H G}$.
$\therefore 3 q$. upon $A B=s q$. upon $B H$ + sq. upon AH. $\quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Am. Maitin. Mo., Vol. V, 1898, p. 74, proof LXXIII.

One Hundred_Forty=Fqur

Fig. 242
\int° In fig. 242, produce $F \hat{G}$ to 0 , through D and G draw LM and NO par. to $A B$, and draw $A D$ and $B G$.

Sq. $A K=$ rect. $N K+$ rect. $A O$
$=$ (rect. $A M=2$ ti. $A D B=$ sq. $H D$).

+ (2.tri. GBA $=\mathrm{sq} \cdot \mathrm{HG})=\mathrm{sq} \cdot \mathrm{HD}-$ + sq. HG.
\therefore sq!. upon $A B=$ sq. upon $B H$ + sq. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. This is No. 15 of A. R.

Colburn's 108 proofs; see his proof in Sci. Am. Sup., V. 70, p. 383; Dec. 10, 1910.
b. An algebraic proof from this figure is easily obtained.

2 try. $\mathrm{BAD}=h x=a^{2} \cdot-(1)$
2 try. BAG $=h(h-x)=b^{2} \cdot--(2)$
(1) $+(2)=(3) h^{2}=a^{2}+b^{2}$ (EN SH)

Qne_Hyndred_Egrty-Five

In fig. 243, produce

Fig. 243 F and CK to $L,{ }^{\circ} E D$ to K, and AG to 0 , and draw $K M$ and $O N$ parr. to AH.

Sq. $A K=$ aral. $A O L B$
$=$ [trap. $A G F B+$ (try. OLM $=\operatorname{tri} . A B H)=$ sq. $H G]+\{$ rect. GN = try. CLF.- (tree. COG
$=$ try. KLM $)-(\operatorname{tri}$. OLD $=\operatorname{tri} . C K P)]=s q \cdot F K=s q$. $H D\}=s q \cdot H D+s q . H G$.
\therefore sq. upon $A B=s q$. upon $B H+$ sq. upon AH. $\therefore h^{2}=a^{2}+b^{2}$.
a. This proof is due to Prin. Geo. M. Phil-. lips, Pn.D., of the West Chester State Normal School, Pa., 1875; see Heath's Math. Monographs, No. 2, p. 36, proof XXV.

Q ne Hundred Forty -Six
In fig. 24.4, extend CK and $H F$ to M, $E D$ to K, and $A G$ to 0 making $G O=\cdot H B,{ }^{\prime}$ draw ON par. to AH , and draw GN.

Sq. $\mathrm{AK}=$ aral. ALB
= paral. $G M+$ aral. $A N=$ (ti. -NGO - trio". NPO = trap. RBHE) $+(\operatorname{tri} . K M N=\operatorname{tri} . B R D)]=s q . \mathrm{HD}$ + sq. HG.
\therefore sq. upon $A B \stackrel{\prime}{=}$ sq. upon $\mathrm{BH}+$ sq. upon $\mathrm{AH} . \quad \therefore \mathrm{h}^{2}=a^{2}+b^{2}$. a. Devised by the author, March 14, 1926.

One Hundred Forty-Seyen

Fig. 245

Through D draw DR par. $A B$ meeting $H A$ at M, and through G draw NO par. to $A B$ meeting $H B$ at P, and draw H perv. to $A B$.

Sq. $A K=$ (rect. $N K$
$=$ rect. $A R=$ para. $A M D B=$ sq.
$\mathrm{HB})+$ (rect. $\mathrm{AO}=$ aral. AGPB $=s q \cdot H G)=s q \cdot H D+s q \cdot H G$.
\therefore sg. upon $A B=$ sq.
upon $H B+$ sq. upon HA. $\therefore h^{2}$ $=a^{2}+b^{2}$.
a. See Versluys, p. 28, fig. 25. By Werner.

Qne_Hundred_fortyニEight -

Produce $H A$ and $H B$ to 0 and N resp'ly making $A O=F B$ and $B M=\overline{H A}$, and complete the sq. HL.

Sq. $A K=s q . H L-(4$ fri. $A B H=2$ rect. $O G)$ $=[(s q . G L=s q \cdot H D)+s q . H G+2$ rect. $O G]-2$ rect. $0 G=s q . H D+s q$. HG. \therefore sq. upon $A B:=s q$. upon $B H$ +'sq. upon AH. $\quad \therefore h^{2}=a^{2}+b^{2}$.

a. See Versluys, p.

52, fig. 54, as round in Hoffmann's list and in "Des Pythagorsische Lehrsatz," 1821.

Qne_Hundred Forty=Nine

Produce: CK and HB to L, $A G$ to $M, E D$ to K, $\dot{F} G$ to C, and draw MN and KO par. to AH.

Sq. $A K=$ paral. $A M L B$ = quad. AGEB + rect. $G N+$ (tri. $M L N^{*}=$ tri. $\left.\quad \mathrm{ABH}\right)=\mathrm{sq} . \mathrm{GH}$.

+ (rect. $G N=s q \cdot P O=s q \cdot H D)$
$=s q \cdot H G+s q . H D . \quad \therefore$ sq. upon $A B=$ sq. upoñ $H B+s q$: upon HA. $\quad \therefore h^{2}=a^{2}+b^{2}$.
a. By, Dr. Geo. M. Phillips, of West Chester; Pa., in 1875; Versluys, p. 58, fig. 62.

Fig. 247

H

This type includes all proofs devised from the figure in which the squares constructed upon the hypotenuse and the two legs overlap the given triangle.

Fig. 248

- Qne_Hyndred_Elfty

Draiw through $H_{\text {, }}$ LN perp. to $A B$, and draw $H K$, $H C$, NB and NA.

Sq. $A \dot{K}=$ rect. $L B+$ rect. $L A=$ paral $K N+$ paral. $C N=2$ tri. $K H B+2$ tri. $N H A=s q . H D+s q . H G$.
\therefore sq. upon $A B=$ sq. upon $H D$ + sq. upon HA. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Math. Mo., 1859, Vol.

II, No. 2, Dem. 15, fig. 7.

Qne_Hundred Fifty=Qne

Through H draw LM. perp. to

Fig. 249

AB . Extend FH to 0 making $\mathrm{BO}=\mathrm{HF}$, draw K0, CH , HN and BG .

Sq. $A K=$ rect. $L B+$ rect. $L A=(2$ trig. $K H B=2$ trig. $B H A=s q$. $H D)+(2$ tri. $\mathrm{CAH}=2$ tri. $\mathrm{AGB}=\mathrm{sq}$. $A F)=s q \cdot H D+s q . A F$.
\therefore sq. upon $A B=s q$. upon $B H$

+ sq. upon AH. $\therefore h^{2}=a^{2}+b^{2}$.
a. Original with the author. Afterwards the first part of it was discovered to be the same as the solution in Am. Math. Mo., V. V, 1898, p. 78, proof LXXXI; also see Fourrey, p. 71, fig. h, in his "Curiosities."
b. This figure gives readily an algebraic
proof.

Qne_Hundred Fifty -Two

In. fig. 250, extend ED to 0, draw $A \sigma, O B, H K$ and $H C$, cud draw, through H, L0 pep. to $A B$, and draw CM perv. to AH.

Sq. $\cdot A K=$ rect. $L B+$ rect. $I A$
$=$ (paral. $H O B K=2$ mri. $O B H=$ sq.
$\mathrm{HD})+$ (paral. $\mathrm{CAOH}=2$ tri. $O H A$
$=s q . H G)=s q . H D+s q . H G$.
\therefore sq. upon $A B=$ sq. upon $B H$ + sq. upon AH. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Olney's Geom.; 1872,

Fig. 250 Part III, p. 251, 6th method; Journeal of Education, V. XXVI, 1887,
p. 21, fig. XIII; Hopkins' Geom., 1896, p. 91, fig. VI: Edw. Geom., 1895, p. 160, fig. (31); Am. Math. Mo., 1898, Vol. V, p. 74, proof LXXX; Heath's Math. Monographs, No. $1,1900, \mathrm{p} .26$, proof XI.
b. From this figure deduce an algebraic proof.

One Hundred-FiftyETree

Fig. 251

In fig. 251, draw LM perp. to $A B$ through H, extend $E D$. to M, and draw BG, BM, HK and HC.

Sq. $A K=$ rect. $L B+$ rect. $L A$ $=$ (paral. $K H M B=2$ trig. $M B H=s q \cdot H D)$ + (2 try. AHC $=2$ trig. $A G B=$ sq. $H G$) $=s q . H D .+s \dot{q} . H G$.
\therefore sq. upon $A B=$ sq. upon $B H$ + sq. upon AH. $\therefore h^{2}=a^{2}+b^{2}$.
a. See Jury Kipper, 1880 , p. 15, fig. 8; Versluys, p. 15, fig. 11.
b. An algebraic proof follows the "mean prop'l" principle.

One_ Hundred Fifty=Fqur

Fig. 252

In ff g. 252, extend ED to Q, $B D$ to R, draw $H Q$ perp. to $A B$, $C N$ perp. to $A H, K M$ perp. to $C N$ and extend BH to L .

Sq. $A K=$ mri. $A B H$ common to sq's $A K$ and $H G+$ (try. $B K H=$ trap.
HEDP of sq. $H D+\operatorname{tri}$. QPD of sq. H

+ (mri. $K C M=$ mri. BAR of sq. HG)
+ (tri. CAlve $=$ trap. QFBP of sq. HG
+ try. PBH of sq. $H D$) + (sq. $M N=s q$. $R Q)=s q \cdot H D+s q \cdot H G$.
\therefore sq. upon $A B=$ sq. upon $B H$ + sq. upon AH. $\quad \therefore h^{2}=a^{\ddot{a}}+b^{2}$.
a. See Edwards' Geom., 1895, p. 157, fig.
(13); Am. Math. Mo., V. V, 1898, p. 74, proof LXXXII.

One Hundred Fifty $=$ Five

* In fig. 253, extend ED to P, draw HP, draw CM perp. to $A H$, and $K L$ pert. to $C M$.

Fig. 253

Sq. $A K=$ try. ANE common to sq's $A K$ and $N G+$ trap. ENBH common to sq's AK and $H D+$ (try. $\mathrm{BOH}=\operatorname{tri}$. BND of sq. HD) + (trap. $K M M O=$ trap. $\mathrm{AGPN})+$ (try. $\mathrm{KCL}=$ try. PHE of sq. HG). + (ri. CAM $=$ try. HPF of sq. HG) $=s q \cdot H D+s q . H G$.
\therefore sq. upon $A B=$ sq. upon $B H$ + sq. upon $A H$. $\quad \therefore h^{2}=a^{2}+b^{2}$.
a. Original with the author, August 3, 1890.
b. Many other proofs may be devised from this type of figure.

One_Hundred_Eifty-Six

In fig. 254, extend GA to M making $A M=A G$, GF to N making $\mathrm{FN}=\mathrm{BH}$, complete the rect. $M N$, and extend $A H$ and $D B$ to P and 0 respily and $B H$ to R.

Sq. $A K=$ rect. $M N$

- (rect. $\mathrm{BN}+3$ try. ABH + trap, $A G F B)=$ (sq. $H D=s q$. $\mathrm{DH})+$ sq. $\mathrm{HG}+$ rect. BN + [rect. $\mathrm{AL}=$ (rect. $\mathrm{HL}=2$ tri. $A B H$) + (sq. $A P^{\prime \prime}=$ tr. $A B H$ + trap. $A G F B)]=s q . H D+s q$. $\mathrm{HG}+$ rect. $\mathrm{BN}+2$ try. ABH $+\operatorname{tr1} . A B H+$ trap. AGFB - rect. $B N=3$ trip. $A B H$ - trap. $A G F B=s q . H D+s q . H G$. \therefore sq. upon $A B=$ sq. upon $B H+s q$. upon $A H$. $\therefore h^{2}=a^{2}+b^{2}$ Q.E.D.
a. See Jury Nipper, 1880, p. 22, fig. 16, credited by Joh. Hoffman in "Der Pythagoraische "Lehrsatz," 1821, to Henry Boad, of London, England.

GALILEO GALILEI
1564-1642

Qne_Hundred_Fifty=Seven

> Fig. 25 º
> In fig. 255 we have sq. AK $=$ parts $1+2+3+4+5+6$; sq. $H D$ = parts $?+31$; sq. $H G=$ parts $1+4^{1}$ $+(7=5)+(6=2)$; so sq. $A K(1+2$ $+3+4+5+6)=$ sq. $\mathrm{HD}\left[2+\left(3{ }^{\prime}=3\right)\right]$
> + sq. $H G[1+(4 \cdot=4)+(7=5)$
> $+(2=6)]$.
> \therefore sq. upon $A B=$ sq. upon $H D$
> + sq. upon HAS $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
> a. Richard A. Bell, of Cleve-
> land, O., devised above proof, Nov. 30, 1920 and gave it to me Feb. 28, 1938. He has 2 others, among his 40, like unto it.

This type includes all proofs derived from a figure in which there has been a translation from its normal position of one or more of the constructed squares.

Symbolizing the hypotenuse-square by h, the shorter-leg-square by a, and the longer-leg-square by b, we find, by inspection, that there are seven distinct cases possible in this I-type figure, and that each of the first three cases have four possible arrangements, each of the second three cases have two possible arrangements, and the seventh case has but. one arrangement, thus giving 19 sub-types, as follows:
(1) Translation of the h-square, with
(a) The a - and b-squares constructed outwardly.
(b) Thie a-sq. const'd out'ly and the b-sq. overlapping.
(c) The b-sq. const'd out'ly and the a-sq. overlapping.
(d) The $a-$ and $b-s q ' s$ const'd overlapping.
(2) Translation of the a-square, with
(a) The h- and b-sq's const'd outlly.
(b) The h-sq. const'd out'ly and the b-sq. overlapping.
(c) The b-sq. const'd outly and the $h-s q$. overlapping.
(d) The h- and b-sq's const'd overlapping.
(3)'Iranslation of the b-square, with
(a) The h - and a-sq's const'd out'ly.
(b) The h-sq. const'd out'ly and the a-sq. overlapping.
(c) The a-sq. const!d out'ly and the h-sq. overlapping.
(d) The h - and a-sq's const'd overlapping.
(4) Translation of the h - and a-sq's, with
(a) The-b-sq. const'd out'ly.
(b) The b-sq. overlapping.
(5) Translation of the h - and b-sq's with
(a) The a-sq. const'd out'ly.
(b) The a-sq. const daverlapping.
(6) Translation of the a- and b-sq's, with
(a) The h-sq. const'd out'ly.
(b) The h-sq. const'd overlapping.
(7) Translation of all three, $h-$, $a-$ and b-squares.

From the sources of proofs consulted, I discovered that only 8 out of the possible 19 cases had received consideration. To complete the gap of the 11 missing ones I have devised a proof for each missing case, as by the Law of Dissection (see fig. Ill, proof Ten) a proof is readily produced for any position of the squares. Like Agassiz's student, after proper observation he found the law, and then the arrangement of parts (scales) produced desired results.

Qne_Hundred_Eifty=Eight

Fig. 256

Case (1), (a).
In fig. 256, the sq. Fom upon the hypotenuse, hereafter cailled the $h-s q$. has been translated to the position $H K$. From P the middle pt. of $A B$ draw PM raking $H M=A H$; draw LM, $K M$, and $C M$; draw $K N=L M$, perp. to LM produced, and CO $=A B$, perp. to HM.

Sq. $\mathrm{HK}=$ (2 tri. HMC
$=H M \times C O=s q . A H)+(2$ tri. $\left.M L K=M L \times K N=s q \cdot{ }^{\prime} B H\right)=s q$.
$\mathrm{BH}+\mathrm{sq} . \mathrm{AH}$.
$\therefore h^{2}=a^{2}+b^{2}$.
a. Original with the author, August 4, 1900.

Several other proofs from this figure is possible.

Qne_Hyndred Fifty=Mine

Case (l), (b).

Fig. 257

In fig. 257, the position of the sq's are evident, as the b-sq. overlaps and the h -sq.. is translated to right of normal position. Draw PM perp. to $A B$ through B, take $K L=P B$, draw LC, and BN and KO perp. to LC , and FT perp. to BN. Sq. $B K=$ (trap. FCNT $=$ trap. P PBDE $)+($ tri. $\mathrm{CKO}=\operatorname{tri} . \mathrm{ABH})+($ trit. KLO = tri. BPH) + (quad. BOLQ + tri. $B T F=$ trap. GFBA) $=s q . \mathrm{BH}+\mathrm{sq}$. AH .
$\therefore h^{\dot{2}}=a^{\dot{2}}+$ bq 2 upon $A B=$ sq. upon $B H+$ sq. upon $A H$.
$\therefore h=a^{2}+b^{2}$.
a. One of my dissection devices.

One Hundred Sixty

Fig. 258

Case (1), (c).
In ing. 258, draw' RA and produce it to Q, and draw CO, LM and $K N$ each perp. to RA.

Sq. $C K=$ (ri. $C O A=$ tri. $\mathrm{PDB})+$ (trap. CLMO + trap. PBHE) $+(\operatorname{tri} . \mathrm{NRK}=$ trio. AQG$)+$ (quad. NKPA + tr. $R M L=$ trap. $A H F Q)$
$=s q . H B+s q . C K$.
\therefore sq. upon $A B=s q$. upon $B H+s q$. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. Devised, by author, to cover Case (l^{\prime}), (c).

One_Hundred_Sixty=One

Produce HA to P making

Fig. 259
$A P=H B$, draw $P N$ par. to $A B$, and through A drawion perp. to and $=$ to $A B$, complete sq. OL, produce MO to G and draw $H K$ perp. to $A B$.

Sq. $O L=$ (rect. $A L$ $=$ aral. $\cdot \mathrm{PDBA} \equiv \mathrm{sq} \cdot \mathrm{HD})+$ (rect. $A M=$ aral. $A B C G=s q . H G=s q$. $\mathrm{HB}+\mathrm{sq}, \mathrm{HG}$.
\therefore sq. upon $A B=s q$. upon
$H D+s q$. upon HA. $\quad \therefore h^{2}=a^{2}$ $+b^{2}$. Q.E.D.
a. See Versluys, p. 27, fig. 23, as found in "Friend of Wisdom," 1887, as given by J. de Gelder, 1810, in Geom. of Van Kunze, 1842.

One_Hundred Sixty=Iwo
Case (1), (d).
Draw HO perp. to $A B$ and equal to $H A$, and $K P$ par. to $A B$ and equal to HB ; draw $C N$ par. to $A B$, $P L, E F$, and extend $E D$ to R and $B D$ to Q.

Sq. $C K=$ (tri. $L K P=$ trap.
ESBH of sq. HD + tri..ASE of sq. $H G$)

+ (tri. $\mathrm{HOB}=$ tri. SDB of $\mathrm{sq} . \mathrm{HD}$
+ trap. AQDS of $\mathrm{sq} . \mathrm{HG}$) + (tri. CNH
$=\operatorname{tri}$. FHE of $s q . H G)+(t r i$. CLT
$=$ 'tri. FER of sq. $\mathrm{HG} \cdot \mathrm{H}$) $\mathrm{sq} \cdot \mathrm{TO}=\mathrm{sq} \cdot \mathrm{DG}$ of $\mathrm{sq} \cdot \mathrm{HG}$
$=s q . H D+s q . H G$.
\therefore sq. upon $A B=$ sq. upon $B H+s q$. upon $A H$.
$\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
- a. Conceived, by author, to cover case (1),
(d).

Qne-Hundred-Sixty-Three

Fig. 261

Case (2), (a).
In fig. 261, with
sq's placed as in the figure, draw HL perp. to CK, CO and BN par. to AH , making BN $=\mathrm{BH}$, and draw KN .
. Sq. $\mathrm{AK}=$ rect. BL

+ rect. $A L=$ (paral. OKBH
$=s q \cdot B D)+$ (paral. COHA
$=s q \cdot A F)=s q \cdot B D+s q \cdot H G$.
\therefore sq. upon $A B=$ sq.
vpon $B H+$ sq. upon $A H$. $\quad \therefore h^{2}$ $=a^{2}+b^{2}$.
a. Devised, by author, to cover Ciase (2), (a).

Qne Hundred Sixty-Fiour

In fig. 262, the sq. AK

Fig. 262
$=$ parts $1+2+3+4+5+6$.
+16. Sq. $\mathrm{HD}=$ parts $(12=5)$
$+(13=4)$ of sq. AK. Sq. HG
$=$ parts $(9=1)+(10=2)+(11$
$=6)+(14=16)+(15=3)$ of
sq. AK.
\therefore sq. upon $A B=$ sq. upon $H D+s q$. upon HA. $\quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. This dissection and proof is that of Richard A. Bell, devised by him July 13, 1914, and given to me Feb: 28. 1938.

lne Hundred_sixty=Five

Case (2), (b).--For which are more proofs extant than for any other of these ig cases-Why? Because of the obvious dissection of the resulting figures.

In fig. 263, extend FG to C. Sq. $A K=$ (pentagon $A G M K B$ $=$ quad. AGNB common to sq's AK and $A F+$ tri. KNM common to sq's $A K$ and $F K)+(\operatorname{tri} . A C G=\operatorname{tri} . B N F$ $+\operatorname{trap}: N K D F)+(\operatorname{tri} \cdot \mathrm{CKM}=\operatorname{tri} . \mathrm{ABH})=\mathrm{sq} \cdot \mathrm{FK}+\mathrm{sq}$. AF.
$\therefore h^{2}=\frac{\therefore \text { sq. upon } A B}{A}+b^{2}$.
a. See Hilly Geom. for Beginners, 1886, p. 154, proof I; Bemań and Smith's New Plane and Solid Geom., 1899, p. I04, fig. 4; Versluys, p. 22, fig. 20, as given by Schlömilch, 1849; also F. C. Boon, proof 7, p. 105; also Dr. Leitzmann, p. 18, fig. 20; also

Joseph Zelson, a 17 year-old boy in West Phila., Pa, High School, 1937.
b. This figure is of special interest as the sq. MD may occupy 15 other positions having common vertex with sq. AK and its sides coincident with side or sides produced of sq. HG. One such solution is that of fig. 256.

One_Hundred_Sixty=Six

In fig. " 264 , extend $F G$ to C.

