A paper given at a conference on statistical computation discussed teaching statistics with computers. It concluded that computer-assisted instruction is most appropriately employed in the numerical demonstration of statistical concepts, and for statistical laboratory instruction. The student thus learns simultaneously about the use of computers and those concepts which are best demonstrated through the use of computers—for example, multivariate analysis. In an introductory course on statistical inference, computers are used for weekly laboratory exercises, generating random numbers, empirical theoretical distributions, Monte Carlo studies, means, and the like. However, direct use of the computer in instruction—namely directions and questions included on-line—is at this time too expensive. As cost of computer time decreases it should become more feasible. Future planning centers around more flexible student terminals, and the development of a battery of computer-administered tests to further individual instruction. (BB)
COMPUTER-ASSISTED INSTRUCTION IN STATISTICS

William W. Cooley

Learning Research and Development Center
University of Pittsburgh

1969

The research reported herein was performed under Contract Nonr-624(18)

Personnel and Training Branch
Psychological Sciences Division
Office of Naval Research

This document has been approved for public release and sale; Its distribution is unlimited.
Computer-Assisted Instruction in Statistics

William W. Cooley
Professor of Education and Computer Science
University of Pittsburgh

I am pleased that the organizers of this Conference on Statistical Computation saw fit to include a session on the teaching of statistics with computers. Certainly most of the statistical-computer effort to date has been directed toward research applications. My thesis is that we can and should provide computer experience as part of instruction in statistical methodology, and that such experiences can be designed to facilitate the learning of basic principles of statistical inference as well as teach how to use the computer in the analysis of data.

The general problem of using the computer as an instructional device has been under investigation for about 10 years. Two recent surveys of this field, readily available to this audience, are the articles in the September, 1968 issue of Datamation by Zinn and others and the Atkinson and Wilson (1968) article in Science. Most generally called computer-assisted instruction (CAI), the field has grown from a vague idea in 1958 to a multimillion dollar research enterprise in 1969.

1Paper prepared for Conference on Statistical Computation, University of Wisconsin Computing Center, April 30, 1969. The research reported herein was performed pursuant to Contract Nonr-624(18) Personnel and Training Branch, Psychological Sciences Division, Office of Naval Research. Additional support was provided by the Office of Education, U. S. Department of Health, Education, and Welfare.
A variety of different approaches to CAI has emerged from all this activity. In general they form a spectrum from very rigidly controlled student-computer interactions such as drill and practice, to systems which allow the student to manipulate and operate on aspects of the subject matter through techniques such as simulation and gaming.

The cost of CAI makes it impossible at this time to justify its use for purely instructional purposes. As an object of research CAI is a justifiable enterprise on the assumption that computer costs will continue to go down (relative to instructional alternatives) while its effectiveness will continue to increase, so that someday CAI will be cost-effective for at least some kinds of instruction. There is some disagreement as to how far away that someday is (see, for example, Oettinger and Marks, 1968), but most agree it is coming.

One situation in which CAI is feasible today is where the student must learn how to use the computer anyway, and where such learning is a by-product of his computer-assisted instruction in the primary subject. Certainly an example of such a subject area is data analysis and statistical inference. An example of such an instructional system is the one developed at System Development Corporation (Rosenbaum, 1968; Rosenbaum, Feingold, Frye and Bennik, 1967). Using the PLANIT language, they wrote three types of student exercises:

1) tutorial-dialogue: a programmed instruction mode with computer questions and student answers.
2) exposition: primarily Monte Carlo type experiments where the student-computer "conversations" allow the student to specify the kind of experiment he wishes to perform and then define the parameters for that experiment.

3) computational exercises: data analysis experiences with contrived or randomly generated data.

After two years of studying these three CAI modes the authors concluded that "CAI is most appropriately employed in the numerical demonstration of statistical concepts and for statistical laboratory exercise instruction" (Rosenbaum, et. al., 1967, p. 1).

In the fall of 1967 we\(^2\) began to develop a computer laboratory for statistics instruction which took advantage of the availability of the University of Pittsburgh's time-sharing system. Today we are providing two kinds of experiences in these computer lab sessions. Monte Carlo studies are employed in which the student can examine the sampling distributions of the statistic he is studying in class and note the effects which occur as a result of varying parameters. The other type of laboratory experience is in data analysis. Here the computer takes on the arithmetic chores and frees the student's intelligence for considerations such as the selection of appropriate variables and samples, choice of the statistical program to be applied, and interpretation of the results.

