DOCUMENT RESUME

ED 029 679 . 52 ‘ L1 001 535

By- Cunningham, Jay L.; And Others

A Study of the Organization and Search of Bibliographic Holdings Records in On-Line Computer Systems:
Phase I. Final Report. _

California Univ., Berkeley. Inst, of Library Research.

Spons Agency-Office of Education (DHEW), Washington, D.C. Bureau of Research.

Bureau No-BR-7-1083

Pub Date Mar 69

Grant-OEG-1-7-071083-5068

Note-307p. 4

EDRS Price MF-$1.25 HC-$15.45 ,

Descriptors-*Automation, Bibliographic Citations, ®*Catalogs. Computer Programs, Computer Storage Devices,
Costs. *Information Processing, *Information Retrieval, *Information Storage, Information Systems,
sLibraries, Library Technical Processes, Search Strategies, Systems Development

This report presents the results of the initial phase of the File Organization
Project. a study which focuses upon the on-line maintenance and search of the
library's catalog holdings record. The focus. of the project is to develop a facility for
research and experimentation with the many issues of on-line file organizations and
search. The first year has been primarily devoted to dufining issues to be studied,
developing the facility for experiment, and carrying out initial research on the Issues.
Achievements involved: (1) cbtaining équipment; (2) programming and testing an Initial
software system, and then expanding it to supply access to the central processor
from two different mechanical terminals at two remote locations: (3) planning for
acquisition and incorporation of an existing machine file as well as bibliographic
records which require original conversions; (4) developing software for data base
preparation and for file handling and access: and (5) initiating analyses on Issues
such as optimum length of search keys. Appended are six reports which cover
specific aspects of the project and an article entitled “The Organization, Maintenance
and Search of Machine Files.” reprinted from “The Arnuval Review of Information
Science and Technology.” volume 3. (UB)

¢ e ammapat s A gt 04 Y T BTN TN T L B o T R e U —

FINAL REPORT
Project No. T-1083
Grant No. OEG-1-T-0T71083-5068

ED029679

A STUDY OF THE ORGANIZATION AND SEARCH OF BIBLIOGRAPHIC HOLDINGS
RECORDS IN ON-LINE COMPUTER SYSTEMS: PHASE I

By
Jay L. Cunningham

William D. Schieber

and
Ralph M. Shoffner

Institute of Library Research
University of California
Berkeley, California 94720
U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE
PERSON OR ORGANIZATION ORIGINATING 1. POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY. ,
March 1969

The research reported herein was performed pursuant to a grant
with the Office of Education, U.S. Department of Health, Educa-
tion, and Welfare. Contractors undertaking such projects under
Government sponsorship are encouraged to express freely their
professional judgment in the conduct of the project. Points of
view or opinions stated do not, therefore, necessarily represent

official Office of Education position or policy.

U.S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education
Bureau of Research

Page
List of Figures. « « « ¢ ¢« o« o o o o o o o o o o o o o o iii=vi
AcknowledgmentS. « « « ¢ ¢ o o ¢ ¢ o o o o o e o o o o o« vVii
I. INTRODUCTION AND SUMMARY . « ¢« ¢ ¢ ¢ ¢ ¢ ¢ o & « o« « 1
A, The Research Problem « . « &+ &« &« &« « 1
B. Research Method. . . . « « ¢« ¢« ¢ ¢+ ¢« & « « « 3
C. Significant Findings and Achievements. . . . k4
D. Muture Directions. . . « « « «+ ¢« ¢+ o 4+ . . 5
II. FACTLITY ESTABLISHMENT . o « &« « o o o o o o o o o o+ 1
A, General. .« ¢« ¢ ¢ o« ¢ o o o o o o o o o o o o T
B. Fquipment. . « .« « ¢ ¢« 4o ¢« ¢ ¢ ¢« ¢ o o o o . 12
C. Computer ProgramsS. . . . « « « « « « « « o o 1h
D. Data Base Development. 20
E. Pile Structure . . .« . ¢« ¢ ¢ ¢« ¢« ¢« ¢« o« « o« o 21
ITI. THE BIBLIOGRAPﬁiC RECORD . . &« & ¢« ¢« ¢ o ¢« o o « « +» 35
A, General. « « o o o o o o o o o o« o« o« o« o o« « 35
B. Record Content . . ¢« ¢« ¢ ¢ ¢« ¢ ¢ ¢« o o « « « 37
C. Record Form. . « « « ¢« « « o ¢ « ¢« « « « « o« 38
D. The Representation of Typographical Charactersh8
E. Logical Similarity of Bibliographic Records. 60
IV. DATA BASE DEVELOPMENT. +. « &+ & « o o« o o o s o o o & 15
A, General. . « « v « o o o o ¢« o o o« o o o « « 15
B. Strategies of Conversion 17T
C. Translation of Existing Machine Files, . . . 85
D. Data Base Production Procedure 9k
E. Issues of Cost and Quality 107
REFETENCES & v o« o115
-1 =

TABLE OF CONTENTS

} | TABLE OF CONTENTS, (Cont.)

APPENDIX TI:

APPENDIX TII:

APPENDIX IIT:

APPENDIX IV:

APPENDIX V:

APPENDIX VI:

APPENDIX VII:

AN ALGORITHM FOR NOISY MATCHES IN CATALOG
SEARCHING, By James L. Dolby « .« .

USER'S GUIDE TO THE TERMINAL MONITOR SYSTEM
(TMS), By William D. Schieber

A DESCRIPTION OF LYRIC, A LANGUAGE FOR
REMOTE INSTRUCTION BY COMPUTER, By

Steven S. Silver . . ¢ ¢ o ¢ o ¢ s o o o . e

ILR PROCESSING RECORD SPECIFICATION, By

Jay L. Cunningham . . « ¢« « ¢« & ¢ o o o o« &

SUMMARY OF RECORD FORMATS FOR DATA BASES
TO BE CONVERTED TO ILR PROCESSING RECORD
FORMAT

1. Santa Cruz Record Format . . « « « « +
2. ILR Input Record Format. . . . « . « «

3. Experimental On-line Mathematics

Citation Data Base . ¢« « ¢ o o o o o o

SAMPLE SIZE DETERMINATION FOR DATA
CONVERSION QUALITY CONTROL, By

Jorge Rodriguez . . . ¢« ¢ ¢ ¢ o o o o o o &

THE ORGANIZATION, MAINTENANCE AND SEARCH
OF MACHINE FILES, By Ralph M. Shoffner
(Published in the Annual Review of

" Information Science and Technology, v. 3,

edited by Carlos A. Cuadra. Chicago,
Encyclopaedia Britannica, Inc., 1968.

PD. 137-16T) v v v v v v e e e e e e e e e

- ii -

137

1bs

163

193
207

263

271

27T

LIST OF FIGURES

Figure Title Page
SECTION II: FACILITY ESTABLISHMENT

Schematic Diagram of Project Facility 8
File Generation Process . . . & ¢« ¢ ¢ & & o o o o o 17
Blocking Strategy « « « ¢« ¢ v ¢ v ¢ o s o s s s s . . 24

lock a Non-Keyed File. . « + &+ ¢ &+ & o o o o o o o & 25
Uniqueness of Author Identification 30

Distribution of Number of Fields of Length N. 31

N 0N I w D

Schematic of Multi-level File Structure Linkage . . . 33

SECTION III: THE BIBLIOGRAPHIC RECORD

8. TFunctional System Components Related tc Different

Record Formats. o « ¢ « o « o o o o o o o o o o o o 36
9, MARC II Elements Deferred in File Organization

Project Data Base « « « « + v « o o o o« s o o o« o+« 39
10. File Organization Project Data Elements Not

Defined in MARC II. . « ¢ &+ « o o « o o & o« o« « « . kO
11. Coding Sheet - Monographs . . « « v « « « « « + « . . 16
12. Keying Blocks of Text . . « « & ¢« ¢ v ¢ ¢ ¢ o &+ o « o 02
13. The Tentative Harvard List of Diacrities. 56
14, Alphabetical Index of Diacritic Codes57-58
15. Proposed Single Keying Codes Compatible with

Transliteration Schemes for Modern Cyrillic 59
16. A Spelling Equivalent Abbreviation Algorithm for

Personal Names (Dolby Version 1 -'Variable Length). . 65
17. Equivalence Class Computation (Manual)., 66
18. Equivalence Class Computation (Computer). 68
19. Abbreviation Algorithm for Personal Names .

(Version 2 - Fixed Length). . + + . + v « v v « « . . 69

- iii -

Figure

LIST OF FIGURES (Cont.)

Title

SECTION IV: DATA BASE DEVELOPMENT

20.

Distribution of Dupli.ate Titles as a Function
of Publication Date:
A. Titles in English Langusge.
B. Titles in Languages Other Than English That
Use a Roman Alphabet.
C. Titles in Languages That Use a Non-Roman
Alphabet, o v v v ..
Conventional Conversion Compared to Automatic
Format Translation and Computer-Assisted Editing.
Flow Chart of Personal Author Field Algorithm . .
Flow Chart of Title Field Algorithm . . .
Summary Chart of Data Base Production . . .
On-line Search for Duplicates e
Verification of Match
Data Preparation and Transcription.
Computer Edit, Correction Cycle, and File Update.
Diagnostic Printout, Part 1 - Logical Field
Listing . ¢ ¢ ¢« ¢ ¢ 6 v v o o 4o o 0 o e e e e e
Diagnostic Printout, Part 2 ~ Card Image Listing.
Schematic of Quality Control Subsystem.,
Relation of Initial Keying Cost to Accuracy . . .
Acceptability in Terms of Accuracy and Cost for

Three Price Quotations for Keying

APPENDIX IV: ILR PROCESSING RECORD SPECIFICATION

l.
2.

Indicator for Main Entry - Personal Name. .

Storage Record Organization

LIST OF FIGURES (Cont.)

Figure Title

Schematic of ILR Storage Record, INFOCAL Version 1 .
ILR Processing Record - Segment 1, Leader.
IIR Processing Record - Segment 2, Record Directory.
ILR Processing Record - Segment 3, Fixed Length
Data ElementS. « « o« o o o o o o o o o o o o o
Variable Field Tags and Data Elements.
Values for Indicator 1 in Applicable Fields. .
Sub-Field Delimiter Codes. « « « « ¢ ¢ o o &

Proposed Variable Field Header

APPENDIX V-1l: .SANTA CRUZ R2CORD FORMAT

1.

Sample Catalog Record in Original Santa Cruz Format.

APPENDIX V-2: ILR INPUT RECORD FORMAT

Storage Record Components & Organization

Structural Patterns in MARC Record Data Definition

Example of Input Format Mapping Into Processing

FOXTIAt o
Example of Tab Card Decklet - ILR Input Format . .
ILR Input Record Format - I-Fields: Data Elements
& COAES e o o o o o o o o o o o o o o o o o s o o o
ILR Input Record Format - A-Fields: Data Elements
& COAES: + o o o o o o o o o o o o 4 4 4 4 s s .o
ILR Input Record Format - B-Fields: Data Elements
& COAES.e « o« o o o o o o o o o o o e e e e e e
Input Code Values Table for Type of Main Entry . .
Input Code Values Table for Type of Added Entries
(Series Traced S8IME) +« + o o o o o o o o o o o o &
Input Code Values Table for Type of Added Entries

(Subject Added Entries). « « ¢« v « v ¢ o o o o o o

LIST OF FIGURES (Cont.)

Title

Input Code Values Table for Type of Added Entries
(Other Added Entries) . « « « ¢ v v & v o« o o o &
Input Code Values Table for Type of Added Entries
(Series Traced Differently) . « « « « ¢ o « o o &
Presence of Fields in an Input Record« .
INFOCAL Default Initializations . . . ¢ ¢ ¢« ¢« ¢ « &
Default Settings for Indicator 1. . . . « « ¢« ¢ « &
List of Tag Numbers Which sre Currently Repeatable.
Revised Field Coding: A-Fi:lds & B-Fields.
Table of Valid Symbels. ¢ ¢ & ¢« ¢ ¢ ¢ ¢ o o o o o

APPENDIX V-3: EXPERIMENTAL ON-LINE MATHEMATICS CITATION
DATA BASE

1. Cards Punched for One Paper Published in Vol. 66

of the Communications in Pure and Applied Mathe-

mactiCS. L] L]] L] L] - .]] L]]]] L] L]]]] L] L]] .

ACKNOWLELGMERETS

This report comprises the results of the first year of
effort under a grant, OEG-1-7-071083-5068, from the Bureau of
Research, Office of Education, U.S. Department of Health, Educa-
tion and Welfare. The content and conclusions presented in the
report pertain to the period July 1, 1967 - June 30, 1968. The
University of California also provided contributory support.
M.E. Maron, Associate Director of the Institute, acted as Prin-
cipal Investigator and Ralph M. Shoffner as Project Director.

For constructive criticism concerning goals and methods, and
for otherwise inaccessible information, we are especially grateful
to the members of the project's Consultant Advisory Panel. The
members of this Panel were: Mrs. Henriette D. Avram, Library of
Congress; Richard Dougherty, University of Colorado Libraries;
Anthony Hall, UCLA University Research Library; Foster Palmer,
Harvard University Libraries; Charles Payne, University of Chicago
Libraries; Charles Stevens, Project INTREX, Massachusetts Institute
of Technology; and Allen Veaner, Stanford University Libraries.
Valuable consultant support in the development of an algorithm
for searching through "noise" was also received from James L. Dolby,
of The R & D Consultants Company, Los Altos, California.

Our campus Computer Center has been most helpful in planning
and obtaining the system needed to support the project. Our
initial monographic data base was supplied through the cooperation
of Donald Clark, the University Librarian of the Santa Cruz campus,
without whose help we could not have had access to such a large
file. The data base of the citation index in mathematics was
supplied by Mary Tompkins of the Institute's Los Angeles staff.

We would also like to give credit to the individual contri-
butions made by staff members and research assistants of the
Institute, in particular Harriet Zais, who performed statistical
studies of the data base and who supervised the pilot testing of
the input coding system; and Thomas Hargrove, who designed the
scheme for conversion of foreign language materials and much of
the procedure for the data base production. Technical studies
were produced by Jorge Rodriguez and Naresh Kripalani. Programming
support was rendered by Arjun Aiyer, Regina Frey, John Reinke and
Steve Silver. Input editors who got the original conversion task
started were Mrs. Ann Giglioli, Diane Kristell, Lucy Liang,
Elizabeth Poole, Janet Redd, Roberta Roberts, and Douglas Romney.

Finally, we would like to thank the Institute office staff
who were instrumental in the physical preparation of this report:
Patricia Barkeley, Linda Child, Kitty Colburn, Betty Geer,
Marion Gordon, Judith Sutliff, and Connie Torii.

L] L] L]

L.C
.D.S.
M.S

I. INTRODUCTION AND SUMMARY

A. THE RESEARCH PROBLEM

1. Prologue. This is a period of ms jor intellectual and
technological change in libraries. Amciug the many aspects of
this change, the applicatior of computers to library operations
is of recognized importance. Much effort is currently being
directed toward such use of computers. For example, there are
a growing aumber of files of bibliographic records which are
being provided in computer processable form by both public and
private organizations. Most forecasts of the library of the
future include on-line computer use as a key feature of the
library's operation. Attractive as such forecasts may appear,
there are numerous unresolved and often ill-defined problems
which must be solved before on-line systems can be effectively
applied to the acquisition, maintenance, and retrieval of
recorded informstion. This report presents the results of the
initial phase of a research study, the File Organization Project,
which focuses upon the on-line maintenance and search of the
library's central apparatus of bibliogrsphic control, the cat-
alog holdings record.

. Machine files are being sought and created as a feasible
solution to the problem of growth and complexity in the catalog,
as a response to the need for new and expanded services, for
their speed and convenience in access, and to replace human labor
in generating products such as book-form catalogs and bibliog-
raphies. What are the dimensions of the task of acquiring,
maintaining and using the very large data base? Why is it
desirable or even necessary that library files be accessible
on-line? What techniques can be recommended as efficient, eco-
nomical and acceptable for organizing and searching large files
in operating contexts?

o. The Economic Implications. This question about tech-
niques can be expanded into other questions. What methods
should be used to encode record content in the various parts
of the system -- input processing, storage, output? Whet
should the file structure be, that is, how will the records
be mapped into the physical storage and how should they be
related to each other? What should be the form and capability
of the search lenguage? What post-retrieval analysis and
processing capsbility should be provided to the system user?

To select appropriate techniques in answer to these
questions one must face all of the issues of evaluation which
are common to information retrieval research, that is, by
some method the cost c¢f the system must be considered in

-1 -

- s B m— W e WY W W . .- - . - - W PR s—

o

m——r

AT

relation to its performance. Leaving aside the problems of
establishing the system cost, there remain myriad problems to

be resolved in establishing the performence of the system. For
example, how does one measure the effect of a systvem upon its
user? Can recall and relevance or similer such measures be
spplied? Should one consider in the performance of the system
the "non-users" of the system, or the questions that for various
reasons are not or cannot be asked of it? There are only certain
aspects of performance that cen be measured. The problem then

is to establish a relationship smong them in order to provide

a suitable measure; for example, how can system capacity, actual
use, average response times, response time variations, ete., be
combined in a performance measure? These questions can be in turn
expanded into still other questions. However, though they are
but a sample of the questions which do not at present have
operational answers, they are among the most important and they
form the context for our study.

On-line time-shared camputer systems present many desirable
features for library use: parallel operations in multiple
locations, response times to complex queries measured in minutes
or seconds, reduction in the manual labor required for the
maintenance of catalogs, etc. At the same time, man-effort is
required to design and implement these systems. Further, the
operating costs of an on-line system are high when compared to
those of a computer system organized for conventional batch
processing. That is, a batch processing operation can always
be organized in such a way as to be less expensive to operate
than an on-line system, on the condition that no cost be
sssigned to the processing delay incurred by the batch system.

An estimate of the operating cost of an on-line system
for a library cen be obtained by considering the major cost
factors of the system: the terminals, the mass-storage for
the bibliographic records, and the camputer time used. The
costs of terminals and the interfacing equipment necessary
to attach them to the central processor vary widely depending
upon type of gear, total number of terminal units, data transfer
rate, distance from the processor installation, and the like.
For purposes of rough estimation, however, a reasonable system
operating cost lies in the region of $2000 per terminal per
year. Due to the size of the bibliographic record and the
character of present auxiliary mass storage devices, the cost
of storing the data equivalent to that of one catalog card
ranges from $0.10 per record per year, to $0.60 or more. The
cost of the central processor allocated to the terminal network
during the time it is in use is similarly highly variable. At
present, these costs range from $2 per terminal hour to $10 and
beyond. '

e e e e e e s e —————— — — i T e D T 4 W (mmerr T . A m—— e i s e ey

24

PR »
~

3

[e
b

| T |

A library with 100,000 master bibliographic records to be '
accessed in an on-line mode might need 20 terminals or more with
an average ubtilization of 1200 terminal-hours per terminal per
year. Thus, the following minimum costs for such a configuration
can conceivably be incurred:

Terminals 20 @ $2000/yr. $ 40,000
Mass Storage 100,000 recs.
Capacity @ $0.30 ea. 30,000
CPU Time 20 term. x $1200/
Charges term. yr. @$2.00/
term. hr. __L48,000
TOTAL $118,000/yr.

Due to the fixed sizes of the various central processors
and auxiliary storage units now available, it is most likely
that the actual charges would be higher still. In any event,
it is clear that such costs are significant. There will be
real monetary impact on libraries resulting from improvements
in the processing cepacity of the computer system employed to
maintain and search the bibliographic files.

Should libraries undertake the development of such systems?
The question has in a sense become moot in that there are already
so many on-line system development efforts. Rather than attempt
to answer this very broad question, the File Organization Project
is directed toward an analysis and understanding of specific
issues of organization and search if an on-line system is used.
Such understanding should then contribute to the establishment
of the most appropriate blend of computer services for a given
library.

B. RESEARCH METHOD

The focus of our efforts in the File Organization Project
is to develop a facility for research and testing, one within
which experimentation with the many issues of on-line file
organization and search can be performed. In this first phase
of the project we have been concerned primarily with the design
of the facility and the implementation of its initial camponents.
Tn addition, to ensure the development of an adequate facility
we must establish central examples of the crucial issues which
are to be investigated. Thus, the research method has had the
following points: to define precisely the issues which will be
studied, to develop the facility within which such issues can
be studied, and to carry out +the initial research on these
issues.

-3 -

SR SR AR AR Y

Our approach has been to orgenize both the tasks necessary
to the establishment of a usable facility for testing, and the
tasks directly assigned to attacking the experimental issues in
such a way as to keep the tasks manageable and within reasonable
boundaries, hopefully without sacrificing the quality of the
ultimate results of the project. The elements of the facility
have been decomposed into separate units for ease and speed of
accomplishment, particularly where programming is involved. The
research issues have been compartmentalized and broken down into
isolable units so that their respective dimensions and sub-pro-
blems are delineated for the staff member assigned as problem
solver. An insight into the effectiveness of this approach can
be gained by a simple enumeration of the significant findings
and achievements of the first year.

C. SIGNIFICANT FINDINGS AND ACHIEVEMENTS

l. Facility for Experiment.

a. General. Equipment was obtained and an initial
software system was programmed and operated on a test basis to
demonstrate capacity to search (by author only) a file of 75,000
catalog records on-line. The system was expanded to supply
access to the central processor from two different mechanical
terminals at two remote locations on the Berkeley campus. Mass
storage equipment with capecity in excess of 200 million char-
acters was procured. The necessary adaptation units for inter-
facing with remote terminals were installed at the campus
computer center to support the activities of the project. Plans
were laid for extension and upgrading of the system to handle
the complex requirements of visual (CRT) terminals, now on order.

b. Programs. File structure design was specified
and programmed for an initial configuration of multi-level
index files linked to the master data base, using manufacturer
supported software. Search strategy development was initiated
and preliminary programming of Boolean search programs commenced.

c. Data base. Plans were completed for acquisition
and incorporation of an existing machine file and for the incor-
poration of bibliographic records requiring original conversions.
We expect that within a year our data base will contain in
excess of 120,000 records.

A logical record format for input conversion of catalog
records not in the existing machine file was designed and a
program written to accamplish conversion to a unitary storage
format.

e ———— ————r “——— e w3 C g av w e e - v . usw s oo B L T - -

A storage format was designed having special features to
handle special characters and diacritical marks in any language
likely to appear in textual data, yet retaining convertibility
to and fram the Library of Congress' MARC IT communications
format.

2. Analytic Issues. Analyses were initiated on a number
of the most pressing issues, in particular the optimum length
of search keys, e.g., author name. This analysis will be used
in establishing index files and in guiding users in the minimi-
zation of keyboarding time and effort. This analysis represents
the first step in deciding how to allocate storage for both the
master file and the index files, based on the various critical
factors such as frequency of access, equipment access time, and
storage costs.

User aids were under development, in particular an algorithm
which will serve as the core of a sub-system Cesigned to process
and assist the terminal user in overcaming the effects of spelling
errors. Analysis of these aids will follow their development.

D. FUTURE DIRECTIONS

The general purpose of setting up the facility is to per-
form analyses and experiments in on-line file organization and
search of bibliographic records. ZExperimental facilities are
often needed to collect data and test hypotheses. 1In the present
instance such a facility is especially important in order to
record information about factors such as terminal user behavior
and the frequency of recurrence of requests, as well as to test
our analytical models against actual system operations.

This facility will enable us to experiment with users who
have real needs for information and thereby to relate our
research to its operational implications. To accomplish this,
we will place terminals in areas where they can be used by
library patrons. Both the placement and the period of use of
these terminals will be determined by the experiments planned.
It is anticipated that these terminals will remain in place for
at least three months to allow time for patrons to learn how
to use them.

A number of conditions must be fulfilled before such "live"
testing can be undertaken. The three most important are the
realization of the basic search and retrieval system organized
around the visual (CRT) displays and the basic internal record
formats, the internal (to ILR) experimental use of this system,
and the modification and improvement of the system prior to its
experimental use by library patrons. We expect that at least
a year and a half will be required before making the system
available for experiments with users outside the Institute of

-5 -

Library Research. This is because of the need for time to make
the system relisble and its use easy enough for it to be accepted
by library users. Thus, the second phase of the study will con-
sist primarily of a continuation of the "setting up" activities
concerned with the facility and the associated support components,
such as software for data base preparation and for file handling
and access. In addition, a considerable amount of development
and analysis is needed with respect to the following:

To expand the internal processing format to accammodate
augmented bibliographic records for non-monograph
materials.

To implement 'a data compression method to convert back
and forth from internal processing format to mass
storage format.

To expand the formats to encampass Cyrillic records.

To implement a reasongbly efficient program system as
a foundation for the ready development of user
interface progranms.

To implement user assistance routines such as those
providing proper name equivalence classes.

To implement storage allocation algorithms based upon
quantitative analysis of the file parameters.

Such & list can be indefinitely expanded. However, all
of the above have been given at least initial effort during
the current phase a.d we hope to accamplish work on all of
them during the coming phase. '

—ee

—- -

ITI. FACILITY ESTABLISHMENT

A. GENERAL

A facility for experimenting with the on-line organization
and search of bibliographic records, requires equipment, pro-
grams, and data bases. Work has been performed during the first
phase to plan this facility and to begin development of it. 1In
addition, some analysis using the facility has been initiated.
An overview of the facility and its major components is sche-
matically depicted in Fig. 1

1. Eguipment. We plan to implement the facility on two
closely related sets of equipment: +the IBM 360 model 40 com-
puter system with mass storage and cathode ray tube display
terminals at Berkeley; and the IBM 360 model 75 with similar
peripheral equipment at Los Angeles. At present we are utilizing
two mechanical terminals in Berkeley. The Los Angeles system
has IBM 2260 displays.

2. Programs. Initial programming has been performed on
many aspects of the system. We will continue this programming
and implement it on both computer systems. The following are
examples of programming that has been done or that is planned:

a. Monitor system. At precent, monitor systems to
provide terminal operations are operative at both Berkeley and
Los Angeles. The systems are not designed to the same conven-
tions, however. In order to implement common programs to
operate within these systems, we plan to modify the Berkeley
monitor system to bring it into conformance with the more ad-
vanced Los Angeles monitor.

b. Data base programs. Programs are under development
both to provide the data base (both records and file structure)
and to search it. These programs are now being used for mono-
graphic files and will be used for journal article records.
Initially the file access programming has been restricted to
the development of a basic search aud retrieval system utilizing
temporary formats for monograph and journal article records.
Following this, we will extend the system to utilize our internal
storage format. This format has been fully defined for mono-
graphic records. However, it will be extended to include other
types of records in the file structure.

Programming of file handling operations will continue
throughout the study. As soon as the basic search systenm is
in full operation, however, we will make it available for

internal (to ILR) use in the data base development effort. We
will augment the existing computer programs, dividing the

effort between the internal file handling operations and the
user interface procedures. To guide part of this augmentation,

T e Sl ST

FIGURE 1:

SCHEMATIC DIAGRAM OF PROJECT FACILITY

COMPUTER CENTER

| (BATCHE MODE)

rF—_——————— T
| | |
| | N—___ |
I | S~ |

Conversj.on\ [I Data |

Programs . I Base I

(Level II)/ | | |

I I (Mass |

I I Storage |

LC MARC tapes | | —~ |

Santa Cruz tapes | | & I

ete. I | Computer '

Lo o e e e] N P I

- : > :

| FILE HANDLING & SEARCH ' L__ & T ___1
: (ON-LINE MODE) :
| |
I pec. Proéessors I
| (Lével II) |
| |
| Monitor |
I (Level I) I

| L

| Y |
R F i

r—_———r-—-—— = -1

| |

AN ! !

I Ana.lytic Output I

| Programs Programs I

| \ (Level III {Level II) |

| |

REMOTE LOCATIONS | |

rFr—_-—————- | |

‘ ca og,

: Terminal :User : liographies :

I | User | DATA BASE ete.) I

| _ar//"l I | PRODUCTS, or |

I Terminal | |User | ANALYSES,) I

N I | ETC. |

|

|

|

we are now developing a quantitative analysis of the effect of
file structure on retrieval operations. We will then develop
programs to set up the alternative file structures which our
analysis indicates to be of interest.

As soon as our basic search and retrieval system is fully
available, we will monitor the performance of the system users.
In this monitoring process, we will keep a precise machine-
readable record of the two-way interchange between the user
and the system. We are now planning how to keep and identify
this "history™ record so that useful analyses can be performed.

As an example, one such investigation to be carried out is
that of determining common errors which are made in keying
bibliographic data. In addition to using the terminal system
to obtain data on error, we will study our off-line data base
input operation to analyze the nature of errors which are made
in conversion keying. Following this we will develop automatic
correction routines and study their behavior. While the cor-
rection routines would have to be combinatorial in nature if
they are intended to be exhaustive, it is our hypothesis that
certain types of errors occur with considerably higher frequency
than do others, and therefore useful heuristic routines can be
developed even though they may be partial in their effect.