Fig. 264 Sq. $A K=$ quad. $A G P B$ common to sq's AK and $\mathrm{AF}+$ (trio. $\mathrm{ACG}=\operatorname{tri} . \mathrm{ABH}$) $+(\operatorname{tri} . \mathrm{CME}=\operatorname{tri} . \mathrm{BPF})+($ trap. EMKD common to sq's AK and EK). $+(\operatorname{tri} \cdot \mathrm{KPD}=\operatorname{tri} \cdot \mathrm{MLK})=\mathrm{sq} \cdot \mathrm{DL}$ +sq . AF.
\therefore sq. upon $A B=$ sq. upon $B H$ + sq. upon AH. $\therefore h^{2}=a^{2}+b^{2}$.
a. See Edwards' Geom., 1895, p. $7.6 \mathrm{fl}, \mathrm{g} \cdot(35) ; \mathrm{Br} \div \mathrm{Fe}-\mathrm{tzmann}$, p. 18, fig. 21. 4th Edition.

Que Hundred sixty=seven

In fig. 265, extend $F G$ to C_{τ}

Fig. 265 and const. sq. $H M=s q$. $L D$, the sq. translated.

Sq. $\mathrm{AK}=$ (mri. $\mathrm{ACG}=$ mri. $\mathrm{ABH})+($ trig. $\mathrm{COE}=$ trig. BPF$)+$ (trap. EOKL common to both sq's AK and LD, or $=$ trap. NQBH$)+$ (try. $\mathrm{KPL}=$ try. $K O D=\operatorname{tri} . \mathrm{BQM})+[(\operatorname{tri} . \mathrm{BQM}+$ poly go AGPBMQ) $=$ quad. $A G P B$ common to sq's $A K$ and $A F]=s q: L D+s q . A F$.
\therefore sq. upon $A B=$ sq. upon $B H$ + sq. upon AH. $\quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Sci. Am. Sup., V. 70, p. 359, Dec. 3, 1910, by A. R. Colburn.
b. I think it better to omit Colburn's sq. HM (not necessary), and thus reduce it to proof above.

Q ne Hundred Sixty -Eight

Fig. 266

In fig. 266, extend ED, to K and draw KM par. to BH .

Sq. $A K=$ quad. $A G N B$ common to sq's $A K$ and $A F+$ (mri. $A C G$ $=$ tri. ABH) + (trig. $C K M=$ trap.
CEDI + trig. BNF) + (ti. $\mathrm{KNM}=$ trig. $C L G)=s q \cdot G E+s q \cdot A F$,
\therefore sq. upon ${ }^{\prime} A B=$ sq. upon $B H$ + sq. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Edwards' Geom., 1895, p. 156, fig. (8).

One Hundred_Sixty-Nine

Fig. 267
In fig. 267, extend ED to C and draw $K P$ par. to $H B$.

Sq. $A K=$ quad. AGNB. common to sq's AK and HG + (ri. ACG
$=\operatorname{tri} . \operatorname{CAE}=\operatorname{trap} . E D M A+\operatorname{tri}$.
BNF $)+$ (try. CKPP $=$ try. ABH)
$+(\operatorname{tr} 1 . \mathrm{PKiN}=\operatorname{tri} . L A M)=s q \cdot A D$ + sq. AF.
\therefore sq. upon $A B=s q$, upon $B H+s q$. upon $A H . \quad \therefore h^{2} \equiv d^{2}+b^{2}$.
a. See Am. Math. Mo., V. VI, 1899; p. 33, proof IXXXXVI.

Qne_Hundred_Seventy

Fig. 268

In fig. 268, extend ED to C, DN to B, and draw. EO par. to $A B, K L$ pep. to $D B$ and $H M$ pep. to EO:

Sq. $A K=$ rect. $A O+$ rect. $C O=$ paral. AELB + paral. ECK $=s q \cdot A D+s q \cdot A F$.
\therefore sq. upon $A B=$ sq: upon $\mathrm{BH}=$ sq. upon $\mathrm{AH} . \quad \therefore \mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.
a. See Am. Math. Mo., Vol. VI, 1899, p. 33, LXXXVIII.

Qne-Hundred Seventy=Qne

Fig. 269

In fig. 269, extend HF to L and complete the sq. HE.

Sq. $A K=s q \cdot H E-4$ tri. $A B H \doteq s q . C D+s q . H G$ $+(2$ rect. GL $=4$ tri. $A C G)$ -4 tri. $A B H=s q . C D+s q$. HC.
\therefore sq. upon $A B=s q$. upon $B H^{\prime}+$ sq. upon $A H$. $\quad \therefore h^{2}$ $=a^{2}+b^{2}$.
a. This is one of the conjectured proofs of Pythagoras; see Ball's Short Hist. of Math., 1888, p. 24; Hopkins' Plane Geom., 1891, p. 91, fig. IV; Edwerds' Geom., I895, p. 162, fig. (39); Beman ard Smith's New Plane Geomı., 1899, p. 103, fig. 2; Heath's Math. Monographs, No. 1, 1900, p. 18, proof II.

Qne_Hundred_Seventy=Tws

In fig. 270, extend FG to

Fig. 270 C, draw $H N$ perp. to $C K$ and $K M$ par:
to HB.

Sq. $A K=$ rect. $B N+$ rect.
$\mathrm{AN}=$ paral. BHMK + paral. HACM
$=s q \cdot A D+s q \cdot A F$.
\therefore sq. upon $A B=$ sq. upon
$\mathrm{BH}+$ sq. upon $\mathrm{AH} . \quad \therefore \mathrm{h}^{2}=a^{2}+b^{2}$.
a. See Am. Math. Mo., V. VI, 1899, p. 33, proof LXXXXII.
b. In this figure'the given triangle may be either ACG, CKM, HMF or BAL; taking either of these four triangles
several proofs for each is possible. Again, by inspection, we observe that the given triangle may have any one of seven other positions within the square AGFH, right angles coinciding. Furthermore the square upon the hypotenuse may be constructed overlapping; and for each different supposition as to the figure there will result several proofs unlike any, as to dissection, given heretofore.
c. The simplicity and applicability of figuses under Case, (2), (b) makes it worthy of note.

Qne_Hyndred_Seventi=Three

tions $[5+(6=3)+(7=4)]$ $+[(8=1)+(9=2)]=s q . H G$ $+s q . A E$.
\therefore sq. upon $A B=s q$. upon $B H+$ sq. upon $H A . \quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. Devised by Richard Bell, Cleveland, 0., l on July 4, 1914, one of his 40 proofs:

Fig: 271
Qne_Hundred_Seventy-Fqur

Case (2.), (c).

Fig. 272

In ing. 272, ED -being the sq. translated, the construction is evident.

Sq. $\mathrm{AK}=$ quad. AHLC ' common to sq's $A K$ and $A F+(\operatorname{tri} . A B C$ $=\operatorname{tri} . A C G)+(t r i . B K D=$ trap. LKEF + try. CLF) + try. KLD common to $s q^{\prime} s^{\prime} A K$ and $E D=s q . E D+s q$. AF.
\therefore sq. upon $A B=s q$. upon
$B H+s q$. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Jury Kipper, 1880, p. 22, fig. 17; as given by vol Hauff, in "Lehrbegriff der reinen Mattiematik," 1803; Heath's Math. Monographs, 1900, No. 2, proof XX; Versluys, p. 29, fig. 27; Fourrey, p. 85-A. Marre, from Sanscrit, "Yoncti Bacha"; Dr. Leitzmann, p. 17, fig. 19, 4th edition.

Qne_Hundred_Seventy=Five

Having completed the

Fig. 273 three squares $A K, H E$ and $H G$, draw, through H, LM perp. to $A B$ and join $H C, A N$ and $A E$.

Sq. $A K=$ [rect. $I B$
$=2$ (try. $K H P=\operatorname{tri} \cdot \mathrm{AEM})=\mathrm{sq} \cdot \mathrm{HD}]$

+ [rect. LA $=2$ (try. $\mathrm{HCA}=$ try.
$\mathrm{ACH})=\mathrm{sq} \cdot \mathrm{HG}]=\mathrm{sq} . \mathrm{HD}+\mathrm{sq} . \mathrm{HG}$.
\therefore sq. upon $A B=$ sq. upon
$H B+s q$. upon HA.- $\therefore h^{2}=a^{2}+b^{2}$.
a. See Math. Mo. (1859), Vol. II, No. 2, Dem. 14, fig. 6.

Qne_Hyndred_Seventy=Six

Fig. 274

In fig. 274, since parts $2+3=\mathrm{sq}$. on $\mathrm{BH}=\mathrm{sq}$. DE , 1 t is readily seen that the sq. upon $A B=s q$. upon $B H+s q$. upon $A H$. $\therefore h^{2}=a^{2}+b^{2}$.
a. Devised by Richard A.

Bell, July 17, 1918, being one of his 40 proofs. He submitted a second dissection proof of same figure, also his 3 proofs of Dec. 1 and 2, 1920 are similar to the above, as to figure:

2ne_Hundred_Seventy=Seqen

Case (2), (a).

Fig. 275

In fig. 275, extend $K B$ to $P, C A$ to $R, B H$ to L, draw $K M$ perp. to $B L$, take $M N=H B$, and draw NO par. to AH.

Sq. $A K=$ tri. $A B H$ common to sq's $A K$ and $A F+$ (tri. BON $=\operatorname{tri} . \mathrm{BPF})+$ (trap. NOKM $=$ trap. DRAE) + (tri. KLM = tri. ARQ)

+ (quad. $A H L C=$ quad. $A G P B)=s q$. $A D+s q . A F$.
\therefore sq. upon $A B=s q$. upon
$\mathrm{BH}+$ sq. upon $\mathrm{AH} . \quad \therefore \mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.
a. See Am. Math. Mo., V. VI, 1899, p. 34, proof XC.

Qne_Hyndred_Seventy=Eight

In fig. 276, upon CK

Fig. 276 const. tri. $\mathrm{CKP}=$ tri. $\mathrm{ABH}, \mathrm{draw}$ CN par. to BH, KM par. to AH , draw ML and through H draw po.

Sq. $A K=$ rect. $K 0+$ rect. $C O=$ (paral. $P B=$ paral. $C L=s q$. $\mathrm{AD})+$ (paral. $\mathrm{PA}=\mathrm{sq} \cdot \mathrm{AF})=$ sq. $A D+s q . A F$.
\therefore sq. upon $A B=s q$. upon
$B H+$ sq. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. Original with the
author, Julv 28, 1900.
b. An algebraic proof
comes readily from this figure.

Que Hundred_Seventy-Mine:
 Case (3), (a):

Fig. 277
$=a^{2}+b^{2}$.
a. Devised for missing Case (3), (a), March 17, 1926.
$*$

Qne:Hundred_Elahty

Case (3), (b).
In fife: 278, extend ED to K and through D draw. GM par. to $A B$.

Sq. $A K=$ rect. $A M+$ rect.
$C M=$ (paral. $G B=$ sq. $H D$) (parol.
$C D=s q \cdot G F)=s q \cdot \cdot H D+s q \cdot G F$.
\therefore sq. upon $A B=s q$. upon
$B H+s q$. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$.
Fig. 278 - a. See Am. Math. Mo.,
Vol. VI, 1899, p. 33, proof ${ }^{\prime} \mathrm{LXXXV}$.
b. This figure furnishes an algebraic proof.
c. If any of the triangles congruent to tri. ABH is taken as the given triangle, a figure expressIng a different relation of the squares is obtained, hence covering some other case of the 19 possible cases.

Qne_Hyndred_Eighty=Qne

Fig. 279

Extend HA to G making $A G=H B, H B$ to M making. $B M$ $=H A, ~ c o m p l e t e ~ t h e ~ s q u a r e ' s ~$ $H D, E C, A K$ and $H L$. Number the dissected parts, omitting the mri's CLK and KMB.

Sq. $\quad(A K=1+4+5$ +6) $=$ parts (1 common to sq's $H D$ and $A K)+\left(4\right.$ common to $s q^{\prime} s$ $E C$ and $A K)+(5=2$ of $s q$. $H D$ +3 of $\mathrm{sq} . \mathrm{EC})+(6=7$ of sq . $E C)=$ parts $(1+2)$ + parts $(3+4+7)=s q . H D+s q . E C$. $\because \quad \therefore$ sq. upon $A B=s q$. upon $B H+s q$. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.I.
a. See "Geometric Exercises in Paper Folding" by T. Sundra Row, edited by Bemean and Smith (1905), 'p. 14.

Qne_Hundred_ELghty=Iwg

In fig. 280, extend EF. to K , and H herp. to CK .

Sq. $A K=$ rect. $B L+$ rect. $\mathrm{AL}=$ para. $\mathrm{BF}+$ aral. $\mathrm{AF}=\mathrm{sq}$. $\mathrm{HD}+\mathrm{sq}$. GiF.
\therefore sq. upon $A B=$ sq. upon $B H+$ sq. upon $A H: \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Am. Math. Mo., V. VI, 1899, p. 33, proof LXXXXIV.

Fig. 280

Qne_Hyndred_Eighty=Ihree

In fig. 281, extend $E F$ to K.
Sq. $\mathrm{AK}=$ quad. ACFL common to sq's AK and GF

Fig. 281

+ (tri. $\mathrm{CKF}=$ trap. $\mathrm{LBHE}+$ tri. $\mathrm{ALE})+($ tri. $\mathrm{KBD}=$ tri. CAG$)$ + tri. BDL common to sq's $A K$ and $H D=s q . H D+s q . A K$.
\therefore sq. upon $A B=$ sq. upon $\mathrm{BH}+\mathrm{sq}$. upon $\mathrm{AH}, \quad \therefore \mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.
a. See Olney's Geom., Part III, 1872, p. 250, 2nd method; Jury Wipper, 1880̈, p. 23, fig. 18; proof by E. Forbes, Winchester, N.H., as given in Jour. of Ed'n, V. XXVIII, 1888, p. 17, 25th proof; Jour. of Ed'n, V. XXV, 1887, p. 404, fig. II; Hopkins' Plane Geom., 1891, p. 91, fig. III; Edwards' Geom., 1895, p. 155, fig. (5); Math. Mo., V. VI, 1899, p. 33, proof LXXXIII; Heath's Math. Monographs, No. 1, 1900, p. 21, proof V; Geometric Exercises in Paper Folding, by T. Sundra Row, fig. 13, p. 14 of 2nd Edition of The Open Court Pub. Co., 1905. Every teacher of geometry should use this paper folding proof.

Also see Versluys, p. 29, fig. 26, 3rd parágraph, Clairaut, 1741, and found in "Yoncti Bacha"; als̃o Math. Mo., 1858, Vol. I, p. 160, Dem. 10, and p. 46, Vol. -I, where credited to Rev. A. D. Wheeler. b. By dissection an easy proof results. Also by algebra, as (in fig. 281) $C K B H G=a^{2}+b^{2}+a b ;$ whence readily $h^{2}=a^{2}+b^{2}$.
c. Fig. 280 is fig. 281 with the extra line HL; fig. 281 gives a proof by congruency, while fig. 280 gives a proof by equivalency, and it also "gives a proof, by algebra, by the use of the mean proportional.
d. Versluys, p. 20, connects this proof with Macay; Van Schooter, 1657; J. C. Sturm, 1689; Dobriner; and Clairaut.

Qne_Hundred_ELatty=Equr

In fig. 282, from the dissection it is obvious "that the sq. -upon $A B=s q$. upon $B H+s q$. upon $A H$.

Fig. 282

Fig. 283

In fig. 283, draw $k L$ pep. to $C G$ and extend $B H$ to M.

Sq. $A K=$ (try. $A B H=$ try. CKF) + try. BNH common to sq's AK and $H D+$ (quad. CGNK $=s q . \operatorname{LH}$ + trap. MHNK + tri. KCL common to sq's $A K$ and $F G$) + trio: $C A G=$ trap. $B D E N+$ tr. $K N E)=s q . H D+s q . F G$. \therefore sq. upon $A B=$ sq. upon
$\mathrm{BH}+$ sq. upon $\mathrm{AH} . \quad \therefore h^{2}=a^{2}+b^{2}$. Q.E:D.
a. See Sci. Am. Sup., Vol.

70, p. 383, Dec. 10, 1910, in
which proof A. R. Colburn makes ' T the given fri., and then substitutes part 2 for part l, part 3 for parts 4 and 5, thus showing sq. $A K=s q . H D+s q . F G ;$ also see'Versluys, p. 31, fig. 28, Geom., of M. Sauvens, 1753 ※ (1716)..

Q ne Hyndred-ELaty=SIx

Fig. 284

In fig. 284, the construetion is evident, FG being the translated b"square.

Sq. $A K=$ quad. GLKC common to sq's $A K$ and $C E+{ }^{z}(\operatorname{tr} 1$. GAG. $=$ trap. BDEL $+\operatorname{tri} . K W E)+(\operatorname{tr} 1$. $\mathrm{ABH}=$ try. CKF) + try. BLH common to $s q$'s $A K$ and $H D=s q . H D+s q$. $C E$.
$\therefore h^{2}=\dot{\therefore}$ sq. upon $A B=$ sq. upon $B H+$ sq. upon $A H$. $\therefore h^{2}=a^{2}+b^{2}$.
a. See Halsted's Elements of Geom., 1895, p. 78, theorem XXXVII; Edwards' Geom., 1895, p. 156, f1g. (6); Heath's Math. Monographs, No. 1, 1900, p. 27, proof XIII.

Qne Hundred_Eighty=-2even

In fig. 285 it is obvious that the parts in the

Fig. 285 sq. $H D$ and $H F$ are the same in number and congruent to the parts in the square A .
\therefore the sq. upon $A B$ $=s q$. upon $\mathrm{BH}+\mathrm{sq}$. upon AH, or $h^{2 a}=a^{2}+b^{2}$.
a. One of R. A. Bell's proofs, of Dec. 3, 1920 and received Feb. 28, 1938.

One $-H y n d r e d=E i g h t y=E i g h t$ \qquad
Case. (3), (d).

Fig. 286
LXXXIX.
b. As the relative position of the given triangle and the translated square may be indefinitely
varied, so the number of proofs must be indefinitely gregt, of which the following two are example's.

Qne_Hyndred_ELghty=Mine

In fig. 287, produce BH

Fig: 287 to Q, $H A$ to L and ED to F, and draw KN perp. to $Q B$ and connect A and G.

Sq. $A K=$ tri. $A P E$ common to sq's $A K$ and $E G+$ trap. PBHE common to sq's $H D$ and $A K+$ (tri. BKN $=$ tri. GAL $)+$ (tri. NKQ $=$ tri. $D B P$) + (quad. $A H Q C=$ quad. GFPA $)=s q \cdot H D+s q . H A$.
\therefore sq. upon $A B=s q \cdot$ upon. $H D+s q$. upon HA. $\quad \therefore h^{2}=a^{2}+b^{2}$.
a. This fig. and proof
due to R. A. Bell of Cleveland, 0 . He gave it to the author Feb. 27, 1938.

Qne HundredMinety

Fig." 288

In fig. 288, draw LM through H.

Sq. $A K=$ rect. $K M+$ rect. $\mathrm{CM}=$ paral. $\mathrm{KH}+$ paral. $\mathrm{CH}=$ sq. $\mathrm{HD}+\left(\mathrm{sq}\right.$. on $\mathrm{AHF}^{\prime}=\mathrm{sq} . \mathrm{NF}$).
\therefore sq. upon $A B=$ sq. upon $B H+s q$. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. Original with the
author, July 28, 1900.
b. An algebraic solution may be devised from this figure.

Qne_Hundred_Hinety=One

Case (4), (a).

Fig. 289

In fig. 289, extend KH to T making $\mathrm{NT}=\mathrm{AH}$, draw $T C$, draw $F R, M N$ and $P O$ perp. to KH, and draw HS par. to $A B$.

Sq. $\mathrm{CK}=$ (quad. CMNH

+ tri: $\mathrm{KPO}=$ quad. SHFG)
+ tri. MKN $=$ tri. HSA)
+ (trap. $F R O P=$ trap. EDLB)
$+($ tri. $\mathrm{FHR}=\operatorname{tr} 1 . \mathrm{ECB})=\mathrm{sq}$. $C D+s q$. GH.
upon $B H+$ sq. upón $A H$. $\quad \therefore h^{2}=a^{a^{2}}+b^{2}$.
a. Devised by author for case (4), (a) March 18, 1926.

Qne_Hyndredininety=Iwq*

Fig. 290
upon $\mathrm{BH}+$ sq. upon $\mathrm{AH} . \quad \therefore \mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$. upon $\mathrm{AB}=\mathrm{sq}$.
a. Devised by author for Case (4), (b).

Qne_Hundred_Ninety=Three

Case (5), (a).

Fig. $29: 1$

In fig. 291, CE and $A F$ are the translated sq's; produce $G F$ to 0 and complete the sq. MO; produce $H E$ to S and complete the sq. US; produce OB to Q, draw MF, draw WH, draw ST and UV perp. to WH, and take $T X=H B$ and draw $X Y$ perv. to WH. Since sq. MO $=s q \cdot A F$, and sq. US $=s q . \mathrm{CE}$, and since $s q$. $R W=$ (quad. URHV + try. $W Y X=$ trap. $M F O B+$ (ri. HST $=$ trig. $B Q H$) $+\left(\right.$ trap. ${ }^{-T S Y K}$
$=$ trap. $B D E Q)+$ trig. UVW.
$=\operatorname{tri} \cdot M F N$) $=s q \cdot H D+(s q \cdot N B$
$=s q \cdot A F)$.
\therefore sq. $R W=s q$. upon $A B=s q$. upon $B H+s q$.
upon AH.
$\therefore h^{2}=e^{2}+b^{2}$.
a. Devised March 18, 1926, for Case (5), (a), by author.

Qne_Hundred_hnetyofour

Extend HA to G mak-

FIg. 29 ? ing $A G=H B$; extend $H B$ to D making $B D=H A$. Complete sq's PD and PG. Draw Ha perp. to $C K$ and through P drew LM and Tu par. to $A B$. $\mathrm{FR}=\mathrm{CO}=\mathrm{BW}$.

The translated sqis are $P D=B E$ and $P G=H G^{\prime}$.

