In this study, 48 third-grade children learned a successive, two-choice discrimination under one of three conditions: (1) immediate reinforcement (IM), (2) 10-second empty delay (ED), and (3) 10-second delay with the discriminative stimuli in view of S (FD). The performances of groups IM and FD were only marginally different, and were both superior to that of group ED. The reversal performances of the three groups did not differ significantly. Average latencies were significantly longer in groups FD and ED than in IM. It was concluded that in group FD a set to observe stimuli was established during delay which generalized to the prereponse interval and facilitated performance. (Author)
OBSERVING BEHAVIOR AND CHILDREN'S DISCRIMINATION LEARNING

SONDRA BLEVINS GOLDSTEIN AND ALEXANDER W. SIEGEL
OBSERVING BEHAVIOR AND CHILDREN'S DISCRIMINATION LEARNING

Sondra B. Goldstein and Alexander W. Siegel

Learning Research and Development Center
University of Pittsburgh

December 1969

Published by the Learning Research and Development Center supported in part as a research and development center by funds from the United States Office of Education, Department of Health, Education, and Welfare. The opinions expressed in this publication do not necessarily reflect the position or policy of the Office of Education and no official endorsement by the Office of Education should be inferred.

This document has been approved for public release and sale; its distribution is unlimited. Reproduction in whole or in part is permitted for any purpose of the U. S. Government.
Abstract

Forty-eight third-grade children learned a successive, two-choice discrimination under one of three conditions: immediate reinforcement (IM), 10-second empty delay (ED), and 10-second delay with the discriminative stimuli in view of S (FD). The performances of group IM and FD were only marginally different, and were both superior to that of group ED. The reversal performances of the three groups did not differ significantly. Average latencies were significantly longer in groups FD and ED than in IM. It was concluded that in group FD a set to observe stimuli was established during delay which generalized to the prerresponse interval and facilitated performance.
Recently, the role of observing responses in children's discrimination learning has been given considerable theoretical consideration. Descriptions of children's discrimination learning and concept formation (Wright, 1964; Cantor, 1965; Trabasso & Bower, 1968) have emphasized the importance of discrimination of cue or dimensional relevance for both learning and transfer. Together with verbal mediating responses, dimensionally selective observing responses (ORs) and perceptual mediating responses have been proposed as subsidiary response systems that facilitate discrimination performance by enhancing the salience of relevant stimulus cues (Kendler & Kendler, 1962; Zeaman & House, 1963).

Tighe & Tighe (1966) categorize mediation theories of discrimination learning as "subtractive" when the theories assume that the mediating response functions as a selective mechanism which subtracts irrelevant stimuli from total stimulation. The label for the mechanism varies from theorist to theorist; for example: Observing response (Wyckoff, 1952; Wright & Smothergill, 1967), the isolation of relevant stimulus dimensions (Sutherland, 1959), and the relative strength of observing versus instrumental responses (Zeaman & House,
Goldstein (1963; Lovejoy, 1966). But whatever the terminology, these interpretations are in essential agreement that the function of (perceptual) mediating responses is to increase the probability that only the relevant stimuli within the discrimination task will control the response.

Previous studies have found that ORs can be induced in different ways, resulting in increased performance. ORs induced by pre-training experience (Wright & Daehler, 1966) increased the probability of observing the relevant stimuli in the discrimination, and thus facilitated oddity problem performance. When ORs were elicited by stimulus availability during a delay of reinforcement period in a simultaneous, two-choice discrimination task, the delay did not produce the usual decrement in performance (Wright and Smothergill, 1967).

Wright and Smothergill (1967) attributed the facilitation in the performance of the stimulus-available delay groups to the generalization of ORs, elicited during delay, to the preresorpose interval on the next trial. Delay group Ss who made extensive comparisons of the stimuli prior to choosing had less difficulty differentiating them and reached criterion sooner.