\(^2\)Colleagues and students who have helped me develop this approach are Paul R. Lohnes, Richard Ferguson, James Carlson, Paul Stieman, and Anthony Nitko. I am also indebted to Robert Glaser, Director of LRDC, for some financial support and personal encouragement.
Before examining these laboratory exercises in detail, it would be useful to describe the time-sharing computer system on which they have been implemented. At the University of Pittsburgh we have the IBM System/360, model 50 with 131K main storage (2 micro-second cycle time), a million byte large capacity storage (8 micro-second cycle time) and the 2314 disc with over two hundred million byte capacity. The Pitt Time Sharing System currently supports up to fifty simultaneous users most of whom operate from 2741's on dedicated lines. One feature of the PTS software which we use most heavily in this work is the time-sharing editor. The editor proves very useful for the initial preparation of source programs and for the continuous creation and editing of data for subsequent analyses. The FORTRAN IV compiler is available on the system, so with the editor we were able to adopt readily our existing statistical FORTRAN batch programs for interactive mode.

Programs and data files are stored on the disc and can be loaded or attached with very simple, typed commands. Additional data for analysis can be entered from the terminal, from cards taken to the Computer Center, or from tapes stored at the Center. When the user logs on, he declares how much core he will need for his current work. Up to 131K bytes can be allocated if core is available. Most applications seem to use 16K or 32K bytes of core.

Introduction to Statistical Inference

Our first course in statistical inference serves about 75 to 100 graduate students in education per trimester. Each student has
a weekly laboratory exercise which he does at his convenience by using
one of several 2741 terminals on the campus to which he has access on
a sign-up basis. The mimeographed directions for each exercise relate
the lab to the lectures and the text, provide the necessary direction
for terminal operation, and present questions regarding the computer
output which the student answers after he has completed his work at
the terminal. At first we tried to build directions and questions to
be answered on-line into the computer programs, but we have concluded
that this is too inefficient of computer time and terminal time. If,
someday, computer costs come down and the terminal queue is not a
problem, more tutorial-type interactions can be provided. Meanwhile
we continue to examine the problem of allocating course content to
lecture, tests, mimeographed handouts and computer exercises. Let us
turn now to a description of those exercises.

The first lab provides experience with simple data manipulations
such as transformations and descriptive statistics using a dataset
stored on disc for this purpose. Those data are from a large educa-
tional survey conducted at the University of Pittsburgh, called Project
TALENT. This provides the student access to a random sample of Amer-
ican high school students. He can select variables and subsamples
(e.g., male or female) as he chooses.

Then the student moves through a series of computer experiments
designed to familiarize him with:

(1) random number generation;

(2) empirical and theoretical distributions;
(3) sample statistics and population parameters;

(4) Monte Carlo study of sample variances;

(5) symmetric and nonsymmetric binomial distributions;

(6) central limit theorem and the normal distribution;

(7) sampling distribution of the mean;

(8) the t-distribution, power, type I and II errors; and

(9) sampling distribution of the correlation coefficient.

Experience with data analysis is also provided at appropriate points in the sequence. Students either enter their own data or use Project TALENT data for exercises with chi square, t-test, and correlation. A current evaluation of this course suggests that the data analysis portion should be expanded and some of the initial random number demonstrations be shifted to filmed presentations of dice and other "more concrete" experiments before turning to Monte Carlo experiments on the computer.

Printout 1 illustrates a Monte Carlo study of the t-distribution and Printout 2 illustrates a correlation analysis, where the student centers the data from the terminal. With respect to the computer programs that have been developed for this lab, a batch processing version of them is available in a new Wiley text (Lohnes and Cooley, 1968).

Introduction to Multivariate Analysis

The other statistics course in which we have been using the time-sharing system is a two-semester sequence in multivariate analysis.
Here the emphasis for the computer lab has been on providing data analysis experience for students from many divisions of the University whose interests are very applied. They want to know how to select, compute and interpret multivariate statistics in given research situations.

As each multivariate technique is introduced, the student is responsible for conducting a computer analysis of his own, using either the Project TALENT dataset stored on disc or appropriate data from his own field, if available. Table 1 describes the function of each available program and Figure 1 indicates the input/output compatibility which exists in this system. Printout 3 illustrates the first page of a small discriminant analysis example. As the student moves through an analysis sequence (e.g., EDIT, CORREL, PRINCO, ROTATE), he catalogs and stores intermediate output on disc.