Such analyses are expected to lead to the development of
routines which can assist the non-expert user in obtaining the
materials he desires. Therefore, we anticipate programming
these routines and incorporating them as part of the search
system available to the general user.

We anticipate that large amounts of programming will be
required to provide the user interaction programs. To support
this programming we are developing the LYRIC processor (at
Los Angeles).* This processor will facilitate the rapid develop-
ment of the user interface programs. PILOT, a similar processor,
is being programmed in PL/1 at UC, San Francisco. Although we
anticipate that LYRIC will be preferable, we will experiment
with both processors.

c. Analytic programs. To support our research, many
special-purpose programs will be required. The analysis of error
mentioned above will require programs of this type. Others will
be concerned with analysis to investigate the issues discussed
in the Introduction, such as record encoding, file structure, etc.
These will continue to be defined .md developed throughout the

study .

3. Data Base Progress and Plans. The data base develdp-
ment, initiated during the current phase, will be continued.
The monograph records will comprise the largest portion of the
data base., As an initial data base for the project, we have

¥See Appendix IIT. -9 -

—— s s " - o e RT C * wemmmer e caaas T .

utilized 75,000 catalog records which were available in machine
form from the Library of the University of California Santa Cruz
campus , and 40,000 records of the Mathematics Citation Index
available at Los Angeles. These records have been utilized in
their original format. However, we have been developing record
formats to be used on a continuing basis for the facility. The
record formats have been developed to be compatible with the
Library of Congress' MARC II format in order to provide the
greatest likelihood that the records and programs will be of
use to others. The results of this work are presented in
Section III.

We will continue to develop our data base in order to
obtain a file of a size that can support meaningful experimental
work with regular library users. Our objective is to obtain
an on-line file of at least 500,000 bibliographic records.
During the second phase of the project we hope to complete the
establishment of a file containing a minimum of 1/4 million
records, from three sources: by obtaining MARC II records, by
original input, and by converting the Santa Cruz records.

We have developed procedures for original input of mono-
graphic records. We are considering a production plan which
utilizes both on-line terminals for the search of the existing
data base and off-line terminals for the large scale keying of
original input. We have defined a statistical quality control
procedure for maintaining the accuracy of this input process.
During Phase II we plan to test, modify and re-test both the
extraction and the original input procedures.

Because there are a number of existing bibliographic files
in different machine formats, we have been investigating the
proolem of utilizing such files through the method of routines
for automatie conversion of such files to a common format. Our
first task has been to develop computer routines Tor converting
the Santa Crus format (a relatively simple format) to the MARC II
format (a complicated format). Through of dubious practical
value unless the file to be converted is of considerable size (we
believe it to be in excess of 100,000 records), the problem is of
considerable research interest since its basis is the recognition
by computer of the components of a bibliographic entry.

Though data base development is not one of the central
concerns of our study of on-line file organization and search,
there are significant problems involved in such development,
and the inescapable requirement to develop a data base has
immersed us deeply in these problems. BecBuse many of these
Pproblems are of general interest but are not dependent upon
the rest of our work, we have dealt with our solutions to them

separately in Section IV.

L, Analysis of File Structure. An analysis of file

structure was initiated recently. Our objective is to create
- 10 -

e
§

”
s 2
z\

i VO—

L

an analytical model of the retrieval system, which will de-
lineate the relationships between access time, the cost of
direct-access storage and the strategy for allocating space.
Initially this study will be limited to trade-off analyses
between a few variables. We will then test the model by
orgenizing the file in the menmner indicated and check the out-
come of the predictions. This model will, for example, provide
information on when it is more economical to divide a logical
index file into two or more physical index files, in mass
storage. To support this work, we have observed the relationship
between the length of the beginning portion of an identification
key (e.g., author name) and the degree of uniqueness this
identification provides in the retrieval of records from the
Santa Cruz file. For certain purposes, the key might ultimately
be composed of portions of several fields of the record (see
Chicago search code¥).

In order to make it possible to experiment with alternative
file designs, we must have flexible programs which are capable
of maintenance and retrieval without re-programming even though
the file structure is modified. To accomplish this, we will
continue the attempt to develop a structure which is capable of
containing a wide range of content, and from which any record
or sequence of records can be retrieved by using a common re-
trieval routine. The programs have been designed to be para-
meter-driven, so that changes in file structure may be easily
accommodated.

5. Other Analyses. We have barely begun to identify and
study the central issues associated with on-line organization
and search. Among these, the grouping of records or parts of
records by similarity or other relations pertaining either to
subject content or to user need, has received growing emphasis
in the Project.

We have programmed the first of a set of routines for the
equivalence class coding for author names, title words and other
substantives (reported in detail in Section III).

Associative indexing by statistically-generated means, as
a technique for providing improved retrieval, can be effective
for material which is indexed in depth, i.e., with a large aver-

age number of agsigned index terms per document. We plan to
investigate the utility of such associative techniques on mono-

graphic records, which by present cataloging practice have a much
lower average number of assigned index terms per item - i.e., sub-
ject headings per document. As part of this study, the subject
headings in the file will be analyzed for characteristics such as
distribution by date of publication, co-occurrence, and the num-
ber of headings per document.

*ngne, Charles T. '"Tagging Codes." Chicago, University of
Chicago Library, Feb. 190T. (u%g?blished report) various pagings.

A,

Our work on formats tailored to the various system functions,
i.e., input, processing, ete., leads naturally to concern for data
compression techniques. Our concern here is to provide efficient
representations of the records when they are in the mass storage
device. We plan to initiate a task to analyze the applicability
of known data compression techniques in terms of their encoding
and decoding effort together with the resulting amount of space
required to represent bibliographic records.

B. EQUIPMENT
1. Characteristics. In selecting a system for our exper-

iments with bibliographic data, we must trade off the following
six. desirdble characteristics:

a. The maximum amount of large-capacity, random-access
storage capacity that can be attached to a central processor.

b. The least difficulty in attaching remote terminals,
of both the mechanical and cathode ray tube (CRT) variety.

¢c. Machine logic capable of handling the maximum
number of individual characters in order to facilitate handling
of the wide range cf typographic characters encountered in
bibliographic data.

d. That to the utmost extent possible, system software
especially in the realm of physical I/0, be provided by the
manufacturer of the machine.

e. That this full system be available on a time-shared
basis during as much as possible of the regular working day.

f. That it be the most common system in use for
bibliographic data, in order to share software.

In choosing between the two systems available to us at the
Berkeley campus camputing center (an IBM 360, model L0 and a
CDC 6400), the IBM 360 provided the better compramise among this
set of desired characteristiecs.

2. Main Frame. The central processing unit (CPU) of our
360/40 has a 128K byte memory. Of this, the Operating System
takes approximately 30K. The remaining core storage is divided
into two partitions. In one of these (approximately 20K in size),
utility programs are run (such as tape copy operations). The
remaining 80K bytes are available for other applications. It
is in this larger second partition that we operate when on-line.

3. Mass Storage. The concept of the on-line system nec-
essarily involves the use of randam-access mass storage. Three
types are generally available for 360 attachment: drum, disk,
and magnetic strip (also called éata cell). Drum storage was
rejected becaurs of its limited capacity. Magnetic strip storage

e by

o)

e

was considered, but rejected for use during Phese I of the pro-
Jject because of persisting hardware failures. (These problems,
we understand, are currently being corrected.)

Given our requirement for very large random-access storage,
the IBM 231k disk storage facility appeared particularly satis-
factory since it is a supported unit in terms of IBM software
and has high operational reliability. This device provides a
maximum storage capacity of 233 million characters. However,
the device's effective capacity is approximately 150 million
characters since some space is required by the system in order
to store the operating system programs and control data. The

. access time (i.e., the average time required to position the
access device to the desired record) for the device is 100 milli-
seconds. The data transfer rate (i.e., rate at which data is
moved between the device and core storage) is 312,000 characters
per second.

4. Terminal Equipment.. In our experiments, we have planned
that inquiries made to the file will be processed over remote
terminal equipment. This means that processing programs must
operate in a tele-processing enviromment where several terminals
are busy at the same time. Since the transfer rate of characters
over phone lines to a terminal is relatively slow, the computer
central processing unit (CPU) while servicing one terminal is
waiting virtually all of the time. It is this waiting state or
unused CPU time that makes time-sharing with multiple terminals
an attractive alternative, since with the attachment of a few
additional terminals the CPU is utilized more fully, with little
noticeable increase in delay time to individual terminals.

Currently, we have two mechanical terminals attached to the

360: & Teletype model 35 ASR and an IBM 2740 communications
terminal. Data transfer rate to each terminal is approximately
12 end 15 characters per second, respectively. Each has a pri-

vate line connection over voice-grade telephone lines. The
teletype can read and punch paper tape, a feature useful in
situations where data can be prepared before going on-line, in
order to obtain the maximum input rate when on-line.

Mechanical terminals, as we have indicated, produce hard
copy output which in some instances may be desirable. However,
in our early work it has become evident that the slowness of a
mechanical terminal as it types ocut, character by character, the
results of an inquiry, does not meke it particularly attractive
for most library retrieval applications. Therefore, we are now
plenning to connect CRT terminals for inquiry and display of
search results. As a shared task among several ILR projects
we have completed an exhaustive inquiry into the characteristics
of currently available CRT's. A major drawback at this time is
that, with the exception of extremely expensive terminals, the
maximum number of displaysable characters is under 100, a number

not nearly sufficient to meet our capacity requirements for the
-13 -

Lhee SEREM

RS o -

ot

-2

oz

display of bibliographic data. Even so, the high volume of data
output associated with bibliographic search makes it desirable to
incorporate CRT's as soon as possible, in order to facilitate
testing on a basis superior to that achievable with the mechan-
ical devices.

C. COMPUTER PROGRAMS

Three levels of programs are required for the facility we
are developing. On the first and most general level is the
monitor system which provides for remote terminal operation.

The second level programs carry out the various operations of
file generation, organization, maintenance, retrieval and dis-
play. The third-level contains programs which analyze the per-
formance of the system, to guide its development. The second
and third level programs do not necessarily operate in an on-line
mode,

1. Terminal Monitor System.

a. Introduction. During the course of the year we
have developed an experimental Terminal Monitor System (TMS)
which is designed to facilitate both communication between remote
terminals connected via phone line to the Computer Center's
IBM 360/40, and data transfer between the 360/40 and the sattached
disk storage facility. All files are maintained on ILR's private
disk facilities and are not accessible by other 360 users.

IMS has a time-sharing design which allows multiple terminals
to operate seemingly at the same time. It allows the user to-
carry on a limited dialog with the camputer, and will wait for
the user to enter his response before continuing processing.

IMS operates as a user subsystem of the manufacturer-supported
Operating System/360 (0S) in a partition of core storage of
approximately 80,000 bytes.

TMS performs five general functions:

(1) Text entry: the establishment of new files which can
later be processed.

(2) File search: retrieval and display of records fram
within wn existing machine file.

(3) Text editing: addition, replacement, and deletion of
character strings, individual records, and blocks of records
within an existing file.

(4) Compilation of source programs: conversion to execu—
table instructions from source language (FORTRAN, PL/1, and 360
Assembler) entered in the manner of text.

- 14 -

(5) 1Interface to special user-written routines: capability
for terminal user to load and execute special-purpose programs.

The logical structure of ™S is built around a set of two
supervisory routines which maintain control over a series of
processing programs (called processors). It is the processors
which perform the file handling functions listed above.

b. BSupervisory routines. One of the two supervisory
routines (TXIO) has the function.of coordinating input/output
operations to the terminals attached to the system. It does
such things as directing message transmission to the proper
terminal, and the analysis of which user has sent a message
when one is received. It also performs error recovery and
recording (when a transmission error has occurred), character
code translation on both incoming and outgoing messages (since
each different type of terminal has its own character code),
and messege attribute and length analysis.

The other supervisory routine (BASE) is the overseer of
both TXIO and the set of processors. Its function is to bring
a processor into core storage when needed by a terminal user.
After loading & processor, the BASE routine delegates control
of the terminal to the processor, which then communicates directly
with TXIO to accomplish terminal input/output. If more than one
terminal requests the same processor for simultaneous use, the
BASE routine does not load another copy; both terminals use the
same copy. The arrangement which allows sharing of a processor
in this way is called "re-entrant coding". The amount of core
storage in use at eny one time is thus a function of the number of
terminals on-line, the space required by each terminal's pro-
cessor, and the degree to which terminals are sharing processors.

Processing programs are of two sub-types: 1) utility pro-
cessors, which perform general functions and are used by many
users and 2) specialized processors written by terminal users
for their own file handling applications.

ec. Utility processors. Currently there are seven util-
ity processors. The specific instructions for existing processor
use, showing the formats of both TMS messages and terminal user's
responses, appear in the Terminal User's Manual (See Appendix II).
The first three processors are used for general file handling
operations. The last four are used in the development of new,
user-written processors. The processors are:

(1) Text processor. Enables the terminal user to create
a new file. Each record in this file is 80 characters in length,
of which 76 characters may contain user data and U4 characters
the key by which a record can be retrieved.

(2) Search processor. Used to display one or more records
fran an existing keyed file. It has the ability to search on

the full key or on a portion of a key.
- 15 -

(3) Edit processor. Used to edit existing files. It is
possible to perform replacement, additiorn, and deletion functions
on character strings within a record. In addition, one can also
add or delete entire records.

-(L4) Assembler language processor. Here a source language
file created as text is given over to the 360 Assembler to
generate object (machine language) instructions. This, and the
following PL/1 processor, are used to generate new programs which
may become part of the processor library.

(5) PL/1 Language processor. Used to generate object code
fran PL/1 source langusge stored as text.

(6) A link processor. Has as its input object code (gen-
erated from either the PL/1 compiler or the Assembler) and gen-
erates a new (or replacement) processor.

(7) LYRIC. A processor for user interaction routines,
which is not yet fully implemented (See Appendix III).

d. Specialized processors. Currently there are
approximately ten specialized processors. The most important
of these, the file handiing programs, are discussed below.

All processors exist as load modules, and are maintained as
individual members of & partitioned file. Each processor is
planned to be re-entrant, so that multiple use does not require
separate copies of & given processor. A terminal user writing
a specialized processor must adhere to several conventions: He
must observe standard calling conventions, and must provide error
recovery which returns control directly to the calling program
(the BASE routine). Terminal I/0 is accamplished through calls
to special interface routines which are link-edited into the
user's routine during execution of the LINK processor.

. 2. File Handling Programs. Two classes of programs have
been written which have as their focus the development and use
of the project's data base. The first class is concerned with
the generation and maintenance of the master file and its
associated index files. These programs are batch-oriented and
are not operated as part of the Terminal Monitor System. The
second category consists of programs which are terminal based
(i.e., processors) and which are concerned primarily with re-
trieval fram the existing bibliographic files.

a. File generution programs. Fig. 2 shows the file
- generation process. The names in parentheses identify camputer
routines required. These file generation programs provide for
both original input and extraction from existing machine files.
- 16 -

FIGURE 2:

Origlnal Inp
(ILR Input Fo

Translste

Input
Conversion

A & Edit

Routines (INFOCAL)

Diagnostic
Printout

y

(—_ O

Proof No '
//rRead Error| Cervify
Errorsztund

Diagnostic
Marked for
Re-keying
Off-line
Correction | OT
Typing On-line
(TMS: EDIT)

/ILR Tnput Format) (Updated

FILE GENERATION PROCESS

File
Translation
(TRANSCOF')

(ILR Input Format)

Uncorrapted &

Correctef
Transactjion :
ite Create

Transaction
(INFOCAL File

)
Certified &

(Processing
Format)
(Tape or|Disk)

(Carryover)
TO UPDATE
OF MASTER FILE

- 17 -

-

P

The most important of the programs written for this purpose
is the one called INFOCAL, which converts data presented in input
format to internal processing format. INFOCAL is written in PL/1.
Unfortunately, it is so large it is very slow. For continuing
operation, it appears that an assembly language routine will be
required. This program is designed to do several things before
a record is actually placed in the master file. First, every
new record entering the system may, as an option, be printed out
on an edit listing, so that it can be proofread for errors in
the text. Second, the program does a certain amount of syntac-
tical checking of field codes and other control information,
and prints diasgnostic messaeges on the edit listing. At the same
time the program also places a copy of each new record in a
transaction file written on disk storage as a keyed file.

Corrections are written on the edit listing by the proof-
reader and changes to the file may be keyboarded either on-line
via remote terminal, using EDIT, the edit processor available
under the ™S, or off-line for processing in a batch-oriented
update routine. If a record has no further corrections, it may
be certified either off-line or from the terminal as ready to
be transferred from the transaction file to the master file.

On the next successive execution of the INFOCAL routine, records
marked as certified will be written out and are ready to be

added to the master file. Routines to accamplish this maintenance
cycle are now in the design stage.

Records carried over fram the existing transaction file,
which are not yet certified, must go along with new records into
the new (updated) transaction file.

The file translatvion program, TRANSCOF, converis the existing
Santa Cruz data base fram its original record format to the ILR
input format (that is, the record structure accepted by INFOCAL).
This routine, still under development, is being written in assem-
bly language as a result of our operating experience with PL/1.

We planned to produce our input format so that if there are
changes to the internal format, only INFOCAL will need to,be
changed. Additional discussion of TRAWSCOF is provided in
Section IV.

b. Specialized retrieval processors. In order to
begin experimentation with terminal-based search algorithms,
we placed 75,000 records fram the Santa Cruz file on the 231k
disk facility. These records are still in the original format,
rot yet having been converted to ILR internal format. To retrieve
records, we have written a primitive processor (SCAT) which allows
a terminal user to type an author's name over the terminal, and
to receive a list of documents indexed under that name. Although
we have not generated them, other search keys could be included
readily. However, we did not include them in this initial test
because Boolean cambinations of the terms would not be possible
with SCAT. - 18 -

For the user, the search tecimique is quite simple (and,
of course, limited). The contents of the file can be displayed
by typing an author's name. Retrieval will be made of all
records for which the left-most characters of the key match
those characters input over the terminal by the requestor. For
example, if the requestor typed the string "GARN" when asked to
place his request, the program would retrieve all records whose
key begins with these characters. Currently, three authors
match: "Garn, Stanley M.", "Garner, Wendel R.", and "Garnett,
Arthur Campbell". If he had typed "GARNETT", he would, of
course, match only on "GARNETT, ARTHUR CAMPBELL".

The master Santa Cruz file contains full bibliographic
entries. When printed out on the terminal each citation occupies
from five to twelve print lines. It becomes evident very quickly
that, given a mechanical terminal, scme means must immediately
be constructed to enable the user to limit the amount of material
which is typed out before him. Display of a full record of
average size (L400-500 chs»acters) consumes about 1-1/2 minutes.
Ten of these would requiie 15 minutes. For the future, it would
thus appear that mechanical terminals will not be suitable for
on-line retrieval of bibliographic data.

Because of such time delays, we have initially provided two
mechanisms for limiting output. One of these is to request the
user to indicate how many entries he will accept in response to
his search request. The other is to allow him to display index
entries only. An index entry contains only one line of data
which gives the full key (full author name) and the address of
the master file entry (its sequence number). Upon completion
of the index file search, the user may then request full cita-
ticns by record number.

Although the SCAT processor is quite limited, it has pro-
vided us with immediate experience which has been useful in
determining the types of retrieval capability to be incorporated
in future search progroms. Further, we now have had experience
with multi-level file structures of the type we will be using
throughout the study.

3. Analytic Programs.

a. General purpose. The third level contains the
programs concerned with the analysis of the system - its content,
structure and operation. These "third level" programs are not
a component part of the system providing file maintenance and
search; rather, they operate independently to obtain information
to guide the project.

Although no programming on this level has yet been accom-

plished, we anticipate that somfgof these programs will be used

quite generally. For example, one kind of general program will
be for extracting information from & history file containing

the records of past system use.. This history file will be
maintained as a basic part of our terminal handling program.

In this way we will accumulate & history file which can be used
to make the same sequence of inquiries against file structures
which have been developed using different organizing strategies.
Tn these reruns the results of the searches will not go out over
the terminals. Instead, we will record the time for the storage
access portion of the query processing in order to obtain com-
parsble timings for the different structures. We will use this
approach to study factors such as prediction of relative fre-
quency of access to the records in the file, as & basis for
reorganizing the files in order to minimize average access time
for the individual query.

b. Special purpose. To support our reseerch, many
special purpose programs will be required. Examples of these
programs are those to analyze the frequency of co-occurrence
of index terms in the data base; the time pattern of requests
for file information; and the effects of a file compression
technique on storage space and encoding - .decoding time.
Programming of such routines will continue thrcughout the
project.

D. DATA BASE DEVELOPMENT

1. Monograph Data Bases. To begin the study, a brief

survey was performed to determine the availability of library
catalog files which might be used. While there are numerous
such files, those of UC Santa Cruz library, Stanford University
Undergraduste Library and LC MARC I¥* seemed most camplete and
accessible. Arrangements were made to obtain all three files.
However, the Stanford file has not yet been obtained.

Before our work with the MARC I records had begun, the
Library of Congress announced the MARC II format. Therefore,
we decided to orgenize the major work of the project around this
new format and in the interim until it is available to concen-
trate on the use of the Santa Cruz file. A brief description
of the Santa Cruz format is provided in Appendix V. Section III
of our report provides the results of our work which concerns
the design of these records. Section IV provides a description
of our resolution of the problems associated with the develop-
ment of & large data base.

5. Other Data Bases. In addition to the task of acquiring
existing files of monographic materials, a further goal of the
project is to study the problems of integrating and searching
files of records for other materials, e.g., Journal articles,

¥The Institute at Los Angeles wes a perticipant in the MARC Bilot
Project experiment. - 20 =

music, ete. The availability of bibliographic machine files
on the level of the journal article is placing increasing
pressure upon the library community to provide computer-based
access to these articles. Thus the issue of organization and
search of such files is as pressing as that for monographic
material. At the same time, it does not appear to require a
uniquely different approach to its solution. Therefore, we
are including journal article machine files in the study.

Although these records necessarily vary in content fraom
that of monograph catalog records, compatible record formats
may be developed. This is a goal to which the Library of
Congress MARC Project has addressed itself in the development
. of a common machine format for bibliographic and other library
materials. That is, the MARC II format is designed as a data
exchange medium, with a structure intended to have "wide appli-
cability to all types of bibliographic data" and to be "hospita-
ble to all kinds of bibliographic information." For "any given
type of item, e.g., serials, maps, music, etc., the camponents
of the (MARC II) format may have specific meanings and unique
characteristics."¥

Whether it will be possible to so integrate the different
records remains to be seen. However, we are working on the
integration of a citation index file which is a non-monograph
data base. Work has been carried on at UCLA to extend the
Citation Index in Mathematics, which was initiated at Princeton.
The nature of the UCLA data base and its preparation is described
in the Appendix V. At this time, we have no significant results
to report.

E. FILE STRUCTURE

1l. Inverted File Structure. In the first phase of this
study we began a detailed examination of file structure. Early
work in this ares indicates that the way in which files of
bibliograrhic information are structured profoundly influences
both the time required to gain access to a record in the file
and amount of storage space consumed by the files. In a large
file it is evident that one cannot conveniently make a sequential
search of the entire file in order to satisfy a unit request for
information. As a result, files usually have been structured
in what is called an "inverted structure". In this structure
gll logical records are held in a "master file" with auxiliary
files (called index files) created which allow quasi-random
access into the master file. '

¥Avram, Henriette D., John F. Knapp, and Lucia J. Rather. The
MARC II Format: A Communications Format for Bibliographic Data.
Washington, D.C. Information Systems Office, Library of Congress,
1968. p. 10. o1 -

It-is possible to define a master file structure from which
records could be retrieved by some given portion of it, called
a key: for example, author. However, since in most computer
systems a record has only one access point, its address, we
must define additional files which provide multiple access
points into the master record. These additional files, the
index files, contain records which point to and allow us to
locate and access the information contained in master records.

In our system the full bibliographic record comprises the
master record. The content and format of each master record
is described in detail in Section III. The full set of master
records will be called the master file. The content of an
index record consists of the index term (the access point), and
pointers, one to each master record which has been indexed under
that particular term. One record in an asuthor index file might,
for example, be:

SMITH, JOHN W. | A A A A,

In this record, SMITH, JOHN W., is the access point to the
index records and Al’ A,, A3 and Ah represent pointers to four

different master records which have been indexed under this
access point. Becsuse index terms have varying numbers of
documents indexed under them, the length of the logical index
record is variable.

For our initial operations, this is the type of structure
we have been using. However, this approach is not adequate to
our purposes in developing a system for experiment. During the
course of the study we will want to maintain maximum flexibility
in the operation of the system. We will want to split logical

records, create new index files, partition them, relocate records
and files, and make new groupings of records. Such menipulations

will allow us to explore the relationships which exist between
access time and storage cost. For this reason we are developing
a more general system employing the basiec file structure de-
scribed below. As a part of this we are writing a set of
utility retrieval routines which operate independently of file
content.

2. Randam-Access Device Characteristics. In our experiments

we are using a large-~capacity disk facility to store the bibli-
ographic data files used. Since the way the file is structured
is, in large part, determined by the methods with which data
can be physically stored on a disk, it is necessary to discuss
briefly the ways in which information can be stored on and

retrieved from a disk device. -

3

ol Bl B3 23

a. Storage modes. Data is recorded on a disk in

recording surfaces called tracks, all of which are of equal
capacity in the 2314 facility. Movement of data written onto
or read from a track is done in units called "block" (also
referred to as physical records¥). Normally, the size of a
block cannot exceed maximum track capacity. We have now
experimented with two general types of file: 1) keyed files
and 2) non-keyed files.

A keyed file is one in which each logical record can be
retrieved by supplying some unique portion of it called a key.
In general, each record may have only one key which must be
identified at the time the file is created. Non-keyed files may
be retrieved only by address. This address may be the actual
position of the record on the device (that is, the track number
where the record resides), or it may be a relative address (that
is, its position relative to the beginning of the file). Actual
addresses are rarely used, since this technique makes a file
ummovable. Relative addressing allows the file to be moved to
any position within the device.

Whether keyed or non-keyed, the very large size of our files
and the relatively high ‘cost of direct-access storage, make it
desirable that the data be placed on the disk in as compact a
form as possible.

Disk space is used most effectively when logical records
are blocked to maximum track capacity, and all blocks are of
fixed (i.e., equal) length. This is because fixed-length blocks
involve less overhead both in terms of access time and storage
space than do variable-length records. Blocking to maximum
track capacity also involves less device overhead since each
block must have a given amount of system control information
stored with it.

To illustrate: Track capacity of a hypothetical device
is 3000 characters; and each block must have 50 characters of
srstem control information stored with it. If we allow only one
block per track, we must &llocate 50 of the 3000 characters for
control information. This leaves us 2950 characters for the
block of data. If we allow two blocks per track, the system
requires 100 characters with 2900 remaining for the twc blocks
(1450 characters in each). Fig. 3 shows figures for differing
lengths.

%¥As distinet from logical records; i.e., logical units of data.

- 23 -

FIGURE 3: BLOCKING STRATEGY

Track capacity = 3000 characters
System overhead = 50 chars./block

NG

Number of Total Total Space Size of
Blocks per | Allocation Remaining Each

Track for System for Data Block
Overhead

50 char 2950 char 2950 char
100 2900 1450
150 2850 950

200 2800 700

To summarize: All blocks, whether in a keyed or non-keyed
file, should be both fixed-length and blocked to maximum track
capacity.

Since most bibliographic records are variable in length,
and we wish to use fixed-liength blocks, we are adopting a
technique which translates variable-length logical records into
fixed-length blocks of maximum track capacity. A different
strategy is required for keyed files than for non-keyed files.

b. Non-keyed files. This structure involves sequential
placement of the variable-length logical records into a block
sized buffer in main storage; when that buffer is full, the
entire block is written to disk. In order to retrieve a logical
record we need to know: 1) in which block it begins, 2) its
relative position within the block, and 3) .its length. 1In the
example in Fig. 4, a total of si:x complete logical records
(denoted by Ln) and part of a seventh record have been mapped

into two physical blocks.

FIGURE 4: BLOCKING A NON-KEYED FILE

Bl
ock 1 Ll L2 L3
1]
Block 2 L3 (cont'd) Lh L5 Ll,S L7
A
Partial
Record
Positional l
Scale Lttt vttt e b p ettt
1 1000 2000 3000 4000 5000 6000

The first logical record (Ll) is of length 2000 and can be

retrieved by first reading block 1, then locating position 1
within the block. Similarly, the second logical record (L2)

can be addressed by Block 1, Position 2000. It has a length

value of 1500 characters. Note that it is necessary to break

some records across track boundaries, so that one logical record
may actually be contained in two (or possibly more) blocks.
Therefore, when a logical record is broken across track boundaries,
a signal must be inserted to indicate whether or not the record

continues into the next block.