Sq. $A K=$ paris $(1$ $+2+3+4+5+6+7+8)$ $=$ parts $(3+4+5+6=30$. PD) + parts $(1+2+7+8)$
$=s q . P G$.

```
\mp@subsup{h}{}{2}\quad\therefore\mathrm{ sq. upon }AB=\mathrm{ sq. upon }HB+sq\mathrm{ . upon HA.}
\thereforeh}\mp@subsup{h}{}{2}=\mp@subsup{a}{}{2}+\mp@subsup{b}{}{2}\mathrm{ . Q.E.D.
    a. See Versluys, p. 35, f1g. }34
Qne_Hyndred_Minety=Five
```


Fig. 293

Case (5), (b).
In fig: 293, draw GL through B, and draw $P Q, C O$ and MN perp. to $B L$.

Sq. $\mathrm{BK}=$ (tri. $\mathrm{CBO}=$ tri.
$B G D)+$ (quad. OCKL + tri. BPO $=$ trap. $G F R B)+(\operatorname{tri} . ~ M L N=\operatorname{tri}$. BSD $)+$ (trap. $P Q N M=$ trap. SEHB) = sq. $\mathrm{HD}+\mathrm{sq} . \mathrm{DF}$.
\therefore sq., upon $A B=$ sq. upon $\mathrm{BH}+\mathrm{sq}$. upon AH. $\quad \therefore h^{2}=a^{2}+b^{2}$.
a. Devised for Case (5), (b), by the author, March 28, 1926.

Qne_Hundred_Minety=six
Case (6), (a).

ited to M Mcintosh of initwater, Wis proor is cred Ed'n, 1888, Vol. XXVII, p. 327, seventeenth proof: In fig. 294, extend the sq. HM, and draw DM.

Sq. $A K+4$ tri. $A B C$
$=$ sq. $H M=s q . L D+s q . D F$

+ (2 rect. $\mathrm{HD}=4 \mathrm{tri} . \mathrm{ABC}$), from which sq. $A K=s q$. $L D$ + sq. DF.
\therefore sq. upon $A B=$ sq.
upon $B H+$ sq. upon AH. $\quad \therefore h^{2}$ $=a^{2}+b^{2}$.
a. This proof is cred-

Qne_Hyndred_Minety-Seven

Sq. $A K=s q . H M-(4 \%$

Fig. 295 tri. $\mathrm{ABH}=2$ rect. $\mathrm{HH}=\mathrm{sq}$. EL + sq. If +2 rect. $H L-2$ rect. $\mathrm{HL}=\mathrm{sq} . \mathrm{EL}+\mathrm{sq}$. IF.
\therefore sq. upon $A B=s q$. upon $H B+$ sq. upon HA. $\therefore h^{2}$ $=a^{2}+b^{2}$.
a. See Journal of Education, 1887', 'Vol. XXVI, p. 21, fig. XII; Iowa Grand Lodge Bulletin, F and A.M., Vol. 30, No. 2, p. 44, fig. 2, of Feb. 1929. Also Dr. Leitzmann, p. 20,"fig. 24, 4th Ed'n.
b. An algebraic proof is $\mathrm{H}^{2}=(a+b)^{2}-2 a b$ $=a^{2}+b^{2}$.

Qne_Hundred_Ninety=Eiqht.

In fig. 296, the

Fig. 296 translation is evident. Take CM = KD. Draw AM; then draw $G R, C N$ and $B O$ par. to $A H$ and $D U$ par. to BH . Take $\mathrm{NP}=\mathrm{BH}$ and draw $P Q$ par. to $A H$.

Sq. $A K=$ (tri.
$\mathrm{CMN}=$ tri. DEU) + (trap. $C N P Q=$ trap. TKDD $)$

+ (quad. $O M R B+$ tri. $A Q P$)
$=$ trap. $F G R Q)+$ tri. AOB
$=\operatorname{tri} . G C R)=s q \cdot E K+s q \cdot F C$.
\therefore sq. upon $A B=s q$. upon $H B+$ sq. upon $H A$.
$\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. Devised by the author, March 28, 1926.

NICOLAI IVANOVITCH LOBACHEVSKY
$\because \quad 1793-1856$

Qne Hundred Ninety-Nine

In fig. 297, the translation and construction is evident.

Sq. $A K=$ (tri. CRP
$=$ tri. BVE) + (trap. ANST
= trap. BMDV) + (quad. NRKB

+ tri.. $T S B=$ trap. $A F G C)+$ tri. ACP common to sq. AK and AG $=s q . \mathrm{ME}+\mathrm{sq} . \mathrm{Fp}$.
\therefore sq. upon $A B=s q$.
upon $\mathrm{BH} \cdot+$ sq. upon $\mathrm{AH} . \quad \therefore \mathrm{h}^{2}$ $=a^{2}+b^{2}$.
a. Devised by author, March 26, 1926, 10 p.m.

IwQ_Hundred
In fig. 298, the sq. on AH is translated to position of GC, and the sq. on $H B$ to position of GD. Complete the figure and conceive the sum of the two sq's EL and GC as the two rect's EM + TC +sq . LN and the dissection as numbered.

Sq. $A K=$ (tri. $A C P$
$=\operatorname{tri} . \mathrm{DTM})+(\operatorname{tri} . \mathrm{CKQ}$
= tri. TDE $)+($ tri. KBR
$=$ tri. CTO) + (tri. BAS
$=\operatorname{tri} . T C N)^{\prime}+(s q . S Q=s q . L N)^{\prime}=s q . E E L+s q . G C$.
\therefore sq. upon $A B=s q$. upon $B H+s q$. upon $A H$.
$\therefore h^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.
a. Devised by author, 'Marich 22, 1926.
b. As sq. EL, having a vertex aida a side in common with a vertex and a side of sq. GC, either externally (as in fig. 298), or internally, may have 12 different positions, and as sq. GC may have a vertex.
and a sire in common with the fixed sq. AK, or in common with the given triangle ABH , giving 15 different positions, there is possible $180-3=177$ different figures, hence 176 proofs other than the one given above, using the dissection as used here, and 178 more proofs by using the dissection as given in proof Ten, fig. lill.
c. This proof is a variation of. that given in proof Eleven, fig. 112.

Iw2_Hundred_ene
In fig. 299, the construction is evident, as $F O$ is the translation of the sq. on AH , and KE is the translation of the sq. on BH.

$$
\text { Since rect. } \mathrm{CN}
$$

= rect. $Q E$, we have sq.
$\mathrm{AK}=$ (tri. $\mathrm{LKV}=$ tri. CPL)
$+(\operatorname{tri} . K B W=\operatorname{tri}, \mathrm{LFC})$
$+($ tri. $B A T=\operatorname{tri} . K Q R)$
$+(\operatorname{tri} \cdot A L U=\operatorname{tri} \cdot R S K)$

+ (sq. $\cdot T V=s q \cdot M O$)
$=$ rect. $K R+$ rect. FP
$+s q \cdot M O=s q \cdot K E+s q$. FO.

$\therefore h^{\dot{2}}=a^{\dot{2}}+\mathrm{b}^{2}$. upon $\mathrm{AB}=$ sq. upon $B H+s q$. upon $A H$.
a. Devised by the author, March 27, 1926.

Iwo_Hundreq_Iwa

In fig. 300 the translation and construction are easily seen.

Sq. $A K=$ (tri. $C K N=$ tri. ${ }^{\prime \prime}$ LFG) + (trap. OTUM
$=$ trap. RESA) + (tri. $V O B=$ tri. $R A D+$ (quad. ACNV + tri. TKU $=$ quad. MKFL $)=$ sq. $D S+s q$. MF.

$\therefore \therefore$ sq. upon $A B=s q$.
upon $H B+s q$. upon $H A . \quad \therefore h^{2}$
$=a_{r}^{2}+b^{2}$.
a. Devised by the author, March 27, 1926, 10:40 p.m.

Fig. 300

Iwg Hundred_Ihree

$$
\mathrm{AR}=\mathrm{AH} \text { and } \mathrm{AD}=\mathrm{BH} . \quad \mathrm{Com}-
$$

Fig. 301 plete $s q^{\prime} s$ on $A R$ and $A D$. Extend $D E$ to S and draw $S A$ and TR.

Sq. $A K=$ (tri. $Q P B=\cdot \operatorname{tri}$.
VDR of $\mathrm{sq} . \mathrm{AF} \cdot$) + (trap. $A I \cdot P Q=$ trap.
ETAU of sq. $A E)+(t r i . ~ C M A=t r i$.
SGA of sq. AF $)+$ (tri. $C N M=$ tri. UAD of sq. $A E$) + (trap. NKOL $=$ trap.
VRES of sq. AF $)+($ tri. \quad OKB $=$ tri.
DSA of sq. AF) $=$ (parts $2+4=\mathrm{sq}$.
$\mathrm{AE})+$ (parts $1+3+5+6=\mathrm{sq} . \mathrm{AF})$.
\therefore sq. upon $A B=$ sq.. upon $H B$

+ sq. upon HA. $\quad \therefore h^{2}=a^{2}+b^{2}$.
Q.E.D.
a. Devised, by author, Nov. 16, 1933.

Fig. 302

In fig. 302; complete the sq. on EH , draw BD par. to $A H$, and draw $A L$ and $K F$ perp. to DB .

Sq. $A K=s q \cdot H G-(4$
tri. $\mathrm{ABH}=2$ rect. HH$)=$ sq.
$\mathrm{EL}+\mathrm{sq} . \mathrm{DK}+2$ rect. $\mathrm{FM}-2$ rect. $\mathrm{HL}=\mathrm{sq}$. $\mathrm{EL}+\mathrm{sq}$. DK.
\therefore sq. upon $A B \Rightarrow s q$.
upon $H B+$ sq. upon HA. $\therefore h^{2}$
$=a^{2}+b^{2}$.
(19.).
a. See Edwards! Geom., 1895, p. 158, fig.
b. By changing position of sq. FG, many other ~ proofs might be obtained.

- c. This is á variation of proof", fig. 240.

Fig. 303

In fig. 303, let W and X be sq's with sides equal resp'y to $A H$ and $B H$. Place them as in figure, A being center of sq. W, and 0 , middle of $A B$ as center of FS. $\quad S T=B H, T F=A H$. Sides of $s q^{\prime} s$. $F V$ and QS are perp. to sides AH and BH .

It is obvious that:
Sq. $A K=$ (parts $1+2+3+4=s q \cdot F V)+s q$. $\mathrm{QS}=\mathrm{sq} . \mathrm{X}+\mathrm{sq} . \mathrm{W}$.
$\therefore h^{2}=a^{\therefore}$ sq. upon $A B=$ sq. upon $H B+$ sq. upon $H A$.
a. See Messenger of Math., Vol. 2, p. 103, 1873, and there credited to Henry Perigal, F.R.S.A.S.

Fig. 304

Iwo_Hyndred_six

Case (6), (b).
In filg. 304, the construction is evident. $\mathrm{Sq} . \mathrm{AK}=\cdot(\operatorname{tri} . \mathrm{ABH}$ $=$ trap. KEMN + tri. KOF) + (tri. BOH $=$ tri. KLN $)+$ quad. GOKC common to sq's $A K$ and $C F+$ (tri. $C A G=$ tri. $C K E$) $=s q . \mathrm{MK}+\mathrm{sq} . \mathrm{CF}$.
\therefore sq. upon $A B=$ sq. upon $B H+$ sq. upon $A H$. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Hopkins' Plane Geom. , 1891, p. 92, fig fig. VIII.
b. By drawing a line EH, a proof through parallelogram, may be obtained. Also an algebraic proof.
c. Also any one of the other three triangles, as CAG may be called the given triangle, from which other proofs would follow. Furthermore since the fri. $A B H$ may have seven other positions leaving side of sq. AK as hypotenuse, and the sq. MK may have 12 poss sitions having a side and a vertex in common with sq. CF, we would have 84 proofs, some of which have been or will be given; etc., etc., as to sq. CF, one of which is the next proof.

Iwo Hundred_seven

In fig. 305, through H

Fig. 305

路
Case (7), (a).
In fig. 306, extend $A B$ to X, draw $W U$ and $K S$ each $=$ to $A H$ and par. to $A B, C V$ and $H T$ perp. to $A B$, $G R$ and $F P$ par to $A B$, and $L W$ and $A M$ perp. to $A B$.

Fig. 306

+ trap. WQRA of sq.*GF) + (tri. WUH $=$ tri. LWG of sq. $G F)+(t r i . W C V=t r i$. $W L N$ of $s q$. GF) $+(\mathrm{sq} . \mathrm{VT}$ = paral. RO of sq. GF) $=s q . B D+s q . G F$.
\therefore sq. upon $A B=$ sq. upon $H B+s q$. upon $H A$.
a. Original with the author, Aug. 8, 1900.
b. As in fig. 305 many other arrangements are possible each of which will furnish a proof or proofs.

J (A)--Proofs determined by arguments based upon a square.

This type includes all proofs derived from figures in which one or more of the squares are not graphically represented. There are two leading classes or sub-types in this type--first, the class in which the determination of the proof is based upon a square; second; the class in which the determination of the proof is based upon a triangle.

As in the I-type, so here, by inspection we find 6 sub-classes in our first sub-type which may be symbolized thus:
(1) The h-square omitted, with
(a) The a- and b-squares const'd outwardly-3 cases.
(b) The a-sq. const'd out'ly and the b-sq. "overlapping--3 cases.
(c) The b-sq. const'd out'ly and the a-sq. överlapping--3 cases.
(d) The $a-$ and b-squares overlapping- -3 cases.
(2) The a-sq. omitted, with
(a) The h - and b-sq's const'd out'ly--3 cases.
(b) The h-sq. const'd out'ly and the b-sq. overlapping--3 cases.
(c) The b-sq. const'd out'ly and the $h-s q$. overlapping- -3 cases.
(d) The h - and $b-s q$'s const'd and overlapping --3 cases.
(3) The b-sq. omitted, with
(a) The h- and a-sq's const'd out'ly--3 cases.
(b) The h-sq. const'd out'ly and the a-sq. overlapping- 3 cases.
(c) The a-sq. const'd out'ly and the h-sq. overlapping- -3 cases.
(d) The h-and a-sq's const'd overlapping-3 cases.
(4) The h - and a-sq's omitted, with
(a) The b-sq. const'd out'ly.
(b) The b-sq. const'd overlapping.
(c) The b-sq: translated--in all 3 cases.
(8) The h- and b-sq'd omitted, with
(a) The a-sq. const'd out'ly.
(b) The a-sq. const'd overlapping.
(c) The a-sq. translated--in all 3 cases.
(6) The a - and ${ }^{4} b$-sq's omitted, with
(a) The 'h-sq. const'd out'ly.
(b) The h-sq. const'd overlapping.
(c) The h-sq. translated--in all 3 cases.

The total of these enumerated cases is 45 . We shall give but a few of these 45, leaving the remainder to the ingenuity of the interested student.
(7) All three squares omitted.

Iwq_Hundred_Nine

Case (1), (a).

Fig. 307 .

In fig. 307, produce GF to \mathbb{N} a pt., on the perp. to $A B$ at B, and extend $D E$ to L, draw $H L$ and $A M$ perp. to $A B$. . The tri's AMG and ABH are equal.

Sq. $H D+s q . ~ G H$
$=$ (paral. $\mathrm{HO}=$ paral. LP)

+ paral. $M \mathbb{N}=$ paral. $M P=A M$ $\times A B=A B \times A B=(A B)^{2}$.
\therefore sq. upon $A B=s q$. upon $B H^{1}+$ sq. upon $A H$. $\quad \therefore h^{2}=a^{2}+b^{2}$.
a. Devised by author for case (1), (a), Mar̃ch 20, 1926.
b. See proof No. 88, fig. 188. By omitting lines $C K$ and $H N$ in said figure we have fig. 307. Therefore proof No. 209 is only a variation of proof No. 88, fig. 188.

Analysis of proofs given will show that many supposedly new proofs are only modifications of some more fundamental proof.

Twq_Hundred_Ien

(Not a Pythagorean Proof.)
While case (l), (b) may be proved in some other way, we have selected the following as being quite unique. It is due to the ingenuity or Mr. Arthur R. Colburn of Washington, D.C., and is No. 97 of his 108 proofs.

It rests upon the following Theorem on Parallelogram, which is: "If from one end of the side of a parallelogram a straight line be drawn to any point in the opposite side, or the opposite side extended, and a line from the other end of said first side be drawn perpendicular to the first line, or its
extension, the product of these two drawn lines will measure the area of the parallelogram." Mr. Colburn formulated this tineorem and its use is discussed in Vol. 4, p. 4.5, of the "Mathematics Teacher;" Dec., 1911. I have not seen his proof, jut have. demonstrated, it as follows:

In the paral.

$A B C D$, from the end A of the side AB, draw AF to side DC produced, and from B, the other end of side $A B$, draw $B G$ perp, to AF, Then AF $\times B G=$ area of aral. $A B C D$.
Proof: From D lay off $D E=C F$, and draw $A E$ and $B F$ forming the paral. $A B F E=$ aral. $A B C D$. $A B F$ is a triangle and is one-half of $A B r E$, The area of fri. $F A B=\frac{1}{2} F A \times B G$; therefore the area of paral. $A B F E=2$ times the area or the ti. $F A B$, or $F A \times B G$. But the area of paral. $A B F E=$ area of paral. $A B C D$.
$\therefore A F \times B G$ measures the area of paral. $A B C D$. Q.E.D.

By means of this Parallelogram Theorem the pythagorean Theorem can be proved in many cases, of which here is one.

Iwq_Hundred_Eleven

Fig. 309
Case (1), (b).
In fig. 309, extend GF and ED to L completing the paral. $A L$, draw $F E$ and extend $A B$ to M. Then by the paral. theorem:
(1) $\mathrm{EP} \times \mathrm{AM}=\mathrm{AE} \times \mathrm{AG}$.
(2) $\mathrm{EF} \times \mathrm{BM}=\mathrm{FI} \times \mathrm{BF}$.
(1) $-(2)=(3) \operatorname{EF}(A M-B M)$

$$
=A E \times A G-F I \times B F
$$

$(3)=(4)(E F=A B) \times A B=A G F H+B D E H$, or sq. $A B$ $=s q, H G+s q . H D$.
\therefore sq. upon $A B=$ sq. upon $B H+s q$. upon $A H$.
$\therefore H^{2}=a^{\ddot{2}}+b^{2}$.
a. This is No. 97 of A. R. Colburn's 108
proofs.
b. By inspecting this figure we discover in

It the five dissected parts as set forth by my Law of Dissection. See proof Ten, fig. 111.

Iwa_Hundred_Iwelve

Fig. 310

Case (2), (b).
. Mri. $\mathrm{HAC}=\mathrm{tri}$. ACHe.
Mri. $H A C=\frac{1}{2}$ sq. $H G$.
Mri. ACH $=\frac{1}{2}$ rect. AL.
\therefore rect. $A L=s q . H G . \quad$ Similarly rect. $B L=s q$: on $H B$. But rect. $A L$ + rect. $\mathrm{BL}=$ sq. AK .
\therefore sq. upon $A K=s q$. upon $H B$ + sq. upon HA. $\quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. Sent to me by J. Adams from The -Hague, Holland. But the author not given. Received it March 2, 1934.

Iwq_Hundred_Thirteen

Case (2), (c).
In fig. 311, produce GA to K making $\mathrm{AM}=\mathrm{HB}$, draw BM , and draw $K J$ par. to $A H$ and $C O$ par. to BH .

Sq. $A K=4$ trig. $A B H+s q . \quad$.
$\mathrm{NH}=4 ; \frac{\mathrm{AH} \times \mathrm{BH}}{2}+(\mathrm{AH}-\mathrm{BH})^{2}$.
$=2 \mathrm{AH} \times \mathrm{BH}+\dot{A H}^{2}-2 \mathrm{AH} \times \mathrm{BH}++^{\circ}$ $\mathrm{BH}^{2}=\mathrm{BH}^{2}+\mathrm{AH}^{2}$.
\therefore sq. upon $A B=s q$. upon $B H+s q$. upon $A H$ $\therefore h^{2}=a^{2}+b^{2}$.
a. Original with author, March, 1926.
b. See Sci. Am. Sup.; Vol. 70, p. 383, Dec. 10, 191, f , 1 g . 17 , in which Mr. Colburn makes use of the tri. BAM.
c. Another proof, by author, is obtained by comparison and substitution of dissected parts as numbered.

Iwo Hundred_Equrteen

Fig. 312

Case (4), (b).
In fig. 312, produce $F G$ to P making $G P=B H$, draw $A P$ and $B P$.

Sq. $G H=b^{2}=$ tri. $B H A+q u a d$.
$A B F G=$ tri. $A P G+$ quad. $A B F G=$ tri. $A P B+\operatorname{tr} 1 . P F B=\frac{1}{2} c^{2}+\frac{1}{2}(b+a)(b-a)$.
$\therefore b^{2}=\frac{1}{2} c^{2}+\frac{1}{2} b^{2}-\frac{1}{2} a^{2} . \quad \therefore c^{2}=a^{2}$ $+b^{2}$.
\therefore sq. upon $A B=$ sq. upon $H B$ + sq. upon HA.
a. Proof 4, on p. 104, In "A Companion of Elementary School Mathematics," (1924) by F.C. Boon, B.A., Pub. by Longmans, Green and Cu.

Iwo Hundred_Eifteen

In fig: 313, produce $H B$ to F, and complete the sq. AF. Draw GL perp. to $A B$, $F M$ par. to $A B$ and $N H$, - perp. to $A B$.
$\mathrm{Sq} \cdot \mathrm{AF}=\mathrm{AH}^{2}=4 \frac{\mathrm{AO} \times \mathrm{HO}}{2}$
$+\left[L O^{2}=(A O-H O)^{2}\right]=2 A O \times H O+A O^{2}$
$-2 \mathrm{AO} \times \mathrm{HO}+\mathrm{HO}^{2}=\mathrm{AO}^{2}+\mathrm{HO}^{2}=(\mathrm{AO}$
$\left.=A H^{2} \div A B\right)^{2}+(H O=A H \times H B \div A B)^{2}$
$=A H^{4} \div A B^{2}+A H^{2} \times H B^{2} \div A B^{2}=A H^{2}$
$\left(A H^{2}+\mathrm{HB}^{2}\right) \div A B^{2} \cdot \therefore I=\left(A H^{2}+\mathrm{BH}^{2}\right) \div A B^{2}, \therefore \mathrm{AB}^{2}$ $=\mathrm{BH}^{2}+\mathrm{AH}^{2}$.
$\therefore h^{2}=a^{\ddot{2}}+b^{2}$. upon $A B=$ Q.E.D.
a. See Am. Math. Mo., Vol. VI, 1899, p. 69, proof CIII; Dr. Leitzmann, p. 22, fig, 26.
b. The reader will observe that this proof proves too much, as it first proves that $\mathrm{AH}^{2}=A O^{2}$ $+\mathrm{HO}^{2}$, which is the truth sought. Triangles ABH and AOH are similar, and what is true, as to the relations of the sides of mri. AHO must be true, by the law of similarity, as to the relations of the sides of the tri. ABH .