Of course if the objectives of the instruction were more in the direction of mathematical statistics than applied, the building blocks for such a computer lab could be matrix operations rather than specific statistical techniques. However, for the applied course, our approach allows the student to focus on concerns such as selection and interpretation, which are closer to his needs than would be, say, "reinventing" the matrix algebra for canonical correlation every time he was interested in exploring the relationships between two sets of variables.
Plans for the Future

Following extensive use of the CAI laboratory exercises in statistics developed by the project, future efforts will be devoted to further increasing the effectiveness of the laboratory. Two avenues will be explored: (a) One is to investigate the use of a more flexible student terminal. Monte Carlo experiments will be moved to a Sanders CRT terminal in order to see whether they are more effective than they have been with a typewriter-terminal approach. (b) The other is the development of a battery of computer-administered tests which will help to further individualize instruction in statistical inference. At the present time, although students work individually at a terminal, all students take the same laboratory exercise in the same week and have the same lecture and assignment. The long-range intent behind the implementation of a computer testing procedure is to redesign the course into a type of individually prescribed instruction in which the computer does the testing, supplies the laboratory experiences, and indicates suggested readings and paper-and-pencil exercises based on the outcomes of the computer-administered tests.

As I examine systems such as The Augmented Statistician (System Development Corporation, 1967) designed to provide the social scientist with interactive statistical programs, it seems clear that the instructional and interactive production systems are heading toward similar goals. So I shall conclude as I began, with an expression of thanks to our hosts who have brought us together for this exchange of ideas on statistical computation.
References

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Multivariate Programs on the System</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANON</td>
<td>Canonical correlation</td>
</tr>
<tr>
<td>CLASIF</td>
<td>Multivariate normal classification</td>
</tr>
<tr>
<td>COEFF</td>
<td>Factor score coefficients</td>
</tr>
<tr>
<td>CORREL</td>
<td>Correlation</td>
</tr>
<tr>
<td>COVAR</td>
<td>Covariance analysis</td>
</tr>
<tr>
<td>DISCRM</td>
<td>Multiple group discriminant analysis</td>
</tr>
<tr>
<td>FACDIS</td>
<td>Factorial discriminant analysis</td>
</tr>
<tr>
<td>FACTOR</td>
<td>Extraction of arbitrary factorial analysis</td>
</tr>
<tr>
<td>FSCORE</td>
<td>Factor scores</td>
</tr>
<tr>
<td>MANOVA</td>
<td>Multivariate analysis of variance</td>
</tr>
<tr>
<td>MULTR</td>
<td>Multiple correlation</td>
</tr>
<tr>
<td>PARTL</td>
<td>Multiple partial correlation</td>
</tr>
<tr>
<td>PRINCO</td>
<td>Principal components</td>
</tr>
<tr>
<td>ROTATE</td>
<td>Varimax or quartimax rotation</td>
</tr>
</tbody>
</table>

These programs were adopted from Cooley and Lohes (1962).
Figure 1
TREE STRUCTURE OF POSSIBLE PROGRAM SEQUENCES

EDIT

CLASIF

DISCRI

MANOVA

COVAR

FACDIS

PARTL

FACTOR

PRINCO

CANON

MULT

FSORE

COEFF

ROTATE
MONTE CARLO ON T TEST

TYPE A 3 DIGIT NUMBER (200 OR SMALLER) GIVING THE NUMBER OF SAMPLE PAIRS TO BE DRAWN
> 200

TYPE A 2 DIGIT NUMBER (10 OR SMALLER) GIVING THE SIZE OF EACH SAMPLE
> 08

BOTH POPULATIONS SAMPLED HAVE UNIT VARIANCE BUT MEANS MAY BE MADE TO DIFFER
TYPE 4 CHARACTERS (WITH DECIMAL) BETWEEN -2.0 AND +2.0, INDICATING DESIRED DIFFERENCE
> 0.0