Thus, any variable length logical record can be retrieved
by supplying its block (or track) number, its position within
the block, and its length, which together constitute the address
of the record.

c. Keyed files. To map variable-length keyed files
into fixed-length keyed format¥, we separate each logical record
into two camponents. The first component, a fixed-length, keyed
record, points to the varigble length data portion. For example,

the two records:

KEY 1 DATA 1

KEY 2 DATA 2

¥The operating system data management facilities currently require
the index entry in a keyed file to be fixed-length, specifiable by

the user.
- 25 -

B e - ———c R Uy

—r

would each be split into two records. The first set is the
keyed records: ‘

KEY 1 ADDX1

KEY 2 ADDX2

ADDX is a pointer field that contains the address of the variable
length data portion.

The second set of records contains the data portions:

DATA DATA

ADDX ADDX

These are placed in a variable-length, non-keyed file and treated
as discussed above.

3. Multilevel File Structure and File Linkasge. Central to
an understanding of a genersl retrieval routine are the concepts
of record segmentation, file segmentation, and linkage. An index
file may, for example, be composed of two distinct files which
are linked together. The mechanism which links two segments
together is called a pointer. In the simple inverted file
structure, the poiaters in the index record connect to addresses
of master records. In the same way, two distinct physical files
may be linked to form a single index file. Similarly, a master
record itself might be divided into two or more parts, one part
containing those elements of the logical record which are used
frequently (e.g., main entry, title statement, imprint and call
number) and the other portion(s) of it which are required with
lesser frequency (bibliographic notes, etc.) Thus it is possible
in each case to have a record which has both content and a pointer
to another record, or portion of & record. We shall call the
individual records which aré linked together (by pointers)
linkage segments. The linkage segment is conceptually independent
of its logical content. This file structure is similar to that
of a linked 1list file. In the conventional version of the latter
file structure, the master records themselves are usually not
segmented.

Why should one wish to subdivide a master record? One can
answer this question both at the level of our requirement to

PRGN S

s, mememaeny

whw

develop a system for experimentation, and on the level of the
design of an operational on-line bibliographical retrieval
system., Taking the latter first, it is most likely that the
variable length records will be segmented into fixed block sizes
in order to simplify the problems of input/output and storage
allocation. If one places the most frequently used parts of the
record in the first segment then following segments will not
need to be obtained as often as they would if the allocation to
segment were independent of use. Thus, the capacity and response
of the system would be improved. This improvement would be even
more dramatic if two random-access storage facilities are used,
with the high frequency elements allocated to the one which is
fast and expensive, while the lower frequency elements are
allocated to the other slower and less expensive unit. Such
storage of segments on the basis of access time of the device

we call "horizontal segmentation.

One can also perform "vertical segmentation", that is,
within the file, the records themselves may be arrayed by
frequency and divided into groups containing the most-used and
least frequently-used records. Here again one could place the
most frequently used records on the fast device and the least-
used on the slow device.

The answer for our facility derives from the comments just
made. These remarks indicate a conceptual solution to the
problems of file organization. However, it is a solution which
raises a host of questions about the relation of segment sizes,
element frequencies, access time and cost, and storage costs.
These questions can only be answered by analysis and experiment.
Therefore, we wish to set up our computer routines such that
varieties of segmentation can be accommodated in order to be
able to carry out relevant experiments.

For our initial experiments we have chosen a simple file
structure. It consists of:

a. A master file consisting of records stored without keys.

b. Index files for author, title and subject. Each index
file consists of two sub-files.

(1) a keyed file (called the "access file") in which the
access point is the key and the data field contains a single
pointer to the second sub-file.

(2) the "address file", a non-keyed file containing a
variable number of pointers to the master records which have
been indexed under the term represented in the access file.

To illustrate: Four master records have been indexed under

the term CARTOGRAPHY.
- 27 -

o m— v — o
e Tty e AR E . med o T W

The entry in fhe access file for .this term would be:

CARTOGRAPEY - ADDX

where the term CARTOGRAPHY occupies the key portion of the
record, and ADDX is the data portion containing the pointer

to the corresponding record in the address file. Logical records
" in the access file will be of fixed length, while those in the
address flle wili be variable length.

The address file entry for this term will have four fields
containing the addresses of the master records. The format will
be: '

P S |
////j;///i:://’/// Al Ba | A3 Ay ///::///i:///i;,

ADDX

where the shaded part indicates other data contained in the

track, R is the record, and Al’ A2, A 3° Ah are pointers which

contain the agddresses of the four'master records.

k., Uniqueness of Identification as a Function of Key Length.
A significant issue in the study is the number of characters which
are required to uniquely identify a record held in the systenm.
This is important for several reasons. First the more characters
which must be input through a terminal, the longer the encoding
‘process becames and the less capacity the terminal will have for
handling requests. Second, the more characters which must be
transmitted by the terminal, the greater the chance for keying
error becames. At best, these errors will be automatically
corrected,®* but invoking correction routines will reduce the
capacity of the system even further. At worst, these errors will
initially cause improper retrieval and thus a partial failure of
the system. Finally, the expected key length for uniqueness
could be used as a basis for index record segmentation. The
objective of the system, therefore, should be to provide search
based on enough characters in the request key to provide a
reasonable amount of uniqueness of the resulting search output,
but with as few characters as possible in order to reduce the
problems of keyboard time and keyboard error.

We have analyzed the amount of uniqueness of author names

¥For example, by use of equivalence class coding techniques
discussed in Section III.E.
- 28 -

e e e - - = Pt £ e —— . | e wr P e w e e s

bt - o

P

as a function of the number of characters of input provided.

The program used distributes the number of catalog records per
unique search tag of given length for author keys. The results,
taken from a sample of 20,000 author names, are presented in

Fig. 5. We plan to run this analysis on title and subject key
fields as well, in order to determine the proper length for those
search keys. At present we are implementing our search routines
so that a search key of any length can be used by the searcher.

Consequently, our search strategy is independent of search key
length, which enables us to experiment with keys of various
lengths.

The segmentation of an index file may be performed on the
basis of key length. In that case, the distribution of the
length of the index terms, or keys, determines the effect of
segmentation. In preparation for the analysis of the effects of
segmenting the index files, we counted the lengths of the call
number field, the author field, and the subject heading fields
in the Santa Cruz machine file. Fig. 6 contains the distributions
of the field lengths for those elements.¥

5. Linkage Control in Retrievai. The retrieval routine
needs to provide access to logical records from two types of
files: keyed and non-keyed; in addition it must be able to
distinguish between data which is content and pointer data. If
a record contains pointer data the routine must know whether or
not to go on retrieving subsequent records in the linkage sequence.
In some cases presentation of information contained in the pointer
field will be enough to satisfy the control routine.

The pointer field establishes a linkage between two logical
records. The pointer field will contain the following information:

A. Type of file pointed to; whether it is keyed or non-keyed.
B. Type of data in the record pointed to:

1) Pointer data only.

2) Content data only.

3) Pointer and content (pointer first).

4) Content and pointer(s) (pointer information
carried as a type of content, e.g., key
itself encoded as the address).

name of the file in which the record resides.

¥Source: Compiled from computer runs made November 1 to Novem-
ber 6, 1967 against Santa Cruz catalog on SCAT 10, 11, 12.
Compiler: Ralph M. Shoffner. Capital letters are counted as
two characters. Note that none of these counts have been veri-
fied and they may contain errors.

- 29 -

FIGURE 5:
UNIQUENESS OF AUTHOR IDENTIFICATION

Number of Characters in Identification Tag

T 8 9 10 11 12 13 1k 15 16

1 || 2866| 3175| 3635| 436h| 5399 | 6319 | 6895 | T288| TL9E6| T656

2 971| 1030| 11k0| 1290(1515 | 1628 | 1732 | 1765 1768} 1770

3 bo2| 518 sSku| 605| 655| 683| 699 | 692 678| 670

b 333| 335| 347| 358| 343| 346} 323 | 322 324 323

5 184 | 183| 176| 200] 201| 203} 204 | 201| 194 190

6 148 | 150| 152| 152] 164| 1bk2| 13k | 128| 128| 127

T 98 92 96 89 91 88 82 81 82 T9

8 60 63 63 62 65 55 56 55 51 51

3 9 8| 73| 73| 66| 58| u7| u7| b2| b1} 39

EHl 10 e 50 4s N 42 38 36 32 30 30

gl 11 39 42 29 3k 26 21 19 15 15 15

51 12 27 28 30 29 23 18 21 18 18 16

S| 13 29 26 25 26 23 26 21 23 22 21

el 1h 2L 21 22 19 19 13 11 10 9 11

2115 20 19 18 18 11 12 13 1k 13 11

w| 16 16 18 1k 13 11 10 T 6 8 6

g 17 8 11 11 1k 12 12 12 12 9 9

=1 18 9 8 9 13 13 9 T 5 5 5

al 19 18| 16| 14| 13 9 9 6 5 5 5

oy| 20 9 9 9 12 8 9 9 T T T

°l 21 1k 10 11 9 6 2 1 1 1 1

8l 22 10 T 9 8 9 L k4 N N N

'% 23 T 8 8 3 2 2 2 2 2 2

Z| 2k L 5 L 5 1 1 0 0 0 0

25 8 6 5 5 3 1 2 2 2 2

26 5 L 3 3 L 5 L 3 3 3

27 3 3 L 5 2 2 2 2 2 2

28 5 5 3 3 3 1 3 2 2 2

29 6 6 5 3 3 2 1 1 0 0

30 7 N 3 1 1 0 0 0 0 0
Notes:

Table entries are the number of unique identification tags
having a given number authors with the same identification tag
(specified by the row value) for the given tag length (specified
by the columm value). The identification tag consists of the
beginning characters of the author field in the order surname,
forname, etc.

Source: 20,000 authors in alphabetical order

Compiler: Naresh Kripalani, March 6, 1968
- 30 -

FIGURE 6:

DISTRIBUTION OF NUMBER OF FIELDS OF LENGTH N

Length Call No.

% Author

1 1

2 0

3 0

L 0

5 0

6 5

T 1k

8 79

9 312
10 1870
11 4770
12 9234
13 12322
1k 6614
15 L8TT
16 5180
17 LL43h
18 3717
19 2095
20 846
21 801
22 656
23 422
2L 218
25 T7
26 6
27 0
28 0
29 0
30 0
31 0
32 0
33 1
3k 0
35 0
36 0
37 0
38 0
39 0
40 0
L1 0
L2 0
43 0
Ly 0
45 1
4L6-56 L

Total 54,122

% Subject

%

0

16
36
33
37
50
136
6k
155
103
249
221
LLl
953
1399
1908
2339
2709
2740
2759
2698
2768
301k
3165
31k45
2972
2837
266k
2TL5
2826
31L5
3311
2965
2713
2277
1919
1542
1230
968
969
6LL
573
512
472
439
2513

T1,3TT
- 31 -

o N e

H N -
H COO0OO0OO0O0OO0OO0OO0O0OO0OO0ODO0OO0OOO0OOOCOOHFANFUAFOADPWWOPNMNNONUVHOOOOOOO

OO0OO0OO0DO0OO0OO0OO0OO0DO0OO0O0OO0OO0OO0OO0OOCHMHFHFHFWAIOOHHWNOWOOOO0OOO0O
e o & o o Ld e ® ®o e © e o o & o *® 9 o e o e ® e o o o & & o s o

O O0O0O0
e e °

[
o

0

0

L

65
172
L62
924
115k
1197
143k
1662
1676
1651
1778
1975
2072
2330
2346
2369
2552
2835
3327
3095
3186
3499
2979
28L4
3046
3036
2656
2458
2332
24202
2372
2085
1691
1588
16Tk
131k
1196
1224
1100
1033
1003
1042
6355

87,216

OHHHFMMNMNWWEFEFrEFEFLOWEEFEEFEEFEFLLWLWWLWWWLWLDLOLHFOOOODOOO0OOOOOOO
e o e & o * e e e e e e e & @+ o 9 & o e e o e & o & o

OO OO\ NI-1TOOVEFEFIN-AINDN OOV AEHOVOION =TT 0 PO POWAROWARAWEHRMHNMHHKFHOGCO

Q woooo
* L] L] L] L]

[
o

sll—ll—'|—'|—'|—'|—'|—'|—'l—'l—'r\)r\)mmmwwwwwrwww.wmmmmmmr\)I—'l—ll—'l—'l—ll—'l—'oooooo
[\V) F\)mmmw:’:’\n\ooa\orﬂooﬂooo\n\nwroﬂmmw\oﬂﬂﬂer\O\O\OO\:’wI—'\nr\)I—II—'Qo

100 L

B e

. T e

X CEmreest

S ST D

I). Length information: if & content record is pointed to,
the rumber of characters in the record; if a pointer record
(types 1 and 3), this element contains the number of fields in

the pointer record.

In addition, if the pointer is to a non-keyed record, the
pointer field must contain the record .address; that is:

E. Relative block number, and
F. Relative position within the block.

If the pointer is to a keyed file the pointer record must
contain:

G. The key value.¥

The format of a pointer field is as follows:
POINTER TO A NON-KEYED RECORD: (NK)

A B C D F E

File | Number/

Name Length Pos. BLOCK

POINTER TO A KEYED RECORD: (K)

A B C D G

File | Number/

Name Length KEY

T |D

0o 1 2 L 6 KL

The length of pointer NK is always 12 bytes; the length of pointer
field K is always 6 plus the key length (KL) of records in the
‘file to which this points.

Thus in this arrangement we have a linkage established by
the pointers. The access record pcints to the address record;
the address record contains multiple pointers to master records.
This linkage is shown schematically in Fig. T.

¥The key length for the file is obtained from an independent

teble called the file table. 30

FIGURE T:
SCHEMATIC OF MULTI-LEVEL FILE STRUCTURE LINKAGE

ACCESS RECORD
(Level 1)

ADDRESS RECORD
(Level 2)

MASTER RECORDS
(Level 3)

Possible retrieval linkages are:

(1) I, only

(2) I +‘I2

(3) I, + I, + any combination of Master records:
1 2

e.g.: R, + (R2 . R3 . Rh)

Using the master and index files described gbove, .it is
possible to show the steps in a utility retrieval program. The
program is supplied with the key name of an access point, along
with a code indicating whether the name is of the author, title,
or subject class. A search on key is performed in the indicated
access file. If and when a match occurs, the data from the
address is read into core storage. a3

At this point it is possible to provide the user with
information which may be useful in satisfying the search request.
It is possible, for example, to indicate how many master records
have been indexed under the neme, or to list the addresses of
the master records. Otherwise, the processing continues and,
using the addresses of the master record(s), the blocks contain-
ing them would be read into core storage, and the information
transferred to the requestor at the on-line terminal.

L
o

IIT. THE BIBLIOGRAPHIC RECORD

A. GENERAL

Although record format and file structure are different
problems, there are overriding considerations which caused us to
devote considerable effort to the identification of record content
and form in the first phase of the project. Among these reasons
were three which are goals of the Project:

(1) To develop methods of converting machine files of biblio-
graphic data both from manual catalog data and existing machine
files; .

(2) To devise techniques for processing the content of
machine records via search routines, using actual data bases for
realistic testing;

(3) To make the data base being estaBlished as a research
vehicle for the Project, serve as a usable, available source of
records both to other organizations and in practical applications,
e.g., a computer-produced book catalog. This is particularly
important in view of the large costs associated with the develop-
ment of the data base.

Although we often refer to bibliographic records as if they
were homogeneous objects, they vary greatly both in Iorm and con-
tent. Particularly in a data processing system, records which
refer to the same external item (such as a book) may assume radi-
cally different forms as they are transformed through the stages
of input, processing, storage or output. Fig. 8 shows the major
functional components of a data processing system, each of which
may have different, often conflicting characteristics dictating a
different desirable form of record, independent of its content.
The use of a single record form throughout the system would mean
that none of the conflicting requirements would be effectively met.
In addition, the form of a record is very important to the file
organization project if we are to meet our goal of providing a
system within which experimentation can take place. A computer
works entirely with the form of the data. - For example, if it is
to be possible to allow the author field of a record to contain
either the author's name or a code standing for his name in an
author authority index, the form of the records must be such that
this difference can be signalled to the computer programs so that
appropriate conversion can take place before processing or output.
Thus , where a highly flexible system is the objective, record form
and file structure are interdependent.

In a similar manner, we cannot divorce the record form from
its content. That is, we wish to develop a system capable of
handling records with content ranging from that of the traditional
catalog card through those of index entries for journal articles,

- 35 -

P A

FIGURE 8:

FUNCTIONAL SYSTEM COMPONENTS RELATED TO DIFFERENT RECORD FORMATS

i
i

1.
| Input |
: Keying ptions

=

Processing Storage
-

‘ . Printout Communicgtions
¢

~

to those of augmented records containing abstracts, user ccmments
and perhaps, full text. In order to assure that our system is
properly designed, we must consider this range of content as we
establish the various record -orms.

In considering the form of the records to be handled, the
questions must be broad and their answers must be quite precise
if we are to achieve an open-ended facility that is capable of
reasonably efficient operation even though in an experimental
envircament. Thus, we must determine not only how to tell what
particular kind of record we have at hand or where a particular
field begins and ends, but also which typographical symbols we
have chosen to represent, how they are represented, and what will
be done should we choose to represent other symbols at a later
date.

The final part of this section is given over to a discussion
of one aspect of bibliographical "eloseness', that of the similar-
ity of personal names. This is an extremely important type of
similarity in the handling of bibliographic entriecs, in that the
author is normally the major access point to a work. Our work is
directed at overcoming errors due to unintended spelling variations
in personal names.

B. RECORD CONTENT

The content selected for the data base does not constitute a
radical departure from current bibliographic standards. That is,
the major portion of the data base is anticipated to have the
content of the traditional catalog cara. In addition, some records
will have additional index record and citation content. A few
remarks will summarize the reasons for the decision to employ the
conventional catalog record in a basically unmodified way. To
reconstitute the basic information content of machine bibliographic
records in advance of data on the use of current record content
would change the focus of the project.¥ Our decision was to orient
the building of a data base toward materials of general and current
usefulness to the research library so that our research results
could be of potential value at an early date. That goal in turn
made it desirable that the content of these records be capable of
representation in a standard format to facilitate interchange of
data among libraries. The decision was made, therefore, to con-
form to the path being taken by the Library of Congress in its
MARC Project, which is developing a standard bibliographical
record content and format, beginning with monographs, and specif-
ically intended for the data eXchange function.

¥For the opposite approach, see the reports from MIT's Project
INTREX, in particular the Augmented Catalog Data Base.

- 37 -

Ay

Since the end of the MARC Pilot Project in June 1967, LC has
moved through a phase of refinement and testing of the original
MARC I record, preliminary to implementation of a machine catalog-
ing distribution service to libraries. A "new model" of the format
was issued in the form of specifications for the MARC ITI format in
the Spring of 1968. Parallel to these developments, ILR had begun
its File Organization Project in mid-1967.

The impact of this decision during the current phase of the
study has been to place considerable stress on the project staff
attempting to keep the Project work abreast of the MARC format
development. We have found that the problems of coding using the
MARC II format are of two sorts - matters of data availability and
matters of difficulty of interpretation. The matters of data
availability are those pertaining to the less predictably useful
elements, e.g., to record whether the book contains an index to
its own contents, or whether it is a festschrift. Without retriev-
ing the book, editors coding catalog records cannot make such
determinations. The other difficulty arises from interpretation
problems, such as identifying sub-types of name headings in the
MARC indicators, assigning of the language codes, identifying some
of the sub-types of subject headings, determining when the main
entry should be regarded as the publisher, and other areas where
trained judgment and perhaps access to the book are mandatory for
accurate data encoding.

At this time, most of these problems appear to be resolved.
However, while accepting the defined content of the MARC record
in general’, there are some codes or elements,'defined by LC,
which we will not attempt to supply and there are others which we
will supply which are undefined by LC, at this time. These content
exceptions are listed briefly in Figures 9 and 10. It should be
noted in Fig. 9 that a distinction is made between a data element
and the corresponding code (e.g., field tag, sub-field delimiter,
or whatever) which identifies the data element. For example, ILR
will not supply the identifying code for Book Number (e.g., in the
LC Call No. field) but the data will be present since it is embedded
in the field. In most cases of exception to MARC II, ILR is defer-
ring both the MARC II data element and its associated identifying
code (if any), e.g., the Search Code, Tag OL2.

C. RECORD FORM

1. The Need for Multiple Formats. We have defined for the
File Organization Project an input record format and an internal
processing format to accept the corresponding input data. The
processing format in turn is convertible both to and from MARC II,
that is, when the record is to be output for transmission of our
locally~-converted records on magnetic tape, or when LC-produced
records are to be accepted into our data base. In addition, we
are planning to develop a mass storage format using data compression
techniques. The first question that is sometimes asked is "Why do
you need many formats? Why not just one?"

- 38 -

b

i wr e g o Srwriypnu b e Fr e | MR e w1 m R T TS o —— e

FIGURE 9:

MARC II ELEMENTS DEFERRED IN FILE ORGANIZATION PROJECT DATA BASE

Data Element

Defer
Identif.
Code Only

Defer Both
Data FElement
& Code

002
0lk
019
020
070
071
080
220
360
670

$
$

FIXED LENGTH DATA ELEMENTS FIELD

Country of Publication
Intellectual Level
Festschrift Indicator
Index Indicator
Fiction Indicator
Biography Indicator

VARIABLE FIELD DATA ELEMENTS

Legend Extension

Search Code

Local System No.

BNB Classification No.

NAL Call Number

NAL Subject Category Number
UDC Number

Translated Title

Converted Price

NAL Agric./Biol. Vocabulary

Book Number portion of call
numbers
Thickness

R RNl

>Pe

PP

>Pe

-39 -

o ey T

e

T TR M T T—— =

FILE ORGANIZATION PROJECT DATA ELEMENTS NOT DEFINED IN MARC II

FIGURE 10:

LEADER

Agency Code for Originator of Machine Record
Date of Machine Record Format Translation
Agency Code for Processor of Machine Record
Type of Source of the Catalog Data

Agency Code for Source

Agency Code for Adaptor of Catalog Data

FIXED LENGTH DATA ELEMENTS FIELD

Literary Group Filing Control
Cancel Title Added Entry Indicator

VARIABLE FIELD DATA ELEMENTS

052
091
570
580
640
Thl

Cataloging Source Legend

Copy Statement (Local Card) (Proposed)
"In Analytic" Note '

"Full Name" Note

Book Title (as subject)

Title Added Entry (Periodical) (Proposed)
NUC Card Number :
Superintendent of Doc's. Number

Firm Name Heading (Proposed)

Anonymous Classic Heading (Proposed)

Copy No. (in Holdings Field)

- 4o -

In many information system applications, only one record for-
mat is defined. TFor example, a library converting catalog data
for any particular purpose, such as acquisitions searching or book
catalog printing, might operate with essentially one format. The
jidentifying codes used constitute a single structure applicable
throughout the cycle of computer storage and retrieval.

In contrast to that approach, the Library of Congress and
others are experimenting with multiple formats, viz., in the LC
input record, mnemonic character groupings are used as acronyms
to substitute for the field names (e.g., "MPS" stands for MAIN

. ENTRY of the type PERSONAL NAME, sub-type SURNAME). The internal
processing codes, however, are the standard MARC II numeric tags,
e.g., "100." Other libraries, such as Stanford and Toronto, are
testing mnemonic notation for use as query tags, i.e., as identi-
fiers used to interrogate the data base.*

It is our view that although the formats must be convertible
one to another in order to perform functions such as input and
search, the format requirements are dependent upon the particular
function being performed. It would be cumbersome to impose the
same notational solution, e.g., use of an identical mnemonic tag,
throughout all the system's functions. Where large files of
bibliographical records are being processed, the single format
approach is also costly. Instead, workable formats must be con-
structed to meet the requirements of each function separately.¥¥

The following are the functional requirements for record
formats that we have identified.

(1) Input format,

(a) Ease of manual preparation and handling of the source
data (selection, creation of coding sheets, etec.)

(b) Speed and accuracy in human editing of the source
data. The codes should be easy to remember and simple and conven-
ient to insert.

¥See, for example: Bregzis, Ritvars. "Query Language for the

Reactive Catalogue." In: Tonik, Albert B., ed. Information Re-

trieval: +the User's Viewpoint - An Aid to Design. Philadelphia,
Toternational Information, Inc., 1967. pp. 77-91. (Fourth Annual
National Colloquium on Information Retrieval, May 3-b, 1967).

%¥For a report on an approach to library file handling, with many
of the record format features of which we find common agreement ,
see: Cox, N.S.M. and J.D. Dews. "The Newcastle File Handling
System." In: Cox, Nigel S.M. and M.W. Grose, eds. Organization
and Handling of Bibliographic Records by Computer. Hamden, Conn.,
Archon Books, 1967. pp. 1-21.

- 41 -

(c¢) As much streamlining as possible of the keyboarding.
The keying should be rhythmic. Awkward strokes should be avoided.

(d) Independence of the format codes and the typograph-
jical character codes from the character set of the equipment, so

that in principle any device can be used.

(2) Processing format.

(a) Facility in addressing individual data elements,
grouping of data elements into segments, etc.

(b) Flexibility of structure, so that either fixed or
variable fields can be efficiently handled by software.

(c) Repeatability of any data element and its format
identifier.

(d) Versatility such that the format can encompass
within a consistent structure, the varying content of records for
all types of library materials: monographic, serials, journal
articles, etc., in either conventional or augmented form.

(e) Minimization of character-by-character scanning,
e.g., when preparing foreign language fields containing diacriticals
for output display.

(f) Provision of capability for generation of sort keys
with the minimum number of additional codes placed in the record.

(3) Mass storage format.

(a) Compactness of representation.

(b) Fast translation from and to the internal processing
format.

(¢) The effects of translation errors are localized or
correctable.

(4) Communications format.

(a) Processable on computers with different memory and
logic organizations.

(b) Low programming requirement to utilize the record.

There are many other requirements which the formats should
meet. However, these will be sufficient to demonstrate the con-
flicting requirements from function to function. For example, there
is a conflict between the compactness of the mass storage format
and the facility in addressing individual data elements of the

- 42 -

T, . . — e W me crmy wwowmw - o - . . e s

processing format. Also there is a conflict between the processing
format versatility and the ease of coding the input format, since

in general the fewer the things to be remembered the easier the cod-
ing. It is true that even in developing formats for the separate
mmetions it is unlikely that our initial formats will remain
unchanged throughout the study. However, regarded as a system of
formats, they are likely to be more satisfactory than a single
format would be.

Irrespective of the discrete functional demands placed on the
sequence of formats, they all serve a basic purpose in common:
they embody coding to identify record element content by "kind"
and, where applicable, by the role played by the data contained
as a value in an element. A name is an example of a kind of data
element. A name may be one of several sub-types and can act in
one of a nunmber of roles in relation to a document. For each
relationship it is assigned to a different field which identifies
at once both its kind and its role. (E.g., kind = personal name;
role = added entry, alternate author of document.) |

In summary, the coding in the formats performs four important
tasks. It supplies:

(1) Information sbout the document itself (title, subject
headings, all the conventional bibliographic data).

(2) Information about the file (whether the record is new
to the file, which file it belongs to, record status, ete.).

(3) Information about the record (to uniquely identify 1it,
to characterize its composition, to distinguish it from other
types of record content, etc.).

(4) Information about fields or about other codes (e.g., that
o name in a field is of a certain sub-type; that a tag is to be
processed under a certain condition, ete.).

2, Input Format. A summary of the approach underlying the
development of the input format at ILR can be found in a previous
Institute publication.® The present format is an extension and
elaboration of work reported therein.

a. Background. The input format described here, and
the conversion procedure outlined below (in Section IV) represent
an approach chosen in the earliest stage of the data base prepara-
tion task. The initial work has resulted in a draft coding manual

¥Cartwright, Kelley L. and R.M. Shoffner. (Catalogs in Book Form:
A Research Study of their Implications for the California State
Library and the California Union Catalog, with a Design for their
Implementation. Berkeley, Institute of Library Research, Univer-
sity of California, 1967. bpp. 30135.

- 43 -

P

el

AT

_ weewe—r "

R

for use in manual editing.¥* We anticipate that the input format
and the editing procedure will evolve towards greater reliance on
computer-assisted field identification. As our experience is
evaluated, conclusions will be drawn about the feasibility of
placing more emphasis on such computer-set codes. The ultimate,

of course, would be optical scanning of the unedited cards or a
straightforward keyboarding of them. There would be no interven-
tion by a human editor until after processing by a computer Program.
This program would format the record and then print out the results
for post-edit inspection by a human and correction as needed.
Corrections to errors in coding committed by the edit program
algorithms or the input device operator would be input to the
machine file in the normal fashion. We are currently working
toward this goal with the automatic translation of the Santa Cruz
records. These records have only the most general level of field
coding.

b. Coding scheme. Since most of the catalog data is
variable in length, the bulk of the logical fields have been defined
as variable for the input format as well as the processing format.
The advantage to this is that in conversion from 3x5 cards a more
normal text typing rhythm is permitted than if a fixed length field
approach were used.