To measure ORs, Wright & Smothergill (1967) used a S-operated lever which brought either stimulus (but not both at once) into focus. The number of lever movements during the preresorpose intervals for all Ss, and during the delay period for stimulus-available delay Ss, constituted the OR data. Only the stimulus-available delay groups
Goldstein received reinforcement directly following manipulation of the lever during the delay period. Thus, it is possible that manipulating the lever became a stronger instrumental response for these delay groups. One might argue that it was not the ORs of stimulus-available delay groups, but rather their instrumental lever response which generalized to the prerresponse interval. The superior performance of the stimulus-available delay groups might have been simply the result of additional exposure to stimuli, per se, during delay, providing opportunities for Ss to compare stimuli, and preventing competing responses during delay.

The present study investigated the effects on performance of stimulus exposure during the delay of reinforcement period. The study was designed to determine whether stimulus availability during delay would (a) facilitate performance in a standard successive, two-choice discrimination task, (b) result in a generalization of ORs to the prerresponse interval as measured by longer average latencies, and (c) facilitate reversal performance by increasing the probability of attending to relevant stimulus cues on the initial reversal trials (Lovejoy, 1960).

Method

Subjects and design. The Ss were fifty-seven third-grade children from middle-class backgrounds. The average age of the Ss was 8.9 years (S.D. = 0.4 years). The average I.Q. of the Ss as
Goldstein measured by the Detroit Intelligence Test (a group test) was 120.0 (S.D. = 12.1). Nine Ss who failed to reach criterion on the initial learning task (8 in group ED, 1 in group FD) were eliminated from the final sample in an attempt to obtain 16 "learners" in each group. The final sample consisted of 48 children, with 16 Ss (8 boys and 8 girls) in each of three conditions: immediate reinforcement (IM), empty delay (ED), and filled delay (FD). Group IM received a marble reinforcer immediately after making a correct response to a discriminative stimulus. Group ED received the same reinforcement after a 10-second delay during which the discriminative stimuli were absent from the S's view. Group FD received reinforcement after a 10-second delay during which the stimulus presented on a given trial remained in view in front of the S. A 1/2-second buzzer was used to indicate an incorrect response for all Ss after the delay interval appropriate for each condition.

Apparatus and stimuli. The apparatus consisted of a stimulus display and response console placed on a table at a height comfortable for S. S responded by depressing one of two black buttons (one inch in diameter) spaced 10 inches apart and 5 inches from the front edge of a 20-x 20-inch sloping panel. This panel was mounted on a 20-inch wide plywood frame, 4 1/2 inches high at the front edge, and 8 1/2 inches high at the back edge. Attached to the top of the sloping panel was 20-x 20-inch vertical panel. Centrally located in
Goldstein

this panel was a 6-x 5-inch rectangular opening behind which was mounted a piece of flash-white glass that served as the stimulus-display screen. The stimulus pictures (2-x 2-inch black and white slides) were presented by rear projection onto the screen by a Kodak Carousel projector.

Reinforcers (marbles) were dispensed automatically through a chute into an aluminum box attached to the bottom front edge of the console panel. The children could later exchange the marbles for a small prize such as a coin purse, or model planes and cars. Pressing either response button activated a timer preset for the appropriate response-reinforcement interval (0 or 10 seconds). Time sequencing, projector control, and reinforcer delivery were controlled by programmed automatic switching equipment. Responses, indicated by signal lights at the rear of the apparatus, were recorded by E. Latencies for all responses (time between presentation of the stimulus slide and the S's button press) were obtained from a reset timer and recorded by E.

Two stimuli (a circle and a square) were used as the discriminative stimuli for warm-up. Two similar geometric figures from the Raven's Progressive Matrices Test were used as the discriminative stimuli for the training and reversal phases. One figure was a black square with four lines extending outward from the corners and four lines extending outward from the midpoints of the sides. The other
Goldstein

figure was a black diamond with an area equal to the square. Four straight lines extended outward at right angles from the midpoints of the sides of the diamond. The line extensions from the corners of the square and the midpoints of the diamond sides were equal in length to one square or diamond side. The line extensions from the midpoints of the square sides were half the length of the square sides.