TYPE IN ANY EIGHT DIGIT "RANDOM" NUMBER TO START THE RANDOM GENERATOR.
> 68940215

******** DISTRIBUTION OF T'S ********

THE MEAN = 0.0771

THE STANDARD DEVIATION = 1.0330

THE VARIANCE = 1.0671

FREQUENCY AND CUMULATIVE FREQUENCY DISTRIBUTION

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>LOWER LIMIT</th>
<th>FREQUENCY</th>
<th>CUM. FREQ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-99.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-3.333</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-3.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-2.667</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>-2.333</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>-2.000</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>-1.667</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>-1.333</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>-1.000</td>
<td>17</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>-0.667</td>
<td>24</td>
<td>66</td>
</tr>
<tr>
<td>11</td>
<td>-0.333</td>
<td>32</td>
<td>98</td>
</tr>
<tr>
<td>12</td>
<td>0.000</td>
<td>16</td>
<td>114</td>
</tr>
<tr>
<td>13</td>
<td>0.333</td>
<td>33</td>
<td>147</td>
</tr>
<tr>
<td>14</td>
<td>0.667</td>
<td>17</td>
<td>164</td>
</tr>
<tr>
<td>15</td>
<td>1.000</td>
<td>12</td>
<td>176</td>
</tr>
<tr>
<td>16</td>
<td>1.333</td>
<td>16</td>
<td>192</td>
</tr>
<tr>
<td>17</td>
<td>1.667</td>
<td>4</td>
<td>196</td>
</tr>
<tr>
<td>18</td>
<td>2.000</td>
<td>1</td>
<td>197</td>
</tr>
<tr>
<td>19</td>
<td>2.333</td>
<td>0</td>
<td>197</td>
</tr>
<tr>
<td>20</td>
<td>2.667</td>
<td>2</td>
<td>199</td>
</tr>
<tr>
<td>21</td>
<td>3.000</td>
<td>0</td>
<td>199</td>
</tr>
<tr>
<td>22</td>
<td>3.333</td>
<td>1</td>
<td>200</td>
</tr>
</tbody>
</table>

TRY RUNNING THIS PROGRAM AGAIN WHEN THE NULL HYPOTHESIS IS FALSE.
CORRELATION ANALYSIS OF STUDENT'S DATA

SUPPLY THE NUMBER OF SUBJECTS ON THE DATASET YOU HAVE ATTACHED AS A 3-DIGIT INTEGER.
>009

>2

CORRELATION ANALYSIS BETWEEN VARIABLES 1 AND 2 FOR 9 SUBJECTS.

<table>
<thead>
<tr>
<th>VARIABLE 1</th>
<th>VARIABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>8.333</td>
</tr>
<tr>
<td>VARIANCE</td>
<td>12.500</td>
</tr>
<tr>
<td>ST DEV</td>
<td>3.5355</td>
</tr>
<tr>
<td>MEAN</td>
<td>12.222</td>
</tr>
<tr>
<td>VARIANCE</td>
<td>8.944</td>
</tr>
<tr>
<td>ST DEV</td>
<td>2.9907</td>
</tr>
<tr>
<td>CORRELATION COEFFICIENT R = 0.654</td>
<td></td>
</tr>
<tr>
<td>R-SQUARED = 0.4279</td>
<td></td>
</tr>
<tr>
<td>Z-SCORE STANDARD ERROR ESTIMATE = 0.7564</td>
<td></td>
</tr>
<tr>
<td>T CALCULATED FROM ABOVE R: T = 2.288 WITH NDF = 7</td>
<td></td>
</tr>
</tbody>
</table>

WOULD YOU LIKE TO TRY THIS PROGRAM AGAIN?

>no

WHEN YOU HAVE COMPLETED YOUR WORK AT THE TERMINAL, BE SURE TO TYPE $$LOGOFF

"SEE YOU NEXT WEEK!"
MULTIPLE DISCRIMINANT ANALYSIS, COMPILED 21 JAN 69

SUPPLY THE NUMBER OF VARIABLES AS A TWO DIGIT INTEGER NOT GREATER THAN 20.
> 2

SUPPLY THE NUMBER OF GROUPS AS A TWO DIGIT INTEGER NOT GREATER THAN 20.
> 3

SUPPLY THE NUMBER OF SUBJECTS AS A 4 DIGIT INTEGER.
> 196

SUPPLY THE NUMBER OF CONTROL VARIABLES PREVIOUSLY PARTIALED OUT BY COVAR AS A TWO DIGIT INTEGER.
> 00

F-RATIO FOR H2, OVERALL DISCRIMINATION, = 2.15
NDF1 = 4 AND NDF2 = 384

CHI-SQUARE TESTS WITH SUCCESSIVE ROOTS REMOVED

<table>
<thead>
<tr>
<th>ROOTS REMOVED</th>
<th>CANONICAL R</th>
<th>R SQUARED</th>
<th>EIGENVALUE</th>
<th>CHISQUARE</th>
<th>NDF</th>
<th>LAMBDA</th>
<th>PERCENT TRACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.208</td>
<td>0.043</td>
<td>0.045</td>
<td>8.51</td>
<td>6</td>
<td>0.96</td>
<td>99.87</td>
</tr>
<tr>
<td>1</td>
<td>0.008</td>
<td>0.000</td>
<td>0.000</td>
<td>0.01</td>
<td>2</td>
<td>1.00</td>
<td>0.13</td>
</tr>
</tbody>
</table>

ROW COEFFICIENTS VECTORS

D F 1 0.0043032 0.0494752
D F 2 -0.0557285 0.0978380

FACTOR PATTERN FOR DISCRIMINANT FUNCTIONS

TEST

<table>
<thead>
<tr>
<th>TEST</th>
<th>1</th>
<th>0.888</th>
<th>-0.449</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.992</td>
<td>0.077</td>
<td></td>
</tr>
</tbody>
</table>