IWQ_Hyndred_sixteen

Fig. 314

Fig. 315

Case (6); (a). This is a popular figure with authors.

In fig. 314, draw $C D$ and $K D$ par. respectively to $A H$ and $B H$, draw $A D$ and $B D$, and draw $A F$ perp. to $C D$ and BE perp. to KD extended.

Sq. $A K=2$ try. $C D A+2 \operatorname{tri}$. $B D K=C D \times A F+K D \times E B=C D^{2}+\mathrm{KD}^{2}$.
\therefore sq. upon $A B=$ sq. upon $B H$ + sq. upon AH. $\quad \therefore h^{2}=\dot{a}^{2}+b^{2}$.
a. Original with the author, August 4, 1900.

Iwo Hundred_Seventeen

In fig. 315, extend AH and BH to E and F respectively making $H E$ $=\mathrm{HB}$ and $\mathrm{HF}=\mathrm{HA}$, and through H draw LN perp. to $A B$, draw $C M$ and $K M$ par. respectively to AH and BH , complete the rect. $F E$ and draw $L A, L B, H C$ and HR.

Sq. $A K=$ rect. $B N+$ rect. $A N$ = aral. $B M+$ aral. $A M=$ (2 fri. $H M K$ $=2$ trill. $\mathrm{LHB}=\mathrm{sq} \cdot \mathrm{BH})+(2$ try. HAJ $=2 \operatorname{tri} . \operatorname{I} A H=s q \cdot A H)$.
$\therefore h^{2}=a^{\dot{2}}$ sq. upon $A B=s q$. upon $B H+s q$. upon $A H$.
a. Original with author March 26, 1926, 9 p.m.

Iwo_Hundred_Eighteen

Fig. 316

Fig. 317

In fig. 316, complete the sq's $H F$ and $A K$; in fig. 317 complete the sq's $H F, A D$ and $C G$, and draw $H C$ and $D K$. Sq. $H F-4$ tri. $A B H=s q$. $A K=h^{2}$. Again sq: $H F=4$ tri. $A B H=a^{2}+b^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$.
\therefore sq. upon $A B=s q$. upon $B H+s q$. upon $A H$.
a. See Math. Mo., 1858, Dern. 9, Vol. I, p. 159, and credited to Rev. A. D. Wheeler of Brunswick, Me., in work of Henry Boad, London, 1733.
b. An algebraic proof: $\dot{a}^{2}+b^{2}+2 a b=h^{2}$ $+2 a b . \quad \therefore h^{2}=a^{2}+b^{2}$.
c. Also, two equal squares of paper and scissors.

Iws_Hundred Hineteen

In fig. 318, extend $H B$ to N and complete the sq. HM.

$$
\text { Sq. } A K=s q \cdot H M-4 \frac{H B \times H A}{2}=(L A+A H)^{2}
$$

$-2 H B \times H A=L A^{2}+2 L A \times A H+A H^{2}-2 H B \times H A=B H^{2}$ $+\mathrm{AH}^{2}$.

Fig. 318
\therefore sq. upon $A B=s q$. upon $B H+s q$. upon $A H$.
a. Credited to T. P. Stowell, of Rochester, N.Y. See The Math. Magazine, Vol. I, 1882, p. 38; Olney's Geom., Part III, 1872, p. 251, 7th method; Jour. of Ed'n, Vol. XXVI, 1877, p. 21, fig. IX; also Vol. XXVII, 1888, p. 327, l8th proof, by R. E. Binford, Independence, Texas; The School. Visitor, Vol. IX, 1888, p: 5, proof II; Edwards' Geom., 1895. p. 159, fig. (27); Am. Math. Mo., Vol. VI, 1899, p. 70, proof XCIV; Heath's Math. Monographs, No. 1, 1900, p. 23, proof VIII; Sci. Am. Sup., Vol. 70, p. 359, fig. 4, 1910; Henry Boad's work, London, 1733.
b. For algebraic solutions, see p: 2, in a pamphlet by Artemus Martin of Washington, D.C., Aug. 1912, entitled "On Rational Right-Angled Triangles"; and a solution by A. R-. Colburn, in Sci. Am. Supplement, Vol. 70, p. 359, Dec. 3, 1910.
c. By drawing the line $A K$, and considering the part of the figure to the

Fig. 319 right of said line AK, we have the figure from which the proof known as Garfield's Solution follows--see proof Two Hundred Thirty-One, fig. 330.

Iwg_Hundred_Twenty

In fig. 319, extend HA to L and complete the sq. LN.

Sq: $A K=s q \cdot L N$
$-4 \times \frac{H B \times H A}{2}=(H B+H A)^{2}$
$-2 H B \times H A=H B^{2}+2 H B \times H A$
$+H A^{2}-2 H B \times H A=s q \cdot H B+s q \cdot H A . \quad \therefore$ sq. upon $A B$ $=s q$. upon $B H+s q$. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Jury Wipper, 1880 , p. 35, fig. 32, as. given in "Hubert's Rudimenta Algebrae,". Wurceb, 1762; Versluys, p. 70, fig. 75.
b. This fig, 319 is but a variation of fig. ; 240, as also is the proof.

Iwo_Hyndred_Iwenty=0ne

Case (6), (b):
In fig. 320, complete the sq. $A K$ overlapping the tri. $A B H$, draw through H the line LM perp. to $A B$, extend $B H$ to N making $B N=A H$, and draw KN perp. to BN , and CO perp. to AH. " Then, by the parallelogram theorem, Case (1), (b), fig. 308, sq. $A K=$ paral. KM + paral. $\mathrm{CM}=\left(\mathrm{BH} \times \mathrm{KN}=\mathrm{a}^{2}\right)+\left(\mathrm{AH} \times \mathrm{CO}=\mathrm{b}^{2}\right)=\mathrm{a}^{2}$ $+b^{2}$.
\therefore sq. upon $A B=s q$. upon $B H+s q$. upon $A H$.
a. See Math. Teacher, Vol. 4, 'p. 45; 1911, where the proof is credited to Arthur I. Colburn.
b. See fig. 324; which is more fundamental, proof No. 221 or proof No. 225?
c. See fig. 114 and fig. 328.

Iwq_Hundred_Twenty=Tw2

In fig. 321, draw CL perp.

Fig. 321 to $A H$, produce $B H$ to N makling $B N$ $=\mathrm{CL}$, and draw KN and CH . since CL $=A H$ and $\mathrm{KN}=\mathrm{BH}$, then $\frac{1}{2} \mathrm{sq} . \mathrm{BC}$ $=\operatorname{tri} . \mathrm{KBH}+\operatorname{tri} . \mathrm{AHC}=\frac{3}{2} \mathrm{BH}^{2}+\frac{1}{2} \mathrm{AH}^{2}$, or $\frac{1}{2} h^{2}=\frac{1}{2} a^{2}+\frac{1}{2} b^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$. \therefore sq. upon $A B=$ sq. upon $H B$ + sq. upon HA.
a. Proof 5, on p. 104, in
"A Companion to Elementary Mathematics" (1924) by F. C. Boon' A.B., and credited to the late F. C. Jackson ("Slide Rule Jackson").

Iwo_ Hundred Iwenty=Three

In fig. 322, draw CL, and KL

Fig. 322 par. to AH and BH respectively, and through H draw LM.

Sq. $A K=$ rect. $K M+$ rect. $C M$ = papal. $\mathrm{KH}+$ aral. $\mathrm{CH}=\mathrm{BH} \times \mathrm{NL}$ $+\mathrm{AH} \times \mathrm{NH}=\mathrm{BH}^{2}+\mathrm{AH}^{2}$.
\therefore sq. upon $A B=$ sq. upon $B H$ + sq. upon $A H . \quad \therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. This is known as Haynes Solution. See the Math. Magazine, Vol. I, p. 60, 1882; also said to have been discovered in 1877 by Geo. M. Phillips, Ph. Ph.D., Prin. of the West Chester State Normal School, Pa.; see Heath's Math. Monographs, No. 2, p. 38, proof XXVI; Fourrey, p. 76.
b. An algebraic proof is easily obtained.

Iwo Hundred Twenty=Four

In fig. 323, construct sq.

Fig. 323 $A K$. Extend $A H$ to G making $H G=H B$; on CK cost. rit. trig. $\mathrm{CKL}(=\mathrm{ABH})$ and draw the perp. LHM, and extend LK to G.

Now $\mathrm{LG}=\mathrm{HA}$, and it is obviours that: sq. AK $\left(=h^{2}\right)=$ rect. MK + rect. $M C=$ aral. $\mathrm{HK}+$ aral. HC $=H B \times H G+H A \times C L=b^{2}+a^{2}$, or $h^{2}=a^{2}+b^{2}$. Q.E.D.
\therefore sq. upon $A B=$ sq. upon $H B$ + sq. upon HA.
a. This fig. (and proof) was devised by Gustav Cass, a pupil in the Junior-Senior'High School,

South Bend, Ind., and sent to the author, by his teacher, Wilson Thornton, May 16, 1939.

Iwe_Hyndred Twenty=Five

Fig. $324 a$

Fig. 324b

Case (6), (c).
For convenience designate the upper part of fig. 324, i.e., the sq. AK, as fig. 324a, and the lower part as 324b.

In fig. 324 a , the construction is evident, four 324b is made from the dissected parts of 324a. GH' is a sq. each side of which $=A H$, IB' is a sq.. each side of which $=\mathrm{BH}$.

Sq. $A K=2$ trig. $A B H+2$
mri. $\mathrm{ABH}+$ sq. $\mathrm{MH}=$ rect. B N

+ rect. $0 F+$ sq. $L M=s q \cdot B^{\prime} L$ + sq. All.
\therefore sq. upon $A B=$ sq. upon
a. See Hopkins' Plane Geom., 1891, p. 91,
fig. V; Am. Math. Mo., Vol. VI, 1899, p. 69, XCI; Beman and Smith's New Plane Geom., 1899, p. 104, fig. 3; Heath's Math. Monographs, No. 1, 1900, p. 20, proof IV. Also Mr. Bodo M. DeBeck, of Cincinnati, 0., about 1905 without knowledge of any previous solotion discovered above form of figure and devised a proof from it. Also Versiuys, p. 31, fig. 29; and "Curiosities of Geometriques, Fourrey, p. 83, fig. b, and p. 84, fig. d, by Sanvens, 1753.
b. History relates that the Hindu Mathematician Bhaskara, born 1114 A.D., discovered the above proof and followed the figure with the single word "Behold," not condescending to give other than the figure and this one word for proof. And history furthermore declares that the Geometers of Hindustan knew the truth and proof of this theorem centuries before the time of Pythagoras--may he not have learned about it while studying Indian lore at Babylon?

Whether he gave fig. 324b as well as fig. 324a, as I am of the opinion he did, many late authors think not; with the two figures, 324 a and 324 b , side by side, the word "Behold!" may be justified, especially when we recall that the tendency of that age was to keep secret the discovery of truth for certain purposes and from certain classes; but with the fig. 324 b omitted, the act is hardly defensible-not any more so then "See?" would be after fig. 318.

Again, authors who give $324 a$ and "Behold!"
fail to tell their readers whether Bhaskara's proof was geometric or algebraic. Why this silence on so essential a point? For, if algebraic, the fig. $324 a$ is enough as the next two proofs show. I now quote from Bemean and Smith: "The inside square is evidentfly $(b-a)^{2}$, and each of the four triangles is $\frac{1}{2} a b ;$ $\therefore h^{2}-4 \times \frac{1}{2} a b=(b-a)^{2}$, whence $h^{2}=a^{2}+b^{2}$."

It is conjectured that Pythagoras had discovered it independently, as also did Wallis, an English Mathematician, in the 17 th century, and so reported; also Miss Coolidge, the blind girl, a few years ago: see proof Thirty-Two, fig. 133.

Two_Hyndred_Iwenty=six

Fig. 325

In fig. 325, it is obvinous that fri's $7+8=$ rect. GL. Then it is easily seen, from congruent parts, that: sq. upon $A B=$ sq. upon $B H+s q$. upon $A H$. $\quad \therefore h^{2}=a^{2}+b^{2}$.
a. Devised by R. A. Bell, Cleveland, 0., July 4, 1918. He submitted three more of same type.

Iwo_ Hundred Iwenty=Seqen
In fig. 326, $\mathrm{FG}^{\prime}=\mathrm{FH}^{\prime}=\mathrm{AB}=\mathrm{h}, \mathrm{DG}^{\prime}=\mathrm{EF}$
$=\mathrm{FN}=\mathrm{OH}{ }^{\prime}=\mathrm{BH}=\mathrm{a}$, and $\mathrm{DM}^{\prime}=\mathrm{EH}^{\prime}=\mathrm{G}^{\prime} \mathrm{N}=\mathrm{FO}=\mathrm{AH}$. $=\mathrm{b}$.

Then are mri's FGD, G'FN = FH'E and $H^{\prime} F O$ each equal to FG'D $=$ trio. ABH .

Now 4 trig. FG'D
$+\mathrm{sq} \cdot \mathrm{G}^{\prime} \mathrm{H}^{\prime}=\mathrm{sq} . \mathrm{EN}$

+ sq. $D O=a^{2}+b^{2}$. But 4 teri. FG'D + sq. $G^{\prime} H^{\prime}=4$ tri. $A B H+s q$. $G H=s q \cdot A K=h^{2} \cdot \because h^{2}$
$=a^{2}+b^{2}$. \therefore sq. upon $A B=s q$. upon $B H+s q$. upon AH .
a. Devised by author, Jan. 5, 1934.
b. See Versluys, p. 69, fig. 73.

Iwg_Hundreqd_Iwenty-Eight

Draw $A L$ and $B L$ par.

Fig. 327 resp'ly to $B H$ and $A H$, and complate the sq. LN. $A B K C=h^{2}$ $=(b+a)^{2}-2 a b ;$ but ABKC $=(b-a)^{2}+2 a b$.
$\therefore 2 h^{2}=2 a^{2}+2 b^{2}$, or $h^{2}=a^{2}+b^{2}$. \therefore sq. upon $A B$. $=s q$. upon $B H+s q$. upon AH.
a. See Versluys, p. 72, fig. 78, attributed to Saunderson (1682-1739), and came probably from the Hindu Mathematician Bhaskara.

Iwo_Hundred_Iwenty=NIne

Fig. 328

In fig. 328, draw CN par. to BH, KM par. to AH , and extend BH to L.

Sq. $A K=4 \frac{H B \times H A}{2}+s q . M H$
$=2 \dot{H B} \times H A+(A H-B H)^{2}=2 H B \times H A$ $+H A^{2}-2 H B \times H A+H B^{2}=H B^{2}+H A^{2}$.
\therefore sq. upon $A B=$ sq. upon $B H \div$ sq. upon $A H$.
a. See Olney's Geom.; Part III, 1872, D. 250, lst method; Jour. of Ed'n, Vol. XXV, 1887, p. 404, fig. IV, and also fig. VI; Jour. of Ed'n, Vol. XXVII, 1888, p. 327, 20th proof, by R. E. Binford, of Independence, Texas; Edwards' Geom., 1895, p. 155, fig. (3); Am. Math. Mo., Vol. VI, 1899; p. 69, proof XCII; Sci. Am. Sup., Vol. 70, p. 359, Dec. 3, 1910, fig. 1; Versluys, p. 68, fig. 72; Dr. Leitzmann's work, 고웅 p. 22, fig. 26; Fourrey, p. 22, fig. a, as given by Bhaskara l2th century A.D. In Vija Ganita. For ans algebraic proof see fig. 32, proof No. 34, under Aigebraic Proofs.
b. A study of the many proof's by Arthur R. Colbunn, LL.M., of Dist. of Columbia Bar, establishes the thesis, so cften reiterated in this work, that figures may take any form and position so long as they include triangles whose sides bear a rational algebraic relation to the sides of the given triangle, or whose dissected areas are so related, through equivalency that $h^{2}=a^{2}+b^{2}$ results.
(B)-̈-Proofs based upon a triangle through the calculations and comparisons of equtvalent areas.

Iwe_Hundred_Ihlrty

.FIg. 329

Draw HC perp. to $A B$. The three tri's $\mathrm{ABH}, \mathrm{BHC}$ and HAC are similar.

We have three sim. tri's erected upon the three sides of tri. ABH whose hypotenuses are the three sides of tri. ABH.
Now since the area of tri. CBH + area of tri. $\mathrm{CHA}=$ area of tri. ABH , and since the areas of three sim. tri's are to each other as the squares of their corresponding sides, (in this case the three hypotenuses), therefore the area of each tri. is to the sq. of its hypotenuse as the areas of the other two twi's are to the sq's of.their hypotenuses.

Now each sq. is $=$ to the tri. on whose hypote-: nuse it is erected taken a certain number of times, this number being the same for all three. Therefore since the hypotenuses on which these sq's are erect.. ed are the sides of the tri. ABir, and since the sum of tri's erected on the legs is $=$ to the tri. erected on the hypotenuse. \therefore the sum of the sq's erected on the legs $=$ the sq. erected on the hypotenuse, $\therefore h^{2}$ $=a^{2}+b^{2}$. Q.E.D.
a: Original, oy Stanley Jashemski, age 19, of Youngstown; 0., June 4; 1934, a young man of superior intellect. .

$$
\text { b. If } n_{2}+n=p \text { and } m: n: p_{0}=a^{2}: b^{2}: h^{2} \text {, }
$$ then $m+n: a^{2}+b^{2}=n: b^{2}=p: h^{2}$.

$$
\therefore \frac{m+n}{p}=\frac{a^{2}+b^{2}}{h^{2}} \text {, or } l=\frac{a^{2}+b^{2}}{h^{2}} . \quad \therefore h^{2}
$$

$=a^{2}+b^{2}$. This algebraic proof given by E. S. Loomis.

IwQ Hundred Ihirty=Qne

Fig. 330

In fig. 330, extend HB to 2 makng $B D=A H$, through D draw DC par. to AH and equal to BH , and draw $C B$ and $C A$.

Area of trap. CDHA $=$ area of $A C B+2$ area of $A B H$.
$\therefore \frac{1}{2}(A H+C D) H D=\frac{1}{2} A B^{2}+2$ $\times \frac{1}{2} A H \times H B$ or $(A H+H B)^{2}=A B^{2}$. $+2 \mathrm{AH} \times \mathrm{HB}$, whence $\mathrm{AB}^{2}=\mathrm{BH}^{2}+\mathrm{AH}^{2}$.
\therefore sq. upon $A B=$ sq. upon $B H+s q$. upon AH. $\therefore h^{2}=a^{2}+b^{2}$. a. This is the "Gaxfield Demonstration,"-hit upon by the General in a mathematical discussion. With other M.O.'s about 1876. See Jour. of Ed'n, Vol. III, 1875, p. 161; The Math. Magazine, Vo1. r, i882, p. 7: The School Visitor, Vol. IX, 1888, p. 5, proof III; Hookins' Plane Geom., 1891, p. 91, fig. VII; Edwards Geom., 1895; p. 256, fig. (11); Heath's Math. Monographs, No. 1, 19C0, p. 25,
proof X; Fourrey, p. 95; School Visitor, Vol. 20, p. 167; Dr. Leitzmann, p. 23, fig. 28a, and also fig. 28b for a variation.
b. For extension of any triangle, see V. Jelinek, Casopis, 28 (1899) 79--- Fschr. Math. (1899) 456.
c. See No. 219, fig. 318.

Iwo_Hundred_Thirty=Iwe

By geometry, (see Wentworth's

Fig. 331 Revised Ed'n, 1895; p. 161 , Prop'n
XIX), we have $A H^{2}+\mathrm{HB}^{2}=2 H M^{2}+2 \mathrm{AM}^{2}$. But in a rt. tri. $H M=A M$. So b^{2} $+a^{2}=2 A M^{2}+2 A M^{2}=4 A M^{2}=4\left(\frac{A B}{2}\right)^{2}$ $=A B^{2}=h^{2} . \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Versiluys, p: 89, fig. 100, as given by Kruger, 1746.

Iwe Hundred_Ihirty=Three

Given rt. tri. ABH. Extend
 $B H$ to A^{\prime} making $H A^{\prime \prime}=H^{\prime}$. Drop $A^{\prime} D$ perp. to $A B$ intersecting $A H$ at C. Draw $A A^{\prime}$ and $C B$.

Since angle $A C D=$ angle $H C A^{\prime}$, then angle $C A^{\prime} H=$ angle $B A H$. Therefore tri's CHA' and BHA are equal.
.Therefore $H C=H B$.
Quad. $A C B A^{\prime}=$ (tri. $C A A^{\prime}$
Fig. 332
$=\operatorname{tri} \cdot\left(\frac{C A B}{}\right)+\operatorname{tri} \cdot B H C+C H A^{\prime}=\frac{h(A D)}{2}$ $+\frac{h(D B)}{2}=\frac{h(A D+B D)}{2}=\frac{h^{2}}{2}=\frac{a^{2}}{2}+\frac{b^{2}}{2} \quad \therefore h^{2}=a^{2}+b^{2}$.
a. See Dr. W. Leitzmeñ's work, p. 23, fig. 27. 1930, 3rd edition, creditted to C. Hawkins, of Eng., who discovered it in 1909.
b. See its algebraic proof Fifty, fig. 48. The above proof is truly algebraic through equal areas. The author.

Iwq_Hundred_Thirty-Equr

Let C, D and E be the centers of the sq's on $A B, B H$ and $H A$. Then angle $\mathrm{BHD}=45^{\circ}$, 'also angle EHA. \therefore line ED through H is a st. Iñe. Since angle $\mathrm{AHB}=$ angle BCA the quad. is inscriptible in a circle whose center is the middle $p t$. of $A B$, the angle $C H B=$ angle $B H D$ $=45^{\circ} \therefore \quad \therefore \mathrm{CH}$ is par. to $\mathrm{BD} . \therefore$ angle $\mathrm{CHD}=$ angle $\mathrm{HDB}=90^{\circ}$. Draw $A G$ and $B F$ perp. to $C H$. Since tri's $A C C$ and CFB are congruent, $C G=F B=D B$ and $H G=A G=A E$, then $C H$ $=E A+B D$.

