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Friedman, Mosteller

Streams of ideas on checks, approgjmations, and oxder of

parenert r ¥

magnitude caleulations
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Thece notes are intended to put together some material in the general

E——

area of ordex of magnitude calculations, chzcking, and approximations, In
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our initial discussions vwe found ourselves considerably handicapped because
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rules foi one kind of work did not always apply to another, and this led to

confusion, At the moment we have in mind, a product space of material that

splits into absolute aumberxs and physical numbers in one direction, and into

several sets on the othar,

Vle found that in problems with physical interpretations there exist
checks that are not available when we deal with purely mathematical numbers,
For example, in a trigoncmetric problem dealing with the height of a house,
common experience suggests that 1000 feet is an unrezsonable height, whereas
the same problem without a physical interpretation would have to rely on more
formal mathematical ideas to get a check,

At the moment our breakdown reads:

; Numbers with plysical
Absolute numbers interpretations
Approximate Rough
calculations
Careful
Exact
N
N .\ For
b\ (Checking Biundars
A\
A\




2,

We do not know how redundant such a clasecification is, nor how many empty
cells it may have, but it seems an improvement over discussing the whole area |
at once,

The conference has formulated the idea that a student should be able to do
a difficult calculation in a reasonable length of time and at the end be confident

that the result is correct, Part of the meaning is that the student is to be

confident that he understands exactly what he is doing at the various stages and
individual operations of the problem,

The other part stems from the experience of all people who have doﬁe ela-
borate calculations, from the time of quill pens to the use of modern calculators,

That experience sums up to this: if an elaborate calculation has no check then

no one is obligated to have faith in the result,

We want the student not only to have personal confidence in his ability
to do the calculations, but also transmittable evidence that can engender confidence
in others that the results are correct, Checks are the standard way to gain such
confidenze, Unfortunately checks are often as long as the original problem, and
for this reason the student’has to be taught to value and execute the check, and
the teacher must understand tﬁat pressure for high speed does not promote relia-
bility but does promote errors. (These remarks do mot contradict the well known
fact that the faster students have fewer errors.)' W2 want the student to appre-

cilate that a serious calculation carrics with it the personal .responsibility to

demonstrate positively that it is correct.

Some remarks about physical equipment for aritbmetical work seem appropriate
in any discussion of confidence and reliability in the work.

Neatness in calculations is a positive asset, but we often confuse training
for neatness with training for good calculation, Those who pexform elaborate
calculations, which are as difficult at their level as the problem of multiplying

tvo 4-digit numbers, or adding up ten 4-digit numbexs, are for an elementary
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student, have a number of puysical devices to aid them to achieve order and
neatness., It is strange that similar or even better aids are not available for the
beginner, Elementary students are taught that they should have their columns
straight but many a student never masters this, While it is well to learn that to
keep your columns straight is a great asset, the question of how to mamage that need
not be entirely in the hands of the student. There is little Teason why, in the
last half of the 20th century in the richest country in the world, Lz should not

have paper ruled both ways so that in serious calculations his columns will auto-

matically be straight. The sizes of the boxes can be appropriate to the grade level,
Similarly, many ervors stem from sloppy handwriting in calculations., While

it is well to have good handwriting, first~class mathematical work can be done

numbers written large make for easier reading and fewer mistakes even among sloppy
writers, 1Indeed, the school training seems to go the other way with more and more

|

i

E

|

|

i tithout it, The lore of mathematics does not Scem to include the information that
E

| problems to be done on smallier and smaller picces of paper. The student is driven

to tiny numbers and the poor writer is at a terrible disadvantage, In many school
systems exactly the right amount of paper is given out for each arithmetic assign-

ment, and the student is to do it on that paper oriented a certain way and on no

other, The paper is of poor quality and a couple of erasures make a hole, It is no
wonder that some young people with good analyticél minds get weary of their mathe-
matics ‘uring the arithmetic years,