COMMUNALITIES FOR 2 DISCRIMINANT FACTORS

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>1</th>
<th>0.990</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.990</td>
<td></td>
</tr>
</tbody>
</table>

PERCENTAGE OF TRACE OF R ACCOUNTED FOR BY EACH ROOT

<table>
<thead>
<tr>
<th>ROOT</th>
<th>1.88611</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10.372</td>
</tr>
</tbody>
</table>
ONR Distribution List

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Chief of Naval Research</td>
<td>Code 458, Department of the Navy</td>
<td>Washington, D.C.</td>
<td>20360</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td>ONR Branch Office, 495 Summer Street</td>
<td>Boston, Massachusetts</td>
<td>02210</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td>ONR Branch Office, 219 South Dearborn Street</td>
<td>Chicago, Illinois</td>
<td>60604</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td>ONR Branch Office, 1030 East Green Street</td>
<td>Pasadena, California</td>
<td>91101</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Contract Administrator</td>
<td>Southeastern Area Office of Naval Research</td>
<td>Washington, D.C.</td>
<td>20037</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Director</td>
<td>Naval Research Laboratory</td>
<td>Washington, D.C.</td>
<td>20390</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Office of Naval Research</td>
<td>Area Office</td>
<td>San Francisco, California</td>
<td>94103</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Defense Documentation Center</td>
<td>Cameron Station, Building 5, 5010 Duke Street</td>
<td>Alexandria, Virginia</td>
<td>22314</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Superintendent</td>
<td>Naval Postgraduate School</td>
<td>Monterey, California</td>
<td>93940</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Head, Psychology Branch</td>
<td>Neuropsychiatric Service, U.S. Naval Hospital</td>
<td>Oakland, California</td>
<td>94627</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer</td>
<td>Service School Command, U.S. Naval Training Center</td>
<td>San Diego, California</td>
<td>92133</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer</td>
<td>Naval Personnel Training Research Laboratory</td>
<td>San Diego, California</td>
<td>92152</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Officer in Charge</td>
<td>Naval Medical Neuropsychiatric Research Unit</td>
<td>San Diego, California</td>
<td>92152</td>
<td></td>
</tr>
</tbody>
</table>
1 **Commanding Officer**
Naval Air Technical Training Center
Jacksonville, Florida 32213

1 **Dr. James J. Regan**
Naval Training Device Center
Orlando, Florida 32813

1 **Chief**
Aviation Psychology Division
Naval Aerospace Medical Institute
Naval Aerospace Medical Center
Pensacola, Florida 32512

1 **Director**
Aerospace Crew Equipment Department
Naval Air Development Center, Johnsville
Warminster, Pennsylvania 18974

1 **Chief**
Naval Air Reserve Training
Naval Air Station
Box 1
Glenview, Illinois 60026

1 **Chairman**
Leadership/Management Committee
Naval Sciences Department
U. S. Naval Academy
Annapolis, Maryland 21402

1 **Dr. A. L. Slafkosky**
Scientific Advisor
Commandant of the Marine Corps
(Code AX)
Washington, D. C. 20380

1 **Technical Services Division**
National Library of Medicine
8600 Rockville Pike
Bethesda, Maryland 20014

1 **Technical Services Division**
National Library of Medicine
8600 Rockville Pike
Bethesda, Maryland 20014

1 **Technical Library**
U. S. Naval Weapons Laboratory
Dahlgren, Virginia 22448

1 **Technical Library**
Naval Training Device Center
Orlando, Florida 32813

1 **Technical Library**
Naval Ship Systems Command
Main Navy Building, Rm. 1532
Washington, D. C. 20360

1 **Technical Library**
Naval Ordnance Station
Indian Head, Maryland 20640

1 **Technical Library**
Naval Ship Engineering Center
Philadelphia Division
Technical Library
Philadelphia, Pennsylvania 19112