Nơw area of. $A C B H=\frac{H C}{2}(A G+F B)=\frac{H C}{2} \times E D$ = area of ABDE. From each take away tri. ABH, we get tri. $A C B=$ tri. $B H D+$ tri. HEA. 4 times this eq'n gives sq. upon $A B \xlongequal{=}$ sq. upon $H B+$ sq. upon $H A$. $\therefore h^{2}$ $=a^{2}+b^{2}$.
a. See Fourrey, p. 78, as given by M. PitonBressant; Versluỳs. p. 90, fig. 103, taken from Van Piton-Bressant, per Fourrèy, 1907.
b. See algebraic proof No. 67, fig. 66.

Ingotyndred_Thirty $=$ Elve

Fig. 334

Fig. 333 and 334 are same in outline. Draw HF perp. to $A B$, and draw DC, DF and FC. As in proof', fig. 333, HC is a st. Iine par. to BD. Then tiri. $B D H=$ tri. BDC. .-. (l) As quad". HFBD' is inscriptiblé in a clrcle whose center is the center of $H B$, then angle $B F D$ $=$ angle $\mathrm{DFH}=-45^{\circ}=$ angle $\mathrm{FBC} . \therefore \mathrm{FD}$ is par. to $C B$, whence tri. $B C D$ $=\operatorname{tri}$. BCF. $-\cdots-(2)$.
\therefore tri. $B C F=$ tri. $B D H$. In like manner tri. $\mathrm{ACF}=\operatorname{tri} . \mathrm{AHE} . \therefore$ tri. $\mathrm{ACB}=\operatorname{tri} . \mathrm{BDH}+\operatorname{tri} . \mathrm{HEA}$. - - (3). $\quad 4 \times$ (3) gives sq. upon $A B=$ sq. upon $H B$ + sq. upon HA: $\therefore h^{2}=a^{2}+b^{2}$.
a. See Fourrey, p. 79, as given by M. PitonBressañ of Vitteneuve-Saint-Georges; also Versluys, p. 91, fig. 104.
b. See alg braic proof No. 66, fig. 67.

Iwo_Hundred Thirty-Six

In fig. 335, extend BH to F

Fig. 335 making $H F=A H$, erect $A G$ perp. to $A B$ making $A G=A B$, draw $G E$ par. to $H B$ and $G D$ par. to $A B$. Since tri's $A B H$ and GDF are 'simil'ar, $G D=h(1-a / b)$, and $F D=a\left(I^{-}-a / b\right)$.

Area of fig. $A B F G=$ area $A B H$ + area $A H E G=$ area $A B D G+$ area $G D F$. $\therefore \frac{1}{2} a b+{ }^{\circ} \frac{1}{2} b[b+(b-a)]=\frac{1}{2} h[\hat{h}+h$ $(1-a / b)]+\frac{1}{2} a(b-a)(1:-a / b)$,

- (1). Whence $h^{2}=a^{2}+b^{2} . \quad \therefore$ sq. upon $A B=$ sq. upon $\mathrm{BH}+$ sq. upon AH .
- a. This proof is due to J. G. Thompson, of Winchester, N.H. see Jour. of Ed'n, V VI. XXVIII, 1888, p. 17, 28tu proof; Heath's Math. Monographs, No. 2, p. 34, proof XXIII; Versluys, p. 78, fig. 87, by Rupert, 1900
b. As there ane possible several figures of above type, in each of which there will result two similar thiangles, there are possible many different proofs, differing only in shape of figure. The next proof is one from the many.

Iwo Hundred Thirty-seven

In fig. 336 produce $H B$ to F making $H F=H A$, through A draw $A C$ perp. to $A B$ making $A C=A B$, draw $C F, A G$ par. to $H B, ' B E$ par. to $A H$, and $B D$ perp. to $A B$.

Fig. 336

Since ti's $A B H$ and $B D F$ are similar, we' find that $D F=a(1-a / b)$ and $B D$ $=h(1-a / b)$.

Area of trap. CHA $=2$ area
$\mathrm{ABH}+$ area trap. $\mathrm{AGFB}=$ area ABH + area trap. $A C D B+$ area $B D F$.

Whence area ACG + area AGFB
$=$ area ACDB + area BDF or $\frac{1}{2}$ ab
$+\frac{1}{2} b[b+(b-a)]=\frac{1}{2} h[h+h(1-a / b)]$
$+\frac{1}{2} a(b-a)(1-a / b)$.
This equation is equation (1) in the preceding solution, as it ought to be, since, if we draw BE par. to AH and consider only the figure below the line $A B$, calling the fri. ACG the given triangle, we have identically fig. 335, above.
$h^{2}=\frac{\ddot{\partial}}{\dot{2}}+b^{2}$. upon $A B=$ sq. upon $B H+s q$. upon $A H$. $h^{2}=a^{2}+b^{2}$.
a. Original with the author, August, 1900. See also Jour. of Ed'n', Vol. XXVIII, 1888, p. 17, 28th proof.

Iwo. Hundred_Thirty=Eiqht

Fig. 337

In fig. 337, extend HB to N making $\mathrm{HN}=\mathrm{AB}$, draw $K N$, Ki and $B G$, extend $G A$ to M and draw BL par. to AH.: Mri. $\mathrm{KBA}+\operatorname{tri}: \quad \mathrm{ABH}=$ quad. BHAK
$=($ trig. $\mathrm{HAK}=$ trig. GAB $)$

+ (try. DGB $=$ mri. HKB.)
$=$ quad. $A B D G=\operatorname{tri} . \operatorname{HBD}+\operatorname{tri}$.
GAH + this. ABH, whence try.
AK $=$ tai. $\mathrm{HBD}+$ try. GAH.
\therefore sq. upon $A B=$ sq.
upon $B H+s q$. upon AH. $\quad \therefore h^{2}$
$=a^{2}+b^{2}$.
, a. See Jury Hipper; 1880, p. 33, fig. 30, as found in the works of doh: J. I. Hoffman, Mayence, lie: ;- Fourrey, p. 75.

Iwo_Hundred_Ihiriy=Nine

In fig. 338, construct the

Fig. 338 three equilateral triangles upon the three sides of the given triangle ABH , and draw EB and FH, draw EG perp. to AH , and draw GB .

Since $E G$ and $H B$ are parallel, try. $\mathrm{EBH}=\operatorname{tri} . \mathrm{BEG}=\frac{1}{2}$ try. ABH .
\therefore try. GBH $=$ try. HEG.
(1) Mri. HAF = try. EAB
$=\operatorname{tri}_{0} \cdot \mathrm{EAK}+$ (mri. $\left.\mathrm{BGA}=\frac{1}{2} \operatorname{trri} . \mathrm{ABH}\right)$
$+{ }^{\circ}($ tr.. BKG $=$ try. EKH $)=$ try. EAH $+\frac{1}{2} \operatorname{tri}$. ABM.
(2) In like manner, teri. $\mathrm{BHF}=$ try. $\mathrm{DHB}+\frac{1}{2}$ try. $\mathrm{ABH} . \quad(1)+(2)=(3)$ (trill. $\mathrm{HAF}+$ teri. $\mathrm{BHF}=$ try. $\mathrm{BAF},+\operatorname{tri} . \mathrm{ABH})=$ trip. $\mathrm{EAH}+\operatorname{tri} . \mathrm{DHB}+\operatorname{tri} . \mathrm{ABH}$, whence fri. FBA $=$ tri. EAH + try. $\cdot \mathrm{DHB}$.

But since areas of similar surfaces are to each other as the squares of their like dimensions, we have
mri. FBA : trip. DHB : fri. $\mathrm{EAH}=A B^{2}: \mathrm{BH}^{2}$ $: A \dot{H}^{2}$, whence try. FBA : try.
$\mathrm{DHB}+\operatorname{tri} . \mathrm{EAH}=\mathrm{AB}^{2}: \mathrm{BH}^{2}$ $+\mathrm{AH}^{2}$. But try. $\mathrm{FBA}=$ try. $\mathrm{DAH}+\operatorname{tri}$. EAM. $\quad \therefore \mathrm{AB}^{2}=\mathrm{BH}^{2}$ $+\mathrm{AH}^{2}$.
\therefore sq. upon $A B=$.sq.
upon $H D+$ sq. upon HA.
a. Devised by the author Sept. 18, 1900, for similar regular polygons other than squares.

Iwq_Hundred_Forty

In fig. 339; from the middle points of AB, BH-and HA draw the three perp's FE, $G C$ and $K D$, making $F E=2 A B$,
$G C=2 B H$ and $K D=$ " KHA , complete the three isosceles tríl's EBA, CHB and DAH, and drà EH, BK and DB.

Sincé these tri's are respectively equal to the three sq's upon $A B, B H$ and $H A$, it remains to prove tri. $E B A \doteq$ tri: $\mathrm{CHB}+\operatorname{tri} . \therefore \mathrm{DAF}$. The proof is same as that.in fig. 338, hence proof for 339 is a variation of proof for 338 .
a. Devised by the author, because of the figure, so as to get area of tri. $E B A=A B^{2}$, etc. $\quad \therefore A B^{2}$ $=\mathrm{BH}^{2}+\mathrm{AH}^{2}$.
\therefore sq. upon $A B=$ sq. upon $B \bar{H}+$ sq. upon $A H$. $\therefore h^{2}=a^{2}+b^{2} \cdots$
b. This proof is given by Joh. Hoffmann; see his solution in Wipper's Pythagoraische Lehrsatz, 1880, pp. 45-48.

See, also, Beman and Smith's New Plane and Solid Gẹometry, 1899, p. 105, ex. 207; Versluys, p. 59; fig., 63.
c. Since any polygon of three, four, five, or more sides, regular or irregular, can be transformed, (see Beman and Sntith, p. 109), into an equivalent triangle, and it into an equivalent isosceles triangle whose base is the assumed base of the polygon, then is the sum of the areas of two such similar polygons, or semicircles, etc., constructed upon the two legs of any right triangle equai to the area of a similar polygon constructed upon the hypotenuse of said right triangle, if the sum of the two isosceles triangles so constructed, (be their altitudes what they may), is equal to the area of the similar isosceles triangle constructed upon the hypotenuse of the assumed triangle. Also see Dr. Leitzmann, (1930), p. 37 , fig. 36 for semicircles.
d. See proof Two Hundred Forty-One for the estabilshment of above hypothesis.

Iw2_Hydred_Eqrty=0ne

Let tri's 'CBA, DHB and EAH be similar isosceles tri's upon the bases $A B, B H$ and $A H$ of the rt.

Fig. 340
tri. $A B H$, and $C F, D G$ and EK their altitudes from their vertices C, D and E, and L, M and N the middie points of these altitudes. Transform the tri's DHB, EAH and CBA into their respective paral's BRTH, AHUW and OQBA.

Produce RT and WU to X, and draw XHY. Through A and B draw $A^{\prime} A C '$ and $Z B^{\prime} B^{\prime}$ par. to $X Y$. Through H draw HD' par. to OQ and complete the paral. HF'. Draw $X D '$ and E'Z. Tri's E'YZ and XHD are congruent, since $Y Z=H D '$ and respective angles are equal'. \therefore EY $=X H$. Draw E'G' par. to $B Q$, and paral. E'G'QB = paral $\mathrm{E}^{\prime} \mathrm{YZB}=$ paral. XHD'F; also paral. $H B R T=$ paral. $H B B^{\prime} X$. But paral. $H B B^{\prime} X$ is same as paral. $X H B B^{\prime}$ which $=$ paral. $X H D^{\prime} F^{\prime}=$ paral. E'YZB.
\therefore paral. $E^{\prime} G^{\prime} Q B=t r 1 . \quad D H B ;$ in like manner paral. $A O G^{\prime} E^{i}=$ tri.' EAH. As paral. AA'ZB = paral. $A O Q B=\operatorname{tr} 1 . C B A$, so tri. $C B A=\operatorname{tr1} . \mathrm{DHB}+\operatorname{tr} 1 . \mathrm{EAH}$.

Since tri. CBA: tri. DHB : tri. EAH $=h^{2}: a^{2}$ $: b^{2}$, 'tri. CBA: tri. DHB $+\operatorname{tr1}$. $\mathrm{EAH}=\mathrm{h}^{2}: a^{2}+b^{2}$. But tri. $\mathrm{CAB}=\operatorname{tr} 1 . \mathrm{DHB}+\operatorname{tr} 1 . \operatorname{EAH} .-\therefore(1) . \therefore \mathrm{h}^{2}$ $=a^{2}+b^{2}$.
\therefore sq. upon $A B=$ sq. upon $B H+s q$. upon $A H$. Q.E.D.
a. Original with author'. Formulated oct. ${ }^{\circ} 28$; 1933. The author has never seen', nor read about, nor heard of, a proof for $h^{2}=a^{2}+b^{2}$ based on 1sosceles triangies having any altitude or whose equal sides are unrelated to a, b, and h.

Iwo_Hundred_Eqrity

Let X, Y and X ' be three similar pentagons on sldes h, a and b. fhen, if $X=Y+Z, h^{2}=a^{2}+b^{2}$.

F1g. 341

Transform pentagon X, Y and Z into equivalent tri's DQO; RGT and UMW. Then, (by 4th proportional, Fig. a), transform said tri's into equivalent isosceles trits $P^{\prime} B A, S^{\prime} H B$ and $V^{\prime} A H$.

Then proceed as in fig. 340. $\quad \therefore h^{2}=a^{2}+b^{2}$. \therefore sq. upon. $A B=$ sq. upon $B H+$ sq. upon. $A H$. Q.E.D.

Or using the similar tiri's XBH, YFB and ZAH, proving tri. $X A B=\operatorname{tri}$. YHB + tri. $Z A H$, whence 5 tri. $X B A=5$ tri. $\mathrm{YHB}+5$ tri. ZAF ; etc.

By argument established under fig's 340 and 341, if regular polygons of any number of sides are const'd on the three sides of any rt. triangle, the sum of the two lesser = the greater, whence always $h^{2}=a^{2}+b^{2}$.
a. Devised by the author, Oct. 29, 1933.
b. In fig. $a, 1-2=\mathrm{HB} ; 2-3=\mathrm{TR} ; 1-4=\mathrm{GS}$; $4-5=\mathrm{SS}^{\prime} ; 1-\mathrm{B}=\mathrm{AH} ; 6-7=\mathrm{WU} ; 1-8=\mathrm{MV} ; 8-9=\mathrm{VV}^{\prime}$; $1-10=A B ; 11-11=0 Q ; 1-12=P D ; 12-13=P^{\prime} P$.

Iws_Hundred_Egty=Three

Fig. 342

In fig. 342 , produce AH to E making $H E=H B$, produce $B H$ to F making $H F=H A$, draw $R B$ perp. to $A B$ making $B K=B A, K D$. par. to $A H$, and dráw $\mathrm{EB}, \mathrm{KH}, \mathrm{KA}, \mathrm{AD}$ and AF . $\mathrm{BD}=\mathrm{AB}$ and $K D=H B$.

Area of try. $A B K=$ (area of $\operatorname{tri} . K H B=$ area of try. $E H B$.) + (area of try. $A H K=$ area of try. AHD) + (area of $A B H=$ area of $A D F$).
\therefore area of $A B K=$ area of tri. $E H B+$ area of mri. AHF. \therefore sq. upon $A B=$ sq. upon $B H+s q$. upon $A F$. $\therefore h^{2}=a^{2}+b^{2}$.
a. See Edwards' Geom., 1895, p. 158, fig. (20).

Iwq_Hundred_Egrty=Equr

In fig. 343, take $A D=A H$,

draw $E D$ perp. to $A B$, and draw $A E$.
Tori. $A B H$ and BED are similar, whence $D E=A H \times B D \div H B . \quad B u t D B=A B-A H$. Area of try. $\mathrm{ABH}=\frac{1}{2} \mathrm{AH} \times \mathrm{BH}$
Fig. $343=2 \frac{A D \times E D}{2}+\frac{1}{2} E D \times D B=A D \times E D$ $+\frac{1}{2} E D \times D B=\frac{A H^{2}(A B-A H)}{B H}+\frac{1}{2} \frac{A H(N B-A H)^{2}}{B H} \cdot \therefore \mathrm{BH}^{2}$ $=2 A H \times A B-2 A H^{2}+A B^{2}+A H^{2}-2 A H \times A B . \quad \therefore A B^{2}$ $=\mathrm{BH}^{2}+\mathrm{AH}^{2}$.
$\therefore h^{2}=a^{\therefore}+\mathrm{b}^{2}$.
a. See Am. Math. Mo., Vol. VI, 1899, p. 70, proof XCV.
b. See proof Five, fig. 5, under I, Algebraic Proofs, for an algebraic proof.

Iwq_Hundred_Egrty=Eive

Fig. 344

In fig. 344, produce $B A$ to L making $A L=A H$, at L draw EL perp. to AB, and produce BH to E . The trit's ABH and EBL are similar.

Area of tri. $\mathrm{ABH}=\frac{1}{2} \mathrm{AH}$
$\times \mathrm{BH}=\frac{1}{2} \mathrm{LE} \times \mathrm{LB}-\mathrm{LE} \times \mathrm{LA}$ $=\frac{1}{2} \frac{A H(A H+A B)^{2}}{B H}-\frac{A H^{2}(A H+A B)}{B H}$, whence $A B^{2}=B H^{2}+A H^{2}$.
\therefore sq. upon $A B=$ sq.

+ sq. upon $A H . ~$ upon $\mathrm{BH}+$ sq. upon AH . $=a^{2}+b^{2}$.
a. See Am. Math. Mo., Vol. VI, 1899 , p. 70, proof XCVI.
b. This and the precedIng proof are the converse of each other. The two proofs teach that if two triangles are similar and so related that the area of either triangie may be expressed principally in terms of the sides of the other, then either triangle may be taken as the principal triangle, giving, of.course, as many solutions as it is possible to express the area of exther in terms of the sides of the other.

Iwo Hundred Forty=Six
In fig. 345 , produce $H A$ and $H B$ and describe the arc of a circle tang. to $H X, A B$ and $H Y$. From 0 ,

FIE. 345°

Its center, draw to points of tangency, $0 G$, $O E$ and $O D$, and draw $O H$.

Area. of sq. DG
$=r^{2}=\frac{1}{2} a b+\left(2 \frac{B E \times r}{2}\right.$
$\left.+2 \frac{\mathrm{AE} \times \mathrm{r}}{2}\right)=\frac{1}{2} a b+\mathrm{hr}$.
But since $2 r=h+a+b$, $\therefore r=\frac{1}{2}(h+a+b)$.
$\therefore \frac{1}{4}(n+a+b)^{2}=\frac{1}{2} a b$
$+h(h+a+b)$, whence h^{2}
$=a^{2}+b^{2}$.
\therefore sq. upon $A B=s q$. upon $B H+s q$. upon $A H$.
$\therefore h^{2}=a^{\therefore \ddot{a}+b^{2}}$.
a. This proof is original with Prof. B. F.

Yanney," Wooster University, 0. See Am. Math. Mo., Vol. VI, 1899, p. 70, XCVIJ.

Iwe_Hundred. Forty=Seven

Fig. 346
In fig. 346, let $A E$
= BH. Since the area of a circle is $\pi \dot{r}^{2}$, if it'can be proven that the circle whose radius is $A B=$ the circle whose radius $\mathrm{AH}+$ the circle whose radius is $A E$, the truth sought is established.

- It is evident, if the triangle ABt revolves in the plane of the paper about A as a center, that the area of the circle generated by $A B$ will equal the area of.the circle generated by $A H$ plus the area of the anriulus generated by HF:

Hence it must be shown, if possible, that the area of the annulus is equal, to the area of the circle whose rẹdius is AE.

Let $A B=h=A F, A H=b, B H=2, A D=\frac{1}{2} B H=r$, IIK $=K F$, and $A K=m r$, whence $G H=h+b, A K=\frac{h+b}{2}=m r$, $\dot{H} F=h-b, H K=K H=\frac{h-b}{2}$.

Now $(\mathrm{GH}=\mathrm{h}+\mathrm{b}):(\mathrm{BH}=2 r)=(\mathrm{BH}=2 r)$
$\therefore(H F=h-b) \cdot-(1)$.
whence $h=\sqrt{b^{2}+4 r^{2}} \quad$ and $b=\sqrt{h^{2}-4 r^{2}} \quad \therefore \frac{h+b}{2}$
$=\frac{\sqrt{b^{2}+4 r^{2}}+b}{2}=m r$, whence $v=r\left(m-\frac{1}{m}\right)$, and $\frac{h+b}{2}$
$=\frac{h+\sqrt{k_{2}^{2}-4 r^{2}}}{6^{2}}=m r$, whence $h=r\left(m+\frac{1}{m}\right) . \therefore \frac{a-b}{2}$
$=\frac{r\left(m+\frac{1}{m}\right)-r\left(m-\frac{1}{m}\right)}{2}=\frac{r}{m}=H K$. Now since $(A D=r)$
$:(A K=m r)=\left(M K=\frac{r}{m}\right):(A D=r), \cdots(2)$
$\vdots \quad \therefore A D: A K=H F: A E$, or $2 \pi A D: 2 \pi A K=H F: A E$, $\therefore 2 \pi A R \times H F=2 \pi A D \times A B$, or $2 \pi\left(\frac{h+b}{2}\right) H F=\pi A E \times A E$.

But The area of the annulus equals $\frac{1}{2}$ the sum of the circumferences where radil are h and b times the width of the ennulus or HF.
\therefore the area of the annulus $H F=$ the area of the circle where radius is HB .
\therefore the area of the circle with radius $A B=$ the area of the circle with radius AFt area of the annulus.
$\therefore \pi h^{2}=\pi a^{2}+\pi b^{2}$.
\therefore sq. upon $A B=$ sq. upon $B H+$ sq. upon $A F$.
$\therefore h^{2}=a^{2}+b^{2}$.
a. See Am. Math. Mo., Yol. I, 1894, p, 223, the proof by Andrew Ingrahem, President of the Swain Free School, New. Bedford, Nass.
b. This proof, like that or proof two Fundred Fifteen, fig. 313 proves too much, stnce both equations (1) and (2) 1mply the truth sought. The author, Professor Ingraham, does not, show his readers how he determined that $K X=\frac{r}{m}$, hence the implication is* hidden; in (1) we have directly $h^{2}-b^{2}=\left(4 r^{2}=\varepsilon^{2}\right)$.