The purpose of these remarks is to suggest that in planning an elementary
mathematics curriculum there are ways to take advantage of 20th century technology
so that the mathematics student's effort can be concentrated more divectly on the

task of learning his mathematics and a little less on the acquisition of motor

skills,




X The student should be put in touch with information about major sources of

érrors in arithmeticai calculacions, For example, he should know that the copying j
of‘figures from one sheet to another by hand is a majox source of error in calcuy~ |
lations. No doubt a substantial 1list of sources of error is available, and the
Infoxmation can be leaked out when tha appropriate arithmetic is being taught,
Gencrally speaking, checks that ave different from repeating the prewious

vork are preferable to those that merely repeai, In hand calculation in which

the same calculation is repeated, one is very likely to persist in the same
/
exrror for a variety of reasons, For example, the saAe number nmay be misread

!

repeatedly, or the same number trick may repeatedly be used wrongly in the same H

R
f

place.

Another example of error lore is that the first Lalculation of a given kind
is often dome wrong, probably because the problems of;organization added to the
nevness of the problem itself make for extra complication., The student should
be given move thamn onz calculation of a kind 50 bhe can work up some skill in
organization of problem and check. But as we have often repeated, '"several" is not
necessarily large,

For exact cﬁecking we have the following suggestions:

Addition;

a8, Adding the other way (up instead of down)

AN AR
. xT

b. In a2 long addition, subgrouping the addition, checking the suhgroups,
and then adding subtotals,
c, Casting out S's,
Subtraction:
a, Doing the opposite operation, Vhat will be the opposite depends

on the particular method taken as standard,

b. Casting out 9's,
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c. Subtract by coup.-scuts: i,e, subtract the smaller number from the

appropriate pover of tem and add to tue larger number.,
multiplication:

a. Casting out 9's. This should be done also with partial products

so that it is a method not only for checking but for locating erxors as

well,

b. Reversing the order of the multiplication (ab instead of ba).

Division:
a. Casting out 9's,

| b. Multiplication

| Tricks that aid in approximate calculation (written for us rather than the

4

BtUdent): . /
i ,
1 .. —
, Lixe ™/ FC
|
| , -
; 2, A+&)A+ L I X14 L 44
| )
3. A+E€ )= 1+x€
’ 4. % = ‘:g , and better accuracy is achieved if E™ ax and E"_}’bx.
5. ab = (:é?& )?: /a-b)? ~ {2 :f ' |
* 2 N 2 - 2 if a 1s close to b,

\

6. Knowing the decimal equivalents ol common fractions often enables one

|
i to preserve 2 or more significant digits by comverting numbers to easy

fraction; e. g. 167 ¥ % x 10%, 17223(50), 52 %(100).

Thus, 1f weekly salary is $150, annual salary % x 150 = 100 = 7500.
7. (Ii’"-":é)l= n(ni-l) 4+ %
8. Mixing fraction and decimal work often preserves accuracy.
9. In rounding where the first digit is small it is wise to keep an extra

place or so, The reason is that the percentage accuracy goes off badly

in multiplication problems when say 1.5 is rounded to 1,
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A few principles in order of magnitude calculation:

1. Look out for the decimal, double checl it, Prefexably, calculate

with numbers im scientific notation.
2, Look for cancellations
3. Trxy for compensating errors,
4, In checking £or blunders by appréximaﬁe checks we are counting on the
blunder to make a severe error in the answer.
5. Upper and lower bounds are sometimes easy to acihieve.
6. Order of magnitude calculations are 2 bit of en art and the student
should develop ideaz of his own,
In physical problems, for order of magnitude checking try to relate results with
your experience, Illustrative examples:
1, Johnny is not carrying 850 pounds of butter.
2, Houses are not 1000 feet high.
3., For many liquids a pint is about a pound, so a gallon of water is not
100 pounds,
4, Vastebaskets in the home seldom centaln 1000 cubic feet.

3 ‘Comparison with other objects with known properties may help.

2930-66
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Feasidbility Study Wo. 1D
Friedman

Complex Numbers Leading to Trigonometry

Start with a2 line containing a base point 0 and vectors 04, OB, 0Aj etc.
The geometrical addition of two vectors 04 and 08 is defined by the following
procedures

Translate the vectox OB along the line until its end coincides with the tip
of the vector CA, then the vector from O to the tip of the translate of the vector

0B is the sum, the vectox OD.