Procedure. The E seated the S in front of the apparatus and began the warm-up series which consisted of a demonstration and explanation of the response buttons, stimuli, reinforcing event, and marble receptacle. The S was told that he would have to start by guessing, but that the correct button would always get him a marble, and that if he earned enough marbles he could exchange them for a prize. In the warm-up phase, the stimuli were presented randomly until the S had four consecutive correct responses. All Ss had the same delay condition in warm-up (0 or 10 seconds) as in the training and reversal phases.

At the beginning of training a resume of instructions was given to all Ss. For half the Ss in each condition, one of the two discriminative stimuli was arbitrarily assigned as correct. A random order of slides was used in all phases with the restriction that no stimulus appeared more than twice in a row.
The criterion for all Ss during training and reversal was 9 out of 10 consecutive correct responses. If the criterion was not met in 80 trials, training was discontinued. Immediately after criterion was met, reversal trials were begun. If Ss did not meet criterion in 30 trials, reversal trials were discontinued.

Results

All learning measures—trials to criterion on the initial discrimination, trials to reversal, and latencies—were subjected to 3 (Condition) X 2 (Sex) analyses of variance.

Discrimination trials. The mean number of trials to criterion on the initial discrimination for each Condition X Sex subgroup is presented in Table 1. The significant main effect of Condition ($F = 8.64$, $df = 2/42$, $p < .01$) indicated that group ED took significantly more trials to reach criterion (50.06) than did either group FD (28.56) or group IM (21.37) ($t = 2.46$, $df = 30$, $p < .05$), whereas the difference between groups IM and FD was only marginally significant ($t = 2.04$, $df = 30$, $0.05 < p < .10$). Although the main effect of Sex was not significant, the significant Condition X Sex interaction ($F = 3.72$, $df = 2/42$, $p < .05$) indicated that whereas in group ED, boys took more trials to learn than did girls, and in group FD girls took more
Goldstein

trials to learn than did boys, in neither case was this difference significant ($t = 1.96$, $df = 14$, $.05 < p < .10$). While the performance of boys in groups IM and FD was significantly superior to that of boys in group ED ($t = 4.01$, $df = 14$, $p < .01$), the performance of girls in the three experimental groups did not differ significantly ($t < 1.58$, $df = 14$, $p > .10$). While all Ss in groups IM and FD reached criterion, four Ss in group ED failed to reach the criterion of 9 out of 10 consecutive correct responses in the maximum possible 80 trials. The four Ss in group ED who did not meet criterion were not given reversal training. Although an analysis of variance with number of correct responses in five-trial blocks as the repeated measure was not performed, it is apparent from Figure 1 that the acquisition function for the three groups is markedly different.

Reversal trials. Contrary to prediction, the analysis yielded a nonsignificant Condition effect ($F = 2.15$, $df = 2/38$, $p > .10$), indicating that the three groups did not differ significantly on number of trials to reversal criterion. Neither the main effect of Sex nor the interaction was significant. While all 16 Ss in group IM reached reversal criterion within 30 trials, 6 of the 12 Ss in group ED and 7 of the 16 Ss in group FD failed to do so.
Latencies. Analyses of mean latencies during the initial discrimination and reversal both yielded significant main effects of Condition ($F > 8.25, df = 2/42, p < .01$). For both discrimination and reversal trials, the mean latencies of group IM (2.93 and 2.76 seconds, respectively) were significantly shorter than those of both groups FD (4.62, 3.96) and ED (3.89, 3.79) ($t > 3.09, df = 30, p < .01$), whereas there were no significant differences between these latter groups ($t < 1.73, df = 30, p > .10$). For both discrimination and reversal trials, neither the main effect of Sex nor the Sex X Condition interaction was significant.