Having begged the question in both equations, (1) and (2), Professor Ingraham has, no doubt, unconsciously, fallen under the formal fallacy of petitio princtpii.
c. From the preceding array of proofs it is evident that the algebraic and geometric proofs of this most important truth are as uniimited in number as are the ingenious resources and ideas of the mathematical investigator:

NO TRIGONOMETRIC PRCOFS

Facing forward the thoughtful reader may raise the question: Are there any proofs based upon the science of trígonometry or analytical geometry?

There are no trigonometric proofs, because
all the fundamental formulae of trigonometry are themselves based upon the truth of the Pythagurean Theorem; because of this theorem we say $\sin ^{2} A+\cos ^{2} A$ $=1$, etc. Triginometry is because the Pythagorean Theorem is.

Therefore the so-styled Trigonometric Proof given by J. Versluys, in his Book, Zes, en Negentig Bewijzen, 1914 (a collection of 96 proofs), p. 94, proof 95, is not a proof since it employs the formula $\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1$.

As Descartes made the Pythagorean theorem the basis of his method of analytical geometry, no independent proof can here appear. Analytical Geometry is Euclidian Geometry treated algebraically and hence involves all principles already established.

Therefore in analytical geometry all relations concerning the sides of a right-angled triangle imply or rest directly upon the Pythagorean theorem as is shown in the equation, viz., $x^{2}+y^{2}=r^{2}$.

And The Calculus being but an algebraic investigation of geometric variables by the method of limits it accepts the truth of geometry.as established, and therefore furnishes no new proof, other than that, if squares be constructed upon the three

sides of a variable oblique triangle, as any angle or the three approaches a right angle the square on the side opposite approaches in area the sup of the squares upon the other two sides.

But not so with quaternions, or vector analysis. It is a mathematical science which introduces a new concept not employed in any of the mathematical sciences mentioned heretofore, --the concept of direction.

And by means of this new concept the complex demonstrations of old truths are wonderfully simplified, or new ways of reaching the same truth are developed.

We here give four quaternionic proofs of the Pythagorean Proposition. Other proofs are possible.

Que.
In fig. 347 designate the

Fig. 347 sides as to distance and direction by a, b and g (in place of the Greek alphat α, beta β and gamma γ). Now, by the principle of direction, $a=b+\dot{g}$; also since the angle at H is a right angle, $2 \mathrm{sbg}=0$ (s signifies Scalar.
"See Hardy, 1.881, p. 6).
(i) $/ a+b=g(1)^{2}=(2) \cdot a^{2}=b^{2}+2 \operatorname{sbg}+g^{2}$. (2). reduced $=$ (3). $\quad \therefore a^{2}=b^{2}+g^{2}$, considered as lengths. \therefore sq. upon $A B=$ sq. upon $B H+\dot{s q}$. upon $A \dot{H}$. $\therefore h^{2}=a^{2}+b^{2}$. Q.E.D.
a. See Hardy's Elements of Quaternions, 1881, p. 82, art. 54, 1; alsooJour. of Education, Vol. XXVII, 1888, p. 327, Twenty-Second Proof; Versluys, p. 95, fig. 108.

Iwo

In fig. 348, extend BH to C making $H C=H B$ and draw $A C$. As vectors $A B=A H+H B$, or $A=B+G(1)$. Al so $A C=A H+H C$, or $A=B-G(2)$.

Squaring (1) and (2) and adding, we have $A^{2}+A^{2}=2 B^{2}+2 G^{2}$. Or as lengths, $A B^{2}+A C^{2}=2 A H^{2}$ $+2 A B^{2}$. But $A B=A C$.

$$
\therefore A B^{2}=A H^{2}+H B^{2} .
$$

\therefore sq. upon $A B=s q$. upon $A H \cdot+$ sq. upon $H B$.
246

8
a. This is James A. Caldernead's solution. See Am. Math. Mo., Vol. VI, 1899, p: 71, proof XCIX:-

Three

In fig. 349, complete the rect.

Fig. 349
draw HC. As vectors $A B=A H$ HC and draw HC ... As vectors $\mathrm{AB}=\mathrm{AH}$ +HB , or $\mathrm{a}=\mathrm{b}+\mathrm{g}$ (1). $\mathrm{HC}=\mathrm{HA}+\mathrm{AC}$, Oor $a=-b+a g$ (2).

Squaring (1) and (2) and adding, gives $A^{2}+A^{\prime 2}=2 B^{2}+2 G^{2}$. Or considered as lines, $A B^{2}+H C^{2}=2 A H^{2}$ $+2 \mathrm{HB}^{2}$. But HC $=\mathrm{AB}$.
$\therefore A B^{2}=A H^{2}+H B^{2}$.
\therefore sq. upon $A B=s q$. upon $A H^{2}+$ sq. upon $\hat{H B}^{2}$.
$\therefore h^{2}=a^{2}+b^{2}$.
a. Another of ${ }^{\circ}$ James A. Calderhead's solutions.

See Am. Math. Mo., Vol. VI, 1899, p. 71, proof C;
Verslüys, p. 95, fig. 108.

Equr

In fig. 350, the construction is evident, as angle \cdot GAK $=-$ angle' BAK. The radius being unity, $L G$ and $L B$ are sines of $G A K$ and $B A K$.

As vectors, $A B=A H$ +HB , or $a=b+g^{\prime}(1)$. Alsó $A G=A F+F G$ or $a^{\prime}=-b+g$ (2). Squaring (1) and (2) and adding gives $a^{2}+a^{-12}$ $=2 b^{2}+2 g^{2}$. Or eonsidering the vectors as distances, $A B^{2}$ $+A G^{2}=2 A H^{2}+2 H B^{2}$, or $A B^{2-}$ $=A H^{2} .+H B^{2}$.
$\because h^{2}=a^{2}+b^{2}$.
a. Original with the author, August, 1900.
b. Other solutions from the trigonometric right line function figure (see Schuyler's Trigonometry, 1873, p. 78, art 85) are easily devised through vector analysis.

IV. DYNAMIC PROOFS

The Science of Dynamics, since 1910, is a clamant for a place as to a few proofs of the Pythagorean Theorem.

A dynamic proof employing the principle of moment of a couple appears as proof 96 , on p. 95, in J. Versiuys' (1914) collection of proofs.

It is as follows:

Que

In compliance with the

Fig. 351 theory of the moment of couple in mechanise (see "Mechanics for Beginners, Part I," 1891, by Rev. J. B. Locke, p. 105), the moment of the sum of two conjoined couples in the same flat plane is the same as the sum of the moments of the two couples, from which it follows that $h^{2} \equiv a^{2}+b^{2}$.

If FH and AG represent two equal powers they form a couple whereof the moment equals $\mathrm{FH} \times \mathrm{AH}$, or b^{2}.
If $H E$ and $D B$ represent two other equal powers they form a couple whereof the moment equals $D B \times H B$ or a^{2}.

To find the moment of the two couples join the two powers $A G$ and $H E$, also the two powers $D B$ and FH. To join the powers $A G$ and HE, take $A M=H E$. The diagonal AN of the parallelogram of the two powers AG and $A M$ is equal to $C A$. To join the powers FH and DB, take $B O^{\prime}=D B$. The diagonal. $B K$ of the parallelogram of the two powers ($\mathrm{FH}=\mathrm{BP}$) and BO, is the second
component of the resultant couple whose moment is CH $\times B K$, or h^{2}. Thus we have $h^{2}=a^{2}+b^{2}$.
a. See J. Versluys, p. 95, fig. 108. Hè
(Versluys) says: I found the above proof in 1877, by. considering the method of the, theory of the principle of mechanics and to. the present (1914) I have never met with a like proof answhere.

In Seience, New Series, Oct. 7, 1920, Vol. 32, pp. 863-4, Professor Edwin F. Northrup, Palmer Rhysical Laboratory, Princeton, N.J., through equilibrium . of forces, establishes the formula $h^{2}=a^{2}+b^{2}$.

In Nol. 33, p. 457, Mr. Mayo D: Hersey, of the U.S. Bureau of Standards, Washingtoñ, D.C., says that, if we admit Professor Northrup.'s proof, then the same resulf may be established by a much simpler course of reasoning based on certain simple dynamic laws.

Then in Vol. 34, pp. "181-2, Mr. Alexander MacFarlane, of Chatham, Ontario, Canada, comes to the support of Professor Northrup, and then gives, two very fine dynamic proofs through the use of trigono, metric functions and quaternionic láws.

- Having obtained permission from the editor of Science, Mr. J. McK. Cattell, on February 18, 1926, to make use of these proofs found in said volumes 32 , 33 and 34, of Science, they now follow.

IWQ

In fig. 352, 0-p is a rod.

Fig--352 without mass which can be revolved In the plane of the paper about' 0 as a center. l-2 is another such rod in the plane of the paper of which p is its middile point. Concentrated at each end of the rod 1-2 are equal masses m and m^{\prime} each distant r from p.

Let R equal the distance $0-\mathrm{p}, \mathrm{X}=0-1, \mathrm{y}=0-2$. When the
sostem revolves about 0 as a center, the point p will have a linear velocity; $r=d s / d t=d a / d t=R W$, where ds is the element of the arc described in time dt, da is the differential angle through which $0-1$ turns, and W is the angular velocity.

1. Assume the rod 1-2-frée to turn on pas a center. . Since m at l and m^{\prime} at 2 are equal and equaily distant from p, p is the center of mass. Under these conditions $E^{\prime}=\frac{1}{2}(2 m) V^{2}=m R^{2} W^{2} . \cdots(1)$
2. Conceive rod, l-2, to become rigorousily attached at p. Then as $0-\mathrm{p}$ revolves about 0 with angular velocity W, l-2 also revolves about p with like angular velocity. By making attachment at p rigid the system is forced to take on an additional kinetic energy, which can be only that, which is a result of the additional motion now possessed by m at 1 and by m^{\prime} at 2 , in virtue of their rotation about p as a center. This added kinetic energy is $E^{\prime \prime}=\cdot \frac{1}{2}(2 m) r^{2} W^{2}$ $=\cdot \mathrm{mr}^{2} \mathrm{~W}^{2}$. ---(2) Hence total kinetic energy is $E=\mathrm{E}^{-+}$ $+E^{\prime \prime}=m W^{2}\left(R^{2}+r^{2}\right)$. $-(3)$
3. With the attachment still rigid at p, the kinetic energy of m at 1 is, piainly, $E_{0}^{\prime} \neq \frac{1}{2} m x^{2} W^{2}$. ---(4) Likewise $\mathrm{E}_{\mathrm{o}}^{\prime \prime}=\frac{1}{2} \mathrm{my}^{2} \mathrm{~W}^{2}$. $--(5)$
\therefore the total kinetic energy must. be $E=E_{0}^{\prime}$ $+E_{0}^{\prime \prime}=\frac{1}{2} m W^{2}\left(x^{2}+y^{2}\right) \cdot-\cdots(6)$
$\therefore(3)=(6)$, or $\frac{1}{2}\left(x^{2}+y^{2}\right)=R^{2}+r^{2} \cdot--(7)$
In (7) we have a geometric relation of some interest, but in á particular case when $x=y$, that is, when line $1-2$ is perpendicular to line $0-p$, we have as a result $x^{2}=R^{2}+r^{2}$. $-\ldots$ (8)
\therefore sq. upon hypotenuse $=$ sum of squares upon the two legs of a.right triangie.

Then in Vol. 33, p. 457, on March 24, 1911, Mr. Mayo D: Hersey says: "while Mr. R. F. Deimal holds "that equation (7) above expresses a geometric fact--I am tempted to say 'accident'--which textbooks raise to the dignity of a theorem." He further says: "Why not let it be a simple one? For instance, if the force F . whose rectangular components are x and y , acts upon a particle of mass m until that v^{2} must be
positive; consequently, to hold that the square of a simple vector is negative is to contradict the established conventions of mathematicals analysis.

- The quaternionist tries to get out by saying thai after all v is not a velocity having direction, but merely a speed. To this I reply that $E=$ cos $\int m v d v=\frac{1}{2} m v^{2}$, and that these expressions v and $d v$ are both vectors having directions which are different.

Recently (in the Builetin of the Quaternion. Association) I have been considering what may be called the generalization of the Pythagorean Theorem.

Let A, B, C. D., etc.; fig. 353, denote vectors having any direction in. space; and let \bar{R} denote the vector from the origin of A to the terminal of the last vector; then the generalization of the $P \cdot T \cdot R^{2}=A^{2}+B^{2}+C^{2}+D^{2}$ $+2(\cos A B+\cos A C+\cos A D)+2(\cos B C$ Fig. $353+\cos B D)+2(\cos C D)+$ etc. $:$ where \cos $A B$ denotes the rectangle formed by A and the projection of E parallel, to A. The theorem of P. is limited to two vectors A and B which are at right angles to one another, giving $R^{2}=A^{2}+B^{2}$. The extension given in Euclid removes the condition of perpendicularity, giving $R^{2}=A^{2}+B^{2}+\cos A B$,

Space geometry gives $R^{2}=A^{2}+B^{2}+C^{2}$ when A, B, C are othogonal, and $R^{2}=A^{2}+B^{2}+C^{2}+2 \cos$ $A B+2 \cos A C+2 \cos B C$ when that condition is removed.

Further, space-algebra gives a complementary theorem, never dreamed of by either Pythagoras or Euclid.

Let V denote in magnitude and direction the resultant of the directed areas enclosed between the broken lines $A+B+C+D$ and the resultant line R, and let sin $A B$ denote in direction and magnitude the area enclosed between A and the projection of B which is perpendicular to A; then the complementary theorem is $4 V=2(\sin A B+\sin A C+\sin A D+)+2(\sin B C$ $+\sin B D+\quad)+2(\sin C D+\quad)+$ etc.

THE FYTHAGOREAN OITRIOSTTY
The following is reported to have been teken from a notebook of Mr. Join Waterhouse, an enginocs

Fig. 354 appeaned in prints In am.I. paper, In Juhy, 1899. Upon the sldes of: the right triangle, fig. 354 ; constiruct the squares AT , BiN. and GE. Connect the points wand H, I and H , and㸞 and D . Upon thesie innes corsitruct the squares EG, MK and NP, and connect the points F.nncirg and T_{E}; and I and 0. The following truthas are demonstrable.

1. square
$\mathrm{BN}=$ square CE + square AI. Eum clid).
2. Triangle $\mathrm{HAE}=$ triangle IEM $=$ triangle DCO $=$ tritangle $O A B$, since $\mathrm{HA}=\mathrm{BI}$ and $\mathrm{EA}=\mathrm{MY}, \mathrm{EA}=\mathrm{DC}$ and $H A=N Z$, and $H A=B A$ and $\mathrm{MA}=\mathrm{CA}$.
3. Lines $H T$ and GK are pacallel, for, since angle $G H I=$ angle $I B M, \therefore$ triangle $H G T=$ triangle $B M I$, whence $I G=I M=I X$. Again extend $H I$ to H^{\prime} maxing IH' $=I H$, and draw $H^{\prime \prime} \mathrm{K}$, whence triangle IHG triangle IH'K, each heving tro sides and the included angle respectively equal. \therefore the distances Irom G and \mathbb{N} to the line FH' are equal. \therefore the lines $H I$ and GK are parallel. In iike manner it may be shown that as and PF, also MH and Lo, are persilel.
4. $\mathrm{GK}=4 \mathrm{HI}$, for $\mathrm{HI}=\mathrm{TU}=G T=\mathrm{UV}=\mathrm{VK}$
(since $V K$ is homologous to $B I$ in the equal triangles VKI and BIM). In like manner it can be shown that $P F=4 D E$. That $L O=4 M N$ is proven as follows: triangles LWM and IVK are equal; therefore the homologous sides WM and VK are equal. Likewise $O X$ and $Q D$ are equal each being equal to MN. Now in tri. WJX, MJ and $\mathrm{XN}=\mathrm{NJ}$; therefore M and N are the middle points of $W J$ and $X J$; therefore $W X={ }^{\prime} 2 M N$; therefore $\mathrm{LO}=4 \mathrm{MN}$.
5. The three trapezoids HIGK, DEPF and MNLO are each equal to 5 times the triangle CAB . The 5 triangles composing the trapezoid HIGK ape each equal to the triangle $C A B$, each having the same base and altitude as triangle CAB. In like manner it may be shown that the trapezold DEPF, so alsó the trapezold MNLO, equals 5 times the triangle $C A B$.
6. The square $M K+$ the square $N P=5$ times the square EG or $B N$. For the square on $M I=$ the square on-MI + the square on $\mathrm{FI}+(2 A B)^{2}+A C^{2} \equiv 4 A B^{2}$ $+\mathrm{AC}^{2}$; and the square on $\mathrm{ND}+$ the square on $\mathrm{NZ}+$ the square $Z D=A B^{2}+(2 A C)^{2}=A B^{2}+4 A C^{2}$. Therefore the square $\mathrm{MK}+$ the square $\mathrm{NP}=5 A B^{2}+5 A C^{2}=5\left(A B^{2}+A C^{2}\right)$ $=5 B C^{2}=5$ times the square $B N$.
7. The bisector of the angle A' passes through the vertex A; for $A^{\prime} S=\Lambda^{\prime} T$. But the bisector" of the angle B^{\prime} or C^{\prime}, does not pass through the vertex B, or C. Otherwise $B U$ would equal $B U^{\prime \prime}$, whence $N U^{\prime \prime}+\mathrm{U}^{\prime \prime} M$ would equal $N M+U^{\prime \prime} M^{\prime}$; that is, the sum of the two legs of a right triangle would equal the hypotenuse + the perpendicular upon the hypotenuse from the right angle. But this is impossible. Therefore the bisector of the "angle B' doe's not pass through the vertex B.
8. The square on $L 0=$, the sum of the squares
on $P F$ and $G K$; for $L O: P F: G K=B C: C A: A B$,
9. Etc., etc.:

See Casey's Sequel to Zuclid, 1900, Part I, p. 16.

PYTHAGOREAN MAGIC SQUARES

\because

Qne

The sum of any row, column or diagonal of the square $A K$ is l25; hence the sum of all the numbers in the square is 625. The sum of any row, columin or diagonal of square $G H$ is 46 , and of $H D$ is 1.47; hence the sum of all the numbers in the square GH is 184, and in the square $H D$ is 441. Therefore the magic square $A K(625)=$ the magic square $H D(441)+$ the magic square HG (-184)
Formulated by the author, July, 1900.

Iwg

The square $A K$ is com-

Fig. 356
posed of 3 magic squares, 5^{2},
15^{2} and 25^{2}. The square HD is a magic square each number of which is a square. The square HG is a magic square formed from the first 16 numbers. Furthermore, observe that the sum of the nine square numbers in the square $H D$ equals 48^{2} or 2304, a square number. Formulated by the * author, July, 1900.

Three

The sum of all the num-

Fig. 357 bers $(A K=325)=$ the sum of
ail the numbers in square (HD $=189)+$ the sum of all the numbers in squàre ($\mathrm{HG}+136$).

Square AK is made up of $13,3 \times(3 \times 13)$, and 5 $\times(5 \times 13)$; square $H D$ is made up of $21,3 \times(3 \times 21)$, and square $H G$ is made up of 4×34 - each row, column and diagonal, and the sum of the four inner numbers.

Many other magic squares of this type giving 325, 189 and 136 for the sums of AK, HD and HG respectively may be formed.

This one was formed by Prof. Paul A. Towne, of West Edmeston, _N.Y.

Equr

Fig. 358

The sum of numbers in
sq. $(A K=625)=$ the sum of numbers in sq. $(\mathrm{HD}=441)+$ the sum of numbers in sq. (HG $=184)$.

Sq. AK gives $1 \times(1$ $\times 25) ; 3 \times(3 \times 25)$; and 5
$\times(5 \times 25)$, as elements; sq. HD gives $1 \times(1 \times 49) ; 3 \times(3 \times 49)$ as elements; and sq. HG gives 1×46 and 3×46, as elements.

This one also was.formed?
by Professor Towne, of West '
Edmeston, N.Y. Many of this
type may be formed. See fig. 355, above, for one of my own of this type.

Also see Mathematical Essays and Recreations, by-Herman Schubert, in The Open Court Publishing Co., Chicago, 1898, .p. 39, for "an extended theory of The Magic Square.

Eive

Observe the following series:
The sum of the inner 4 numbers is $1^{2} \times 202$; of the 16 -square, $2^{2} \times 202$; of the 36 -square, 3^{2} $\times \cdot 202$; of the 64-square, $4^{2} \times 202$; and of the 100square, $5^{2} \times 202$.

Fig. 359
"On the hypotenuse and legs of the rightangled triangle, ESL, are constructed the concentric magic. squares of $100,64,36$ and 16 . The sum of the two numbers at the extremities of the diagonals, and
of all lines, horizontal and diagonal, and of the two numbers equally distant from the extremities, is 101. The sum of the numbers in the diagonals and lines of each of the four concentric magic squares is 101 multiplied by half the number of cells in boundary lines; that is, the summations are $101 \times 2 ; 101 \times 3$; 101×4; 101×5. The sum of the 4 central numbers is 101×2.
\therefore the sum of the numbers in the square (So $=505 \times 10=5050)=$ the sum of the numbers in the square. $(E M=303 \times 6=1818)+$ the sum of the numbers In the square $\left(E I=404 \times 8=3232\right.$). $505^{2}=303^{2}$ $+404^{2}$.

Notice that in the above diagram the concentric magic squares on the legs is identical with the central concentric magic squares on the hypotenuse." Professor Paul A. Towne, West Edmeston, N.Y.

An indefinite number of magic squares of this type are readily formed.

ADDENDA

The following proofs have come to me since June 23, 1939, the day on which I finished page 257 of this and edition.

Iwo_Hundred_Eorty=Eight

In fig. 360°, extend

HA to P making $A P=H B$, and through P draw $P Q$ par. to $H B$, making $C Q=H B$; extend $G A$ to 0 , making $A O=A G$; draw $F E$, $G E, G D, G B, C O, Q K, H C$ and $B Q$.