More than 120 data elements and fields have been identified
in the MARC II format, and equivalent ILR input tags have been
assigned for most of them. These are translated into the MARC II
tags and indicators in the ILR processing format.

The manner of identifying the variable fields for input is a
key feature of this format. A mixed technique has been employed:
1) insertion of signals which explicitly label the beginning and
end of each field, and 2) depending on the predictability of the
occurrence of fields, the insertion of an identifying tag. The
first is a uniform symbol for fields which are always or nearly
always present, and which always occur in the same sequence. The
'second is a unique symbol applied to those fields which occur in-
frequently or in isolated sequences.

The first type of ccding is applied to the body fields (author,
title, etc.). In this case, no field code may be omitted, even
though the field contains no value in a particular record. The
"plank" field is purged from the input record at the time of its
transformation into the storage record. Ten fields were chosen for
coding by this technique on the basis of previous experience and
sampling. A symbol easily insertable in the dense text of the

*¥Cunningham, Jay L. Instruction Manual for Editorial Preparation
of Catalog Source Data. Preliminary Edition. Berkeley, Institute
of Library Research, University of Califurnia, 1968. 172 p. Be-
cause this manual is a draft which is expected to be revised it
has been provided only in limitedh%uantityy

catalog card was selected: the slash mark, "/", is used to signal
the beginning of each of the "body" fields. A blank field, e.g.,
absence of a publisher name, would be signalled by two slashes,

H//H.

The second type of code is two-character tag composed of a
uniform special character plus a unique alphabetic. When a field
is not present, no tag is inserted. Two series of these codes
were defined. The more frequently occurring fields are coded with
a combined asterisk plus lower case alphabetic (for ease of input
typing). The less frequently found fields are identified by an
exclamation point plus a single character alphabetic. The "¥*" or
"I" {5 needed to distinctly identify the tag, otherwise the edit
program could not distinguish reliably between the code letter
and a text letter.

A further conciseness in input coding derives from the con-
vention that the editor need write only the lower case alphabetic
code on the sheet, in the case of the "asterisk" series of tags.
For distinctiveness, the code letter is written in red. The input
device operator must recognize the letters written as tags and
preface each "red letter" keyed with an asterisk. For the other
series of tags, the editor writes out both the exclamation point
and the code letter.

One problem with the brevity inherent in this system is its
lack of mnemonic value. The input tags used in the LC MARC
production system, for example, are more easily remembered than
combinations such as asterisk plus a letter. However, w2 have
found that a simple checklist supplied to the editor as a ready
reference tool suffices for the mejority of tags not quickly
learned through repetitive use.

c. Coding sheet. Information will be input to the
computer from a coding sheet on which a catalog card is reproduced
or attached. The principal reasons for the use of the coding
sheet are: (1) it provides space in which to record certain in-
formation which is not explicit on a catalog card; (2) it provides
space in which the editor of the data can write information which
represents additional data required, or modification of informa-
tion already on the card; and (3) it provides checklist reminders
of some of the coding conventions and options.

In Fig. 11 we present an example of the coding sheet developed
for the project. The fixed field alternatives and certain other
codes are printed at the left and at the bottom of the sheet. The
tags and field names used in the ILR input format are listed in
Appendix V.

3. Processing Format. The details of the processing format
for the File Organization Project data base are described in
Appendix IV. The salient features, and certain significant

- 45 -

FIGURE 1l:
CODING SHEET - MONOGRAPHS

EE] 1Changcd record
Date 1 Date 2

/4 | 1957
DAY TYPE:

ol 12 éates - 24 1is C?}
it 2 Gales - 2d is t€érminal
Date not known
| Digits missing
Reprod./reprit.-no dig. out
Single dt - no digits out

BIBLIO. LEVEL:
] Analytic

. }Colleective
‘Monograph
Series

CAT. SOURCE:
Central
Local orig.
NUC

Otuer

eb
cec

v

ledi .
lezl |

_|ADAPTED AT

LC call no. bracketed

ORIG. AT

MICRO-~REPROD. :
Microfilm
Microfiche
Micro-Opague

CONTENT FORM:
Bibliogs.
Catalogs
Indexes
___Abstracts

| Dictionaries
Encyclopedias
Directories
nl____|Yearbooks
Statistics
Handbooks

#*

T II{"")-"

ADDID ESURIBS TYPH:
Series bracced same

100011
VO = O

Quantjzation of signals wi nen-uniform

teps/Redondo Beacty Calif.,/TRW Space Teche

logy Lgborato 196L.
?6 b 28
Jatio ,ino.

s
g‘l‘ Technical Library"rrana-
80%e-

K Translation of Kvantovanie signalov s nerav-
nomernym shagom from Elektrosvyaz, no. 10, p.
10-12, 1957.

m
#Mm)7 Information meuure-ent.*;f Sigmals and
sigmaling #4.E¢ Elektrosvyaz,hv. 10, p. 10-12, 1957.
EFeBtbter ~(Gentes—(\ Space Techmology Labor=-
atories, Inc., Leos Angeles, % Technical Lib-
rary.$ Tramslation,]mo. 80.)

HOLDINGS:

w_pall No.

Total
Cop.No. Shelf Copiea
Thisloe, Cempusidr. Logc.

Here

Ja|

/

Jjb

L Tiygs |

’
i Y,

je

i &

ja

o

Y]

e’

[+4
2

.
e
ret
i

i
i
|
|
o
i

GOVT, PUS.:

kat [Internst'l

U.S8. Federal

Cal. Stale ‘Egl |Other govis.

Cal. Co./muni.

Kditor

CONFERENCE PUB. i
¥o.| DaJd Yrld lin.

* |MAIN EWTRY IN BODY

o%

LITERARY GROUP:

sl

|Complete/coll. vorks

fe—

{Selected works
“{Prolific

CANCEL TITLE A,E,=-DICT, CAT.

CANCEL TITLE A.E.-DICT.&DIV.

eng rus ‘H LAXG.

V2 | TRALSTATION Y5

e
S rres
) ‘ Latd Ay

TV pyPE OF MALL FWPRY

e rned
w, IS BURd.

¥, IS PUSL'R

AN

ey (3 ()

(5). _(€) (1)

Subjects & subdiv.
Luthor &/or tiille

Series traced diff.

)
|
|

differences in form and structure of this format in relation to
the input format on the one hand, and the MARC II Communications
Format on the other hand, are outlined briefly below.

a. Input and processing format differences. There are
two main differences between the input and storage formats:

(1) Default. Certain data elements and codes are set by
default in the edit program and thus do not appear on the coding
sheet or in the external input record. An example is "Type of
Record = a-- language material, printed."

(2) Coding notation. A briefer but flexible form of field
coding (as described above) is used for input rather than three
or four character numeric tags as in the MARC system. The three-
digit MARC II tags and associated codes are set by the INFOCAL
edit program, which translates the input codes into corresponding
internal processing format codes, as it compiles each field by
concatenating the various input codes and elements that make up
the internal record. The input record image is, in general, not
a mirror image (identified by different field codes) of the resul-
tant internal record in processing format. This is because of
1) the default values, mentioned above, 2) separation of parts
of certain tags and elements on the coding sheet for purposes of
editor convenience, which are brought together by the edit program
for the internal record, and 3) the more complex structure of the
internal coding, due to the fact that a record directory method is
used to organize the processing record.

b. Processing format and MARC II differences.

(1) Figures 9 and 10 in Section III.B. listed the few minor
differences between the File Organization record content and
that of the MARC II record. These differences were primarily those
of inclusion/exclusion. The great majority of data elements that
constitute the content of the File Organization Project record will
be identical to those in the MARC II record.

(2) There are very few differences between the File Organiza-
tion record and MARC II in terms of coding - i.e., the same field
and sub-field tags, delimiters and indicators which identify and
characterize the data element content. In a few cases ILR will
not be able to supply a code for a data element identified in
MARC II, and in a few other cases, we elected to go slightly beyond
the Library of Congress in identifying a field to serve special
requirements.

(3) In respect to record structure, the File Organization rec-
ord is quite similar to MARC II - a fixed length Leader is createc,
with quite similar purpose and content as MARC II. A Record direc-
tory controls the access to the remainder of the record, including
the Fixed Length Data Elements field, which is treated for
programming purposes as if it were a variable field length field.

- 47 -

In sll cases, our goal has been to conform to the utmost
extent to the MARC II design, in order to minimize software differ-
ences in routines to handle records of our own creation and records
originating elsewhere, €.g., in the LC distribution service. In this
regard, we expect to do no reformatting of the content of MARC II
records received from LC. A certain minimum addition of data will
be necessary, €.g., a local master record number, local call numbers,
etc. Lastly, a certain amount of reformatting of record structure
is planned, e.g., to move the codes for diacritical marks from
the text of the field to a special field header. This will facili-
tate preparation of the field for display on CRT terminals having
1imited character sets and allow us to begin experiments in which
the very highest quality of display of foreign language text in
bibliographic records 1s not a significant factor.

These differences can be reviewed in more detail in the
processing format specification in Appendix IV.

In summary, these differences in formats are not considered
to be departures from the concept of a standardized bibliographic
record. The MARC II design is specifically intended to be adaptable
to locai needs, and hospitable to non-conventional data and coding.
Standardization does not imply a rigid, uniform set of data elements
constituting a monolithic structure. Instead, through the use of
the mechanism of optional tags and fields, modularity of structure,
and a hierarchical coding definition, libraries can comply with
MARC yet tailor it to specific requirements. The acceptance of
this approach is already perceptible at the national level in the
efforts of the three U.S. national libraries to support MARC II
as a common standard by accommodating certain of their elements
to a common definition, whille defining other elements and codes
for their own particular applications.

D. THE REPRESENTATION OF TYPOGRAPHICAL CHARACTERS*

1. Overview. Once the input format and the storage format
for bibliographic records have been designed, the problem of key-
boarding textual material not represented on the keyboards of stan-
dard devices must be faced. Catalog records contain tremendous
linguistic variety, because certain portions of the data (usually
at least the title) are by convention recorded in the language of
the text or its translation. Thus the conversion system must
embody procedures for keying both non-Roman alphabets and the
diacritical marks, symbols, and other special characters, some of
which may occur in any alphabet. Moreover, provisions must be
made for efficient representation of such characters when they
are not defined in the internal operating code set of the particu-
lar computer used.

¥This section was prepared by Thomas Hargrove, of the ILR staff.

- 48 -

In line with the goal of minimization of the overall cost of
conversion, the basic approach taken was not to secure specially
modified input transcription devices which would contain a limited
number of symbols and special characters beyond the standard set.
It was felt that this approach is too costly at this time and
represents only: a proximate solution to both the input and the
storage of special catalog data. Rather, a more universal concept
was developed, wherein the standard keyboard of a readily available
keypunch or other input transcription device could be used. This
would require only a small amount of extra operator training and
would be virtually unlimited in its potential for expansion to
cover symbols and codes not foreseen at the beginning of the con-
version.,

2. General Objectives. The objectives of the physical data
representation technigue are:

a. Input device independence. To handle the extensive
set of alphabets and characters, a method must be established to
represent those characters by a notation that can be implemented
on any equipment.

b. Compact internal character set. The codes used on
the input device must be transformed into a concise internal set.
This will be based upon the specific arrangement of the computer
upon which the system is being implemented, but need not be logi-~
cally tied to a given machine.

c. Standard interchange code. For data exchange purposes,

such an internal code set could be translated to the ASCII extended
character set being proposed for standard library use by the Library
of Congress.

d. Base and economy of coding. The technique developed
at ILR assumes two aspects to the representation problem: con-
version of individual special characters, and conversion of special
alphabet streams (e.g., text in Cyrillic). At input, it is desir-
able to have a mnemonic code for those individual characters not
on the particular keyboard employed. Yet it is desirable also to
have concise codes. For a special character sequence, a control
or escape code is needed to show the beginning and ending of the
sequence and a shift to the original or to another sequence.

Each of these requirements poses special difficulties in the
design of an economical special character coding technique.

e. Transliteration problem. The conversion of special
alphabets (e.g., Cyrillic) could probably be efficiently handled
by having special masks placed on the device keyboard and trained
language operators type the foreign language records using the
special alphabet control signal. The entire record would be stored
in an internal configuration translatable to the external display
repertory desired. For example,hon a CRT device, the record stored

- L9 -

A ——— o .

i

in the coded equivalent of (yrillic could be transformed automat-
ically through a table for display in transliterated or Romanized
form on the screen. A printed transliteration table would be
available at the console for the user to convert from the +rans-
literated form into his own language. It is recognized that this
approach is fraught with several dangers since there is no unified
agreement in the linguistic world on standard transliteration or
Romanization schemes.

A remaining task is to establish the precise mapping of the
input character codes into the particular computer character set
available in the Project facility. Numerous smaller problems have
also been identified, such as case change, spacing, and a signal
that a character used as a format code has occurred in the char-
acter stream as text and should be so treated.

The remainder of thissection summarizes the rules for input
keying of either individual special characters or of character
sequences.

3. Basic Assumptions. The assumption underlying the proposed
input codes is that all special characters can be keyed from a
physical point of view. ©Such an approach might be called the
"printer's" point of view, in contrast to a computer point of view
of subsequent encoding of characters economicaily in storage, or
to a user's point of view of the semantic or logical meaning which
the characters serve to express.

A printer, without knowing the subject, is able to set char-
acters by knowing only their physical sequence and alignment in
text. A keying operator, similarly, should be able to keyboard
codes for the physical shapes and alignment of the same characters.
In this approach, the codes typed would not depend on the operator's
having to krow the meaning, or how the character would be coded in
computer storage. Instead, the codes should be those which make
input easiest for the keying operator, with the highest accuracy.

This proposal considers all special characters as established
shapes, in a given horizontal position, with a defined vertical
location, and physically imposed upon one or more textual positions.

The approach is aimed at providing the benefits of:

a. short codes for the most frequent characters;

b. minimal look-up for less frequent characters by use
of combined codes of basic shapet+location+applicability, in lieu of
looking up arbitrary, non-structural codes;

c. method for adding as many codes as needed;

d. memorizing by keying operator of most frequent char-
acter codes plus the few basic qualifying codes.

- 50 -

o et . epe mer e e et T ST CONN v TR TR S ——— T

Ly, Special Character Encoding Situations. For the purposes
of input a special character representation scheme must, in
principle, address five separate but interrelated situations that
may occur in textual material:

a. Special (non-Romsn) alphabets: e.g., Cyrillic and
any other alphabet not represeated on standard input devices.

b. Special marks: within any given alphabet, e.g.,
diacritical marks (acute/srave accent, etc., and combinations
of these, digraphs, etc,)

c. Font change: within any given alphabet, fonu can
be either significant or aesthetic (for emphasis). Significant
font change is one involving semantic .change, e.g., bold face to
denote vector quantities in mathematical notation, italics to
denote variables, etc. Aesthetic font changes usually add emphasis
(e.g., italicized words), provide reader aids (e.g., boldface sub-
headings in text), or have other not strictly semantic purposes.
The latter have been excluded from the technique devised, but could
be handled in principle.

d. Special symbols: characters not on the standard key-
board, which may or may not have conventional meanings. They may
be language-dependent or context-dependent for their meaning (e.g.,

in British money; I has a special meaning on an LC catalog card.)

e. Special positional configuraticn: of any character
in any language. E.g., exponents and subscripts have a conventional
position and may have smaller point size in a string of text.

Several of the above conditions may apply to a given character.
The single special character in a stream of text may be considered
as a special case of the problem of handling the entire stream in
a non-keyboardable alphabet.

To devise a systematic coding scheme to cope with these text
situations, we redefined them into the following categories:

(1) The alphabet can be either:

Regular mode - the Roman alphabet as represented on the
keyboard of the particular device used, is regarded as the nominal
or default case; or

Special mode - alphabets other than Roman, e.g., Greek,
Cyrillic, etc., not represented on the keyboard of the device used.

(2) A character stream in a given alphabet can be either:
Unspecified length; or
Specified length.

- 51 -

e e -t w e - . W e —— -

T

g (3) A specified length character stream is initiated by a
V shift code signalling either a:

Fixed length code (predefined) standing for a special
character; or a

Variable length code (e.g., sbbreviated words predefined
in a program table).

Breaking the textual situations down in this manner allows
us to think how the keying might be best performed in a continuous
1 fashion with the least stop-and-go motions by the device operator.
’ The data can be regarded as contiguous blocks or strings within
| a character stream. Unit codes are applied by the operator to
control each block that departs from the default situation ("Regular
1 mode"). To illustrate, a catalog record in which a number of spe-
cial text situations occur can be keyed as a series of coatiguous
blocks forming the total record:

FIGURE 12: KEYING BLOCKS OF TEXT

Start-of-record: shift to return to shift to
REGULAR ANY REGULAR SPECTAL
Unspecified... Specified | Unspecified... Unspecified...
Length Set Set Set Set

k ANOTHER SPECIAL
b shift to shift to Unspecified Set,
3 ANY SPECIAL or RETURN to REG.
Specified | Unspecified... by. Termination
Set Set Symbol or End-of-
Record
{

Specifically, the text categories defined above would be
applied as follows: '

(1) For normal Roman alphabet text not modified or interrupted
by change in alphabet, by diacritical marks or by any characters
not present oan the keyboard, no special action need be taken by
the device operafor. Each record would be assumed to start its
text in "Regular" mode.

—aaT

Y Ty e

. [

(2) When any of the three categories of text situation occurs,
as a departure from the Regular mode, the device operator can still
i continuously input data, in any alphabet, with or without diacritic
marks or special characters, merely by input of a shift code when

| S5 -

- - - Lo amr e WS x e B MR e s m T W K e ——— L0

departing from the normal situation. The "Reguler' alphabet
defined for input keying may be somewhat ¢xpanded for storage
purposes. For example, the S/360 internal set has 256 possible
codes, of which a number are already designateda for graphics not
present on the standard keypunch. It would not be necessary to
store the input codes in the exact form in which they were keyed.
Moreover, the convertibility is three-way: the input codes may
be transformed to the most convenient and efficient storage codes,
and the storage codes may be again transformed to available output
devices, e.g., printers.

While keying in "Regular" mode, each character represents
itself exactly as denoted on the keyboard. At the point of inter-
ruption, subsequent characters stand for either a character in
another alphabet, a diacritical mark, or some other special char-
acter not denoted on the keyboard.

Two types ot departures from the Regular mode can occur:
Unspecified-length shift to Special mode, followed at some finite
point by either a deshift to Regular or a shift to another Special
set.

For example, a book title might have a Greek word embedded
in an English phrase, followed by an alternate title in Cyrillic.

The deshift would be signalled by either a terminator code
or automatically by the end-cf-record mark input by the device
operator, if appropriate.

Specified-length shift codes can be of two sub-types:

1) Fixed length codes, which are either one or two-character
format codes recognized by the input edit program as field signals,
delimiters, etc., or are these same characters themselves preceded
by a reserved symbol to show that the character is in this case to
be regarded as text data, not as a code.

Other than these occurrences, a number of doublet codes have
been provisionally defined to represent diacriticals, e.g., "¢E"
for acute accent. Triplets, etc. could also be specified, in order
to make the system expansible.

2) The second sub-type is variable-length specified shifts,
as in the case of groups of characters predefined in a program
table to represent abbreviated words, either for the purpose of
economy of keying frequently occurring words in text, or for com-
pact storage, or both.

5. The Identification of Shape, Size, Attitude., and Relative
Position. Diacritics in particular manifest many combinations of
shape, point size, inclination or attitude, and position relative
to the character they modify. For brevity, we shall discuss these
characteristics using the single term "location".

- 53 -

g ey

W=
e

R

a. Order and location of characters. ©Special characters
or Special uses of any character are considered for keying purposes
to be in the same position or in juxtaposed positions of the data,
left to right.

Data

Position No.

For purposes of input, all special characters are coded in
relation to other characters by both physical shape and horizontal
and vertical locations. The same shape in different inclinations
is considered a different shape, for coding purposes:

. . 7
d differs from ? % differs from a ' differs from a

The same shape character in different horizountal and vertical
locations is coded to express both uniqueness of shapes and posi-
tion in relation to a character to which it is either attached or
Juxtaposed.

Before With After character

High 4 d a-
Middle -d é d-
Low _d g d_

b. All characters including diacritic marks at the same
position are ccnsidered vertically in a regular location, or in
high, middle or low locations (drawn large for illustration):

o High (Circumflex is High)
Location: Middle (Slash is through Middle)
. (Letter O is Regular)
Regular . Low (Dot, or period, is Low)

(1) Alphabets, digits, punctuation, and additional characters,
such as +, +, are at the Regular location.

(2) Diacritics and special uses of any character, such as
exponents and subscripts, are at High, Middle, or Low locations.

- 54 -

- ey T ows . v —— T —— g T T .- Cew % W

6. Initial Codes for Provisional Implementation. A double-
character code set for modern European characters was defined
using the ten digits to represent the most frequent diacritical
marks. The most frequent letters specially formed with diacritical
marks, and other separate diacritical marks would be represented
by the letter codes. This double-character code set would serve
as an extension of the Regular character set. By being fixed-
length, the diacritical mark codes can be used in the midst of any
special alphabet set.

The location of a diacritic in relation to a letter is implied
by its code. The implication of this is that any special character
which exactly coinecides with a Roman letter and a diacritic mark
may be coded either as a letter plus a diacritic mark, or as a
single combined code. The frequency of certain diacritically marked
letters in certain languages might make single combined codes very
useful. However, for the present, the letter~plus-diacritical mark
code is proposed as a scheme applicable to any particular language.

Unfortunately, a 36-character double code set is not enough
to encompass all the diacritical marks. LC lists at least 64 spe-
cial characters beyond the normal keyboard, in its ASCII extension
proposal. Trese could be assigned single coue characters in two
separate sets, but for simplicity a two-character code is assigned
provisionally to the less frequent diacritics. The order of the
LC list does not reflect th. frequency of occurrence of the marks
themselves. LC's Information Systems Office is making a statistical
study of the frequency of occurrence of diacritics, and when this
kind of data becomes available, it will guide the refinement of the

system proposed. In advance of such quantitative design information,

we have used the diacritic set proposed by Palmer (see Fig. 137,
and our own research .» guide the establishment of the initial set
(see Fig. 14).

When the frequency distribution of the diacritics and other
symbols is better established, we will implement the LC list as
needed, to assure full convertibility of the textual content of the
data base to a MARC II character set standard.

Codes for special characters and for special uses are made up
of a combination of a flag plus "¢" plus digit(s) or letter(s).

The most frequent codes have defined shape, location, and
number of positions applicable in one code. Diacritic characters,
for example, occurring most frequently are coded with briefest codes
(given vertical position assumed in each case as the default posi-
tion). E.g.:

acute (high, one~position) is coded ¢A
micron (breve, short)(high, one-position) is coded ¢B

cedilla (low, ") is coded ¢C
- 55 -

o W i e e — W WP

R,

FIGURE 13:

THE TENTATIVE HARVARD LIST OF DIACRITICS

ILR 029 Harvard List Comments
Codes of Diacritics¥
¢E 7 acute
¢A * grave
¢F ~ circumflex
¢U ** dieresis or umlaut
¢N ~tilde
¢C y cedilla
¢K ¥ hacek
¢G e (as in Swedish &, Czech u) | Angstrom
¢19 — underline Digit= No. of letters
underlired.
¢0 / (as in Danish @) ¥#¥Display size adapts
(letter 0) to letter
-¢M - (as in P) Anglo-Saxon D differs
¢o , (for Polish %) #¥Digplay size adapts
(letter 0) to letter
»¢L , (comma under letter as in
Rumanian)
. ¢L . (dot below letter)
. ¢H - (dot above letter)
¢IW ¢ (used in Polish & Inverted cedilla
Lithuanian)
42W ’* (used in Hungarian)
¢R =~ macron
¢B ' o micron

Note: Unique letters after ¢ were chosen as non-shift, and
to coincide with frequently associated letters where
possible, with allowance for specially reserved symbols .

#3ource: Palmer, Foster M. 'Conversion of Existing Records
in Large Libraries; with Special Reference to the Widener
Library Shelflist." In: Harrison, John and Peter Laslett,
eds. The Brasenose Conference on the Automation of Libraries.
Held at Oxford, Eng., 30 June-3 July 1966. London, Mansell,

1967. p. Th.

¥¥In display the slash through "¥" of Polish font will. be
shorter than the larger slash through "g" of Scandinavian font.

Slash, as cross-over, can be keyed as @/ in conjunction
with the ¢T9 code for multiple applicability.

- 56 -

T LA - N T AT - e ——

FIGURE 1bL:

ALPHABETICAL INDEX OF DIACKRITIC CODES

Code Mark Name, Defined Loc.

¢a N Grave (high)

¢B ¥ Breve, micron (high)

¢C 9 Cedilla (1low)

¢D9 ce Diagraph, up-to-9

¢E d Acute (high)

¢F N Circumflex (higﬁ)

¢G . Angstrom (high)

¢H Undefined high location

¢19 _ Underline, up-to-9 (low)

¢J9 — Ligature, up-to-9 (high)

¢K v Caret, Hacek (high)

¢L Undefined low location

¢M Undefined middle iocation

¢N -~ Tilde (high)

¢.9 Specified number to 9 of non-keysable
characters

¢0 / Slash (through middle)

¢P Slant-in-font series (Italic)

¢Q Weight-in-font series (bold)

¢R - Macron (high)

¢S Special alphabet shift

¢T9 Multiple-applicnbility (to 9)

¢U . Umlaut, dieresis (high)

¢V Reserved-further coding

¢1W ¢ Inverted Cedilla (low)

¢2W ¢ Double acute (high)

¢3W e Reverse comma (high)

GUW = Double underscore (low)

¢5W e Candrabinde (high)

¢6wW D Demi-bar in Ang. Sax. (middle)

¢ XHML High or middle or low illegible

¢.. Unspecified number of non-keyable

characters
- 57 =

neSr AT

R L e T

S

T e T - o

FIGURE 14 (Cont.): ’

ALPHABETICAL INDEX OF DIACRITIC CODES

Code Mark Name, Defined Loc.

¢ly T Dagger

¢2y ¥ Double dagger

¢3Y ot Pound sign (English)

gLy o Inverted question

¢5Y [Inverted exclamation

¢6Y v Thorn (Icelandic)

¢TY b Musical flat

¢8Y 1 "Undotted i"

¢9Y ¢ Single left quote (high)

¢10Y 66 Double left quote (high)

¢11y 27 Double right quote (high)

¢12Y 14 Left Cont. quote

¢13Y > Right Cont. quote

¢Z Astride symbol

¢¢ Termination of special alphabet
(de-shift)

FIGURE 15:

PROPOSED SINGLE KEYING CCODES COMPATIBLE WITH

TRANSLITERATION SCHEMES FOR MODERN CYRILLIC¥

Russian Applied | ;8 7ibrary Jm::rfml Lower
Upper Letter Mechanics of Congress 8ymbolic

Case Cap. Ital. Reviews s Logic _| Case
8
b
v
g
d
l ©
| é
zh

“3""’2’&E‘QR‘&‘<§‘~‘*'§=°=§§&=¢:«»§mmq,oa-c\g
)g_)g)y.-‘ﬂ:: - &G H@QQB—'W"""‘N g_‘mo 2.0 4 o9

srhg v H'd@bg'-rr‘--u NP 4 TP
Voo s wo e duRYBOBERKFGLHFNXMVDDOAR <OO

\Oo,ﬂc\x\nrﬂw(')';ﬁ‘ijdbimtd"UOZ‘ZL"?&'QHNNI\)H@Q<:U3!I>
MBZUOrDNPEEAREXGYHOTHOLNZRARNWE BRI WU >

- " B - -] et ppet tig e]
R L1152l 5
=

h
¢
¢
B |
shoh 8¢
y y
’ ’
é ®
. iu a
ia é
Q 5 % © q
one 1 I i 1 1 :2io
zero O 8 e f c ze

CAPITAL letters keyed with Underscore (0-5-8) before code.

Difference in fonts implied in code for Character Set.

Other characters (such as V, transliterated by L.C. as ¥) can be
coded as elements of another character set, acting as a miscel-
laneous, overflow, or Slavic character set containing all Cyrilliec
characters not already coded in the Russian character set.

¥Source: Mathematical Reviews, (Am. Math. Soc., Lancaster, Pa.)
v. 30 (1965), p. 1207. 59

T

The code for the diacritical would be keyed following the
character which it modified or with which it is associated. Spe-
cial conditions for which this rule is ambiguous and requires
further specificetions are provided for in the keypunching manual.