Discussion

The present study found that stimulus availability during delay of reinforcement clearly facilitated performance, with the result that only a minimal (and nonsignificant) delay decrement was found in group FD as compared to an immediate reinforcement group IM. The usual delay decrement in performance was found in group ED. The three experimental groups did not differ significantly on number of trials to reversal criterion. Thus, no support was found for the hypothesis that additional exposure to stimuli during delay would facilitate reversal performance.

The present study found significantly longer response latencies in group FD than in group IM, whereas the latencies of groups FD and ED did not differ. These findings are congruent with those of
Goldstein

Wright & Smothergill (1967): The preresponse ORs for stimulus-available delay groups were more extensive than those of an immediate reinforcement group. It is possible that the same explanation applies to both the longer preresponse latencies in group FD (present study) and more extensive preresponse ORs (Wright & Smothergill, 1967): The main effect of making stimuli available during delay is to strengthen the tendency to make ORs whenever the stimuli are available, and thus to lengthen response latencies (or enhance preresponse looking behavior).

If this explanation is correct, the equally long response latencies of group ED require a separate explanation. Simple stimulus deprivation, unique to group ED, may explain the longer response latencies (Odom, 1964). Either a deprivation manipulation (a 10-second empty delay) or an extra opportunity to practice ORs during delay (a 10-second stimulus-available delay) may increase preresponse looking behavior and so lengthen response latencies. However, as is shown by their slower learning, the preresponse ORs of group ED did not appear to be primarily information-getting in nature.

In conclusion, the present study found that stimulus presence during delay of reinforcement intervals enhanced performance, and to a large extent prevented the usual delay-produced decrement. An explanation offered for this effect was that stimulus presence during delay acts as a bridging mechanism, and strengthens the tendency to
Goldstein

make ORs whenever the stimuli are available. This enhances prerresponse looking behavior, resulting in longer response latencies, and ensures faster establishment of stimulus cue relevance which facilitates discrimination learning over the empty delay condition.
Goldstein

References

Footnote

1The research reported herein was sponsored by the Personnel and Training Branch, Psychological Sciences Division, Office of Naval Research, and by the Learning Research and Development Center, University of Pittsburgh. The authors would like to acknowledge the assistance of Dr. Stuart Shaffer, Research Coordinator, Pittsburgh Public Schools, in providing Ss. Miss Jean McKinney, Principal, and the teachers and students of the Mifflin School were very cooperative. The senior author was supported by a United States Public Health Fellowship. The apparatus was designed and built by Mr. David Katsuki, University of Pittsburgh.
Table 1

Mean Number of Trials to Criterion on Original Discrimination and Reversal Learning

<table>
<thead>
<tr>
<th>Experimental Group</th>
<th>Discrimination Learning</th>
<th>Reversal Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Ss</td>
<td>Boys</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>S.D.</td>
</tr>
<tr>
<td>ED</td>
<td>50.06</td>
<td>28.64</td>
</tr>
</tbody>
</table>
Figure Caption

Figure 1. Acquisition functions in initial discrimination.
Figure 1. Acquisition functions in initial discrimination.
ONR Distribution List