Since, obvious, fri. $K C Q=$ tr. $A B C=$ try. FEH , and since area of try. BDG $=\frac{1}{2} B D \times F B$; then area of quad. $\mathrm{GBDE}=\mathrm{BD} \times(\mathrm{FB}=\mathrm{HP})=$ area of aral. $B H C Q=s q . B E+2$ tri. BHG, then it follows that:

Sq: $\mathrm{AK}=$ hexagon
Fig. 360
$A C Q K B H-2$ tr. $A B H=$ (try. $\mathrm{ACH}=$ tri. GAB) + (paral. BHCQ $=s q \cdot B E+2$ tri. $B H G)+(t r i \cdot Q K B=$ trig. $G F E)=$ hexagon GABDEF - 2 try. $A B H=s q \cdot A F+s q . B E$. There fore sq. upon $A B=$ sq. upon $H B+$ sq. upon $H A . \therefore h^{2}$ $=a^{2}+b^{2}$. Q.E.D.
a. Devised, demonstrated with geometric, reason for each step, and submitted to me June 29, 1939. Approved and here recorded July 2, 1939, after ms. for end edition was completed.
b. Its place, as to type and figure, is next after Proof Sixty-Nine, p. 14 l , of this edition.
c. This proof is an Original, his No. VII, by Joseph Kelson, of West Phyla.' High School, Phyla., Pa.

Two Hundred Forty=ine

Fig. 361

It is easily proven
that: try. GFY = try. FHE
$=\operatorname{tri} . \mathrm{ABH}=\operatorname{tri} . \mathrm{CMA}=\operatorname{tri}$.
ARC $=$ try. CWK; also that
try. GAE $=$ trio. CMH; try. LGE = try. CXH ; try. FYI $=$ try. $E D N=$ trio. WKY; trio.... GFY = try. GFL + try. NED; that paral. $B H W K=s q . H D$. Then it follows that sq. $A K$ $=$ pentagon $\mathrm{MCKBH}-$ 2'tri. $^{\text {. }}$ $\mathrm{ABH}=$ (try. $\mathrm{MCH}=\operatorname{tr} 1 . \cdot \mathrm{GAE})$ + (try. $\mathrm{CXH}=\operatorname{tri} . \mathrm{LGE}$) + [(quad. $B H X K=$ pent. HBDNE) $=s q . B E+$ (try. $\mathrm{EDN}=\mathrm{tr} 1$. WKX)] = hexagon GAHBDNL -2 $\operatorname{tr} 1 . A B H=s q . A F+s q \cdot B E$.
\therefore sq., upon $A B=$ sq. upon $H B+$ sq. upon $H A$. $\therefore \mathrm{h}^{2}=a^{2}+b^{2}$.
a. This proof, with figure, devised by Master Joseph Kelson and submitted June '29; 1939, and here recorded July 2, 1939.
b. Its place is next after No. 247, on p. 185 above.

Iwe_Hundred_Fifty

Fig. 362

In' fig. 362, draw GD. At A and B erect perp's $A C$ and $B K$ to $A B$. Through L and 0 draw $F M$, and $E N=F M=A B$. Extend DE to K.

It is obvious thät:
quad. GMLC = quad. $O B D E$;
quad. $O B D E+$ (try. LMA $=$ tr. $\mathrm{OKE})=\operatorname{tr} 1 . \mathrm{ABH}$; try. BDK $=\operatorname{tr} 1 . E D N=\operatorname{tri} . \mathrm{ABH}=\operatorname{tri}$. $\mathrm{EFH}=\operatorname{tri} . \mathrm{MFG} \stackrel{t}{=}$ tr. CAG.

Then it follows ${ }^{\text {that }}$: sq. $\mathrm{GH}+\mathrm{sq} . \mathrm{HD}=$ hexagon GABDEF - 2 tri. ABH

$$
\begin{aligned}
& =\left[\text { trap. FLOE }=\frac{(F L+O E=F M=A B) \times(F E=A B)}{2}\right] \\
& +\left[\text { trap. } L A B O=\frac{(L A+B O=B A=A B) \times(A B)}{2}\right]=A B^{2}
\end{aligned}
$$

$=s q$. on $A B$.
\therefore sq. upon $A B=$ sq. upon $H B+$ sq. upon $H A$.
$\therefore h^{2}=a^{2}+b^{2}$.
a: Type J, Case (1), (a) So its place is next after proof Two Hundred Nine, p. 218.
b: Proof and fig. devised by Joseph Kelson. Sent to me July 13, 1939.

IwQ_Hundred_Eifty=Qne.

Fig. 363

Construct try. KGF 1. ABH;-extend- FE -to and 0 , the point at which a perp. from D intersects FE extended; also extend $A B$ to M and N where perp's from G and D will intersect $A B$ extended; draw GD.

By showing that:
try. $K L F=$ try. $D O E=\operatorname{tri}$.
DNB; try. FLG = try. AMG;
try. $\mathrm{KGF}=$ try. $\mathrm{EFH}=$ try.
ABH ; then $1 t$ follows that: $\mathrm{sq} . \mathrm{GH}+\mathrm{sq} . \mathrm{HD}=$ hexagon LGMNDO - 4 trig. ABH
$=\left[\right.$ trap. $\left.L G D O=\frac{(L G+D 0=K G=A B) \times(F E=A B)+(2 \times \text { al .t. } F I L)}{2}\right]$
$+\left[\right.$ trap. $\left.\operatorname{GMND}_{z}=\frac{(G M+N D=A B) \times(A B)+(2 \times \text { alt. }\{A M=F L\})}{2}\right]$
-4 try. $\overline{A B H}=\frac{2 A B^{2}}{2}-4$ tr. $A B H=A B^{2}-4$ try. $A B H$.
$\therefore h^{2}=\varepsilon^{2}$ sq. upon $A B=s q$. upon $\dot{H B}+$ sq. upon $H A$.
a. Type J. Case (1), (a). So its place is next after Proof Two Hundred Fifty-One.
'b. This proof and fig, also devised by Master Joseph Zelson, a lad with a superior intellect. Sent \therefore to me July 13, 1939.

IwQ_Hyndred_Elfty=Iwe

Fig. 364

By dissection, ass per figure, and the numbering of corresponding. parts by same numeral, it follows, through superposition of congruent parts (the most obvious proof) that the sum of the four parts (2 try's and 2 quad'ls)
in the sq. $\mathrm{AK}=$ the sum of the-three-parts-(2-trilg-and 1 quad.) in the sq. $P G+$ the sum of the two parts (1 try.
and 1 quad.) in the sq. PD.
That is the area of the sum of the parts $1+2$ $+3+4$ in sq. $A K$ (on the hypotenuse $A B$) = the area of the sum of the parts $1^{\prime}+2^{\prime}+6$ in the sq. $P G$ (on the line $G F=$ line $A H$) + the area of the sum of the parts $3^{\prime}+4^{\prime}$ in the $s q . P D$ (on the line $P K$ $=$ line $H B)$, observing that part $4+(6=5)=$ part 4^{\prime}.
a. Type I, Case (6), (a). So its place belongs next after fig. 305, page 215.
b. This figure and proof was devised by the author on March 9, 1940, 7:30 p.m.

TwQ_Hundred_Elfty=Three

In "Mathematics for the Million," (1937), by Lancelot Hogben, F.R.S., from p. 63, was taken the following photostat. The exhibit is a proof which is credited to an early (before 500 B.C.) Chinese mathermatician. See also David Eugene Smith's History of Mathematics, Vol. I, p. 30,

Mathematics in Prehistory

Fig. 19
The Book of Chou Pei Stuan King, probably written about A.D. 40, is attributed by oral tradition to a-source before the Greek geometer taught what we call the Theorem of Pythagoras, i.e. that the square on the longest side of a right-angled triangle is equivalent to the sum of the squares on the other two. This very carly example of block printing from an ancient edition of the Chou Peit, as given in Smith's History of Malhimatics, demonstrates the truth of the theorem. By joining to any right-angled triangle like the black figure ¿Bf. three other right-angled iriangles just like it, a square can be formed. Next trace four oblongs (rectangles) like eaf B , each of which is made up of two triangles like of B . When you have read Chapter 4 you will be able to put together the Chinese puzzle, which is much less puzzling than Euclid. These are the steps:

Triangle ef $\bar{B}=\dot{\ddagger}$ rectangle caf $\mathrm{B}=1 \mathrm{Bf} . e \mathrm{~B}$
Square $A B C D=$ Square efoh +4 times triangle ef B
$=c f^{2}+\geq \mathrm{Bf} . e \mathrm{~B}$
Also Square $A B C D=B f^{2}+C B^{2}+2 B f . c B$
So $e f^{2}+2 \mathrm{Bf} . e \mathrm{~B} . . \mathrm{Bf}^{2}: \mathrm{CB}^{2}+2 \mathrm{~B} f . e \mathrm{~B}$
Hence $\mathrm{ef}{ }^{2}=\mathrm{B} f^{2}+\mathrm{eB}$
a. This believe-it-or-not "Chinese Proof" belongs after proof Ninety, p. 154, this book. (E.S.L., April 9, 1940).

Fig. 365

In the figure extend $G F$ and $D E$ to M, and $A B$ and $E D$ to L, and number the parts as appears in the quad. ALMG.

It is easily shown
that: $\triangle \mathrm{ABH}=\triangle \mathrm{ACG}, \triangle \mathrm{BKN}$
$=\triangle \mathrm{KBL}$ and $\triangle \mathrm{CNF}=\triangle \mathrm{KOE}$;
whence $\square A K=(\triangle A B H=\triangle A C G$
in sq. HG) + quad. AHNC com. to \square 's $A K$ and $H G+(\triangle B K N$. $=\triangle \mathrm{KBL})=(\triangle \mathrm{BLD}+$ quad. BDE 0
$=$ sq. HD$)+(\triangle O E K=\triangle N F C)=\square H D+\square H G$. Q.E.D. $\quad \therefore$ $h^{2}=a^{2}+b^{2}$.
a. This fig, and demonstration was formulated by Fred. W. Martin,:a pupil in the Central JuniorSenior High School at South Bend, Indiana, May 27, 1940.
b. It should appear in this book at the end of the B-Type section, Proof Ninety-Two.

Iwo_Hundred_Fifty=Eive

-- Draw CL perp. to AH, join

Fig. 366 CH and CE; also GB. Construct sq. $H D^{\prime}=s q \cdot H D$. Then observe that $\triangle \mathrm{CAH}=\triangle \mathrm{BAG}, \triangle \mathrm{CHE}=\triangle \mathrm{ABH}$, $\triangle C E K \leftrightharpoons \triangle B F G$ and $\triangle M E K=\triangle N E ' A$.

Then it follows that sq.
$A K=(\triangle A H C=\triangle A G B$ in sq. $H G)$
$+(\triangle H E C=\triangle B H A$ in sq. $A K)+(\triangle E K C$
$=\triangle B F G$ in sq. $H G)+(\triangle B D K-\triangle M E K$
$=$ quad. BDEM in sq. $H D)+\triangle H B M$ com. to $s q^{\prime} s . A K$ and $H D=s q . H D$ + sq. HG. $\quad \therefore h^{2}=a^{2}+b^{2}$.
. This proof was discovered by Bob Chillag, a pupil

In the Central Junior-Senior High School, of South Bend, Indiana, in his teacher's (Wilson Thornton's) Geometry class, being the fourth proof I have received from pupils of that school. I received this proof.on May 28, 1940.

- b. These four proofs show high intellectual ability, and prove what boys aind giris can do when permitted to think iridependentiy and logically.
- E. S. Loomis.
c. This proof belongs in the book at the end --of the E-Type section, One Hundred Twenty-Six.

Iwo_Hyndred_Eifty-Six

Geometric.proofs are either Euclidian, as the preceding 255, or Non-Euclidian which are either Lobachevskian (hypothesis, hyperbolic, and curvature, negative) or Riemanian (hypothesis, Elliptic, and curvature, positive).

The following non-euclidian proof is a literai transcription of the one given in "The Elements of Non-Euclidian Geometry," (1909),. by Julian Lowell Coolidge, Ph.D., of Harvard University. It appears on pp. 55-57 of said work. It presumes a surface of constant negative curvature, --a pseudo sphere, --hence Lujachevskian; and its establishment at said pages was necessary as a "sufficient basis for trigonometry," whose figures must ippear on such a surface.

The complete exhibit in said work reads:
"Let us not fail to notice that since 4 ABC is a right angle we have; (Chap. 'III, Theorem 17), $\lim \cdot \frac{\overline{B C}}{\overline{A C}}=\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta, \cdots(3)$
"The extension of these function
"The extension of these functions to angles whose measures are greater than $\frac{\pi}{2}$ will afford no difficulty, for, on the one hand, the defining series remains convergent, and, on the other, the geometric extension may be effected as in'the elementary books.
"Our next task is a most serious and fundamental one, to find the relations, which connect the measures-and-sides-and-angles of a right triangle. Let this :be the $\triangle \mathrm{ABC}$ with $\angle \mathrm{ABC}$ as the right angles. Let the measure of $\Varangle B A C$ be ψ while that of $\Varangle B C A$ is θ. We shall assume that both ψ and θ are less than $\frac{\pi}{2}$, an obvious necessity under the euclidian or hyperbolic hypothesis, while under the elliptic, such will still be the case if the sides of the triangle be not large, and the case where the inequalities do not. hold may be easily treated from the case where they do. Let us also call a, b, c the measures of $\overline{B C}, \overline{C A}$, $\overline{A B}$ respectively.
"We now make rather an elaborate construction. Take B_{1} in ($A B$) as near to B as desired, and A_{1} on the extension of (AB) beyond A , so that $\overline{\mathrm{AA}_{1}}$ $\equiv \mathrm{BB}_{1}$ and construct $\triangle \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \equiv \mathrm{ABC}, \mathrm{C}_{1}$ lying not far from C; a construction which, by 1 (Chap. IV, Theorem 1), is easily possible if $\overline{\mathrm{BB}_{1}}$ be small enough. Let $\overline{\mathrm{B}_{1} \mathrm{C}_{1}}$ meet (AC) at C_{2}. $X_{1} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}$ will differ but little from $\Varangle B C A$, and we may draw $\overline{C_{1} C_{3}}$ perpendicular to $\overline{C C}_{2}$, where C_{3} is a point of $\left(\mathrm{CC}_{2}\right)$. Let us next find A_{2} on the extension of ($A C$) beyond A so that $\overline{A_{2} A} \equiv \overline{C_{2} C}$ and B_{2} on the extension of. $\left(C_{1} B_{1}\right)$ beyond B_{1} so that $\overline{B_{1} B_{2}}$ $\equiv \overline{C_{1} C_{2}}$, which is certainly possible as $\overline{\mathrm{C}_{1} \mathrm{C}_{2}}$ is very small. Draw $\overline{A_{2} B_{2}}$. We saw that $X_{2} C_{2} C_{2}$ will differ from $4 B C A$ by an infinitesimal (as $B_{1} B$ decreases) and $\mathrm{KCC}_{1} \mathrm{~B}_{1}$ will approach a right angle as a limit. We thus get two approximate expressions of $\sin \theta$ whose comparison yields $\frac{\overline{\bar{C}_{1} \mathrm{C}_{3}}}{\overline{\mathrm{C}_{1} \mathrm{C}_{2}}}=\frac{\overline{\mathrm{CC}_{1}}}{\overline{\mathrm{CC}_{2}}}+\varepsilon_{1}=\frac{\cos \mathrm{a} / \mathrm{k} \overline{\mathrm{BB}_{1}}}{\overline{\mathrm{CC}_{2}}}+\varepsilon_{2}$, for $\overline{\mathrm{CB}_{1}}-\cos a / k \overline{\mathrm{BB}_{1}}$ is infinitesimal in comparison to $\overline{\mathrm{BB}_{i}}$ or $\overline{\mathrm{CC}_{1}}$. Again, we see that a line through the middle point of ($A A_{1}$) perpendicular to $A A_{2}$ will also be perpendicular to $\overline{A_{1} C_{1}}$, and the distance of the intersections wili differ infinitesimally from sin $\psi \cdot \mathrm{AA}_{1}$. We see that $\overline{\mathrm{C}_{1} \mathrm{C}_{2}}$ differs by a higher infinitesimal from $\sin \psi \cos \mathrm{b} / \mathrm{k} \overline{\mathrm{AA}_{1}}$, so that $\cos \frac{\mathrm{b}}{\mathrm{k}} \sin \psi \frac{\overline{\mathrm{AA}_{1}}}{\overline{\mathrm{C}_{1} \mathrm{C}_{2}}}+\varepsilon_{3}$ $=\frac{\cos a / k \overline{\mathrm{BB}}{ }^{-}}{\overline{\mathrm{CC}_{1}}}+\varepsilon_{2}$.
"Next we see that $\overline{A_{1}} \equiv \overline{\mathrm{BB}_{1}}$, and hence $\cos \frac{b}{k}$ $=\frac{1}{\sin \psi} \cos a / k \cdot \frac{\overline{C_{1} C_{2}}}{C_{2}}+\varepsilon_{4}$. Moreover, by

[^4]construction $\overline{\mathrm{C}_{1} \mathrm{C}_{2}} \equiv \overline{\mathrm{~B}_{1} \mathrm{~B}_{2}}, \overline{\mathrm{CC}_{2}} \overline{\mathrm{~A}} \overline{\mathrm{AA}}_{2}, \mathrm{~A}$ perpendilcular. to " $\overline{A A} A_{i}$ from the middle poin't of (A_{2}) will be perpendicular to $\overline{A_{2} B_{2}}$, and the distance of the intersections will differ infinitesimally from each of
 $\cos \frac{b}{k}-\cos \frac{a}{k} \cos \frac{c}{k}<\varepsilon . \quad \cos \frac{b}{k}=\cos \frac{a}{k} \cos \frac{c}{k} \cdot-$ (4)
"To get the special formula for the euclidian case, we should develop all cosines in power series, multiply through by k^{2}, and then put $l / k^{2}=0$, getting $b^{2}=a^{2}+c^{2}$, the usual Pythagorean formula."
a. This transcription was taken April 12, 1940, "b"y E. S. Loomis.
b. This proof should come after e; p. 244.

This famous Theorem, in Mathematical Litera-
ture; has been called:

1. The Carpenter's Theorem
2. The Hecatomb Proposition
3. The Pons Asinorum
4. The Pythagorean Proposition
5. The 47 th Proposition

Only four kinds of proofs are possible:

1. Algebraic
2. Geometric--Euclidian or non-Euclidian
3. Quaternionic
4. Dynamic

In-my investigations I-found the foilowing
Collections of Proofs:

	No.	Year
1. The American Mathematical Monthly	100	1894-1901
2. The Colburn Collection	108	1910
3.-The Edwards Collection	40	1895
4. The Fourrey Collection	38	1778
5. The Heath Monograph Collection	26	1900
6. The Hoffmann Collection	32	1821
7. The Richardson Collection"	40	1858
8. The Versluys Collection	96	1914
9. The Wipper ${ }^{\text {Collection }}$	46	1880
10. The Cramer Collection	93	1837
11. The Runkle Collection	28	1858

Of the 370° demonstrations, for:

Proof

1. The shortest, see p. 24, Legendre's........... One
2. The longest, see p. 81, Davies Legendre .. Ninety

3: The most popular, p. 109, Sixteen
4. ${ }^{\text {Arabic, see p. 121; under proof Thirty-Three }}$
5. Bhaskara, the Hindu, p. 50, Thirty-Six
6. The bilnd girl, Coolidge, p. .118, Thirty-Two
7. The Chinese--before 500 B.C., p. 261,..........

- Two Hundred Fifty-Three

8. Ann Condit, at age 16, p, 140 (Unique)
\qquad
9. Euclid's, p. 119,. Thirty-Three
10. Garfield's (Ex-Pres.), p. 231,

Two Hundred Thirty-One
11. Huygens ${ }^{\prime}$ (b. 1629), p. 118, Thirty-One
12. Jashemski's (age 18), p. 230,

Two Hundred Thirty
13. Law of Dissection, p. 105,Ten
14. Leibniz's (b. 1646), p. 59, Fifty-Three
15. Nô-Euclidian, p. 265, ... Two Hundred Fifty-Six
16. Pentagon, pp. 92 and 238 ,

One Hundred Seven and Two Hundred Forty-1'wo
17. Reductio ad Absurdum, pp. 41 and $48, \ldots$. Sixteen and Thirty-Two
18. Theory of Limits, p. $86, \ldots . . .$.

They came to me from everywhere.

1. In 1927, at the date of the printing of the lst edition, it shows--No. of Proofs:

Algebraic, 58; Geometric, 167; Quaternionic, 4; Dynamic., $1 ;$ in all 230 different proofs.
2. On November 16, 1933, my manuscript for a second edition gave:

Algebraic, 101; Geometric, 211; Quaternionic, 4; Dynamic, 2; in all 318 different proof's.
3. On. May 1, 1940 at the revised completion of the manuscript for my and edition of The Pythagorean Proposition, it contains--proofs:

Algebraic, 109; Geometric, 255; Quiaternionic, 4: Dynamic, 2; in all 370 different proofs, each proof calling for its own specific figure. And the end is not yet.
E. S. Loomis, Ph.D.
at age nearly 88, May 1, 1940

BIBLIOGRAPHY

The sources, from which historical facts, suggestions; illustrations, demonstrations and other data concerning the preparation of this book, or for further investigation by any one who may wish to compare and consider original sources, are comprised in the following tabulation.

I. TEXTS ON GEOMETRY'

1. Beman and Smith's Plane and Solid Geometry, 1895.
2. Bezout's Elements of Geometryं, 1768.
3. Camerer, J. G. et C. F. Hanbes-Berel, 1824.
4. Chauvenet's Elements of Geometry, 1887.
5. Cramer, (c.), 1837, 93 proofs.
6. Davies' Legendre, 1858.
7. Dobriner's (Dr. H.) Geometry.
8. Edwards' Geometry, 1895.
9. Halsted's Elementary Geometry, 1895.
10. Hill's Geometry for ${ }^{\text {Beginners, }} 1886$.
11. Hopkins'. Plane Geometry, 1891.
12. Kunze's (van) Geometry, 1842.
13. Mackay's (J. S.) Plane Geometry.
14. Mahler's (G.) "Ebene Geometrice," 1897.
15. Milne's Plane and. Solid Geometry, 1899.
16. Olney's Elements of Geometry, 1872, Univ'y Ed'n.
17. Pisano (Leonardo) Practica Geometriae.
18. Ray's Geometry.
19. Richards' (Claudius) "Euclides Elementorum Geometrieorum," 1645, Antwerpiae.
20. Sauvens. (M.) Geometriy, 1753.
21. Schuyler's (Dr. A.) Elements of Geometry, 1876.
22. Simpson's (Thos.) Elementary Geometry.
23. Todhunter's Elements of Euclid, 1897.
24. Kells' Essentials of Geometry, 1899.
25. Wentworth and Smith!s Plane Geometry, Revised Edi- w. tion, 1910.
26. "Wentworth's New Plane and Solid Geometry, 1895.