We can show that addition is commutative, i.e.

ti——

OA + OB = OB + OA

and associative, i.e.

(OA +0B) + OC = OA (0B + 0C).
Also, if we define the point 0 as the zexo vector, then
OA + 0 = OA
and there exists an opposite vector 0A'such that
OA + OA' = 0
We know it is possible to map the real numbers o< into the vectoxs as follous:
Take an arbitrary vector OU as the unit vector., If L > 0, define
o0y = OA
wheve A is on the same side of 0 as U and the length

of OA is o< times the length of OU, If < = 0, define
KT =Q . ek < 0,define L00= |£] o0 =0ar,

. Notice this mapping prescrves the additive structure,
(K& +3) ou = K ou + B 0T,
also (8 60 = (L H) ou.
We may now consider the real numbers as operators wvhich map vecters into

vectors, If <% {s a real number, then oKX OB ~3> 0C = ¢X0B. The

3

:
;
l
]
L
i
\




2,
v'.l.’he composition of real n;inabe,rsu(, and  (Bcorresponds to multiplication of the
:_i."..'.?.‘..""f’real nunbers. The number one is the identity operatox. A positive number ‘7<
stretches a vector to o{ times its length. The numbsr~l rotates vector through

180° and this verifies that (~1)(=1) = 1. If X is negzative, it both rotates

and stretches, 'The order is immaterial because ‘A =/o{/ (~1) = (~1) ﬂ Al e

Let us c&nsider the operator that rxotates ou through 90° in the posittﬁe
direction, Denote this operatox by the symbol ,4, so that v V.
A 00 = OV, / <

We demand also that L =44 0v ) = 0G* = -0U; \ : (o

theres.ore/(. = wl, Defineﬁ,g_ as follows:

Q. )ov-——- O =T oV, | 0, & 4

Notice that {34 rotates through 90 andostretches if {7 >0. Obvious, that
D =ig and - ¢ rtotates througi 270 . i

We nov have the operators ¢X ,&F:. whem o4 and £S5 are any real numbers,

We define the operator A + B2 as follous: B,\,

(o +82)00= < GT+G. 00 =04 0B=0C.v A

Obvious that a‘ +8i = £ + o4

>..

A
Easy to show tchat add{.ltion is associative, Assume that L

)/ (A "'59) 0U = (}d 764, )0,

then if y is positive, it stretches to ‘/ times its length but if 'y is

negative it rotates through 130° and stretclhes to f«]l’ ﬂtimes the length,

Define

4GB =+ 8% -8 B A
This definition is J1lustrated geometrically in .

: the figure, Since the triangles‘ a;ﬁe congruent, - &~ 8 4
thep_::mgl‘esl@’w and ¢ are complementary and the — C o« 7P

lines OA and OB are perpendicular, Taus,

multiplying the vectox OA by ,L« rotatee it through 900.
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The operators of the form ol 4 3.4 are called complex numbers because they
satisfy the usual field axioms.

it is clear that ( &4 -%--,'L, yo) )65 is a vector which is obtained by rotating

OU through € and stretching it to (w(l}« 5 z )% times its length. lLet
0C be and arbitrar;} veetor and consider the vector, {
(£ +84 )C=a0C + L4Hd0c =0D +'6'é==55§'
The vector oD is }ak ﬁ times the length of 0C and the vector (E , ‘7“':'0
C

is| 8 / times the length of 0C and perpendicular to OC; s

therefore ODF is a right angle and the catio of the sides FD to oD

is /,0/9( / 5 consequ_&ently triangle OFD is similar to triangle OPA
in the previous diagram, This shows that angle DOF = @/ we conclude that
any vector multiplied by N+ 6 /: is stretchad to ( X 2 + 8 2)gé times its
length and rotated through the angle 6’ . |
Let us denote the véctor of unit length uwhich rotates through the angle @’
- by the symbol cis &’ , 1t is the vector OP in the diagram, Since
rotation by the angle &~ followed by rotation through the angle F is the same
as rotation through the angle & x F » We have
cis & cist = cis(c9—+/@ )
It is convenient to name the real and imaginary parts of cis &’ , Ve put
cis& = cos & + & sin & .
Notice cos &= , sin & arve the X,y coordinates of the point P on the unit
" eircle for any angleﬁ" between 0 and 2 77 o Extend the definition to all