NAVY

4 Chief of Naval Research
 Code 458
 Department of the Navy
 Washington, D. C. 20360

1 Director
 ONR Branch Office
 495 Summer Street
 Boston, Massachusetts 02210

1 Director
 ONR Branch Office
 219 South Dearborn Street
 Chicago, Illinois 60604

1 Director
 ONR Branch Office
 1030 East Green Street
 Pasadena, California 91101

1 Contract Administrator
 Southeastern Area
 Office of Naval Research
 2110 "G" Street, N. W.
 Washington, D. C. 20037

6 Director
 Naval Research Laboratory
 Attn: Library, Code 2029 (ONRL)
 Washington, D. C. 20390

1 Office of Naval Research
 Area Office
 207 West Summer Street
 New York, New York 10011

1 Office of Naval Research
 Area Office
 1076 Mission Street
 San Francisco, California 94103

20 Defense Documentation Center
 Cameron Station, Building 5
 5010 Duke Street
 Alexandria, Virginia 22314

1 Superintendent
 Naval Postgraduate School
 Monterey, California 93940
 Attn: Code 2124

1 Head, Psychology Branch
 Neuropsychiatric Service
 U. S. Naval Hospital
 Oakland, California 94627

1 Commanding Officer
 Service School Command
 U. S. Naval Training Center
 San Diego, California 92133

1 Commanding Officer
 Naval Personnel & Training
 Research Laboratory
 San Diego, California 92152

1 Officer in Charge
 Naval Medical Neuropsychiatric
 Research Unit
 San Diego, California 92152
1 Commanding Officer
Naval Air Technical Training Center
Jacksonville, Florida 32213

1 Dr. James J. Regan
Naval Training Device Center
Orlando, Florida 32813

1 Chief
Aviation Psychology Division
Naval Aerospace Medical Institute
Naval Aerospace Medical Center
Pensacola, Florida 32512

1 Chief
Naval Air Reserve Training
Naval Air Station
Box 1
Glenview, Illinois 60026

1 Technical Library
U. S. Naval Weapons Laboratory
Dahigren, Virginia 22448

1 Chairman
Leadership/Management Committee
Naval Sciences Department
U. S. Naval Academy
Annapolis, Maryland 21402

1 Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
(Code AX)
Washington, D. C. 20380

1 Technical Services Division
National Library of Medicine
8600 Rockville Pike
Bethesda, Maryland 20014

1 Behavioral Sciences Department
Naval Medical Research Institute
National Naval Medical Center
Bethesda, Maryland 20014

1 Commanding Officer
Naval Medical Field Research Laboratory
Camp Lejeune, North Carolina 28542

1 Chief
Aerospace Crew Equipment Department
Naval Air Development Center, Johnsville
Warminster, Pennsylvania 18974

1 Chief
Naval Air Technical Training
Naval Air Station
Memphis, Tennessee 38115

1 Technical Library
Naval Training Device Center
Orlando, Florida 32813

1 Technical Library
Naval Ship Systems Command
Main Navy Building, Rm. 1532
Washington, D. C. 20360

1 Technical Library
Naval Ordnance Station
Indian Head, Maryland 20640

1 Naval Ship Engineering Center
Philadelphia Division
Technical Library
Philadelphia, Pennsylvania 19112

1 Library, Code 0212
Naval Postgraduate School
Monterey, California 93940
1 Technical Reference Library
Naval Medical Research Institute
National Naval Medical Center
Bethesda, Maryland 20014
1 Dr. Don C. Coombs
Assistant Director
ERIC Clearinghouse
Stanford University
Palo Alto, California 94305

1 Technical Library
Naval Ordnance Station
Louisville, Kentucky 40214
1 Scientific Advisory Team (Code 71)
Staff, COMASWFORLANT
Norfolk, Virginia 23511

1 Library
Naval Electronics Laboratory Center
San Diego, California 92152
1 ERIC Clearinghouse
Educational Media and Technology
Stanford University
Stanford, California

1 Technical Library
Naval Undersea Warfare Center
3202 E. Foothill Boulevard
Pasadena, California 91107
1 ERIC Clearinghouse
Vocational and Technical Education
Ohio State University
Columbus, Ohio 43212

1 AFHRL (HRTT/Dr. Ross L. Morgan)
Wright-Patterson Air Force Base
Ohio 45433
1 Education & Training Developments Staff
Personnel Research & Development Lab.
Building 200, Washington Navy Yard
Washington, D. C. 20390

1 AFHRL (HRO/Dr. Meyer)
Brooks Air Force Base
Texas 78235
1 Director
Education & Training Sciences Dept.
Naval Medical Research Institute
Building 142
National Naval Medical Center
Bethesda, Maryland 20014