1 **Library, Code 0212**
Naval Postgraduate School
Monterey, California 93940
<p>| 1 | Technical Reference Library | 1 | Dr. Don C. Coombs |
| | Naval Medical Research Institute | | Assistant Director |
| | National Naval Medical Center | | ERIC Clearinghouse |
| | Bethesda, Maryland 20014 | | Stanford University |
| 1 | Technical Library | 1 | Scientific Advisory Team (Code 71) |
| | Naval Ordnance Station | | Staff, COMASFORLANT |
| | Louisville, Kentucky 40214 | | Norfolk, Virginia 23511 |
| 1 | Library | 1 | ERIC Clearinghouse |
| | Naval Electronics | | Educational Media and Technology |
| | Laboratory Center | | Stanford University |
| | San Diego, California 92152 | | Stanford, California |
| 1 | Technical Library | 1 | ERIC Clearinghouse |
| | Naval Undersea Warfare Center | | Vocational and Technical Education |
| | 3202 E. Foothill Boulevard | | Ohio State University |
| | Pasadena, California 91107 | | Columbus, Ohio 43212 |
| 1 | AFHRL (HRTT/Dr. Ross L. Morgan) | 1 | Education & Training Developments Staff|
| | Wright-Patterson Air Force Base | | Personnel Research & Development Lab. |
| | Ohio 45433 | | Building 200, Washington Navy Yard |
| 1 | AFHRL (HRO/Dr. Meyer) | 1 | Washington, D. C. 20390 |
| | Brooks Air Force Base | | Education & Training Sciences Dept. |
| | Texas 78235 | | Naval Medical Research Institute |
| 1 | Mr. Michael Macdonald-Ross | 1 | Building 142, National Naval Medical Center|
| | Instructional Systems Associates | | Bethesda, Maryland 20014 |
| | West One | | |
| | 49 Welbeck Street | | |
| | London W1M 7HE | | |
| 1 | Commander Officer | 1 | LCDR J. C. Meredith, USM (Ret.) |
| | U. S. Naval Schools Command | | Institute of Library Research |
| | Mare Island | | University of California, Berkeley |
| | Vallejo, California 94592 | | Berkeley, California 94720 |
| 1 | Mr. Joseph B. Blankenheim | 1 | NAVELEX 0474 |
| | Munitions Building, Rm. 3721 | | Washington, D. C. 20360 |</p>
<table>
<thead>
<tr>
<th>NAVY</th>
<th>ARMY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Commander</td>
<td>1 Human Resources Research Office</td>
</tr>
<tr>
<td>Operational Test & Evaluation</td>
<td>Division #6, Aviation</td>
</tr>
<tr>
<td>Force</td>
<td>Post Office Box 428</td>
</tr>
<tr>
<td>U. S. Naval Base</td>
<td>Fort Rucker, Alabama 36360</td>
</tr>
<tr>
<td>Norfolk, Virginia 23511</td>
<td></td>
</tr>
<tr>
<td>1 Office of Civilian</td>
<td>1 Human Resources Research Office</td>
</tr>
<tr>
<td>Manpower Management</td>
<td>Division #3, Recruit Training</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td>Post Office Box 5787</td>
</tr>
<tr>
<td>Washington, D. C. 20350</td>
<td>Presidio of Monterey, California 93940</td>
</tr>
<tr>
<td>Attn: Code 023</td>
<td>Attn: Library</td>
</tr>
<tr>
<td>1 Chief of Naval Operations, Op-57</td>
<td>1 Human Resources Research Office</td>
</tr>
<tr>
<td>TL</td>
<td>Division #4, Infantry</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td>Post Office Box 2086</td>
</tr>
<tr>
<td>Washington, D. C. 20350</td>
<td>Fort Benning, Georgia 31905</td>
</tr>
<tr>
<td>1 Chief of Naval Material</td>
<td>1 Department of the Army</td>
</tr>
<tr>
<td>(MAT 03M)</td>
<td>U. S. Army Adjutant General School</td>
</tr>
<tr>
<td>Room 1323, Main Navy Bldg.</td>
<td>Fort Benjamin Harrison, Ind. 46216</td>
</tr>
<tr>
<td>Washington, D. C. 20360</td>
<td>Attn: AGCS-EA</td>
</tr>
<tr>
<td>1 Naval Ship Systems Command</td>
<td></td>
</tr>
<tr>
<td>Code 03H</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Main Navy Building</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20360</td>
<td></td>
</tr>
<tr>
<td>1 Chief</td>
<td></td>
</tr>
<tr>
<td>Bureau of Medicine and Surgery</td>
<td></td>
</tr>
<tr>
<td>Code 513</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20390</td>
<td></td>
</tr>
<tr>
<td>1 Technical Library</td>
<td></td>
</tr>
<tr>
<td>Bureau of Naval Personnel</td>
<td></td>
</tr>
<tr>
<td>(Pers-11b)</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20370</td>
<td></td>
</tr>
<tr>
<td>1 Director</td>
<td></td>
</tr>
<tr>
<td>Personnel Research & Development</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington Navy Yard, Building 200</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20390</td>
<td></td>
</tr>
<tr>
<td>1 Commander, Naval Air Systems</td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td></td>
</tr>
<tr>
<td>Navy Department, AIR-4133</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20360</td>
<td></td>
</tr>
<tr>
<td>1 Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Headquarters, U. S. Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Code A01B</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20380</td>
<td></td>
</tr>
</tbody>
</table>
1 Director of Research
U. S. Army Armor
Human Research Unit
Fort Knox, Kentucky 40121
Attn: Library