7. Particular Scheme for Cyrillic Alphabet. For Cyrillic,
it is propesed that a 36-character code set (26 Roman alphabet and
10 digits) to be used for keying and storage is more convenient,
economical and unique for operator recognition purposes than trans-
literation schemes of a linguistically controversial nature. With
unique codes stored for every Cyrillic character, printout can be
made into Cyrillic, or into any transliteration scheme desired.
What is left undefined is a complete transliteration scheme. It
is emphasized that it is the alphabet (made up of graphemic units)
which is being coded, not the "language" in transliteration. A
Russian word that already appears in Romanized character form
cannot be coded so that it can be printed back out unambiguously
in Cyrillic, due to the non-agreement on transliteration. Roman
letters, with or without diacritical marks, are keyed as Roman
(regular) character set, whatever the language the letters them-
selves transliterate.

It is also proposed that the Cyrillic coding scheme include
two single-character sets: one single-character Russian (East
Slavie) Cyrillic set - including three pre-1918 characters - aud
one single-character (Other Slavic)} Cyrillic set to handle the
overflow, rather than to provide a douple-character set for all
Cyrillic characters.

Fig. 15 is a proposed code for Russian Cyrillic character
set. It adopts as much as possible the characters common to many
transliteration schemes, several of the mcre commonly used of which
are shown in juxtaposition.

E. LOGICAL SIMILARITY OF BIBLIOGRAPHIC RECORDS

1. General Remarks. Groups of records in retrieval processes
may be defined according to similarity of subject content, or in one
of several other senses. One condition for search execution (the
stage which performs the actual retrieval and assembly of the
records or elements a user wishes to inspect).is the definition
of rules to aid him in deciding what will be acceptable to him in
terms of closeness of match of the file responses to his request,
as he carries on his dialog. However, a user must formulate a
request based on the clues available to him when he initiates his
probe of the file, before the individual records or groups of
records which satisfy these clues can be presented to him. There-
fore, the most should be made of these clues in order to make
searching in an on-line environment satisfactory.

2., Automatic Error Control in User-File Interaction. One
characteristic of these clues is that they will often have error
in them and thus an exact match on the request is not always the

- 60 -

"best" retrieval. '"'Near misses' or assistance in correcting

the error should be provided. Accordingly, a task was defined to
develop automatic techniques for error detection and correction

of request messages at the terminal. Because of the linguistic

and statistical nature of the task, a consultant with experience

in this area was employed to start the work. A technique which

we denote as "name compression by equivalence class algorithm"

has been developed. The background and reasoning for the algorithm
itself is described in a separate paper by James Dolby, included

as Appendix I to this report. The purposes and provisional results
of tests of the algorithm are summarized in the remainder of this
section. Although the specific intent of this algorithm is error
control, it has usefulness in file search beyond that. For this
reason a more general perspective on the concept of "closeness"

is presented first.

3. (loseness in Name Searching. A measure of closeness can
have several dimensions, e.g., specific subject similarity or
associativity, likeness of one or more properties such as set
inclusion (several books by one author), and a number of other
relations. It is possible to apply such a measure to relations
between records in the file, and between records and requests
made of the file. And it is possible to appl; such a measure to
parts of logical records, e.g., author names. We can consider
two major classes of file organization and search, and of the
requests that each can handle. The first class is the general

problem of mstch between requests and file responses which are

in some sense close to the request. The other class is a special
case of the first, in which closeness is defined as exact match
of the response to the request. The exact match problem, as the
simpler of the two, is the logical place to start the research.

At the time of search specification, the user has some initial
clues which may or may not be well-formulated. These clues, such
as author name, subject terms, etc., are used to make up a search
request. The request will be expressed through search keys trans-
mitted through a terminal device. If the clue is an author name,
the user will key in all or some portica of the name. Two problems:
arise: no response may be obtained from the file corresponding
to the key as initially expressed, either 1) because no record
at all is present which identically matches the request as ex-
pressed, or 2) the key may contain errors (e.g., form of name at
variance with the form in the machine file, simple misspellings,
phonetic misunderstandings, name changes, etc.), thereby causing
either no response or "false drops." If the search key was
accurately known at the time of input but response is nil or
minimal, then other search aids such as associational and rela-
tional techniques can be invoked (i.e., searching under relaxed
conditions), and the search can proceed or terminate when some
kind or amount of useful search output has been obtained. Alter-
natively, the user might proceed as if the search key were in-
accurate and expand his field of search as follows.

- 6l -

L. "Noisy" Matches. If the exact spelling of the name used
as search key is not accurate ("guess-match"), an error correction
technique becomes immediately useful. The facility should be able
to provide capability to be invoked automatically or at th= option
of the user. It might be executed automatically if the user
thought he had input the correct spelling of the author's name,
but received a negative response from the first search of the au-
thor index file, for example. That is, the system should not
be allowed to "give up" just because the user missed on his first
try . The search control program would, upon notice of a negative
search, retrieve synonymous names, if the name input in the re-
quest was spelled closely enough to that of one or more names
existing in the file according to some probabilistically determined
threshold. (The precise nature of the "equivalence class" facility
is yet to be determined. It will probably be tested at first by
establishing a file of fixed-length coded classes. An alternative
method would be to generate interpretively the names which are
members of the class, at the time of input. Another combination
might be to invoke the algorithm inside the machine but have a
list of classes at the conscle as a user aid.)

The possibilities for the desired name would then be displayed
for consideration by the user. This is a kind of grouping of parts
of records (e.g., a cluster of similar surnames of different authors)
one of which may turn out to be the one which the user is seeking.
The names are regarded as related in that they have close spellings,
a linguistic property exploited in a number of name compression
systems.

In this sense the error control feature acts as a filter on
the request, self-activating upon certain conditions, on demand
at other times. Although searching via author keys may not be the
most important file access point,* keyboarding of proper names is
thought to be the area most vulnerable to input errors. It is
anticipated that the equivalence class technique can be extended
to non-name searches, e.g., words in title and subject index files.
Error correction will be useful in any of the usual searching situa-
tions, i.e., for the person who cannot remember the spelling of an
author name for a book he has seen before, or to handle requests
based on bibliographic references which may contain spelling errors
(the "bad citation" problem).

¥Recent research reveals that for the type of catalog search for

a book with which the searcher has had previous contact, only a
little over 20% of a sample of users surveyed could remember author
name clues. However, it was pointed out that of the searches under-
taken using author name as an access point (or author + title), the
cause of failure was lack of a method of manipulating incorrect
author or title information in order to make it operative in cata-
log searching. See Vaughan, Delores K. "Effectiveness of Book-
Memory Data for Conventional Catalog Retrieval." 1In: Chicago,
University. Graduate Library School. Requirementg—étugy for Fu-
ture Catalogs; Progress Report No. 2. Chicago, Mar. 1968. (NSF
Grant GN 432), p. 53.

- 62 -

5., Equivalence Class Algorithm.

a. General objectives. The handling of large biblio-
graphic files presents two levels of error control, as pointed
out by Dolby.* They are 1) error detection and correction during
the input (file generation) cycle or as a result of feedback by
users to correct the filej; and 2) the system's reduction of the
effect of the user's own errors, committed as part of his search.
The use of equivalence classes is not restricted to error control.
The general objectives of a compression scheme may be:

(1) for automatic cross-referencing among similar names,
where there is not an e¢rror involved, but a file authority situation.

(2) ‘to confirm or establish a "guess" match through "noise"
i.e., misspelling.

(3) +to help eliminate misspelled words from the new records
updating the file.

(4) to save keystrokes both to speed up the request and
reduce keying error.

(5) to achieve data compression per se, in storage (reduce
disk space for an index file and for programming convenience in
processing fixed length entries).

Our motivation in developing the equivalence class algorithm
is primarily as a user aid in relation to (1), (2), and (L) above.

b. ILR objectives. Work to date in ILR has str ssed
the first of two areas of immediate concern: proper names as
match elements in catalog searches, and regular vocabulary such
as words in titles. The approach taken in the work on author
names was to find a way of gathering together "like" names system-
atically so as to identify similar spellings (and possible mis-
spellings) but without over-identifying the list of names in a
class. That is, a balance must be found between errors of exclu-
sion and errors of inclusion. By a "balance" is meant a minimal
error of exclusion while at the same time achieving a code that
will produce the minimal amount of identification that will match
names in a given group of "close" name-forms. Such lists of
families of close names are termed "equivalence classes", and the
most familiar Torms are found in the conventional telephone direc-
tory, e.g., for variant spellings of the name "SMITH".

The algorithm is intended to function both 1) as an error
filter in on-line interrogation of a file, and 2) as a general
aid in search elaboration and request reformulation. This tool
will provide a capability for access to the file through a

¥See Appendix TI.
- 63 -

A —

mechanism not now feasible in the limited, passive cross-reference
structures in conventional card catalogs. Not only will the user
be able to come in through roates not presently available, but he
will be able to receive support from the machine in dynamically
correcting his spelling errors when he is attempting to probe the
file and converge on a particular datum, whether it be title of
book, a name, or other information. On the other hand, he will

be able to expand his search in ways not presently available, e.g.,
to track down names or records when the similarity among them is
not explicitly recorded in conventional cataloging information.

c. Development of a name compression scheme. A spelling
equivalent abbreviation algorithm for personal names may be designed
to produce varisble-length or fixed-length canonical forms, i.e.,
class codes. Variable length coding has been extensively tested
but is generally rejected for use in operating systems due to the
added difficulty in programming in comparison to fixed length fields.
Also, code compression is enhanced by fixed length codes where no
interword storage space is required.

Since no definitive data was available yet on the problem of
deciding exactly how long a fixed-length code should be, or on the
nature of errors introduced by truncating variable-length classes
to a given fixed length, the approach taken was to create two ver-
sions of the algorithm for surname equivalence classes: both a
variable~-length algorithm and a fixed-length algorithm.

First a "hand-drawn" protstype variable-length algorithm was
written, based on study of the set of classes given in a local
telephone directory. The rules for this algorithm are listed in
Fig. 16. The algorithms used in other compression schemes were
then synthesized and modified. The resulting algorithm was visually
tested on the equivalence classes in the phone book.

d. Results of variable length algorithm on telephone
directory. Visual analysis of the results of the variable-length

algorithm suggested that reasonably accurate matches could be
achieved without excessive over-identification, that is, inclusion
of widely variant names in a class that should have been excluded
from it.

A sample of the telephone directory names and the varisble-
length class into which they were compressed by the first version
of the algorithm is shown in Fig. 17

The variable-length algorithm achieved a score of below 5%
under-identification error and over TT7% preservation of distinct
identifications when evaluated against the original phone book
system. Specifically, the phone directory contained 451 equiva-
lence classes. The initial version of the algorithm only split
22 (4.9%) of the 451 classes and preserved 349 (T77.4%) out of the

451.
- 64 -

e i e e - s - | 35 T g £ I - [r—— e e ek A A e 1 s e o G

FIGURE 16:

A SPELLING EQUIVALENT ABBREVIATION ALGORITHM FOR PERSONAL NAMES

Dolby Version 1 - Variable Length

Transform: MeG to Mk, Mag to Mk, Mac to Mk, Me to Mk.

Working from the right, recursively delete the second letter
from each of the following letter pairs: dt, 14, nd, nt,
re, rd, rt, sc, sk, st.

Transform: x to ks, ce to se, ¢i to si, ¢y to sy. Conso-
nant -~ch to consonant -sh. All other occurrences of ¢ to
k, z to s, wr to r, dg to g, qu to k, t to d, ph to f
(after the first letter).

Delete all consonants other than 1, n, and r, which precede
the letter k (after the first letter).

Delete one letter from any doubled consonant.
Transform pf# to p#, #pf to #f, vowel -gh# to vowel -f#,
consonant -gh# to consonant -g#, and delete all other

occurrences of gh. (#.is the word - beginning and word-
ending marker.,)

Replace the first vowel in the name by the symbol "¥*".
Delete all remaining vowels.

Delete all occurrences of w or h after the first letter
in the word.

(NOTE: vowels are defined as a, e, i, 0, U, ¥y.)

-

FIGURE 1T:
EQUIVALENCE CLASS COMPUTATION (MANUAL)

Version 1

A portion of a list of personal-name equivalence classes
from the Palo Alto-Los Altos Telephone Directory, arranged
according to the variable length compression code (with the
vowel marker * treated as an A for ordering). (1)

Variable-length
"Dolby Code" Names Belonging to Class

¥BL Abel, Abele, Abell, Able

¥BRMS Abrahams, Abrams

¥BRMSN Abrahamson, Abramson

*D Eddy, Eddie

¥*DMNS Edmonds , Edmunds

¥DMNSN Edmondson, Edmundson

*¥DMS Adams, Addems

*¥GN Eagan, Egan, Eggen

*GR Jaeger, Yaeger, Yeager (2)

*¥KN Aiken, Aikin, Aitken

¥KNS Adkins, Akins

¥KR Acker, Aker

¥KR Eckard, Eckardt, Eckart, Eckert, Eckhardt

¥KS Oakes, Oaks, Ochs '

¥LBRD Albright, Allbright

¥LD Elliot, Elliott

¥LN Allan, Allen, Allyn

¥LSN Ohlsen, Olesen, Olsen, Olson, Olsson

¥LVR Oliveira, Olivera, Olivero

*¥MS Ames, Eames

¥NGL Engel, Engle, Ingle

¥NL O'Neal, O'Neil, 0'Neill

¥NRS Andrews, Andrus

¥NRSN Andersen, Anderson, Andreasen

¥NS Ennis, Enos

*¥RKSN Erichsen, Erickson, Ericson, Ericsson,
Eriksen

Notes: (1) A small number of directory entries that do not

bear on the immediate problem have been deleted from the list:
Bell's see also Bells: Co-op see also Co-operative; Palo Alto
Clinic see also Palo Alto Medical Clinic; St. see_also Saint;

(2) Names whose compressed codes do not match the one
given in the first column (and hence represent weaknesses in
the algorith. end/or the directory groupings) are underlined.

- 66 -

An analysis of the under-identification errors (i.e., close
names that should have been included in a given class or classes
that should have been split, according to the phone book) is in
the Dolby paper in Appendix I.

e. Results of testing on catalog data. A program was
then written to implement the variable-length algorithm by computer.
This version was tested on a sample of 50,000 names in the Santa
Cruz machine-form author fiie. Fig. 18 shows some selected names
and the "canorical forms' which were computed for families of

close names.

It was then decided to construct a second, fixed-length ver-
sion of the algorithm to discern the kinds of errors that might
be introduced by truncation of the variable-length classes to
some standard length. The initial 1list of rules for Version 2 is
presented in Fig. 19. This version has not yet been implemented,
but computzr testing of it will be carried out in the next phase
of the project. The fixed-length version incorporates modifica=-
tions suggested by analysis of results of the progranm for the
variable-length classes together with separate '"hand" analysis of
the effect of truncation. We intend to program the improved
fixed-length algorithm and evaluate it comparatively with other
equivalence class schemes such as SOUNDEX.*

f. Effect of truncation to create fixed-length classes.
Tnitial analysis of the variable-length algorithm revealed that
simple truncation will not generate errors of under—identification
but will lead to further over-identification, i.e., inclusion of
disparate names in a class, that should have been excluded. The
simple truncation to the left-most seven characters of the classes
produced from the phone book names, introduced no losses from
combining too many classes (over-identificamion). However, reduc-
tion to a code length of four causes a jump in the cumulative
over-identification losses (i.e., too many names being included
in a given class that should not be included due to wide variations
in spelling). An optimal length of five characters for a straight-
forwardly-truncated class code appears to be attainable, however,
in advance of any testing on a large file. Since it is desirable
to obtain the shortest possible class, a method other than siumple
truncation was sought. A possible solution 1is further refinement
of the algorithm itself, ending up with a final fixed length of
four. The procedure proposed acts via selective removal of some
of the remaining characters, such as vowel-marker deletion from
the longer words and insertion of additional vowel-markers in the
very short words. Preliminary analysis indicates tlhiat an improve-
ment is achieved. Manual application of the version 2 algorithm
on the phone boock classes produced fixed-length compression codes

*Becger, Joseph and Robert M. Hayes. Information Storage and
Retrieval: Tools, Elements, Theories. New York, Wiley, 1963.
pp. 143-1hk,

- 67 -

e e e e

R =

FIGURE 18:
B EQUIVALENCE CLASS COMPUTATION (COMPUTER)
é Version 1
i
i Variable-length
" "Dolby Code" Nemes Belonging to Class (1)
| *BRN 0'Brian, O'Brien
¥NL O'Neal, O'Neil, O'Neill
¥BD Abbatt, Abbot, Abbott, Abetti, Ebbit,
Obieta
) ¥BR Aubert, Auboyer, Aubrey, Aubry, Ibert,
‘ Ybarra
¥BRM Abraham, Ibrahim
¥BRMS Abrahams, Abrams
¥BRMSN Abrehamsen, Abramson
¥DRS Edwardes, Edwards, Idriess
*LPR Allport, Alpers, Alpert
| ¥1S Ellis, Alas, Eales, Eells, Elias, Ellis,
: Else, Elst, Elwes, Olds, Olesha
; *I,SN Aliison, Alston, Ellison, Elsen, Elson,
?‘ ‘ Elston, Ohlsen, Oleson, Olsen, Olson
¥MR Amery, Amory, Aymar, Aymard, Emery, Immer
¥MRN Amerine, Amrine, Emerson, Emerton, Emmerson
¥NG Ewing, Ienaga, Inge, Iongh, Ong, Yanage,
Yang, Youge, Young, Younge
¥NN Anand, Annen, Anthony, Antin, Antoni,

i Ennin, Onnen, Unwin, Yenawine, Yohannan

¥R Airey, Ard, Arey, Arrow, Auer, Aury, Ayer,
Ayers, Ayreé, Eayrs, Ewers, Ewert, Eyre,
Thare, Irie, Iyer, Ore, Orr, Orrey, Orth

¥SBRN Ashburn, Ashburne, Osborn, Osborne,
Osbourne
B¥*K Bach, Back, Baikie, Bakke, Beach. Beachey,

Beck, Becke, Beke, Bewick, Biek, Boak,
Bocca, Bock, Bodky, Boeck, Boeke, Bok, Buck

(1) Selected from Santa Cruz machine author file.

- 68 -

——. -

iy

FIGURE 19:
ABBREVIATION ALGORITHM FOR PERSONAL NAMES

Version 2 - Fixed Length

(This version incorporates refinements proposed as a re-
sult of applying Version 1 of the algorithm to about 50,000
author names selected from the UC Santa Cruz machine catalog

file.

These rules should be regarded as interim, in that

further revisions may be suggested after additional analysis.)

For each sur-name:

10.

11.

12.

13.

1L,
15.

Rerove all blanks, hyphens, and apostrophes.

Transform McG, Mag, Mac or Mc appearing at the be-
ginning of a name, to Mk.

Working from the right, recursively delete the second
letter from each of the following letter pairs:

dt, 14, nd, nt, re, rd, rt, sc, sk, st

Transform: x to ks, ce to se, ci to si, cy to sy:
consonant-ch to consonant-sh, all other occurrences
of ¢ to k, z to s, wr tor, dg to g, qu to k, t to 4,
ph to f.

Delete all consonants other than 1, n, and r which
precede the letter k (after the first letter).

Delete a final e if it occurs.
Delete one letter from any doubled letter.

Transform pf# to p#, #pf to #f, vowel-gh# to vowel-f#,
consonant-gh# to consonant-g#, and delete all other
occurrences of gh. (# is the word-beginning and
word-ending marker).

Transform v to f.

Replace each of the first two vowel strings by e,
Here we consider a vowel to be any of the characters
AL,E,I,0,U0,Y.

Delete all remaining vdwels.

Delete all occurrences of w or h after the first
letter.

If the name is longer than U4 characters, drop one
final s.

Truncate to six characters from right end.

Reduce name to U4 characters by first removing the
rightmost ¥ if length2 5. If still not reduced to
L, remove second ¥ (can't be more than two ¥) and
then trurcate if need be. If resultant length is

- 69 -

e wuis weiims s~ w N e — — . T . e e PR [PUR .

Lem e w v % e e e E

T IR e AT

RS

FIGURE 19 (Cont.):

ABBREVIATION ALGORITHM FOR PERSONAL NAMES

Version 2 = Fixed Length

now less than or equal to U letters, retain one ¥,
don't remove the ¥,

.. If the name is less than U4 characters, pad with
blanks at the right, to get a uniform length of 4
characters total.

of length four, resulting in 361 distinct classes or 80% of the

451 original classes in the directory. Improper splits (failure

of the algorithm to identify a name with its proper class) occurred
in 24 or 5.3% of the classes.

6. Comparison with Present Manual Catalogs. It may still
be wondered why the equivalence class idea is advantageous. The
conventional card catalog provides a rather rigidly constructed
"syndetic" apparatus to guide the user to his "target" - reference
structures that lead, for example, from forms of name requested
to the specific form of name used in recording particular file
items, and from specific known names to a list of vertinent
related names (e.g., to a pseudonym: from "Dannay, Frederic see
entries under Queen, Ellery; Ross, Barnaby;" etc.)

The subject cross referencing system is even more highly
constrained - the dictionary of synonyms and other link terms
is dispersed throughout the catalog; only the user who has access
to the "authority list" can even try to assemble systematically
all the possible terms under which he might wish to search. In-
stances of related terms are often explicitly listed as "see
also's", but the distance separating any two similar terms or
names may be great, and thus printing out terms on either side of
the requested one is frequently unproductive. Some method must
be employed that overcomes the linear array of the file.

The manual file, e.g., the telephone book or card catalog,
usually makes limited, rudimentary efforts to help the user correct
his own errors. '"'See'" and "see also'" references are inserted for
variant spellirgs of names in the same and different languages.
These are usually permuted general class references, e€.g.,

ACCESS 1: ACCESS 2: ACCESS 3: ACCESS UL:
SMITH SMYTH SMYTHE SCHMITH
see also see also see also see also
SMYTH SMITH SMITH SMITH
SMYTHE SMYTHE SMYTH SMYTH
SCHMITH SCHMITH SCHMITH SMYTHE
and
CATHERINE
For sovereigns, princesses of sovereign houses, and saints:
Bohemian: see Katerina
Dutch: " Katherina
English: " Catherine

- 71 -

B T SR

) A PR

.

SEREEE R — PRSI

i
!

=

This apparatus not only is cumbersome to use but complicated
to input and maintain. It also introduces a degree of redundancy
into the file which can be precluded by mechanisms such as equiva-
lence classes.

7. Example of Use of Equivalence Class in On-line Mode. It
is useful to run through a hypothetical exercise to see how the
name compacting algorithm might be of service in an on-line mode.

[e Vi g ey et

The user desires to check a name in the file to see whether
the name exists, and if it does, what relation it bears to the
] file content, e.g., as author of a book, as subject of a biography,
: etc. He is assumed not to have a "verified" version of the spelling
of the name in mind, i.e., no knowledge of the exact spelling of
' the name he wants as it exists in the file and even if he did, it
N would not necessarily correspond exactly to the particular form
| in which the name and its associated elements are established as
a catalog heading.

ﬂ A necessary stage in the protocol of iInterrogating the file

| is to decide what to do as the next step. Let us assume that the
| first action is to key in the full or partial surname. (In our

gt first experiments this will be the first n characters of the sur-
3 name, depending on the kind of rules that are constructed from an
analysis of uniqueness of identification mentioned in Section II.
¥ In later experiments, it would be interesting to test whether a

Wl relatively free-form mnemonic¥* could be employed, so that the user
m;x could input n characters according to general rules and have the

2

computer perform the match with the equivalence clags mechanism
rather than the user selecting an assigned code from a list.)

i _ a. For example, if the surname key-is used and the user
i thinks the name is GARNETT, A.C., he would key in "GARN". Assume
i that a degree of match is found at this level of identification.
1 The computer could then display a sequence of messages describing

| the file contents, in response: e.g.,

"There are 14 books by authors named Garn, Garner,
and Garnett, in the file you have queried.

‘ § ' INDICATE WHICH AUTHOR YOU WISH TO DISPLAY
t - GARN -GARNER * GARNETT"

If the user requests a display sequence for "Garnett", the follow-
ing message might be output:

% "Option 1: There are T books by authors named Garnett in the
file.

PSR,

*Jackson, Michael. '"Mnemonics." ‘Datamation, v. 13 (Apr. 1967),
pp. 26-28.

: - 72 -

| e mmey

g S v

There are 5 books by authors named Garnett with
A. for one of their initials in the file.

There are 3 titles by authors named Garnett, A.C.,
in the file.

There are 2 titles by author whose name is Garnett,
Arthur C., in the file.

There is 1 title by the author whose name is
Garnett, Arthur Campbell, in the file.

Please select option you wish to explore further."

Assume the user goes on to select "Garnett, Arthur C." as the
requested author. In this case he need only further select from
two titles.

By such a process of sequential query of the file contents,
the user is gble gradually to converge on the name or document
he desires, or confirm that it does not exist, assuming he can
make these decisions from the file information alone. Of course,
in large catalogs it may be necessary to employ gradually (in an
iterative fashion) more and more information about the name or
document(s) sought, such as titles of honor, birth/death dates,
publication date, and other distinguishing data. Such data would
only be displayed when needed, to permit the user to make distinc-
tions among dense clusters of identical names which are identified
positively only by such subsidiary elements.¥

The actual machine match at each stage would be made on the
portion of the name required to respond to the user's specification.
He may wish to expand or contract his notion of matching. Should
he decide to exercise the option which would lead to a display of
a run of very close names, for example, the action of the algorithm
controlling this would be based on density factors of the actual
file (number of identical names which are only distinguished by
affixed information, the number of titles per unique author name,
ete.). If there are hundreds of entries under a run of similar
surnames (e.g., Allen) the search control could step through
presentations of various levels of summary information.

b. The other half of the author searching procedure is
coricerned with expanding the field of search when no match is
encountered. Let us assume that the surname match has failed and

¥This procedure for search purposes is analogous to the "no conflict"

policy employed in cataloging, where no identifying information
need be affixed to name headings except where needed to distinguish
between two different persons with identical names.

- 73 -

hence we are not interested. in the initial spelling but rather

wish to interrogate the file for similar surnames. For example,

! sssume & search on the class of names beginning with "Agrons".

| If the user did not know which spelling to guess at he could

b reverse the process and key in the equivalence class code "¥RNS"

1 from & list at the terminal, or if he did wish to guess at a

] name, he could key either a full surname or an abbreviated key

for it, e.g., ARON. The response in the case of the full surname

: might be "no match" but that there are other spellings. The

{ dialog would then proceed as above. Qur research so far has
served to point up the complexity of even the simplest cases.

A T T .

B U o

e e £ S e T RT3 7 5 C e memm e s s e e

(.

- IV. DATA BASE DEVELOPMENT

A. GENERAL

1. Recent Data Base Projects. There has been much recent
activity in the development of machine-form bibliographic files.
For example, the Library of Congress provided a limited amount
of English language cataloging in machine-form to a group of
participating libraries through its MAchine Readable Catalog
(MARC) Pilot Project. Harvard University has a closely related
project to provide non-LC bibliographic records in the MARC
format. In addition to these directly related projects, a
number of universities have begun developing machine data bases
of bibliographic records, among which are the Santa Cruz campus
of the University of California, Stanford, MIT, the University
of Chicago, and the University of Toronto.

In early 1967 the Institute of Library Research completed
an intensive investigation of book-form catalogs for the
California State Library.* During the study, a format convert-
ible to the LC MARC I format was developed and used in an analysis
of the effort required to obtain a machine-form data base fram
bibliographic reccrds. It was fram this basis that we began our
investigations of data base development.

2. Current Effort. In developing the data base for the
facility, bibliographic records for both monographs and journal
articles are being incorporated in the system as the initial
forms of library materials to be represented by machine records.
Our first effort was devoted to establishing a set of procedures
to obtain the initial monograph data base for the study. Under
the funding granted, it was anticipated that a data base con~
taining at least 200,000 titles in the Raman alphabet could be
developed. To obtain a file of this size, it was recognized
that some original input would be necessary. In addition, we
decided to make an extensive study of the procedures by which
existing data bases could be integrated into our system along
with our original input. Fram this study, we devised a method
for extracting the relevant information from some of these
sources in order to reduce original input as much as possible.
The incorporation of these materials requires computer programs
which we are specifying and coding in order to translate the
existing machine data bases.

¥Cartwright, K.L. and R.M. Shoffner. (Catalogs in Book Form: A
Research Study of their Implications for the California State
Library and the California Union Catalog, with a Design for their
Tmplementaion. Berkeley Institute of Library Research, University
of California, 1967T.