1 Mr. Michael Macdonald-Ross
Instructional Systems Associates
West One
49 Welbeck Street
London W1M 7HE
England
1 LCDR J. C. Meredith, USM (Ret.)
Institute of Library Research
University of California, Berkeley
Berkeley, California 94720

1 Commanding Officer
U. S. Naval Schools Command
Mare Island
Vallejo, California 94592
1 Mr. Joseph B. Blankenheim
NAVELEX 0474
Munitions Building, Rm. 3721
Washington, D. C. 20360
ARMY

1 Director of Research
U. S. Army Armor
Human Research Unit
Fort Knox, Kentucky 40121
Attn: Library

1 Research Analysis Corporation
McLean, Virginia 22101
Attn: Library

1 Human Resources Research Office
Division #5, Air Defense
Post Office Box 6021
Fort Bliss, Texas 79916

1 Human Resources Research Office
Division #1, Systems Operations
300 North Washington Street
Alexandria, Virginia 22314

1 Director
Human Resources Research Office
The George Washington University
300 North Washington Street
Alexandria, Virginia 22314

1 Armed Forces Staff College
Norfolk, Virginia 23511
Attn: Library

1 Chief
Training and Development Division
Office of Civilian Personnel
Department of the Army
Washington, D. C. 20310

1 U. S. Army Behavioral Science Research Laboratory
Washington, D. C. 20315

1 Walter Reed Army Institute of Research
Walter Reed Army Medical Center
Washington, D. C. 20012

1 Behavioral Sciences Division
Office of Chief of Research and Development
Department of the Army
Washington, D. C. 20310

1 Dr. George S. Harker
Director, Experimental Psychology Div.
U. S. Army Medical Research Laboratory
Fort Knox, Kentucky 40121

AIR FORCE

1 Director
Air University Library
Maxwell Air Force Base
Alabama 36112
Attn: AUL-8110

1 Cadet Registrar
U. S. Air Force Academy
Colorado 80840

1 Headquarters, ESD
ESVPT
L. G. Hanscom Field
Bedford, Massachusetts 01731
Attn: Dr. Mayer

1 AFHRL (HRT/Dr. G. A. Eckstrand)
Wright-Patterson Air Force Base
Ohio 45433
1 Commandant
U. S. Air Force School of Aerospace Medicine
Brooks Air Force Base, Texas 78235
Attn: Aeromedical Library (SMSDL)

1 6570th Personnel Research Laboratory
Aerospace Medical Division
Lackland Air Force Base
San Antonio, Texas 78236

1 APOS R (SRLB)
1400 Wilson Boulevard
Arlington, Virginia 22209

1 Research Psychologist
SCBB, Headquarters
Air Force Systems Command
Andrews Air Force Base
Washington, D. C. 20331

1 Headquarters, U. S. Air Force
Chief, Analysis Division (AFPDPL)
Washington, D. C. 20330

1 Headquart ers, U. S. Air Force
Chief, Analysis Division (AFPDPL)
Washington, D. C. 20330
Attn: AFPTTRTB

1 Headquarters, U. S. Air Force
AFRDDD G
Room 1D373, The Pentagon
Washington, D. C. 20330

1 Headquarters, USAF (AFPRTRD)
Training Devices and Instructional Technology Division
Washington, D. C. 20330

1 Dr. Alvin E. Goins, Executive Secretary
Personality & Cognition Research Review Committee
Behavioral Sciences Research Branch
National Institute of Mental Health
5454 Wisconsin Avenue, Room 10A11
Chevy Chase, Maryland 20203

1 Dr. Mats Bjorkman
University of Umea
Department of Psychology
Umea 6, Sweden

1 Technical Information Exchange
Center for Computer Sciences and Technology
National Bureau of Standards
Washington, D. C. 20234

1 Director
Defense Atomic Support Agency
Washington, D. C. 20305
Attn: Technical Library

1 Executive Secretariat
Interagency Committee on Manpower Research
Room 515
1738 "M" Street, N. W.
Washington, D. C. 20036
(Attn: Mrs. Ruth Relyea)