1 Research Analysis Corporation
McLean, Virginia 22101
Attn: Library

1 Human Resources Research Office
Division #5, Air Defense
Post Office Box 6021
Fort Bliss, Texas 79916

1 Human Resources Research Office
Division #1, Systems Operations
300 North Washington Street
Alexandria, Virginia 22314

1 Director
Human Resources Research Office
The George Washington University
300 North Washington Street
Alexandria, Virginia 22314

1 Armed Forces Staff College
Norfolk, Virginia 23511
Attn: Library

1 Chief
Training and Development Division
Office of Civilian Personnel
Department of the Army
Washington, D. C. 20310

1 U. S. Army Behavioral Science
Research Laboratory
Washington, D. C. 20315

1 Walter Reed Army Institute of Research
Walter Reed Army Medical Center
Washington, D. C. 20012

1 Behavioral Sciences Division
Office of Chief of Research
and Development
Department of the Army
Washington, D. C. 20310

1 Dr. George S. Harker
Director, Experimental Psychology Div.
U. S. Army Medical Research Laboratory
Fort Knox, Kentucky 40121

1 Director
Air University Library
Maxwell Air Force Base
Alabama 36112
Attn: AUL-8110

1 Cadet Registrar
U. S. Air Force Academy
Colorado 80840

1 Headquarters, ESD
ESVPT
L. G. Hanscom Field
Bedford, Massachusetts 01731
Attn: Dr. Mayer

1 AFHRL (HRT/Dr. G. A. Eckstrand)
Wright-Patterson Air Force Base
Ohio 45433
AIR FORCE

1 Commandant
U. S. Air Force School of Aerospace Medicine
Brooks Air Force Base, Texas
Attn: Aeromedical Library (SMSDL)

1 6570th Personnel Research Laboratory
Aerospace Medical Division
Lackland Air Force Base
San Antonio, Texas 78236

1 AFOSR (SRLB)
1400 Wilson Boulevard
Arlington, Virginia 22209

1 Research Psychologist
SCBB, Headquarters
Air Force Systems Command
Andrews Air Force Base
Washington, D. C. 20331

1 Headquarters, U. S. Air Force
Chief, Analysis Division (AFPDPL)
Washington, D. C. 20330

1 Headquarters, U. S. Air Force
Washington, D. C. 20330
Attn: AFPRTB

1 Headquarters, U. S. Air Force
AFRDDG
Room 1D373, The Pentagon
Washington, D. C. 20330

1 Headquarters, USAF (APTRD)
Training Devices and Instructional Technology Division
Washington, D. C. 20330

MISCELLANEOUS

1 Dr. Alvin E. Goins, Executive Secretary
Personality & Cognition Research Review Committee
78235 Behavioral Sciences Research Branch
National Institute of Mental Health
5454 Wisconsin Avenue, Room 10A11
Chevy Chase, Maryland 20203

1 Dr. Mats Bjorkman
University of Umea
Department of Psychology
Umea 6, Sweden

1 Technical Information Exchange
Center for Computer Sciences and Technology
National Bureau of Standards
Washington, D. C. 20234

1 Director
Defense Atomic Support Agency
Washington, D. C. 20305
Attn: Technical Library

1 Executive Secretariat
Interagency Committee on Manpower Research
Room 515
1738 "W" Street, N. W.
Washington, D. C. 20036
(Attn: Mrs. Ruth Relyea)