- T5 =

R =k

==

T

EITa

Where original input is to be accomplished in the develop-
ment of the data base, the source of this material will be the
recent cataloging output of the nine campuses of the University.
In order to minimize delsy in the establishment of our data base,
we started up the process for original input in parallel with
this programming. We took care to ensure a minimum likelihood
of redundant conversion of the various machine-form information.
It was known that the Harvard project is concentrating on mate-
rials of 1967 and subsequent publication date. The MARC records
were begun in mid-1966 and do not include retrospective materials.
As a result, virtually no materiels prior to 1966 publication
date are included in the MARC I file. The materials of the
Stanford University collection and the University of Califormia
Santa Cruz collection are both primarily undergraduate collections.
The remaining materials available tend to be concentrated in
specific subjJect areas.

As a result, we anticipate that the majority of machine
records for materials of publication date later than 1967 will
be fully covered by the combination of the Library of Congress
and Harvard University projects. Therefore no original encoding
of materials for this publication region has been undertaken.
With respect to some of the materials of 1966 and later publica-
tion, it is our expectation that at some point, the records now
existing in LC MARC I files will be supplied to users in MARC II
format by the Library of Congress. In anticipation of having
both these upgraded MARC I records and current MARC II records

from LC, materials with a publication date prior to 1966 only,
are being used for original encoding in our project.

Overlap with the undergraduate collections previously men-
tioned can be avoided in two ways: first, by selecting material
which appears to be relevant to a research library collection but
not to a basic undergraduate collectiony and second, by checking
questionable materials against the printed catalogs and lists of
these collections which are available.

In our input procedure, the encoding of the bibliographic
data to identify the logical content of the record and the keying
to provide the record in machine form are performed as two sep-
arate processes. The encoding process requires training in
library cataloging in order to identify the logical content of
the bibliographic record. The keying process does not require
such training. Rather, the central issues in this process are
the speed and accuracy with which it can be performed. This
performance is enhanced given that virtually all decisions heave
been made sbout what is to be keyed.

By separating the keying operation and by making all infor-
mation required by the computer input program explicit in the
data stream, the keying can be performed on any device such as
keypunch, paper tape typewriter, on-line typewriter, or standard

typewriter with optical scanning equipment. This means, for
example, that the computer program is organized to function
without regard to the end of a tab card in a keypunch operation.

The separation of these processes is particularly useful
since there exist commercial firms specializing in the keying
aspects of data conversion, to which this task can be contracted.
By separating this part from the other procedures which require
knowledge of bibliographic records, we can utilize these serwvices
with most efficiency.

An important aspect of any production procedure is the
control that it provides for maintaining the appropriate cost
and quality of the product provided. We have been studying the
trade—off of cost and quality and we have established a statis~
tical quality control procedure to maintain adequate accuracy in
the conversion process without excessive expenditure for this
control.

B. STRATEGIES OF CONVERSION

This section is addressed to two closely related conversion
strategies which are often mentioned but which have not received
cereful consideration. "hey are the use of existing machine
data bases and joint efforts in which the conversion is shared
among several libraries. A critical aspect of both of these
strategies is the amount of overlap that exists between the
catalog data bases. In the material that follows we consider
this overlap as a variable and show the impact that it has on
the effectiveness of these strategies.

1. Utilization of an Existing Data Base. If a data base

already exists in machine form, it is possible to search it in
_order to extract fram it matching records to be inserted into

the new data base being assembled. There are three elements

which are important to the unit cost of the records obtained

by this approach: the cost of the search; the expected number

of records that will match and thus be useful; and the translation
costs to convert the record to the format of the new data base.

The search cost is dependent upon the kind of arrangement
or degree of order of the two files - the old and the new, the
size of the files, and the match method used. In general, the
least expensive method is to have the two files sorted to the
same order and then merge them. Although sorting time is not
a strictly linear function of the number of records, only a
smell error is introduced by considering it linear. Used for
the purpose of a search, merging time is approximately a linear
function of the number of records in the larger of the two files
by this approach. The search cost can be characterized as s
sort cost per record times the number of records in the new file
(assuming its initial order to be different from that of the new

- T7 =

xS

M T

=

date base), plus a merge cost per record times the number of
records in the larger of the two files. The translation cost
depends upon the degree to which the format and content of the
existing and the new records are the same. In any event, the
translation cost is & linear function of the number of records
translated. . That number can be characterized as a percent of the
the total number of records to be included in the new file.

We now develop an algebralc expressicn for the cost per
converted record. Letthe number of records in the new data
base be represented as "Vnew"' Assuming that it is the larger

of the two data bases (true for our case) the search cost is:

$search = ($sort + $merge) Vnew (1)

where "$sort" is the sort cost per record and "$merge" is the
search-by-merge cost per record (batch mode).

Fram this, we obtain as the next expression:

$conv = ($search + $trans - Rhit'Vnew)/(Rhit'Vnew) (2)

$search/(Rhit'Vnew) + $trans

= ($sort + $merge)/R, ., + $trans
hit

where

"$trans" is the translation cost per record;

"Rhit" is the ratio of the records V in the new file which

are found in the existing data base; and

"$conv" is the cost per record of obtaining the new data
base by searching, extracting, and translating records from the
old data base.

If our purpose is to choose the approach which requires
the least cost to obtain the new data base, we may compare this
approach to that of a straightforward conversion of the new
data base, which makes no use of the existirig data base. As
before, we can consider the cost as a linear function of the
size of the new file and express the per record input cost as
"$new". We can now set up an inequality such that if the
expression is true, we could choose to use the existing data
base in the development of the new one:

$

new ; $C onv

= ($ +$)Ry sy + 8

sort merge

- 78 -

trans (3)

1

L e e e e e ———— e

From this, it is clear that in .considering these alternatives

en immediate check can be made to confirm that the cost of
translating an existing record is indeed less than that of the
original conversion of the desired record. Variations in format
or content could be great enough in themselves to reverse the
direction of the inequality. Assuming, however, that this is
not the case, we can proceed to rearrange the terms (since all
terms are positive, the direction of the inequality will be

preserved) :

R, =($ +8$) -9

hit sort merge

) ()

trans

This expression simply says that for gsearch to be justifiable,
the ratio of hits must be greater than/equal to the ratio of
the search cost (sort-plus-merge) to the difference between the
straightforward conversion cost (non-translated file) and the
conversion cost by the method of translation of an existing
machine file. '

Another approach to the use of the existing data base is
to sllow the files to remain in their original (perhaps unsorted)
order and to make a random search for each desired record. For
example, such a search could be performed over a terminal to
an on-line file. In this case, our general analysis is the same
except that we have a search cost (on-line mode), expressed as
g linesr function of the number of records, which replaces the
sorting and merging cost. This can be substituted in expression
(4) as "$srch":

R.. =% /($ -$

hit srch new

) | (5)

trans

Thus, the analysis is applicable to either situation. Further,
for on-line search to be less expensive than the sorting and
merging approach, the following must hold:

$_ . . <($ + $). (6)

srch sort merge

5. Joint Conversion Efforts. As mentioned earlier, it is
often the case that a joint conversion effort is proposed as a
desirable strategy. Given that all the records fram a group of
separate source files are to be converted, there are still many
questions that must be answered in order to determine how to
go about the conversion. First, is there enough overlap between
the files to meke it worthwhile to try to avoid multiple con-
version of the "same" record? This is the question we were
addressing in the previous section, in which we formulated an
equation which can be used to compute the minimum amount of
overlap needed to justify a procedure to prevent duplicate
conversion. If the overlap is sufficient, which records should
be converted first? Can some files be converted independently?

- T9 =

e rrme En. e Ew . g e W TS wome o 4w e 1t e WY ot e— ————— F—

en s o

Can some files be converted in parallel, or is there a single
desirable conversion sequence?

Careful analysis shows that this is a less camplicated
series of questions than it first appears. First, the total
amount of direct conversion effort will be the same regardless
of the sequence in which it is performed. Therefore, the factor
which affects the total conversion cost is the search for those
records already converted to machine form. Therefore, the proper
conversion strategy should minimize the totil search cost, in=-
curred during the course of converting the whole "new" file,
either by eliminating the search altogether, by reducing the
number of searches, by reducing the search cost per record, or
by a combination of these.

Some approaches which eliminate or reduce the number of
searches will do so at the risk of a certain amount of unintended
duplication of records converted. We will first consider only
approaches that do not risk duplicate conversion.

a. Conversion with guaranteed control of duplication.
The major source of search cost is search time, whether in a com-
puter or a manual system. Let us use the following notation:

Vi = the number of records in file ij

R, the ratio of the total number of
i
records in file i, which are in
some other file as well;

the ratio of the total number of
records in file i, which are also
in file J3

the cost per record of searching
another file for duplicates while
converting file i.

The total search cost is thus:

$srch = £- V:i. $isrch (7)

i=2

Note that the summation index begins at 2 because there is no
need to perform a search when the first file is being converted,
since no machine file exists yet.

The search cost per record is dependent upon the file size,
that is, upon the number of records slweady converted, over which
the search for duplicates takes place. Although there are many
different ways in which that search can be performed, we assume

- 80 -

it will be one of & binsry nature in which the search time is
proportional to the logarithm of the file size. Thus,

2 g v (8)

3 i pmga R

This formulstion of search cost is useful primarily for random
search.

Determining the sequence in which a group of source files
are to be converted has two parts: 1) the general case of
selecting the next file to be converted; and 2) the special
case of selecting the first file.

The rule for the general case is straightforward. The file
to be converted next is the one which has the lowest ratio of
records which are not yet in the converted file, to total
records in this file. This rule balances out the execution
of the maximum possible searches of the converted file a% its
current size (as would be provided by selecting the largest
remgining file for conversion next), against the addition to
the file of the least number of records possible (as would be
provided by selecting the remaining file with the fewest records
not already converted).

A batch oriented search is formulated in a manner similar
to (8), but it is linear:

$ =g(;.i:l v, -2 =g v (9)

imerge I s=1 negel Jsh J

where "$imerge" is the total cost for the search of all of the
records in the new file i.

The use of this search method changes the rule for selecting
the least cost conversion sequence. Because it is & batch
process, the cost is not sensitive to the total records in the
file to be selected. Therefore, the appropriate rule is to
select for conversion next that remaining file which has the
fewest records that have not yet been converted (i.e., the
most overlap with the other files). This has the effect of
keeping the growth in total size of the converted file at
smaller increments and thus the merges as small as possible.

Now let us consider the special case of selection of the
first file which will be converted without pre-sorting and
without search since there is no data base already in machine
form. In the case of a random search it will be the largest
file for which the overall duplication rate with the other
files, Ri’ sgtisfies the expression defined for Rhit:

- 81 -

s g A =g

Pl R

Rpit = $srch/($new - $modif) (10)

"$modif" in the equation refers to either the cost of converting
records from manual files or the cost of translating from an
existing data base, when search is used.

By this rule, the most searches will be avoided for a file which
would have been converted with search at some point in the
sequence. This search avoidance reduces the cost more than
converting the large file incresases it.

For a batch processing procedure, the first file is selected
according to the general rule, i.e., the smallest file first.
The reasoning for this was glven .above.

b. Independent/parallel file conversions. To this point
we have discussed only the general characteristies of the files
to be converted. On this level of analysis it would not be
possible to define a method by which independent conversion
of several files in parallel could take place. The key issue
in defining such a method is to be able to predict on the basis
of some set.of readily observable characteristics of the record
to be converted, whether or not it is unique to this file. If
this prediction can be made to a high enough level of accuracy,
then ipso facto it would not be worth it to perform searches
for these probeble unique records. The duplirsation rate needed
to make search and modification (integration of duplicates with
variant elements such as call number) less expensive than direct
conversion without search was shown to be:

Roit = ($sort + %merge)/($neW'- %modif) (11)

Recall that search is not econamic if the hit ratio is less than
the ratio of search cost/conversion cost differential. So long
as the error of estimate is not so great that the actual hit
rate satisfies this expression while the estimated hit rate does
not satisfy it, then these records having low expectation of
duplication can more economically be converted independently,
without search.

By this procedure, then, the records in all the files,
which are predicted to be unique could be separated and con-
verted in any order whatsoever.

Parallel conversion could be accammodated by the strategy
of segmenting the files into sub-groups, such as letter groups
by main entry or title, and allocating different sub-groups
for conwersion at a given time. This technique, however,
implies later search and reconciliation of the file segments.

- 82 -

i
e v e s ww s C e o - — 2T - - e L 1

.. - —— W~ Ty o -

As a result, it does not attempt to minimize the total con-
version effort as do the approaches we have presented here.

3. An Example: The Catalog Supplement. To develop the
data base for our facility by original conversion, we are using
the catalog records of the University's Catalog Supplement.
These are records of material which were new cataloging (not
necessarily new publications) to the campuses during the period
1963-6T7. We have made extensive studies of these records and
are thus in a position to provide examples of the use of the
expressions defined in the earlier parts of this section. This
discussion, it should be noted, is intended only as an illus-
tration, however, since many of the estimates are not verified.
Assume the parameters have the following values:

$sort = $0.05 per record
$merge = o.01 " "
$new = 0.75 " "’
$modif = 0.25 ")
$Srch = 0.15 " !

For a manual approach to the search, Rhit.must satisfy the

following relation:

i.e.,

14

0.12 (13)
For an on-line search approach, it must satisfy

Ryt > (0.15)/(0.75 - 0.25) . (14)

i.e.,

14

0.30 (15)

- 83 -

S

AT SO MR- S

Total estimated file sizes, by campus, are as follows:

Berkeley 214,000
Davis 131,300
Irvine 53,500
Los Angeles 276,200
Riverside 99,500
San Diego 128,700

San Francisco 17,500

Santa Barbara 126,100

Santa Cruz¥ -
Total - 1,046,800

At this time we do not have estimates of the duplication rates
among these files. However, we believe that it can be reasonably
hypothesized that duplication rate and file size are negatively
corrrelated. That is, the larger the file, the less the dupli-
cation rate.

Using this hypothesis and the selection rules defined
previously, we would first convert the largest of the files,
that from Berkeley. The next file would be the one estimated
to have the greatest overlap among the nine. It would be
searched against the machine-sorted Berkeley author file, after
which we would convert the unique titles and input added loca-
tions for the matches. The next highest overlap file would
follow, and so on down to the last remaining file with the
greatest residual uniqueness.

In this situation we would not take San Francisco as the
file with the highest duplication rate, even though it is the
smallest file. Because it represents a special collection
(to support a medical school) our hypothesis of size and dupli-
cation rate is not likely to hold. Therefore, we would convert
it next to last. All other campus files would be chosen in
ascending order of file size.

There are two characteristics which we believe will be use-
ful for predicting duplication rate. If so, they will bear on
the search/convert decision. They are the language of the
record and the indicated date of publication of the material.

Our hypothesis is that duplication rate is highest for English
records, next highest for records in other Roman langusages,

and lowest for non-Roman langueges. Also, the older the material,
the less the duplication rate. If the record was seen to have

a particular language end a publication date that falls before

a certain date, the card would be converted without search of

the machine file, in the expectation that duplication would be
very low. Otherwise, it would be searched against the data base.

¥The Santa Cruz file is now in machine-form and was not estimated
at this time.
- 84 -

In order to catch unintended duplication, a check could be
made automatically as part of the file maintenance process (or
manually, off-line) to compare possible matches to see if they
are truly duplicates. If found to be matches, post-conversion
modifying would then be done.

To check these hypotheses, we took a sample of approx-
imately TOOO records and counted the duplication rate as a
function of language and publication date. The results are
given in Fig. 20. It should be noted that this is an overall
duplication rate: it is computed as a ratio to the resulting
file after duplicates are removed, rather than to the inclusive
source file with duplicates intact. The results for English
conform very well to our hypothesis. It would appear that 1962
would be a reassonable cut-off date for the use of on-line search,
on an experimental basis.

No consistent pattern appears for publication date for
the non-English materials. Given the outcome of the work with
English, more study of these materials may be needed. At any
rate, it appears that for English language materials there is
a high likelihood that if we used 1962 as the cut-off date
for searching, not to search items with a date prior to 1962
would give around a 30% chance of converting an item twice. .
Whether this is acceptable will depend upon verification of
the various estimates which were used in the computation of
R .
hit

C. TRANSLATION OF EXISTING MACHINE FILES

1. General. In order to investigate the autamatic
translation to our format of a file in another format for
data base development, we cbtained copies of the mggnetic
tapes of the catalog of the Library of the University of
California Santa Cruz campus.

The reasons for the decision to use the Santa Cruz file
rether than the LC MARC I file, arose from our analysis of
the UC catalog file.

First, the use of Library of Congress MARC I tapes for
extraction was likely to be useful for less than 10% of the
records in our source file. This is the case because the
MARC I file contains English language materials, the prepon-
derance of which were published since mid-1966. At present,
probably about half of such material which has been published
has been included in the MARC I file. Therefore, we decided
to concentrate on the development of translation procedures
for the Santa Cruz tapes since: 1) they contain approximately
90,000 catalog entries and 2) the Santa Cruz file should have
considerable duplication with at least two of the other campuses.

- 85 -

e ———

T =

FIGURE 20:
DISTRIBUTION OF DUPLICATE TITLES
AS A FUNCTION OF PUBLICATION DATE

A. TITLES IN THE ENGLISH LANGUAGE
Year of 195511950 |Prior
No. off Publi-|1967{1966 [1965| 1964|1963[1962| to | to | to | no
Copies| cation 1961195411950 [date
% of year| .83| .53] .h9| .20 .56 | .67 .821.81].86 |1q00
1 .
% of yeay .17| .18] .19} .10 .14 J.17 | .12 [.18].10
2
3 % of year .10| .10} .ok | .14 | .10 | .06 .02
)y % of year .10}.064 .60 |.03 |.05 .02
5 |kofyear .03{.07[.03 .08
6 0 Of I ‘02 001 003 ‘Oh
T % of year .03 |.02
8 20 Q;Arear
9 % _of year .01
Total % 100 100 100 100 99 99 100 99 100 100
% of year: This is the percent of titles (in the language indi-

cated) in the sample that were published in the given
year, having the given number of copies.

- 86 -

g

B. TITLES IN LANGUAGES OTHER
THAN ENGLISH THAT USE A
ROMAN ALPHABET

1965 {1964 1962

of

of yr

Total % 100 100 100 1100 100 101 100 100 100

C. TITLES IN LANGUAGES THAT USE A NON-ROMAN ALPHABET
INCLUDES TRANSLITERATED TITLES

Year of 1955|1950|prior
Publi- |1967|1966}1965 [196L4]|1963|1962f to | to | to

cation 1961]1954[1950
% of yr .91 1.93 |.98] .95 |.96 | 100 | 100 | 100

% of yr .09 }.07 |.02]| .05 |.0k

Total % 100 100 100 100 100 100 100 100 100
- 87 -

The sutomatic translation of records is of considerable
importance, not only for the conversion of the Santa Cruz
materiaels as such, but because it represents a special solution
to the general problem of converting from a less specific
format (such as the Library of Congress MARC I format or the
Stanford University Undergraduate Catalog format) to a more
specific and complex format (such as the Library of Congress
MARC II format). To the extent that automatic conversion is
successful, materials which have been converted in less speci-
fic formats will be more immediately useful in systems based
on the MARC II format. Also, the continuing process of input
in the MARC II format requires that many of the encoding deci-
sions be made by professionael cateloging personnel. A further
benefit of automatic translation could be to reduce the amount
of trained personnel effort required for original input. This
would be accamplished by reversing the production sequence.

The new process might be termed "computer-assisted editing"
(see Fig. 21). The keying of the catalog date is first per-
formed, then the computer programs incorporeting the algorithms
assign the basic identifying codes to the records, and finally,
the trained personnel would review and correct or extend the
computer actions.

The approach of the algorithms will be to identify the
fields and sub-fields of the bibliographic record on a 'best
guess" basis. By this approach, it seems reasonable to
attempt to reduce the total manual effort to one-half that
required by present procedures.

- 88 -

FIGURE 21:
CONVENTIONAL CONVERSION COMPARED TO AUTOMATIC FORMAT
TRANSLATION AND COMPUTER-ASSISTED EDITING

c t. C.ALE.
(AR) (START

Source
Catalog
Card

Manual Translation

Pre-edit Keyboard to Input
Format

Computer
Edit to

Processing
Format

A4 \J/

Manual
Computer Post-edit/
Edit ' — | correction

N7

y
Update
Proofread

Keyboard

\ 4

Stop

-~ g P e .

e T I Y, Rl

Wt T

2. Santa Cruz File Translation Program. The general
function of the program (TRANSCOF) is to convert the codes for
data in one format to codes in another format. The change is
one of form, not content. Specifically, this progrem trans-
lates the Santa Cruz Library System input format into the ILR
input format.

Some of the problems of format conversion are:

(1) Determmination of the rules which cetegorize the
data into & given format, at the field level.

(2) Identification of the "structural properties" of
the originel data (such as that of LC cards). Structural
properties are the physical characteristiecs according to which
the data as strings of symbols may be said.(with some degree
of probability) to group itself according to logical content
and meaning. Very little quantitative information on the
nature of the field content of catalog records is available.
To obtain indicative data, a rough sample of 1000 LC cards
was eanalyzed: 997 had the characteristic that the author
surname (which is a logicel content meaning) was uniquely
separated from the remainder of the name by a comma (a physical
characteristic). Thus, one trivial but useful structursal
property of LC card date is that the surname is separated from
the given name of an author by a camma with & probability of
gbout 99%, yielding a reliable way of confirming sub-type of
personal name.

Structural properties with a high favorable probability
are being used in the development of algorithms which estab-
lish equivalence between the data elements of one format with
those of another. For example, using the structural property
illustrated above, we developed the following algorithm:

Given the code in the source record which identifies
the field containing main entry author name, we can
infer that the symbols preceding the first camma in
a left-to~right character scan constitute those
characters which belong to the element 'surname', and
those subsequent to the comma belong to the category
'given names'. ©See Fig. 22.

Where structural properties are too ill-structured to de-
scribe or have an unfavorable probability, indirect methods must
be developed for the division of a field in one format into
the seversal corresponding elements of another, more specific
format. Fig. 23 depicts the initial version of & sub-routine
to identify the elements in the title field, a more difficult
translation.

To illustrate further, consider the problem of sub-
dividing the element 'subject headings' into sub-categories
- 90 -

R]

FIGURE 22:
FLOW CHART OF PERSONAL AUTHOR FIELD ALGORITHM

Given: All of the information concerning personal author as found
on an LC card, except information such as 'editor', translator',
etec., which is given by a code letter in col. 69 of the Santa Cruz
input card. To be determined: (1) Which portion of the string
constitutes the name of the author, (2) which portion is the date
date(s), (3) whether or not the title 'Sir' (vhich is the most com-
mon title) is present.

The following is a generalized outline of the logic involved and
does not faithfully represent the actual coding of the subroutine
PERSAUTH.

Scan for the

word 'Sir'
imbedded in o < START)

the string

set
SIRFLAG
=0

yes

Delete 'Sir'
from string
and set
STIRFLAG = 1

=

Scen for lst. First said
numeral not -
followed there- EUm:ral p
after by a start of date
smell alphsbetic

Date field is
Does assumed not

situation present. In-

occur? sert delimiten
in front_of

name field. |
Yes L'—\L__

Insert delimi-+ Tack on_the

ters in front word 'sir!' wi

of name and its delimiter
date fields at end of string
3 if SIRFLAG =1

Tf SIRFLAG =1 v
insert 'sir'
ith its deli-

iter between
ame and date

ields,

FIGURE 23: FLOW CHART OF TITLE FIELD ALGORITHM

Given: Complete monograph title field. _

To be determined: (1) Short Title, (2) long title, (3) author
statement and additional informetion, (4) edition statement, (5)
remainder of edition statement.

=D
l

left to right
%? scan for

punctuation/
"BY"
Peri?ds If nong
[Question . L resent,)
mark, Condition ébonxy '*’(:fEx1t i:)
close pa- is pre-
lrenthesis sent.
'BY"
Fo%loged arates
NA iéfm
nd no
Colon, resent
'-colqn
. Period eﬁarates
signals end from.(2)

of c)

No
further
fields

are
present

Exit Indicates left to
the right
start of'——-%%scan for
QD "by"

s a

If 'by' This ig eit-
present, hgr'ugg‘tg%l}_-__{ Exit >
it separ- i nuetion of

ates to end

from of string

-92 -

. e 2zt
——— ¢ T vt — T - o

v

FIGURE 23 .(Cont.);:
FILOW CHART OF TITLE FIELD ALGORITHM

left to
right scan

Period
signals

h7r_ end of
@

v

present

—y

left to
right

scan for
period

i

G

No Period

Yes

- 93 -

o e e e w— -y -

If no per
iod, last
section

is <:>

L

=D

ST T

I et

L WE R * T

TN e —r

g ey e ey

—

It SR

T p——

based on the various classes of subjects, corresponding to the
6XX tag series in MARC II. There is nothing in the structure
of information on the LC card which provides any clue to its
meaning or type, beyond the level of "subject tracings" iden-
tified by Arabic numersls. Resort might be made in this case
to table-lookup scheme utilizing a dictionary, which identifies
the field type to which a given subject heading belongs. A
"tegged" version of the LC subject headings machine file could
be the basis for such a method.

The TRANSCOF progrem consists of a main routine called
LAYOUT and five subroutines named PERSAUTH, C@RPAUTH,
ES200500, TITLEALG and PPD.

The main progrem performs three functions, in three
sections:

(1) Reads in the set of 'card images' froam a source tape
that make up the data converted from a single catalog card.
This data is then broken down and laid out into the appropriate
categories for processing by the subroutines. Certain charac-
teristics of the data are noted and recorded for later use.
Branches are made to other secticns of the main program upon
detection of variations in the data (such as missing sections)
for "troubleshooting" purposes.

(2) The subroutines are called and various logical gates
are opened or closed in the third section.

The subroutines apply the algorithms to the appropriate
strings of data which were constructed in che first part of
the main program. Data which is input to the subroutines are
restructured into the ILR input format.

(3) The various pieces of the restructured data are
concatenated to produce a continuous string which makes up an
ILR input record. This is then to be written to tape, and the
whole process is repeated for another record.

D. DATA BASE PRODUCTION PROCEDURE

In the following section we present a detailed plan of
the procedure through which we plan to obtain the data base
for the study.

The chart in Fig. 24 summarizes the overall file creation
plan, including the experimental on-line, terminal-based
search operation. Certain aspects of the process have not
yet been implemented as of this writing. These components
are labelled "Proposed". Two programs in this plan are
eritical and were discussed in preceding sections. These are

- o4 -

FIGURE 24: SUMMARY CHART OF DATA BASE PRODUCTION

g [start]

’ Translate

(Original Format
Format)

:
|
|

<pdate Ind%
Generate
Index File

Name

Index v

Initial¥X _ _ _ _ _ é
Master

(Proposed)
Terminal
Search on

Match of Names

Match of Names

]
|

I

|

|

Print |
' |

I

I
|

|

Machine ‘ |
Record ~.] Diagnostic - —~
Listing it
\\ Vi §|
2

Compare
Cat. Data No Match of l

Records

AgJéggtch ' /

Modify + \p.---
Error
~~-"\ Correction

Modified
Master
File

e e g v e PR -- - b - s

—x

c ey

. wex:

e

e e

SRS AT T

the program for conversion of the Santa Cruz tapes to ILR input
format (TRANSCOF) and the input edit (processing format) pro-
gram (INFOCAL). A preliminary version of the INFOCAL program
is currently running.

Meanwhile, the modules of the system were set up in a
"stand-alone" status. To implement the progrem for original
input separately, a large sample extracted fram the source
file of University of California Catalog Supplement was used.
The material in this semple was edited, keypunched, and pro-
cessed to shake down the record formats and to serve as a
basis for evaluating alternative methods of converting existing
machine files. That is, we plan to compare the records put
through the Santa Cruz format translation with any matching
»ecords which are input as original records. This will serve
as a basis for improvement and revision of the automatic format
translation program.

1. Proposed Oa-line Search Procedure. Instead of using
manual methods to verify which catalog entries have been
converted to machine form, we plan to use a terminal-based
search system for this purpose. The search key to be used in
this experiment would be the main entry author name (or a
portion thereof) from the card, matched egainst the machine
index file of author names. A research objective of this
technique, as well as to shorten the search process, is to
gather quantitative data on the optimal length of search key,
i.e., minimum number of characters in the name to be keyboarded
in the request while preserving uniqueness (see Section II.E.}).

If there is a match, the catalog card would be set aside
to be checked against a subsequent printer listing of the
full machine record. If no match is obtained, the catalog
card would be put immediately into the conversion process.

At the same time, the irdex file would be updated with the

new informetion indicating that the entry is in the conversion
process but not yet in the system. As a separate manual
process the printed listing would later be checked sgainst

the catalog entries which were set aside. If a true match

is confirmed, the added location data or other modifying
information such as variant call number would be incorporated
into the existing record. If the possible match is not true,
the catalog card would then be put into the normal conversion
process as & new record.

Fig. 25 shows the first steps in this experimental
verification search process.