values of . oObviously,

P
2 2. -1, /\
cos 4 sin A

From the diagram, if OP is obtained by \\y W

rotating through (2 eand op! by rotating

through - 39’, vwe have |
cis(~ &7 ) = cos (59/-,(‘.; sin & .




Solving, we get

cis (= G~ )

cos c;/ - gj.s (77 4
2

sin = cis & --'cis(u»@’i

2_,‘;/ _ .

Also, using the addition theorem for cis & and cpmparini the real and imaginary

parts, we get, cos (& -}-;;'?) = cosd® cosgF - sin (" ‘sin ? |
sin(&o -’»*?7) = sin& cosfa 4 cOS é”Sin;'O etc, ete, etce

|
E P
|
' 2931-€6
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Feasipility Study do. 1l
Friedman
The Use of Nepative Digits in Arithmetic
I suggest that nogative digits be intreduced after the four fundamental )

A
syperations have been mastered. I would use a notation such as 3 (read "three~

het") for negative threo. Using the idea of an elevator going up and dowm, the

| P
students would regard 3 as going up three floors and '3 as going down three fleoors.
Then; it is easy to establish t¢he rules for addition as illustrated by 35 = 8,
\ /\ AN AAN - .
3.5=2, 5:.3%2, 3+5=8, After these rules are understood, I would use the notation

A A
23 to mean 2x10+3%17, Playing with the problem of changing numerals of the form

A AOA

67, 234, 432 to standard motation would test the student's understanding of plaece
| A A

value. 7ben consider additjons such ae 32 4 71 = 53 and verify that the proce=

dure is correct by chanzing to standard notation. Generalize to additiomswith

‘ A NN
carrying such as 64 +4 37 = 81 and verify,

Try multipglication as follows:

A
73 ’
32
146
~ ,
29 '
2286
Verify the answer. Then do it the other way: 32 |
. A
; 3 |
% |
224 |
AN i
2256 , 1
A L
Finally, try the following: 32
93
P
3O
A
€

o
W

The box is left empty because we doen’t know what'@x@ is. By doing the problem in

A
standard notation, we find that 3£§w6.

.
‘\
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Similar work can be done with subtraction and division, The use of negative

' A

digits does simplify division. For example: 23
4731 8245

946

ANs
$05)

Thus, the quotient is 17 and the remainder is 204. The work is still simpler if ]
we comsistently avoid all digits larger Ehan five, The above problem takes .the :

following form: 23

35 1 150

2
1056

A
82
39

n

>
> O

/

(P
D

204

2932-66
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Friedman
Usz of the Shift Theorven in Differential Eguations
GO S35 28,1
If p(d) is a polynomial in the differvential operator D ovex the real numbers
and « 15 a real number, then
P(D)e™> y = > p(drX )y,
This is called the Shift theorem. To solve
p(D)e = 0,
put u = e X y; then

er* X p(Di-cX )y=0

Iﬁ p( fad ) = p'( el ) = -.-P(k-l)( S ) = 0, then
p( X ) ==Dk q(D), where q(D) is in the ring. Note that this fact would be

available from the 7th grade course., In such a case the equation q(D)Dky =0

certa&uly kas as solutions the solutions of
Dy =0

i.eo y is a polynomial of the (k-1)the degree in x., For each root of p(t) = O,
- a similar method can be used,
The solutions thus obtained will form a complete set of solutions of the

homogeneous equation, A particular solution to the non-homogencous equation of
BX
BX

p(D)u = e
is u = p(B)-le

« If p(B) = 0, the obvious genéralization should be made.
A ﬁniqueness theorem is easily obtained by backward induction of the degree,
Let p(D) have degree n and let u be the solution of
p(D)u =0
=yt (n-1)
such that u{0) =u'(0) = .o = u (0) = 0, Suppose p (<< ) = 0; put

u (x) = e”™X y(x), theny (0) = y'(0)