1 Mr. Joseph J. Cowan
Chief, Personnel Research Branch
U. S. Coast Guard Headquarters
PO-1, Station 3-12
1300 "E" Street, N. W.
Washington, D. C. 20226
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City, State Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Officer</td>
<td>American Psychological Association</td>
<td>Washington, D.C. 20036</td>
</tr>
<tr>
<td>Mr. Edmund C. Berkeley</td>
<td>Information International, Inc.</td>
<td>Cambridge, MA 02139</td>
</tr>
<tr>
<td>Dr. Donald L. Bitzer</td>
<td>Computer-Based Education Research Laboratory</td>
<td>Urbana, IL 61801</td>
</tr>
<tr>
<td>Dr. C. Victor Gunderson</td>
<td>Computer Assisted Instruction Lab.</td>
<td>Austin, TX 78712</td>
</tr>
<tr>
<td>Dr. F. J. DiVesta</td>
<td>Education & Psychology Center</td>
<td>University Park, PA 16802</td>
</tr>
<tr>
<td>Dr. Phillip H. DuBois</td>
<td>Department of Psychology</td>
<td>St. Louis, MO 63130</td>
</tr>
<tr>
<td>Dr. Wallace Feurzeig</td>
<td>Bolt, Beranek & Newman, Inc.</td>
<td>Cambridge, MA 02138</td>
</tr>
<tr>
<td>Dr. Bert Green</td>
<td>Department of Psychology</td>
<td>Baltimore, MD 21218</td>
</tr>
<tr>
<td>Dr. J. P. Guilford</td>
<td>University of Southern California</td>
<td>Los Angeles, CA 90007</td>
</tr>
<tr>
<td>Dr. Harold Gulliksen</td>
<td>Department of Psychology</td>
<td>Princeton, NJ 08540</td>
</tr>
<tr>
<td>Dr. Duncan N. Hansen</td>
<td>Center for Computer Assisted Instruction</td>
<td>Tallahassee, FL 32306</td>
</tr>
<tr>
<td>Dr. Albert E. Hickey</td>
<td>Entelek, Incorporated</td>
<td>Newburyport, MA 01950</td>
</tr>
<tr>
<td>Dr. Howard H. Kendler</td>
<td>Department of Psychology</td>
<td>Santa Barbara, CA 93106</td>
</tr>
<tr>
<td>Dr. Robert R. Mackie</td>
<td>Human Factors Research, Inc.</td>
<td>Santa Barbara, CA 93107</td>
</tr>
</tbody>
</table>
MISCELLANEOUS

1 Dr. Henry S. Odbert
 National Science Foundation
 1800 "G" Street, N. W.
 Washington, D. C. 20550

1 Dr. Gabriel D. Ofiesh
 Center for Educational Technology
 Catholic University
 4001 Harwood Road, N. E.
 Washington, D. C. 20017

1 Dr. Joseph A. Van Campen
 Institute for Math Studies in the Social Sciences
 Stanford University
 Stanford, California 94305

1 Dr. John A. Annett
 Department of Psychology
 Hull University
 Yorkshire
 England

1 Dr. Joseph W. Rigney
 Electronics Personnel Research Group
 University of Southern California
 University Park
 Los Angeles, California 90007

1 Dr. M. C. Shelesnyak
 Interdisciplinary Communications Program
 Smithsonian Institution
 1025 Fifteenth Street, N. W.
 Suite 700
 Washington, D. C. 20005

1 Dr. Arthur I. Siegel
 Applied Psychological Services
 Science Center
 404 East Lancaster Avenue
 Wayne, Pennsylvania 19087

1 Dr. Lee J. Cronbach
 School of Education
 Stanford University
 Stanford, California 94305

1 Dr. Arthur W. Staats
 Department of Psychology
 University of Hawaii
 Honolulu, Hawaii 96822

1 Dr. John C. Flanagan
 Applied Institutes for Research
 P. O. Box 1113
 Palo Alto, California 94302

1 Dr. Lawrence M. Stolurow
 Harvard Computing Center
 6 Appian Way
 Cambridge, Massachusetts 02138

1 Dr. M. D. Havron
 Human Sciences Research, Inc.
 Westgate Industrial Park
 7710 Old Springhouse Road
 McLean, Virginia 22101

1 Dr. Roger A. Kaufman
 Department of Education
 Institute of Instructional System Technology 4 Research
 Chapman College
 Orange, California 92666

1 Dr. Ledyard R. Tucker
 Department of Psychology
 University of Illinois
 Urbana, Illinois 61801

1 Dr. Renton J. Underwood
 Department of Psychology
 Northwestern University
 Evanston, Illinois 60201

1 Dr. Benton J. Underwood
 Department of Psychology
 Northwestern University
 Evanston, Illinois 60201
Computer-Assisted Instruction in Statistics

ONR Technical Report

AUTHOR(S): (First name, middle initial, last name)

William V. Cooley

REPORT DATE

1969

TOTAL NO. OF PAGES

14 pp.

NO. OF REFS

8 refs.

CONTRACT OR GRANT NO.

Nonr-624(18)

ORIGINATOR'S REPORT NUMBER(S)

OTHER REPORT NO(S) (Any other numbers that may be assigned this report)

DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

SPONSORING MILITARY ACTIVITY

Personnel and Training Branch
Psychological Sciences Division
Office of Naval Research

ABSTRACT

The development of a computer-assisted laboratory in statistical inference is described. University of Pittsburgh students work on-line with the Pitt Timesharing System on two kinds of laboratory statistics exercises: Monte Carlo exercises for exploring sampling distributions and data analysis exercises. The computer system utilized, the student exercises, and future plans for evaluation are discussed.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
</tbody>
</table>