Fig. 26 shows the cards found to be possible matches with
existing machine index file entries being compared with print-
outs for corresponding machine records from the camputer master

- 96 -

@ . e— et

FIGURE 25: ON-LINE SEARCH FOR DUPLICATES

=D

- -~
Trans late§
Existingé”

|
File

(ILR Input™~ AJLf

Format)
Input
Edit
o /T \
Processing
/s
%
s
Generate -
I Index
] _ Name

Catalog

Index
File

N ,
Card AN [Compare .:>\~——*’/
Ny Identifierfe”
on Card:
Index File

Update
Index 1.0
e _
; W \{Yes -,
Hold Match Note Send Non-
Cards for Record match Cards
Compare with umbers of for Original
Machine Listipg Possible M?tches Input
A

&

- 97 -

e e

s T

FIGURE 26:

Record Numben
of Matching
Machine
RGEEEQE/”ﬂ<i

VERIFICATION OF MATCH

IR
Master
_ File
P
_
N Retrieve P
Records &
rint Diag-
ostic Lis éng
N\
N\
\
N
\\,.
(4
J Y

Compare [,
Catalog Carg

Listing

e 2 b TR ———

- 98 -

Part 1 of

A e

R N

I |

file. If & verified match is confirmed, the editor decides how
to merge the manual record with the machine-readable information.
If no true match is found, the name heading on the catalog card
is entered into the machine index file as a control on the new
record, which now goes into the original input process.

5. FEditorial Preparation. The next chart (Fig. 2T) shows
the process of editing and initial keyboarding. The cards
flowing into this stage are those which did not match, either
on the initial name (author) search, or which were found on
actual comparison with a printcut from the machine file to be
distinctive records, even though the heading matched.

} If the records matched on name and also matched on title,
edition, etc. when the card was compared with the printout,
the variant data fram the catalog card is input as a correction
to the machine record, as depicted in Fig. 28.

Several thousand records have now been edited in the ILR
Input Format. This wors is under evaluation in order to
estgblish the adequacy both of the formats and of the organ-
ization for providing the input.

Preliminary estimates of the effort requirements will be
used as & basis for evaluating the results of the first year's
editing and for reorganizing the input methods for the remain-
ing portion of the current data base preparation work. Prior
experiments indicate that the input (iacluding all steps of
editing, keyboarding and correcting) of English language
material should be capsble of being performed with an
approximate total of 5 man-minutes of effort per title.¥ Our
recent work using the ILR input format that translates to full
MARC II format indicates that about 15-20% more effort per
title will be required, at least until the editing and typing
staff reach a high degree of proficiency. It is ectimated
that non-English material will require on the order of between
one-half again to two times as much effort as the English
language material.

3. Keyboarding. The records are next sent for key-
boarding. During initial tests in IIR the production rate
achieved was somewhat lower than that attained in previous
studies. This is due to the impact on our coding of the

¥Cartwright, Kelley L. and R.M. Shoffner. Catalogs in Book
Form: A Research Study of their Implications for the California
State Library and the California Union Catalog, with a Design
for their Implementation. Berkeley, Institute of Library
Research, University of California, 1967. p. 48-49, I-31.

- 99 -

o

Bk el

=

L DA ST LT il

FIGURE 27: DATA PREPARATION AND TRANSCRIPTION

3.0
Catalog Card
~N
N
N\
~
N
Prepare
~
N
N
~N
N
Coding Sheet
N -
'
P ”
Edit <
rd
e
. 7~
| Edited Coding
,(Sheet
Keyboard
o ~
N Computer

Input
Medium

/

| - 100 -

i

FIGURE 28: COMPUTER EDIT, CORRECTION CYCLE, AND FILE UPDATE

‘\ Source I

Records

b Input
Edit Trans-
action
P Run .
f - / Fl le
Coding Sheet)
¢ Quality
Diagnostic Control Proposed Automatic Certification
Listing Path
\Y/
Proofread Master .
. Exit
File
Update
i\
No Certify
Part 2
of Listing es

Indicate
~ o
Corrections

|

|

|

Keyboard !

Corrections :
| 7

-~ "Carryover"
Update Run Y- E?af?°3t1°
| Updated - tstings
Master jé”
File /
/
A ’
< >
Index
Fil
llies X

e e e ——— o = S T W— T T AT

e e

T

i

added complexity of the MARC II format, primarily. Preliminary
estimates secured from commercial service bureaus for the
initial keyboarding on a production basis are for a rate of
about 5,000 characters per hour for the learning phase, in-
creasing to a rate of 7,000 characters per hour after that, on
the average. This is based on the input record as described

in this report.

A number of keyboarding conventions are being recammended
for use with the lengthy, complex strings involved in catalog
records. Among these are a "null previous character” signal,
i.e., a code that can be typed immediately following a character
typed by misteke (when so recognized by the device operator),
and a "spacing rule". The device operator will not have to be
especially attentive to inter-word spacing when inputting the
catalog data since an internal computer edit routine will check
the data stream for instances of more than one space and re-
duce such occurrences to one space.¥

¥There is one exception which is very important if the input
process happens to be implemented on tab cards. That is to
employ a convention that a punched card can be either filled
completely (i.e., a character in the last column) or partially
filled. If partially filled, all trailing blanks (from the
last character punched to the last column available for use)

will be asutomatically purged from the input stream by the edit
progrem. In any case, the first normally used column of the
next succeeding card must contain a blank if there is an inter-
word space needed. If not needed, the following card begins
with the next succeeding character of data in the first nor-
mally used column, as in the case of a break in a word at the
right end of the card being punched.

Strict conformity to this or a similar arbitrary con-
vention is absolutely required to make the input record usable.
Irregularity in spacing can create great difficulty in trans-
lation of a machine file from one format to aiother, partic-
ularly in cases where tab cards were used as the conversion
medium.

4., Proofinz and Correction. The records are then input to
the computer, and the internal processing record is compiled by
the input edit program. (See Fig. 28). After a number of
machine edit checks, validations, etc., are performed, a diag-
nostic proof-listing is printed out. This printout here is
optional: it may be suppresszed if the record is not to be
selected for proofing by the statistical quality control routine.
A line printer will be used rather than a slower, more costly
on-line terminal.

The kind orf validation checks performed are: check to

determine whether ten slashes have been inserted into the record;

signal an error condition if less than ten are present. Check
detailed aspects of the coding, such as whether author-analytic
added entries contain both an author and a title subfield, as
required by the input instructions. On the double-spaced
listing to be used by the proofreader, the computer prints

out error messages fram a repertory of such dilagnostic routines.
These messages appear in conjunction with the data containing
the detected error. Examples of printed error messages gen-
erated by the edit programs are:

DECKLET SEQUENCING ERROR. The card numbers in the set of
input record tab cards (if that is being used for input) are
not in ascending numeric order.

#%%¥oc IS INVALID ADDED ENTRY TYPEX¥¥#¥, "ecc" is a two-
character code describing the type and sub-type of a heading.
The code designated was not recognized by thae program as a
valid code, indicating an editor error or typographical error
was committed.

MORE THAN 3 BIBLIO. LEVELS. EXTRA CODES IGNORED. Only
three positions are allocated in the record leader for storing
the values for bibliographic levels of the record.

TRANSLATION INDICATOR GIVEN, BUT 2ND LANG. MISSING. The
language variable field contained only one three-character
language code: there should be two.

¥%¥¥ONE OR MORE A-FIELDS MISSING. SLASHES FOUND¥#¥#¥,
This message is printed if the program finds more than or less
than 10 slash marks between the location of the beginning of
the A-fields and the location of the start of the B-fields.

#%¥TMPROPERLY CODED LOCATION SUB-FIELD IN HOLDINGS STATE-

MENT*%%* ¥%¥%, The sub-field did not contain a five-digit
agency code or a five-digit-plus-one-letter seguence.

- 103 -

— e SNt ez et e ——— o e

AT TS e

e o

R e

T

'L
i
f
3

¥#¥WARNING - LC CALL NUMBER OCCURRED MORE THAN ONCE*##,
This signals the proofreader that the field code for LC call
number was used more than once. Could occur when proper code
for LC copy statement was not used for the second call number.

There are & number of error coanditions which cannot be
determined by the computer, and these would of necessity have
to be detected in the visual proofing process. In case an
error goes into the master file undetected, a procedure will
be established to input corrections reported by users at a
later time.

Two features of the correction cycle are of particular
interest: 1) the re-keyboarding of the corrections could be
performed experimentally via the on-line terminal, in contrast
to the initial keyboarding which is done off-line on devices
such as the keypunch, and 2) the diagnostic listing of the
record is being experimentally printed out in two parts, one
containing the coding and datas displeyed in a logical field
array, element by element, field by field; the second part
listing the same data but in order corresponding to the
sequence of the physical input record, e.g., a tab card decklet.

This form is an experiment intended to assist the proof-
reader. The first part of the listing is shown in Fig. 29,
and is used by the proofreader (who will not be the same person
as the editor of any given record) for visual scanning, cam-
parison with the coding sheet, and detecting -of errors.

‘The second part of the listing (See Fig. 30) will be used
for re-keyboarding: the proofreader will transcribe keying
instructions on the card imege listing itself, and the marked-
up listing will be transmitted to the correction typist, who
will input the corrections into the file. The operator scans
the listing for the indicated errors to be corrected, and
re-keys only the amount of informetion necessary to correct
those errors. This information will consist, first, of the
information which is in error, and, second, of the correct
information as it should be. Each line of the print-out
will have a number, which is assigned by the computer. When
the computer is given the incorrect information which occurs
in that line, it will search the corresponding internal line
to find that information, and then change it to the indicated
correct information. This technique avoids the necessity to
re-key either entire print lines or entire physical units
such as punched cards.

Such a "string correction routine" can be set up to
process errors at the level of single character, words, lines,
groups of lines, or whole records. It can be operated through
any input device, either on-line or off -iine.

- 104 -

oy .
e /New York,

i FTo STy ey ST T e R T T e ke TR T 1 2 T

RECORD NUMBER 100150

1966dndsebfa690ja/A%990rXjbBFU435.G193casu30smanaw00

/R1.A52 v.40no.4supp.

‘6 TUNODTA

/Garrison, Mortimer,%X%ed.

/Cognitive models and development in mentali retardation,

/%edited by Mortimer Garrison, Jr.

/American Assoclation on Mental Deficiency,
/1966.

/149 p.

/

/ (Monograph sugpplement to American journal of mental deficiency, v.70, no.4, 1966)

DNILSIT QTAIA TVOIDOT
= T I¥Vd ‘INOINI¥Nd JILSONOVIA

*k"Proceedings of a Research Cconference sponsored by the Woods Sghools, the. American
Association on Mental Deficiency and the National Instltute ot Child Health and Human:

DevelOyment"

+

/0.5

®©

DATE

159

160

05/02/68

100150

100150

100150

100150

100150

100150

100150

100150

LT e S R W SR o

FILE ORGANIZATION PROJECT

DIAGNOSTIIC LISTING

RECORD MUMBER 100150

1956D8DSEBFA690JA/A%690R%IB_B_P435._G193CKX430%MANANOO/ B1. A52 V.s080.%

SUPP./_GARRISON, —HORTIMER, %%XED./_COGNITIYE MODELS AND DEVELOPMENT IV n
ENTAL RBTIRP}TION,/SEDITED BY _MORTIMER _GARRISON, -JB./_NEW _YORK,/_AME
RICAN _ASSOCIATION ON _MENTAL ~DEFICIENCY,/1966.,/149 P.//(_MONOGEAPH SUP
PLEMENT TO _AHMERLCAN JOURNAL OF MENTAL DEFICIENCY, V.70, NO. 4, 1966) *K"_
PROCEEDINGS OF a4 _RESEARCH _CONFERENCE SPONSORED BY THE _WOODS _SCHOOLS,
THE _AMERLICAN _ASSUCIATION ON _MENTAL ~DEFICIENCY AND THE _NATIONAL _IN

SIITUIE CF _CH1LD _HEALTY AND _HUMAN _DEVELOPMENT®+

:08 TUNOII

%
E
2
[
)
o]
H
[]
=2
(2]

~ 2 I¥Vd ‘INOINI¥d OILSONOVIA

Following this correction of the initial product, it is
necessary to proofread the corrections made by the computer,
in order to determine that these have been made correctly, and
that error has not been introduced in the second keying. Tn
the second proofreading, only the corrections indicated by the
proofreader and the corresponding actions taken by the computer,
will be compared to one another. It will usually not be nec-
essary on the second proofreading to compare again the infor-
mation printed by the computer, to the full information on the
original catalog entry.

The final step is to update the machine files with the
new record.

E. ISSUES OF COST AND QUALITY

1. Data Conversion Quality Control. The data preparation
system is composed of four relatively independent processes:
editing, keyboarding, visual proofreading, and error correction
(re-keyhoarding).* Fig. 31 shows the flow of both "clean"
records and defective records through the quality control
subsystem. Distinction will be made among three sources of
an error: editing, keyboarding, and camputer processing (pro-
gram errors, etc.). The detailed attribution of error is for
mansgerial purposes (e.g., revision of procedures and editor
training), and to prepare billing of a keyboarding contractor,
if the conversion were to be done by an outside service.

Error records (dashed lines) originate mainly in the
editing step and the initial keyboarding step. To detect and
tally errors introduced by either of these sources, a control
element is introduced into the flow.

*This procedure does not include a control step called
"proofing after editing", wherein the editors exchange
coding sheets smong each other prior to initial keyboarding.
This was thought to be an unwarranted extra cost in view of
the high calibre of the staff available for editing. Also
excluded from the sbove is the review of trainee editors'
production.

- 107 -

FIGURE 31: QUALITY CONTROL SUBSYSTEM

(:j Start 4:)
Y-

Edit - « = - Error Record
Clean Record

Kevboard Indicate
y Keyboard Corrections

¥ A
Input Trans.
Edit File
Run Update
1
"Ga‘te" - —— = |
! for [V v
' Exiizgiio Records to
! %% | be Visually
Q Inspected

(Autg atidally

Group 1 |
Y

for Q.C.

Proofread

Certifiled) 1
i I
[}
Defer '
Correction |
! Group 2
Srror
Group 3 Records
"Clean" _—/””_—

Records

(Manually Cgrtified)

Master
; File <:: Stop j:)

Update

- 108 -

e et At T S S e o e et mmmcw e AT Ao £ e Ay . A S— ————— — L o=

Tt

~
W

.7-;...":

|

Instead of making this a separate stage, it seemed most
feasible to couple the control process with the proofreading
step, by modifying the latter. '"Modified proofreading" would
include the normal processes of error detection and marking
for the purposes of re-keyboarding. It would also include
tallying of the errors detected and their attribution to
editing, keying, or computer program. An advantage to this
procedure is a large reduction in the cost of the sampling
needed to establish and maintain the quality control procedure
itself.

The basic decision is that not all records need be
exhaustively proofread immediately after initial computer
input, as has normally been the case in library conversion.
Instead, the editing and keyboarding of all records, and the
modified proofing of only some of the records (or, as a sep-
arate option, proofing of certain critical parts of each
record) is performed as one sequence. The exhaustive proof-
reading of the remainder of the records (or the remaining
parts of all records) and the correction of all of the errors
can be deferred and performed at a later time. (There will
be a procedure for correction of errors reported by file
users, of course.)

The number of records to be proofread in the first cycle
of the control procedure will be that sample size required
to obtain the desired confidence level of the information to
be fed back in regard to keyboarding and other errors. If the
error rate is high at the beginning of the production operation,
as is likely, then the number of records to be proofread will
be high since one of the variables governing the size of the
samples selected for inspection is the number of defective
records found in the initial sample. (A procedure for sample
size determination is included in Appendix VI.)

The cutput of the initial cycle would be three groups
of records. Group 1 is those records not selected for
proofreading on the initial cycle. These would be auto-
matically transferred to the master file, and can be inspected
at a later date in a systematic manner for purposes of
correction. Group 2 is that set of records, selected for
proofing, which have been found to contain errors and are
now ready for re-keyboarding. Group 3 is that set of records,
also selected for proofing, which have been fow.:é to be error-
free and are ready for transfer to the master 1ile. This is
an iterative process, i.e., Group 2 records are continuously
re-cycled until they are removed from the process by falling
into Group 3.

- 109 -

il

2. A Decision Model for Keying Cost/Quelity. In planning
for a large scale conversion it may be desirable to contract
out certain of the tasks which are one-time, non-continuing
in nature. The keying of the data is a portion of the effort
which might be done by an outside group. However, a method
for deciding how to select among alternative conversion systems
and prices for data transcription service is needed. The
requirement is to secure the greatest amount of converted data
at the least expenditure both of time and money. Also, the
quality of the conversion is vital. We suggest that a solution
is not found in simply choosing the method or firm which offers
a given level of quality for a fixed price (time and materials).
Rather the variables must be related to each other.

In the circumstances of this project, one of the questions
asked is "What will be the cost impact on the record correction
part of our production, of a given level of accuracy of the
data obtained in the initial keyboarding?" This issue under-
lies several stages of the process, in particular the level
of effort for re-keyboarding. We have generalized our decision
making scheme in the hope that it might be useful to other
organizations facing similar questions concerning conversion.

The effective conversion cost for a unit record of input
is that needed to attain an error-free record. This accuracy
cen be defined by degrees of approximation to perfect data,
that is, to 100% accuracy.

Given that the error rate of the initial keyboarding is
low enough, one may choose to accept the records without
correcting them .(at this time). In choosing between alternatives
with different costs and error rates one should select the one
with the lowest cost for the accurate records, where this cost
is computed by allocating all conversion cost to the accurate
records. If we characterize the error rate as Ei’ then we can

compute an effective cost per record, $AR, as

| $SB
1-E /100 . (1)

$AR =

where $SB represents the initial keying cost per record.

If a higher level of accuracy is needed than can be
provided during initial keying, then subsequent proofing and
correction will be required. The more accurate the initial
keyboarding is, the less the re-keyboarding cost incurred in
the correction module. Therefore, each increment of added
accuracy of initial keying has a value to the organization
in the replaced cost of re-keyboarding the correctiocns.

- 110 -

TR
e |),
« .

When we include the cost of proofing and correction in the
total cost for converting data, the cost can be defined as:

K =

where

~
]

$IH =

$SB

$ED

$EC

To state

$TH + $SB + $ED + $ECEi (2)

total unit cost to input a record

cost of editing and associated pre-keyboard
processes, per record

cost per record for initial keyboarding#

cost of visual error detection
(proofreading)

cost of re-keyboarding, per error
"character-block"

the number of error "character-blocks"
per record. A character-block is defined
as 5 contiguous characters which must be
re-keyboarded to correct one or more
characters within that block.

the cost of error in relation to the initial

keyboarding costs, rearrange the equation:

$SB =

K - $IH - $ED - $ECE, | (3)

With this equation, we can define a family of keying cost/
error rate indifference curves by allowing the total cost, K,

to take on different values.

and $EC = $0.05 then the variation in given error rates (Ei)

sustained, can be used to establish a curve for the relation
of the variation in keying cost such that K is constant:

$SB =

K - $0.28 - $0.05E, ' (L)

Fig. 32 shows an indifference curve for the range of
values of E, and $SB.

*Key verifying is excluded since it doubles the cost of the
initial transcription but does not result in detection of
errors attributable to editing and computer processing - or
even all the initial keying errors.

- 111 -

i s v S e W—— - . oo ey - e miw e e ——— e

As an example, if $IH + $ED = $0.28

In Fig. 32, any price quotes for initial keyboarding that
fall in the region to the right of the indifference curve would
be unacceptable in comparison to any prices falling on the curve
or to the left of it.

There may be some initial error rate, Ei’ that is felt to

to be too great to be acceptable even though the records could
be corrected. Thus, we show this "unacceptable region" extending
horizontally at an error rate of 10 blocks per record. Fig. 32
was shown with the values of $SB plotted in terms of K. The
leftmost indifference curve identifies the best of a set of
different price/error rate alternatives. To see this, consider
Fig. 33, which shows three separate price quotes for initial
keying, expressed as sliding scales based on error level. Part
of the decision in this cese is clear. Regardless of the spe-
cific accuracy obtained, "C" should not be chosen because its
price is always higher than those of A or B. Thus, it would
be irrational to pay price "C" under the conditions shown in
the example.

To determine which of the two prices, A or B, should be
chosen, the indifference curve should be moved to the left as
far as possible and yet allow it to lie upon a point within
the acceptable region, quoted for A or B.

The leftmost curve will intersect Price "A" at an error
rete of 2. Thus, it is the preferable alternative.

In most situations a final error rate which is greater
then zero is acceptable. This does not change the basic
enalysis, however. Rather it defines an error rate below
which (plotted sbove on our figures) additional cost will
not be Justified. The leftmost indifference curve which
intersects & price/error rate curve in the given error region
of interest will indicate the best alternative. In the
illustration, a final error rate of 2 might be acceptable.

The price curve "A" would still be the one for the organization
to select.

Thus ; using the level of accuracy desired in initial
keying, at a given keying cost as the critical variable, we
have established a basis for selecting among alternative costs
for keyboarding. This error rate is to be determined by
visual inspection of input records selected by the method of
sequential acceptance sampling outlined in the preceding
section.

- 112 -

FIGURE 32: RELATION OF INITIAL KEYING COST TO ACCURACY

0

=3

(00]

10

REJECT RECORD
ABOVE 10 ERRORS

T
=
[dp)]
a5
2
o=
Bm 9
By
o
or
§
=

-
—

=
N

| l |] I I I 1 |
-.90 -.80 -.70 =-.60 =-.50 =-.40 -.30 -.20 =-.10

PRICE FOR KEYBOARDING ($SB) AS FUNCTION OF
EDITING/PROOFING COSTS & ERROR RATE

K = total unit cost
(constant)

- 113 -

LEVEI OF ERROR

FIGURE 33:

THREE PRICE QUOTATIONS FOR KEYING

ACCEPTABILITY IN TERMS OF ACCURACY AND COST FOR

0

10

11

12

13

14

PRICE QUOTE "C"

~
PRICE QUOTE "A"

-

/ UNACCEPTABLE
REGION

| 1 | | l I I |

-.90 -.80 ~.70 =.60 =-.50 =-.40 -.30 =-.20
.10 .20 .30 ..ho .50 .60 .70

$SB = PRICE FOR INITIAL KEYING
. (Avg./Record)
= indiff. curve
= price quote curves - 114 -

t

REFERENCES

Avram, Henriette D., John F. Krapp, and Lucia J. Rather. The
MARC II Format: A Communications Format for Bibliographic
Data. Washington, D.C. Information Systems Office, Library
of Congress, 1968. 167 pp.

Becker, Joseph and Robert M. Hayes. Information Storage and
Retrieval: Tools, Elements, Theories. DNew York, Wiley,
1963. 448 pp.

Bregzis, Ritvars. "Query Language for the Reactive Catalogue."
In: Tonik, Albert B., ed. Information Retrieval: the
User's Viewpoint - An Aid to Design. Philadelphia, Inter-
national Information, Inc., 1967. pp. T7-91. (Fourth
Annual Naticnal Colloguium on Information Retrieval,

Ma‘y 3")"'3 1967-)

Cartwright, Kelley L. and R.M. Shoffner. Catalogs in Book
Form: A Research Study of their Implications for the
California State Library and the California Union Catalog,
with a Design for their Implementation. Berkeley, Institute
of Library Researrch, University of California, 1967T.
various pagings.

Cox, N.S.M. and J.D. Dews. "The Newcastle File Handling
System." In: Cox, Nigel S.M. and M.W. Grose, eds. Organi-
zation and Handling of Bibliographic Records by Computer.
Hamden, Conn., Archon Books, 1967. pp. 1-21.

Cunningham, Jay L. Instruction Manual for Editorial Prepara-
tion of Catalog Source Data. Preliminary Edition. Berkeley,
Institute of Library Research, University of California,

1968. 172 p.

Jackson, Michael. '"Mnemonics." Datamation, v. 13 (Apr. 1967),
pp . 26—28 .

Mathematical Reviews. (Am. Math. Soc., Lancaster, Pa.) v. 30
(1965), p. 1207.

Palmer, Foster M. "Conversion of Existing Records in Large
Libraries; with Special Reference to the Widener Library
Shelflist." In: Harrison, John and Peter Laslett, eds.
The Brasenose Conference on the Automation of Libraries.
Held at Oxford, Eng., 30 June - 3 July 1966. London,
Mansell, 1967. pp. 57-83.

- 115 -

B L)

REFERENCES (Cont.)

i0. Payne, Charles T. "Tagging Codes." Chicago, University of
Chicago Library, Feb. 1967. (unpublished report) various

pagings.

11. Vaughan, Delores K. "Effectiveness of Book-Memory Data for
Conventional Catalog Retrieval." In: Chicago. University.
Graduate Library School. Requirements Study for Future
Catalogs; Progress Report No. 2. Chicago, Mar. 1968.

(NSF Grant GN 432) p. 53.

f

- 116 -

e et Ncaem - o e s e we e e oo . .- —— e -

APPENDIX T

AN ALGORTTHM FOR NOISY MATCHES IN CATALOG SEARCHING

James L. Dolby
R & D Consultants Company
Los Altos, California

AN ATLGORITHM FOR NOISY MATCHES IN CATALOG SEARCHING*

By

James L. Dolby
R & D Consultants Company
Los Altos, California

A. INTRODUCTION

A viable on-line search system cannot reasonably assume
that each user will invariably provide the proper input infor-
mation without error. Human beings not only make errors, but
they also expect their correspondents, be they human or mech-
anistic, to be able to cope with these errors, at least at some
reasonable error-rate level. Many of the difficulties in
implementing computer systems in many areas of human activity
stem from failure to recognize, and plan for, routine acceptance
of errors in the systems. Indeed, computing did not become the
widespread activity it is now until the so-called higher-level
languages came into being. Although it is customary to think
of higher-level languages as being "more English-like," the
height of their level is better measured by the brevity with
which various jobs can be expressed (for brevity tends to re-
duce errors) and the degree of sopuistication of their automatic
error detection and rorrection procedures.

The processing of catalog information for the purposes of
exposing and retrieving information presents at least two major
areas for research in automatic error detection and correction.
At the first stage, the data bank must be created, updated and
maintained. Methods for dealing with input errors at this
level have been derived by a number of groups and it seems
reasonable to assert that something in the order of 60 per cent
of the input errors can be detected automatically (1,2,3).

With the possibility of human proofreading and error detection
through actual use, it is reasonable to expect a mature data
base to have a very low over-all error rate.

At the second stage, however, when a user approaches the
dats base through a terminal or other on-line device, the errors
will be of a recurring nature: each user will generate his own
error set and though experience will tend to minimize the error
rate for a particular user, there will be an essentially irre-
ducible minimum error rate even for an experienced user. And
if the system is to attract users other than professional inter-
rogators, it must respond intelligently at this minimal error
level.

¥This research was carried out for the Institute of Library
Research, University of California, under the sponsorship of
the Office of Education, Research Grant No. OEG-1-7-071083-5068.

5 /=119-

EROe 2 Wl -

S

In this paper we consider certain problems associated with
making "noisy matches" in catalog searches. Because prelimi-
nary information indicates that the most likeiy source of input
errors is in the keyboarding of proper names, the main emphasis
of the paper will be on the problem of algorithmically com-
pressing proper names in such a way as to identify similar
names (end likely misspellings) without over-identifying the
list of possible authors.

B. THE STRUCTURE OF EXISTING NAME-COMPRESSION ALGORITHMS

The problem of providing equivalence classes of proper
names is hardly new. Library catalogs, telephone directories
and other major dats bases have made use of "see-also"-type
references for many years. Some years ago Remington-Rand de-
rived an alphanumeric name .campression algorithm, SOUNDEX, that
could be applied either by hand or by machine for such purposes
(4). Perhaps the most widely used on-line retrieval system
presently in existence, the airline reservation system (such
as SABRE), makes use of such an algorithm (5). The closely
related problem of comprassing English words (either to estab-
lish noisy matches, eliminate misspelled words, or simply to
achieve ilata bank compression) has also received some attention
(see, for example, (6) and (7) and (8)).

Although the English word structure differs from proper-
neme structure in some important respects (e.g., the existence
of suffixes), three of the algorithms are constructed by giving
varying degrees of attention to the following five areas of
word structure:

The character in word initial position

The character set: (A,E,I,0,U,Y,H,W)

Doubled characters (e.g., tt)

. Trensformation of consonants (i.e., all alphabetic
characters other than those in 2 above) into equiv-
alence clasgses.

5. Truncation of the residual character string.

FWwMPRE

The word-initial character receives varying attention. SOUNDEX
places the initial consonant in the initial position of the
compressed form and then transforms all other consonants into
equivalence classes with numeric titles. SABRE maintains the
word-initial character even if it is & vowel. In the Armour
Research Foundation scheme (ARF), the word-initial character is
also retained as is.

Both SOUNDEX and SABRE eliminsate gll characters in the set
2 gbove. The ARF scheme retains all characters in shorter words
and Geletes vowels only, to reduce the compressed form to four
characters, deleting the U after Q, the second vowel in a vowel
string, and then all remaining vowels.