1 Mr. Joseph J. Cowan
Chief, Personnel Research Branch
U. S. Coast Guard Headquarters
PO-1, Station 3-12
1300 "E" Street, N. W.
Washington, D. C. 20226
MISCELLANEOUS

1 Executive Officer
American Psychological Association
1200 Seventeenth Street, N. W.
Washington, D. C. 20036

1 Mr. Edmund C. Berkeley
Information International, Inc.
545 Technology Square
Cambridge, Massachusetts 02139

1 Dr. Donald L. Bitzer
Computer-Based Education Research Laboratory
University of Illinois
Urbana, Illinois 61801

1 Dr. C. Victor Bunderson
Computer Assisted Instruction Lab.
University of Texas
Austin, Texas 78712

1 Dr. F. J. DiVesta
Education & Psychology Center
Pennsylvania State University
University Park, Pennsylvania 16802

1 Dr. Phillip H. DuBois
Department of Psychology
Washington University
Lindell & Skinker Boulevards
St. Louis, Missouri 63130

1 Dr. Wallace Feurzeig
Bolt, Beranek & Newman, Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

1 Dr. Bert Green
Department of Psychology
John Hopkins University
Baltimore, Maryland 21218

1 Dr. J. P. Guilford
University of Southern California
3551 University Avenue
Los Angeles, California 90007

1 Dr. Harold Gulliksen
Department of Psychology
Princeton University
Princeton, New Jersey 08540

1 Dr. Duncan N. Hansen
Center for Computer Assisted Instruction
Florida State University
Tallahassee, Florida 32306

1 Dr. Albert E. Hickey
Entelek, Incorporated
42 Pleasant Street
Newburyport, Massachusetts 01950

1 Dr. Howard H. Kendler
Department of Psychology
University of California
Santa Barbara, California 93106

1 Dr. Robert R. Mackie
Human Factors Research, Inc.
6780 Cortona Drive
Santa Barbara Research Park
Goleta, California 93107
MISCELLANEOUS

1 Dr. Henry S. Odbert
National Science Foundation
1800 "G" Street, N. W.
Washington, D. C. 20550

1 Dr. Joseph A. Van Campen
Institute for Math Studies in the
Social Sciences
Stanford University
Stanford, California 94305

1 Dr. Gabriel D. Ofiesh
Center for Educational Technology
Catholic University
4001 Harewood Road, N. E.
Washington, D. C. 20017

1 Dr. John Annett
Department of Psychology
Hull University
Yorkshire
England

1 Dr. Joseph W. Rigney
Electronics Personnel Research Group
University of Southern California
University Park
Los Angeles, California 90007

1 Dr. Gabriel D. Ofiesh
Center for Educational Technology
Catholic University
4001 Harewood Road, N. E.
Washington, D. C. 20017

1 Dr. Lawrence M. Stolurow
Harvard Computing Center
6 Appian Way
Cambridge, Massachusetts 02138

1 Dr. Ledyard R. Tucker
Department of Psychology
University of Illinois
Urbana, Illinois 61801

1 Dr. Benton J. Underwood
Department of Psychology
Northwestern University
Evanston, Illinois 60201

1 Dr. John Annett
Department of Psychology
Hull University
Yorkshire
England

1 Dr. M. C. Shelesnyak
Interdisciplinary Communications Program
Smithsonian Institution
1025 Fifteenth Street, N. W.
Suite 700
Washington, D. C. 20005

1 Dr. Lee J. Cronbach
School of Education
Stanford University
Stanford, California 94305

1 Dr. John C. Flanagan
Applied Institutes for Research
P. O. Box 1113
Palo Alto, California 94302

1 Dr. M. D. Havron
Human Sciences Research, Inc.
Westgate Industrial Park
7710 Old Springhouse Road
McLean, Virginia 22101

1 Dr. Roger A. Kaufman
Department of Education
Institute of Instructional System
Technology & Research
Chapman College
Orange, California 92666