...y(nnl)(O) = 0, We have, by the same
argument as before,
k
D'q(D)y = O
'y k"l . k '
Put q(D)y = w, then w() = w'(0) = .00 =w ~(0) = 0 and since D'w = 0, we conclude

that

w=qDy =0,
an equation of lowexr degree,
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Topology in 10th Grade and After o

The group -consideving the fapact of moderi mathematics on curricula in grades
7 through 12 expressed the hope that some topological concepts could, in fact, be

introduced. Moxeover, it was felt that the notion of the continuity of 2 function

nizht well become clearer if jts topological nature wexe plainly exhibited.

Here we simply set doyn a list of topological concepts which are held to be
1 relevant to high school mathematics and believed to be within the grasp of any

students who could master the curriculum without them., Hopefully, these concepts

Ay T e ———

cohere, Whether, in the time available, any or all of them could indeed be dealt

with is not here under discussion, S
It has nﬁt been thought necessary to reitcrate here in detail the pedagogical
pfiﬁciples and assumptions underlying the listed "syllabus." Ve recognize, of
course, the decisive importance of comtinual exemplification through the student’s
oun experience. For certain of the topics listed, paper, scissors, and paste are
particularly valuable tools, We also emphasize the importance at this level of
the student reading around and about the subject for himself; and short pamphlets
may well play a very significant zole in reinforcing normal instruction. Proofs
may often be omitted on the first run through, and dealt with by additional reading.
There is no intention to imply, in making this list, that topOIOgy should be
taught as a separate course. In most cases, the treatment of the topic listed

should appear at the appropziate place in the normal mathematical development,

Table of Contents .

1. Metric in Euclidcan l-space, 2-3pace, 3-Gpace, n-space (recall)

Metric yields a notion of ncarness (cf. (3-?)x(5+?)=‘15t )

. Neighbourhoods, fundamental systems of neighbourhoods, especially in Rl,Rz,R3.

Continuity of functions from metric spaces to metric spaces; definition by
means of neighbourheods,

Open sets; definition of continuity by means of open sets; closed sets,

Open coverings, "




TOpOl””JLQ] space through neLvhborhood axiems and open set axioms;
Hausdozff space

Linits of sequences
Metrizable space; equivalent getrics

Homeomorphisms (introduced as 'more general' allowed invertible transformations) ;
local homeomorphismj covering spaces,

Topological sum and product, univcrsal mapping properties

Compactness; sequential compactness

-

Topologies on set as partially ordered system; subspace and quotient space
topologies,

3. Polyhedra, simplicial complexes
Eulex characteristic

Fundemental group (defined combinatorially and topolegically); universal
covering spaces |

!

Jordan curve theorem for polygonal loops
‘:
Knots
4, Topological groups

Classical groups

L1 1 o 2 2 1 T T 1 J

In presenting this material the fol lowing topics should appear in
exzmples and/or exercises: : |

Separability of Zuclidean space

- Different systems of ncighbourhoods in the plane and 3~5pace (circles, squares,
rectangles, etc,)

Equivalent metrics on circle, Rz(e.g. lxl-y1,-+{xz-y2} ) as tOpologicaIISpaces

v

Putting together continuous functions
Continuous image of compact is compact, elementary and familiar comsequences,

y Coverings gf circle, torus,'real projective space, fix point £free transforma~-
“ tions of S

Orientable and non-oricntable closed surfaces,

iare
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“Pictures of the real proi:ctive plane as a space with identifications;
Mobius band and its rclation to the projective plane; fundamontal group
of the projective plane, o

Non-embedding problems (luskeleton of 3~simplex in 2-space, 3 houses and
3 public utilities), : :

1

Ss"=50) (1) /S0 (n),, S'=nl/z