II. OTHER TEXTS

1. Bernstein, (F.) The Axiomatic Simplicity of Proofs, 1909.
2. Blanchard's (Orlando) Arithmetic.
3. Brandes' Dissection Proofs, 1908.
4. Casey's Sequel to Euclid, Part I, 1900.
5. Cours de Mathematiques, 1768.
6. Cullen's (P. C.) Pamphiet.
7. Delboeuf's work.
8. Fourrey's (E.) Curiosities Geometriques, 2nd Ed'n, 430 pages, 1778, Paris.
9. Geometric Exercises, Paper Folding, 1905.
10. Halsted's Mensuration.
11. Handbook der Mathematik, 1869.
12. Hardy's Elements of Quaterriions, 1881.
13. Hubert's Rudimenta Algebrae, 1792.
14. Leitzmann's (Dr. W.) "Des Pythagorische Lehrsatz," 1930.
15. Littrow's (E. von) "Popular Geometrie," 1839.
16. Loomis (Dr. E. S.), The Pythagoreañ Proposition.
17. Row's Geometric Exerọ́ises in Paper Folding, 1905.
18. Schubert's Mathematical Essays, 1898.
19. Schuyler's (Dr. A.), Trigonometry, 1873.
20. Simon (M.), 1906.
21. Vogt (H.), The Geometry of Pythagoras, Vol. 3, 1909.
22. Wallıs' Treatise of Algebra, 1685.
III. MONOGRAPHS.
23. Heath's Mathematic̣al Monographs, Nंos. 1 ạnd 2, 1900.
24. Hoffmann's (J. J. I.), The Pythagorean Theorem, 1821--32 Proofs.
25. Martin's (Artemus), "On Rational Right-Angled Triangles (Pamphlet), 1912.
26. Mathematical Monograph, No. 16, 1915, Diaphontine Analysis des Pythagoraische Lehrsatz, by Leitzmann.
27. Naber (Dr. H. A.), Das Theorem des Pythagoras, 1908.
28. Versluys' (J.), Theorem van Pythagoras, Zes en Negentig Bewijzen, 1914, 96 Proofs.
29. "Vriend de Wiskunde," 1898 by Vaes (F: J.).
30. Wipper, (Jury), " 46 Beweise des Pythagoraischen Lehrsates, 1880,46 Proofs.

IV. JOURNALS AND MAGAZINES

1. American Mathematical Monthly, 1894-1901, Vols. I to VIII inclusive, 100 proofs. The Editor, Dr. B. F. Yanney said: "There is no limit to the number of proofs--we just had to quit."
2. Archiv der Mathematik and Phys., Vols. II, XVII, XX, XXIV, 1855, by Ph. Grunert, 1857.
3. Aumerkungen uber Hrn. ogeh. R. Woif's Ausgug aus: der Geometrie," 1746, by Kruger.
4. Bernstein (F.), The Pythagorean Theorem, 1924.
5. Companion to Elementary School Mathematics, 1924.
6. Heutton's (Dr.), Tracts--History of Algebra, 3 Vols., 1912.
7. Journal of Education, 1885-8, Vols. XXV, XXVI, XXVII, XXVIII.
8. Jounnal de Mathein, 1888, by F. Fabre.
9. Journal of the Royal Society of Canada, 1904, Vol. II, " p. 239.
10. Lehrbegriff's Science of Mathematik.
11. Masonic Bulletin, Grand L̇odge of Iowa, No. 2, © February 1929.
12.-Mathematieal-Essays-and Recreations.
12. Mathematical Magazine, The, Vols. I and II, by Martin; 1891.
13. Mathematical Monthly, Vols. I and II, 1858, 28 Proof's, by J. D. Runkle.
14. Mathematics Teacher, Vol. XVI., 1915., Vol. XVIII, 1925.
15. Messenger of Mathematics, Vol. 2, 1873.
16. Nengebrauer's (0.), History of the Pythagorean Theorem, 1928.
17. Notes and Queries, by W. D. Henkle, 18.75-81.
18. Nouvelles Annales, Vol. LXII.
19. Open Court Pub. Co., 1898, p. 39--Magic Squares.
20. Periodico di Mathematicke (Italian),. H1story of "che Pythagorean Theorem.
22̄. Philosophia et Mathēis Universa.
21. Philósophical Transactions, 1683.
22. Pythagorean Theorem, The, by Cullen.
23. Quarterly Journal of Mathematics, Vol. I.
24. Recreations in Mathematics and Physics, 1778.
25. Runkle's Mathematical Monthly, No. 11, 1859.
26. School Visitor, The, Vol.-III; 1882, Vol. IX, 1888.
27. Schörer's The Theorem of Pythagoras, 1929.
28. Science, New Series, Vol. 32, 1910; Vol. 33, 1911; Mol 34 , 1912.
29. Scientia Baccalurem.
30. The Scientific American Supplement, Vol. 70, 1910, -pp. 359, 382-3.
31. Scientifique Revue, 1859.
V. GENERAL REFERENCE WORKS
32. Ball's Short History of Mathematics, 1888.
33. The Encyclopedia Britannica--articles on Geometry, Magic Squares, Dynamics, Quaternions or Vector Analys:ls, Euclid, Pythagoras, etc.
34. Encyclopadie, des Elementar Mathematick, 1923, by H. Weber and -J. Wellstein.
35. Scanscrit Mathematics.
(1) "Viga Ganita."
(2) "Yonct1 Bacha."
36. Wolf's (Dr. Rudolph), Handbook of Mathematics, 1869
37. Muller (J. W.), Nürnberg, 1819.
VI.

The Royal Society of London--Index 1800-1900;
Vol. I, Pure Mathematics, 1908, lists the following authors and articles:

1. Nuller, B. K. F. von: Oken Isis (1826), 763 ff .
2. Gūndermann, C.: Crelle, J. 42 (-852), 280ff.
3. Vincent, A. J. N.: N. A. Mth. 11 (1852), 5 ff.
4. Dekorgan, A.: Q. J. Mth. 1 (1857), 236ff.
5. Salwen, G.: Q. J. Mth. 1 (i857), 237 ff .
6. Ritchardṣon, J. K.: Camb. (M.) Math. M. 2 (1860), $45 f f$.
7. Azzarellt, H. 1873 : Rm. N. Linc. AAt. 27 (1874), 65 ff .
8. Harvey, W.: Edinb. Math. S. P. 4 (1886), 17 ff.
9. Zahradntk, K.: Casopis 25 (1896), 26lff. Schr. Mth. (1896), 364 ff .
10. Confirmation. Wittstetn, T.: Grunert Arch. 11 (1848), i52.
11. Pythag. triangle. Grunert, J. A.: Arch. der. Mth. and Physik 31 (1858), 472ff.
12. Demonstration. Boquoy, G. von: Oken Isis 21 (1828), lff.
13. ---------- by dissection. Perigal, H.: Mess. M̀th. 2 (1873), 103 ff .
14. Extension to any triangle. Jelinek, V.: Casopis 28-(1899), 79ff., F. Schr. Mth. (i899), 456.
15. Extensions. Anglin, A. A.: Edinb. R. S. P. 12 (1884) 703.
16. Figures for proving. Andre, H. d': N. A. Mth. 5-(1846), 324.
17. Generalization. Umpfenbach (Dr.): Crelle J. 26 (1843), 92.
18. Puzzles connected with theorem. Brand, E.: Rv. Sc. 2 (1894), 274ff., 809ff.
19. Pythagorean tririangles. Cantor, H.: Schlonsilch, Z. 4 (1859), 306ff.
20. Pythagorean triangles. Lewts, J.: Am. Ph. S. P. 9 (1865), 415ff.
21. Pythagorean triangles. Whttworth, W. A.: Lpool, Ph. S. P. 29 (187.5), 237 ff.
22. Pythagorean triangles and applications to the division of the circumference. Grueber: Arch. Mth. und Physik 15 (1897), 337ff,
23. Pythagorean triangle, nearly isosceles. Martin, Art: Des Moines Anal 3' (1876), 47ff.
24. Pythagorean triangle, properties. Breton: Ph. Les Mondes 6 (1864), 401ff.
25. Right-angled triangles. Bangma, V. S.: Amst. Vh. 4. (1818), 28ff.
26. Right-angled triangles, squares on'sides (Hamett). Gergonne, J. D.: Gergonne. A. Mth. 14 (1823), $334 f f$.
27. Quadrangles, complete. Newberg, J.: Mathses 11 (1891), 33ff, 67ff, 81ff, 189f'f.
28. Quadrangles, transformations. Gob, A.: As. Fr. C. R. (1884), (Pt. 2), 294ff.

TESTIMONIALS

From letters of appreciation and printed Reviews the following four testify as to its worth.

New Books. The Mathematics Teacher 1928, has: The Pythagorean Theorem, Elisha S. Lc mis, 1927, Cleveland, Ohio, 214 pp . Price $\$ 2.0$.
"Orie hundred sixty-seven geometric proofs and fifty-eight algebraic proofs besides several other kinds of proofs for the Pythagorean Theorem compiled in detailed; authoritative, well-organized form will be- a rare 'find' for Geometry teachers who are alive to the possibilities of their subject and for mathematics clubs that are looking for interesting material. Dr. Loomis has done a scholarly piece of work in collecting and arranging in such convenient form this great number of proof's of our historic theorem.
"The book however is more than a mere cataloguing of proofs, valuable as that may be, but presents an organized suggestion for many more original proofs. The object of the treatise is twofold, 'to present to the future investigator, under one cover, simply and concisely, what is known relative to the Pythagorean proposition, and tio set forth certain established facts concerning the proofs and geometric figures pertaining thereto:
"There are four kinds of proofs, (1) those based upon linear relations--the algebraic proof, (2) those based upon comparison of areas--the geometric proofs, (3) those based upon vector operations --the quaternionic proofs, (4) those based upon mass and velopity--the dynamic proof's. Dr. Loomis contends that the number of algebraic and geometric proofs äre each limitless; but that no proof by trigonometry, enalytics or calculus fis possible due to
the fact that these subjects are based upon the righttriangle proposition.
"This book is a treasure chest for any mathematics teacher. ${ }^{0}$ The twenty-seven years which Dr . Loomis has played with this theorem is one of his hobbies, while he was Head of the Mathematics Department of Wèst High School, Cleveland, Ohio, have been well spent since he has gleaned such treasures from the archives. It is impossible in a short review to do justice to this splendid bit of research w unselfishly done for the love of mathematics. This book should be highly prized by every mathematics teacher and should find a prominent place in every school, and public library."

-

H. C. Christoffenson

Teachers College
Columbia Universitỵ, N.Y. City

From another review this appears:
"It (this work) presents all that the literature of 2400 jears gives relative to the historically renowned and mathematically fundamental Pythagorean proposition--the proposition on which rests the sciences of civil engineering, navigation and astronomy, and to which Dr. Einstein conformed in formulating and positing his general theory of relativity in 1915.
"It establishes that but four kinds of proofs are possible--the Algebraic, the Geometric the Quaternionic and the Dynamic.
"It shows that the number of Algebraic proofs is limitless.
"It depicts 58 algebraic and 167 geometric proofs.
"It declares that no trigonometric, analytic geometry., or calculus proof is possible.
"It contains 250 geometric figures for each of which a demonstration is given.
"It contalns a complete bibliography of all references to this celebrated theorem.
"And lastly this work" of Dr. Loomis is so complete in its mathematical survey and analysis that it is destined to become the reference book of all future investigators, and to this end its sponsors are sending a complimentary copy to each of the great mathematical libraries of the United States and Europe."

Masters and Wardens Association of the
22nd Masonic District of Oh1o

Dr. Oscar Lee Dustheimer, Prof. of Mathematics and Astronomy in Baldwin-Wallace College, Berea, Ohio, under date of December 17, 1927, wrote: "Dr. Loomis, I consider this" book a real contribution to Mathematical Literature and one that you can be justly proud of....I am more than pleased with the book."

Oscar L. Dustheimer

Dr. H. A. Naber, of Baarn, Holland, in a Weekly paper for secondary instructors, printed, 1934, In Holland Dutch, has (as translated): "The Pythagorean Proposition, by Elisha S. Loomis, Professor Emeritus of Matnematics, Baldwin-Wallace College," (Bera, 0.).....

TDr. Naber states...."The author has classifled his (237) proofs in groups: algebraic, geometric, quaternionic and dynamic proofs; and these groups are further subdivided"" "....Prof. Loomis himself has wrought, in his book, a work that is more durabile than bronze and that tower higher even than the pyramids." "....Let us hope--until we know more com-pletely--that by this procedure, as our mentality grows deeper, it will become as in him: The Philosoph1c Insight."

index of names

1. Names of all authors of works referred to or consulted in the preparation of this book may be found in the bibliography on -pp. 271-76.
2. Names of Texts, Journals, Magazines and other publications consulted or referred to also appear in said bibliography.
3. Names of persons for whom a proof has been named, or to whom a proof has been credited, or from or through whom a proof has come, as well as authors of works consulted, are arranged alphabetically in this Index of personal names.
4. Some names occur two or more times, but-the earliest occurrence is the only one paged.

Adems, J., 60
Agasbiz, 190
Amasis, 8
Anakaimander, 8 ..
Andre, H. d', 98
Anglin, A. H., 275
Andronicus, 15
Annairizio of Arabia, 900 N.C., 51
Arabic proof, 121
Ash, M. V. (1683), 150
Azzarelli, M., 275
Ball, W. W. Rouse, 154
Bangma, V. S., 276
Bauer, L. A., 79
Bell, E. T. (Dr.), $\nabla 1$
Bell, Richard A., 49
Bernatein, F., 272
Bhaskara, the Hindu, 50
Binford, R. E., 230
Blanchard, Orlando, 155
Boad, Henry, 1733, 137

Boon, F. C., 66
Boquoy, G. von; 275
Bottcher; J: E.l, 112,
Brand, E., 65
Brandes, 272
Bressert, M. Piton, 67
Bret"on, 276
Bretschenschneider, 155°
Brow, Lucius: 79
Buck, Jenny de, 149.
Bullard, I. J., 83
Calderhead, Prof. James A., 24.7.

Camerer, 13
Camirs, Jules, 52
Cantor, M., 5
Carmichael, Robert D., 24
Casey, 253
Cass, Gustav, 226
Cattell, J. McK., 249
Chase, Plinj Earle, 109
Chauvenet, $5 ?$

Chillas, Bob, 263
Chinese proof, 262
Christoffersön, \#. C., 278
Clairaut, $1.741,203$
Colburn, Arthur E., 53
Collins, Matthew, 18
Condit, Ann (age 16), 140
Coolidge, Miss E. A.
(blind girl), 119
Coolidge, Julian Lowell, 265
Copernicus, 12 *
Cramer, C., 271
Crelle, J., 275
Cullen, R. C., 155
Darwin, 121a.
Davies (Legendre), 24
DeBeck, Bodo M.; 227
Deimal, R. F., 250
Delboeuf, 134
DeMorgan, A., 105
.Descartes', 244
Dickinson, M., 179
Dickson, Leonard E., 17
Diogenes., 6
Dissection, Law of--Loomia, 106
Dobriner, Dr. H., 111
Dulfer, A. E. B., 57
Dustheimer, Dr. Oscar L., 279
Edison, 12
Edwarde, 25
England, W., 120
Epsitein, Paul;, 115
Eratôkles, 9
Euclid, 13
Evańa, Geo. W., 57
Exceli, Rev. J. G., 49
'Fabre, F., 57

Ferekid, 9
Forbes, E., 203
Fourrey, ${ }^{\text {E., }} 49$
French, C., 133
Gallleo, 12
Garfield, Prea. James A., 224
Gauss, 16
Gelder, Jacob de, 121
Gergonne, J. D., 276
Ginsburg, Dr. Jehuthiel, xiv
Glashier, J. Wi. I., 17. --.
Gob, A., 276
Graap, F., 11
Grueber, 276
Grundermiann, C., 275
Grunert, J. A., 53
Gutheil, B. von--World Wंar Proof, 117

Halsted, Geo. B., 21
Hamlet, 120.
Hardy, 272
Harvey, W., : 27.75
Hauff, "von, 123
Hawkins, Cecil, 57
Haynes, 226
Heath, 24
Henkle, W. D., 274
Hersey, Mayo D., 249
Hill, 271
Hippias, 9
Hoffmann, Joh. J. I., 1818, 29
Hogben, Lancelot, 261
Hoover, Wm., 155°
Hopkins, G. I., 68
Horace, 285
Houston, Joseph, 145
Hoyt, David W., 109

Huberti, 1762; 225
Hutton, Dr., 48
Huygens, 1657, 118
Нураяов, 11
Hypaticlem, 157
Ingraham, Andrew, 243
Isidorum, 156
Jackson, C. S., 226
Jashemaki, Stanley, 84
Jelinek, V., 232
Jengis, Khan, 155
Joan, R.; 177
Johnston, Theodore H., xili
Jowett, 86

Kambia, 9
Kemper, C. J., 70
Khayyám, Omar, 120a
Klagel, 151
Knöer, Alvin, 40
Kröger, M., 110
Krueger, 1746, 1
Kruitbosch, D. J., 139
Kunze, von, 192
Laertius, 6
Laisnez, Maurice, 50
Lamy, R. P., 1685, 85 Lecchio, 125
Legendre, Andren M., 24
Lehman, Prof. D: A., 40
Leibniz, von, 59
Leonardo da Vinci, 129
Lewis, J., 275
Leitzmann, Dr. Wm., 49
Littrow, E. von, $1: 13$
Locke, J. B., 248
Loomis, Elatus G., xiv
Loomis, Dr.E.S., 158i

Macay, 271
MacFarlane, Alexander, 249
Mahler, von G., 105
Marconi, 12
Marre, A.; 50
Martin, Artemas, 17
Mortin, Fred W., 263
Masares, 20
McCready, J. M., 174
McIntosh, M., 209
Meyer, P. Armand, 44
Milne, 271
Mnessarch, 7
Möllman, E., 79
Müller, J. W., ' 274
Naber, Dr. H. A., 273
Nasir-Ed-Din, Persian Astronomer, 128
Nengebrauer, 273
Newberg, J., 276
Newton, Sir Isaac, 12
Nielson, CFr., 114
Northrup, Edwin.F., 249
Oliver, 83
Olney, 73
Ozanam, M. de C. G., 1778, 110

Pappus, a. 375 A.D., 126
Perigal, Henry, 102
Philippi, III of Spain, 156
Phillips;, Dr. Geo. M., 183
Pisano, Leonardo, 52
: Pithay, 7
Pitor-Bressànt, 67
Plato, 17
Plutarch,, 6
Polycratees, 7

Posthumue, J. J., 92
Proclos, 4
Paarmenit, 9
Ptolemus (Ptolemy), 66
Pythagoras, 6
Raub, M., 66
Ray, Prof. Saradarujan (India), 155
Reichenberger, Nepomicen, 177
Renan, H., 46
Richards, Claudius, 156
Richardson, Prof. John M., 26
Rogot, M., 180
Row, T. Sundra, 100
Runkle, J. D., 66
Rupert, Wm. W., 23
Salwen, G., 275
Sarvonarola, 12
Saunderson, 229
Sauveur, 227
Schau-Gao, 5
Schlömilch, 194
Schooten, van, 203
Schörer, 274
Schubert, Herman, 256
Schuyler, Dr. "Aaron, 64
Simon, 272
Simpson, David P., xiii
Simpąon, Thomas, 155
Skatachkow, 5
Smedley, Fred S., 90
Sinith, David E., 271
Smith, Dr. Wm. B., 155
Socrates, 86
Sonchis, 9
Sterkenberg, C. G., 40
Stowell, T. P., 224
Sturm,•J. C., 203
Sunderland, 158

Tarquin, - 9
Templehoff, von, 1769., 129
Thales, 8
Theana, 10
Thompson, J. G., 234
Thornton, Wilson, 50
Todhunter, Dr., 271
Towne, Paul W., 255
Trowbridge, David, 152
Tachou-Gun, 5
Tyron, C. W., 110
Umpfenbach, Dr.; 275
Uwan, 5
Vaes, F. J., 46
Versluys, J., 13
Vieth, van, 132
: Vincent, A. J. N., 275
Vinci, Leonardo da, 129
Vogt, H., 272
Vuibert, jal de, 47
Wallis, John, 52
Warius, Peter, 148
Waterhouse, John, 252
Weber, H., 40
Wells, 271
Wellstein, T., $4 Q$
Wentworth, 52
Werner, Oscar, 53
Wheeler, Rev. D. A., 49
Whitworth, 275
Wipper, Jury, 3
Wolf, Rudolph, 274
Yanney, Prof. B. F., 242
Young, Dr. Charles A., 70
Zahradnik, 275
Zelson, Joseph, 122
Zelson, Prof. Louis G., 141

"Exegt monumentum, aere perenntus Regalt que sttu pyramidum. altius, Quod non imber edax, non aquilo tmpoteno Possit diruere aut innumerabtlis Annorum sertes et fuga temporum. Non omits mortar."

--Horace
30 ode in
Book III

[^0]: * (Note. The Grand Lodge Bulletin, A.F. and A.M., of Iowa, Vol. 30, No. 2, Feb. 1929, p. 42, has: In an old Egyptian manuscript; recently discovered at Kahan̆, and supposed to belong

[^1]: *Note. There were but 46 different demonstrations in the monograph by Jury 'Wipper, which 46 are among' the clasisified collection found in this work.

[^2]: *Note. The above tranalation is that of Dr. Theodore H. Johnston, Principal (1907) of the West High School, Cleveland, 0. **Note. From recent accredited biographical data as to Pythagoras, the record reads: "Born at Samos, c: 582 B.c. Died probably at Metapontum, c. 501, B.C."

[^3]: *Note: Perhaps J.G. See Notes and Queries, 1879, Vol. V, No. 41, p. 41.

[^4]: JAMES JOSEPH SYLVESTER
 1814-1897