-120-

. e, A Sl

'A

["

- All three systems delete the second letter of a double-
C::;' letter string. SABRE goes i step further and deletes the second
letter of a double-letter string occurring after “he vowels have

been deleted. Thus, the second R of BEARER would be deleted.

SOUNDEX msps the 18 consonants into 6 equivalence classes

1.
2.
3.
)i,
5.
6.

TR aw

SABRE and ARF do not perform any transformations on these 18
consonants.

Finally, all three systems truncate the remaining string
of characters to four characters. For shorter forms, padding
in the form of zeros (SOUNDEX), blanks (SABRE), or hyphens (ARF)
is added so that all cocdes are precisely four characters long.

Variable-length coding schemes have been considered but
generally rejected for implementation on major systems because
of the attendant difficulties of programming and the fact that
code compression is enhanced by fixed-length codes where no
interword space is necessary. Although fixed-length schemes of
length greater than four have been considered, no definitive
data appears to be available as to the ability ito discriminate
by introduction of more characters in the compressed code. The
SABRE system does add a fifth character but makes use of the
person's first initial for added discriminatiorn.

Tukey (9) has constructed a personal author code for his
citation indexing and permuted title studies on an extensive
corpus of the statistical literature. In this situation the
author code is a semi-mnemonic code in a tag form to assist the
user in identification rather than as a basic entry point.
However, Tukey does note that in his corpus a three-character
code of the surname plus two initials is superior to a five-
character surnesme code for purposes of unique identificatica.

C. MEASURING ALGORITHMIC PERFORMANCE

One of the main problems in constructing linguistic
algorithms is to decide on appropriate measures of performance
and to obtain data bases for implementing such measures. In
this case it is clear that certain improvements in existing
algorithms can be made - particularly by using more sophisticated
trans formation rules for the consonants - and that the problems
of impiementing such changes are rot so great in today's context

-121~

as they were when the systems noted above were originally de-
rived. Improvements in processing speeds and programming lan-
guages , however, do not remove the need for keeping "linguistic
friils" to & minimum.

Ideally, it would be desirable to have a list of common
errors in keyboarding names as a test basis for any proposed
algcrithms. Unfortunately, no such list of sufficient size
appears to be available. Lucking this, one can speculate that
certain formal properties of the predictability of language
might be useful in deriving an algorithm. At the English word
level, some effort has been made to exploit measures of entropy
as developed by Shannon in this direction (6,7). However, there
is good reason to guestion whether entropy, at least when mea-
sured in the usual way, is strongly correlated with actually
occurring errors (10).

As an alternative, one can study existing lists of personal-
name equivalence classes to derive such algorithms and then test
the algorithm against such classes, measuring both the degree of
over-identification and tlie degree of under-idertification.
Clearly, such tests will carry more weight if they are carried
out under economic forecing conditions where weaknesses in the
test set will lead to real and measurable expense to the orga-
nization publishing the list. The SABRE system operates under
strong economic forcing conditions in the sense that airline
passengers frequently have a number of competitive alternatives
available to them and lost reservations can cause them sufficient
inconverience for them to consider these alternatives. However,
the main application of the SABRE system is to rather small
groups of persons (at least when compared to the number of
personal authors in a typical library catalog) so that errors
of over-identification are essentially toivial in cost to the
airlines.

A readily available source of see-also-type equivalence
classes of proper names is given in the telephone directory
system. Here, the economic forcing system is not so strong as
in the airline situation, but it is measurable in that failure
to provide an adequate list will lead to increased user depen-
dence on the Information Operator - with consequent increased
cost i1c the telephone company. As a test on the feasibility of
using such a set of equivalence classes, the 451 classes found
in the Palo Alto-Los Altos (California) telephone directory were
copied out by hand and used in deriving and testing the algorithm
given in the next section and the SOUNDEX algorithm.

There remains the question of deciding what is to consti-
tute proper agreement between any algorithm and the set of equiv-
alence classes chosen as a data base. At the grossest level it
seems reasonable to argue that over-identification is less serious
than under-identification. False drops only tend to clog the line.

-122-

i £ R S g P W A0 e

Lost reference points, on the other hand, lead to lost infor-
mation. Investigation of other applications of linguistic
algorithms, such as algorithms to hyphenate words, identify
semantically similar words through cutting off of suffixes, and
so forth, indicates that it is usually possible to reduce crucial
error (in this case under-identification) to something under
five percent, while preserving something in the order of 80 per-
cent of the original distinctions (or efficiency) of the system.
Efforts to improve materially on the "five-and-eighty" rule
generally lead to solutions involving larger context and/or
extensive exception dictionaries. In this study we shall aim
our efforts at achieving s "five-and-eighty" solution.

D. A VARIABLE-LENGTH NAME-COMPRESSION SCHEME

In light of the fact that no definitive information is
available on the problems of truncating errors in name-compres-
sion algorithms, it is convenient to break the problem into two
nieces. First, we shall derive a variable-length algorithm of
the reguired accuracy and efficiency and then we shall determine
the errors induced by truncation.

After studying the set of equivalence classes given in the
Palo Alto-Los Altos telephone directory, it was fairly clear
that with minor modifications of the basic five steps used in
the other algorithms noted above, it would not be too difficult
to provide a reasonably accurate match without requiring too
much over-identification. The main modifications made consisted
of maintaining the position of the first vowel and using local
context to make transformations on the consonants. The algorithm
is given below. '

A Spelling BEaquivalent Abbreviation Algorithm For Personal Names

1. Transform: MeG to Mk, Mag to Mk, Mac to Mk, Me to Mk.

2. Working from the right, recursively delete the second
letter from each of the following letter pairs: dt,
ld, nd, nt, re, rd, rt, sc, sk, st.

3. Transform: x to ks, ce to se, ci to si, cy to sy.
Consonant-ch to consonant-sh. All other occurrences of
c tok, zto s, wr tor, dg to g, qu tok, t to d, ph
to £ (after the first letter).

4. Delete all consonants other than 1, n, and r which
precede the letter k (after the first letter).

5. Delete one letter from any doubled consonant.

6. Transform pf# to p#, #pf to #f, vowel-gh# to vowel-f#,
consonant-gh# to consonant-g#, and delete all other
occurrences of gh. (# is the word-beginning and word-
ending marker.)

T. Replace the first vowel in the name by the symbol "#*",

8. Delete all remaining vowels.

9. Delete all occurrences of w or h after the first letter

in the word.
-123-

m———— R AT ST C——ri Ty T o

The vowels are taken to be (A,E,I,0,U,Y).

The algorithm splits 22 (4.9 percent) of the 451 equivalence
classes given by the phone directory. On the other hand, the
algorithm provides 349 distinct classes (not counting those
classes that were broken off in error) or TT7.l4 percent of the
451 classes in the telephone directory data base. Thus, we have
achieved a reasonable approximation toc the "five-and-eighty"
performence found in other linguistic proble:: areas.

To give a proper appreciation of the nature of these under-
identification errors, they are discussed below individually.

1. The name Bryer is put in the same equivalence class
with a variety of spellings of the name Bear. The
algorithm fails to make this identification.

2. Blagburn is not equated to Blackburn.

The name Davison is equated to Davidson in its various

forms. The algorithm fails to make this identification

and this appears to be one of a modest class of diffi-
culties that occur prior to the -son, -sen names.

4. The class of names Dickinson, Dickerson, Dickison, and

Dickenson are all equated by the directory but kept

separate except for the two forms of Dickinson by the

algorithm.

The name Holm is not equated with the name Home.

The noame Holmes is not equated with the name Homes.

The algorithm fails to equate Jaeger with the various

forms of Yaeger.

The algorithm fgils to equate Lamb with Lamn.

The algorithm incorrectly assumes that the final gh of

Leigh should be treated as an f, Treating final gh

either as a null sound or an f leads to gbout the same

number of errors in either direction.
10. The algorithm fails on the pairing Leicester and Lester.
The difficulty is an intervening vowel.

11. The algorithm fails to equate the various forms of
Lindsay with the forms of Lindsley.

12. The algorithm fails to equate the various forms of
McLaughlin with McLachlan.

13. The algorithm fails to equate McCullogh with McCullsh.
This is again the final gh problem.

1k, The algorithm fails to equate McCue with McHugh (again

the final gh problem).
15. The algorithm fails to equate Moretton with Morton.
This is an intervening vowel problem.

16. The algorithm fails to equate Rauch with Roush.

17. The algorithm fails to equate Robinson with Robison
(another -son type problem).

18. The algorithm incorrectly assumes that the interior ph
of Shepherd is an f.

19. The algorithm fails to equate Speer with Speier.

~12k-

w

O —<I0\W

———r S —— —
e e

20. The algorithm fails to equate Stevens with Stephens.

21. Similarly for Stevenson and Stephenson.

22, The slgorithm fails to equate the various forms of the
word Thompson (an -son problem).

Several of the errors noted above are questionable, &b
least in the sense of questioning whether the telephone directory
ijs following its own procedures with camplete rigor. Setting
these acide, the primary errors occur with the final gh, the
words ending in -son, and the words with the extraneous interior
vowels. Each of these problems can be resolved to any desired
degree of accuracy, but only at the expense of noticeable in-
creases in the degree of complexity of the algorithm.

E. THE TRUNCATION PROBLEM
Simple truncation does not introduce errors of under-

jdentification; it can only lead to further over-identification.
Examination of the results of applying the algorithm to the

telephone directory data base shows that no new over-identification

is introduced if the compressed codes are all reduced to the
left most seven characters. Further truncation leads to the
following short table:

Code Length Cunulative Over-Identification Losses

T 0
6 1
5 €
! 45

Thus there is a strong argument for maintaining at least five
characters in the compressed code.

However, there is no real need for restricting ourselves
to simple truncation. Following the procedures used in the
ARF system, we can obtain further truncation by selectively
removing some of the remaining characters. The natural candi-
date for such removal is the vowel marker. If the vowel marker
is removed from &ll the five character codes, only six more
over-identification errors are introduced. Removal cf the vowel

markers from all of the codes would have introduced 1T more errors

of over-identification. Thus we see that the utility of the
vowel marker is in the short codes.

This in turn suggests that introduction of a second vowel
marker in the very short codes may have some utility. This is
indeed the case. If we generalize the notion of the vowel marker
to that of marking the position of a vowel-string (i.e., a string
of consecitive vowels), where for these purposes a vowel is any
of the characters (A,E,I,0,U,Y,H,W), and maintain these markers

~125-

e R, P - . B e—— e — s e

< T

as "padding" in the very short words, 18 errors of over-identi-
fication are eliminated at the cost of two new errors of under-
identification. In this way we derive the following modification
to the variable length algorithm:

1. Mark the position of each of the first two vowel strings
with an "*", if there is more than one vowel.

2. Truncate to six characters.

3. If the six-character code has two vowel markers,. remove
the right hand vowel marker. Otherwise, truncate the
sixth character.

L. If the resulting five-character code has a vowel marker,
remove it. Otherwise remove the fifth character.

5. For all codes having less than four characters in the
variable-length form, pad to four characters by adding
blanks to the right.

Measured against the telephone directory data base, this fixed
length compression code provides 361 distinct classes (not
counting improper class splits as separate classes) or 80 per-
cent of the U451 given classes. Twenty-four (5.3 percent) of the
classes are improperly split. By way of comparison, the SOUNDEX
system improperly spiits 135 classes (30 percent) and provides
only 287 distinct classes (not counting improperly split classes)
or 63.8 percent of the telephone directory data base.

F. ACKNOWLEDGEMENT

The author would like to thank Kalpi: M. Shoffner and
Kelley L. Cartwright for suggesting the problem and for a
number of useful comments on existing systems. Allan J. Humphrey
was kind enough to program the wvariable~length version of the
algorithm for t.. % purposes.

~126-

R L

S

]
a2 -

G. CORPUS OF NAMES USED FOR ALGORITHM TEST

List of personal-name equivalence classes from the Palo Alto-
Los Altos Telephone Directory arranged according to the vari-
able length compression code (with the vowel marker * treated

as an A for ordering).

¥BL Abel, Abele, Abell, Able

¥BRMS Abrahams, Atrams

¥BRMSN Abrshamson, Abramson

*D Eddy, Eddie

¥DMNS Edmonds , Edmunds

*DMNSN Edmondson, Edmundson

¥DMS Adams , Addems

*GN Eagan, Egan, Eggen

¥GR Jaeger, Yaeger, Yeager

*¥KN Aiken, Aikin, Aitken

*¥KNS Adkins, Akins

*KR Acker, Aker

¥KR Eckard, Eckardt, Eckart, Eckert, Eckhardt
*¥KS Oakes , Oaks, Ochs

*¥LBRD Albright, Allbright

*¥LD Elliot, Elliott

*LN Allan, Allen, Allyn

¥LSN Ohlsen, Olesen, Olsen, Olson, Olsson
*¥LVR Oliveira, Olivera, Olivero

*¥MS Ames , Eames

¥NGL Engel, Engle, Ingle

¥NL O'Neal, O'Neil, O'Neill

¥NRS Andrews, Andrus ,

¥NRSN Andersen, Anderson, Andreasen

*¥NS Ennis, -Eaocs

¥RKSN Erichsen, Erickson, Ericson, Eriesson, Eriksen
¥RL Earley, Early

¥RN Erwin, Irwin

*¥RNS Aarons, Ahrends, Ahrens, Arens, Arentz, Arons
*Rg Ayers, Ayres

¥RVN Ervin, Ervine, Irvin, Irvine

¥RVNG Erving, Irving

¥SBRN Osborn, Osborne, Osbourne, Osburn

Note: Names whose compressed codes do not match’ the one given’
in the first column (and hence represent weaknesses in
the algorithm and/or the directory groupings) are underlined.

Note: A smell number of directory entries that do not bear on
the immediate problem have been deleted from the list:
Bell's see also Bells; Co-op see also Co-operative;
Palo Alto Clinic see also Palo Alto Medical Clinicj St.
see also Saint; etc.

-127 -

LI SREEEDE e U

B¥D
B*DS
B*KMN
B¥L
B¥*L
B¥L
B¥*L
B¥L,
B¥LN
B*M
B¥*MN
B*N
B*ND
B¥R

B¥*R
B¥R
B¥R
B¥RBR
B¥*RG
B¥RGR
B¥RK
B¥*RN
B¥*RNR
B¥RNS
B¥*RNSN
B¥RS
BL¥*KBRN
BL*M
BR¥*D
BR¥*N
BR¥*I
D¥DS
D¥F
D¥*GN
D¥*K
D¥KNSN
D¥*KSN

DL

D¥L
D¥L
D*MN
D*N
D¥N
D¥N

D¥N
D¥N
D*NL
D¥R
D¥R
D¥*RM
D¥VDSN

Beatie, Beattie, Beatty, Beaty, Beedie
Betts, Betz

Bachman, Bachmann, Backman

Bailey, Baillie, Bailly, Baily, Bayley
Beal, Beale, Beall, Biehl

Belew, Ballou, Bellew

Bunl, Buell

Belle, Bell

Bolton, Boulton

Bauin, Bohm, Bohme

Bauman, Bowman

Bain, Bane, Bayne

Bennet, Bennett

Baer, Bahr, Baier, Bair, Bare, Bear, Bzare, Behr, Beier,

Bier, Bryer

Barry, Beare, Beery, Berry

Bauer, Baur, Bower

Bird, Burd, Byrd

Barbour, Barber

Berg, Bergh, Burge

Berger, Burger

Boerke, Birk, Bourke, Burk, Burke
Burn, Byrne

Bernard, Bernhard, Bernhardt, Bernhart
Berns, Birns, Burns, Byrns, Byrnes
Bernstein, Bornstein

Bertsch, Birch, Burch

Blackburn, Blagburn

Blom, Bloom, Bluhm, Blum, Blume
Brode, Brodie, Brody

Braun, Brown, Browne

Brand, Brandt, Brant

Dietz, Ditz

Duffie, Duffy

Dougan, Dugan, Duggan

Dickey, Dicke

Dickenson, Dickerson, Dickinson, Dickison
Dickson, Dixon, Dixson

Dailey, Daily, Daley, Daly

Dahl, Dahle, Dall, Doll

Deahl, Deal, Diehl

Diamond, Dimond, Dymond

Dean, Deane, Deen

Denney, Denny

Donahoo, Donshue, Donoho, Donohoe, Donohoo, Donohue,

Durnahoo

Downey, Downie

Dunn, Dunne

Donley, Donnelley, Donnelly

Daugherty, Doherty, Dougherty

Dyer, Dyer

Derham, Durham

Davidsen, Davidson, Davison
- -128-

— . —— N .

- — . wonr 252

D¥VS
DR*SL
T
F¥FR
F¥*GN
F¥L
F¥L
F¥*LKNR
F¥LPS
F¥NGN
F¥NL
F¥RL
F*RR
F¥*RR
F¥RS
F¥RS
F¥RS
F%¥SR
FL*N
FL¥*NGN
FR*
FR¥DMN

FR¥DRKSN

FR¥K
FR*NS
FR¥NS
FR¥3
FR¥SR
G¥D
G¥DS
G¥F
G¥*L
G¥LMR
G*LR
G¥MS
G¥NR
G¥NSLS
G¥NSLVS
G¥RD
G¥RD
G¥RN
G¥RNR
G¥RR
G¥S
GR¥
GR¥FD
GR¥N
GR¥S
H*D
H¥*F
H¥FMN
H¥*G

Davies, Davis
Driscoll, Driskell
Fay, Fahay, Fahey
Fifer, Pfeffer, Pfeiffer
Fagon, Feigan, Fegan
Peil, Pfeil

Feld, Feldt, Felt
Fuzulkner, Falconer
Fhilips, Phillips
Finnegan, Finnigan
Finley, Finley
Farrell, Ferrell
Ferrsra, Ferreira, Ferriera

Foerster, Forester, Forrester, Forster
Forrest, Forest

Faris, Farriss, Ferris, Ferriss

First, Fuerst, Furst

Fischer, Fisher

Flinn, Flynn

Flanagan, Flanigan, Flannigan

Frei, Frey, Fry, Frye

Freedman, Friedman

Frederickson, Frederiksen, Fredrickson, Fredriksson
Franck, Frank

France, Frantz, Franz

Frances, Francis

Freeze, Freese, Fries

Fraser, Frasier, Frazer, Frazier

Good, Goode

Getz, Goetz, Goetze

Goff, Gough

Gold, Goold, Gould

Gilmer, Gilmore, Gilmour

Gallagher, Gallaher, Galleher

Gomes, Gomez

Guenther, Gunther

Gonzales, Gonzalez

Gonselves, Gonzalves

Garrett, Garrett

Garrity, Geraghty, Geraty, Gerrity

Gorden, Gordohn, Gordon '

Gardiner, Gardner, Gartner

Garrard, Gerard, Gerrard, Girard

Gauss, Goss

Gray, Grey

Griffeth, Griffith

Green, Greene

Gros, Grose, Gross

Hyde, Heidt

Hoff, Hough, Huff

Hoffman, Hoffmann, Hofman, Hofmann, Huffman
Hoag, Hoge, Hogue

-129~-

G e kB wr -~ & ——— S Co— A - ————ve o P R P L Uy < — v —

e g s

H¥GN
H¥K
H¥KSN
H¥L
H¥L
H¥L
H*¥L
H¥LD
H*¥LG
H*LM
H¥LMS
H*LN
H*M
H¥*MR
H*N
H*N
H*NN
H*NRKS
H¥NRKSN
H*NS

H*NS
H¥NSN

H¥*R
H¥R
H¥R
H¥R
H¥RMN
H¥RMN
H¥RMN
H¥RN
H*RN
H*RN
H¥RNGDN
H*S
H*S
H¥S
H*SN
H*VR
J¥
J¥FP,
J¥FR3
J*KB
J*KBSN
J¥KS
J¥L
J*MS
J*MSN
J¥NSN

J¥*3

Hagan, Hagen

Hauch, Hauck, Hauk, Hauke

Hutcheson, Hutchison

Holley, Holly

Holl, Hall

Halley, Haley

Haile, Hale

Holiday, Halliday, Holladay, Holliday

Helwig, Hellwig

Holm, Home

Holmes, Homes

Highland, Hyland

Ham, Hamm

Hammar, Hammer

Hanna, Hannah

Hahn, Hahne, Hann, Haun

Hanan, Hannan, Hannon

Hendricks, Hendrix, Henriques

Hendrickson, Henriksen, Henrikson

Heintz, Heinz, Heinze, Hindes, Hinds,
Hines, Hinze

Haines, Haynes

Henson, Hansen, Hanson, Hanssen,
Hansson, Hanszen

Herd, Heard, Hird, Hurd

Hart, Hardt, Harte, Heart

Hare, Hair

Hardey, Hardie, Hardy

Hartman, Hardmen, Hardmon, Hartmann

Herman, Hermann, Herrmann

Harman, Harmon

Heron, Herrin, Herron

Hardin, Harden

Horn, Horne

Herrington, Harrington

Haas, Haase, Hasse

Howes, House, Howse

Hays, Hayes

Houston, Huston

Hoover, Hover

Jew, Jue

Jeffery, Jeffrey

Jefferies, Jefferis, Jefferys, Jeffreys

Jacobi, Jacoby

Jacobsen, Jacobson, Jakobisen
Jacques , Jacks, Jaques
Jewell, Juhl

Jaimes, James

Jameson, Jamieson, Jamison

Jahnsen, Jansen, Jansohn, Janssen, Jansson,

Janzen, Jensen, Jenson
Joice, Joyce

-130-~

. K¥
K¥F
K¥FMN
K¥K

KL

K*L
K*LMN
K*LR
K*MBRLN
K*MBS
K¥*MP
K¥*MPS
K¥*N
K*N
K*N
K*N
K*N
K*N
K¥*N
K¥NL
K¥NR
K¥NS
K¥P
K¥PL
K*R
K¥*R
K¥*R
K¥R
K¥*R
K¥RD
K¥RLN
K¥RN
K¥*RSNR
K¥S
K¥*S
K¥*S
K¥SL
K¥SIR
K¥SR
KL¥N
KL¥RK
KL¥SN
KR¥
KR¥GR
KR¥MR
KR*N
KR¥S
KR¥*S
KR¥*S
KR¥*S
KR¥SNSN

Kay, Kaye

Coffee, Coffey

Coffman, Kauffman, Kaufman, Kaufmann
Cook, Cooke, Koch, Koche

Cole, Kohl, Koll

Kelley, Kelly

Coleman, Colman

Koehler, Koeller, Kohler,Koller
Chamberlain, Chamberlin

Combs, Coombes, Coombs

Camp, Kampe, Kampf

Campos, Campus

Cahn, Conn, Kahn

Cahen, Cain, Caine, Cane, Kain, Kmm
Chin, Chinn

Chaney, Cheney

Coen, Cohan, Cohen, Cohn, Cone, Koehn, Kohn
Coon, Kuhn, Kuhne

Kenney , Kenny, Kinney

Conley, Conly, Connelly, Connolly
Conner, Connor

Coons, Koontz, Kuhns, Kuns, Kuntz, Kunz
Coop, Co-op, Coope, Coupe Koop,

Chapel, Chapell, Chappel, Chappell, Chappelle, Chapple

Carrie, Carey, Cary
Corey, Cory

Carr, Kar, Karr

Xurtz, Kurz

Kehr, Ker, Kerr
Cartwright, Cortright
Carleton, Carlton
Carney, Cerney, Kearney
Kirschner, Kirchner
Chace, Chase

Cass, Kass

Kees, Keyes, Keys
Cassel, Cassell, Castle
Kesler, Kessler, Kestler

Kaiser, Kayser, Keizér, Keyser, Kieser, Kiser, Kizer

Cline, Klein, Kleine, Kline

Clark, Clarke

Claussen, Clausen, Clawson, Closson
Crow, Crowe ‘
Krieger, Kroeger, Krueger, Kruger
Creamer, Cramer, Kraemer, Kramer, Kremer
Craine, Crane

Christie, Christy, Kristee

Crouss, Kraus, Krausch, Krause, Krouse
Cross, Krost

Crews, Cruz, Kruse

Christensen, Christiansen, Christianson

-131-

TR TCT T
" g I

y AT S e T

L¥ Loe, Loewe, Low, Lowe
L¥ Lea, Lee, Leigh
L¥D Lloyd, Loyd
L*DL Litle, Littell, Little, Lytle
L¥*DRMN Ledterman, Letterman
L¥K Leach, Leech, Leitch
L¥KS Lucas, Lukas
L*LN Laughlin, Loughlin
L¥LR Lawler, Lawlor
L*¥MB Lamb , Lamm
L*MN Lemen, Lemmon, Lemon
L*MN | Layman, Lehman, Lehmann
L*N Lind, Lynd, Lynde
L*N Lion, Iyon
L*N Lin, Linn, Lynn, Lynne
L¥N Lain, Laine, Laing, Lane, Layne
L¥NG Lang, Lange
L¥NN London, Lundin
L¥NS Lindsay, Lindsey, Lindsley, Linsley
L¥R Lawry, Lowery, Lowrey, Lowry
L¥RNS Lawrence, Lowrance
L¥RNS Laurence, Lawrance, Lawrence, Lorence, Lorenz
L¥RSN Larsen, Larson
L¥S Lewis, Louis, Luis, Luiz
L¥S Lacey, Lacy
L*SR Leicester, Lester
L¥V Levey, Levi, Levy
L¥VD Leavett, Leavitt, Levit
L¥VL Lavell, Lavelle, Leavelle, Loveall, Lovell
L¥VN Lavin, Levin, Levine
M¥D Mead, Meade
M¥DN Morretton, Morton
M¥DS Mathews, Matthews
M¥DSN Madison, Madsen, Matson, Matteson, Mattison, Mattson
M¥*KL Michael, Michel
M¥KM Meacham, Mechem
M¥KS Marques, Marquez, Marquis, Marquiss
M¥KS Marcks, Marks, Marx
M¥*LN Maloney, Moloney, Molony
M¥LN Mullan, Mullen, Muilin
M¥*LR Mallery, Mallory
M¥LR Moeller, Mcller, Mueller, Muller
M¥LR Millar, Miller :
M¥LS Miles, Myles
M¥N Mahan, Mann
M¥NR Miner, Minor
M¥NR Monroe, Munro
M¥*NSN Monson, Munson
M¥R Murray, Murrey
M¥R Maher, Maier, Mayer
M¥R Mohr, Moor, Moore
M¥R - Meyers, Myers
M¥R Meier, Meyer, Mieir, Myhre
-132-

MK*L
MK*LF
MK¥LM
MK¥*N
MK*NR
MK¥*NS
MK *¥NS
MK*R
MK*R
MKD*NL
MKF*RLN
MKF#*RSN
MKL*D
MKL¥KLN
MKL¥*LN
MKL*N
MKL¥*N
MKL¥S
MKM¥*LN
MKN#*L,
MKR*D
N¥KL
N¥KLS
N*KLS
N¥KLSN
N¥KSN
N#*L
N¥*LSN

N*MN
N¥RS
N*SBD
P¥D
P¥*DRSN
P*G
P¥LK
P¥*LSN
P¥N
P*R
P¥*R
P¥RK
P¥RKS

Murphey, Murphy

Merrell, Merrill

Marten, Martin, Martine, Martyn
Meyers, Myers

Maurice, Morris, Morse

McCoy, McCaughey

Magee, McGee, McGehee, McGhie
Mackey, MacKay, Mackie, McKay
McCue, McHugh

Magill, McGill

McCollough, McCullah, McCullough
MeCallumn, McCollum, McColm

McKenney, McKinney
MacIntyre, McEntire, McIntire, McIntyre

MacKenzie, McKenzie

Maginnis, McGinnis, McGuinness, McInnes, McInnis
Maguire, McGuire

McCarthy, McCarty

MacDonald, McDonald, McDonnell

MacFarland, MacFarlane, McFarlancd, McFarlane
MacPherson, McPherson.

MacLeod, McCloud, McLeod

MacLachlan, Maclachlin, McLachlan, McLaughlin, McLoughlin

McClellan, McClelland, McLellan

McClain, McClaine, McLain, MclLane

MacLean, McClean, McLean

McCloskey, McClosky, McCluskey

MacMillan, McMillan, McMillin

MacNeal, McNeal, McNeil, McNeill

Magrath, McGrath

Nichol, Nicholl, Nickel, Nickle, Nicol, Nicoll

Nicholls, Nichols, Nickels, Nickles, Nicols

Nicholas, Nicolas

Nicholsen, Nicholson, Nicolaisen, Nicolson

Nickson, Nixon

Neal, Neale, Neall, Needi, Neil, Neill

Neilsen, Neilson, Nelsen, Nelson, Nielsen, Nielson,
Nilson, Nilssen, Nilsson

Neumann, Newman

Norris, Nourse

Nesbit, Nesbitt, Nisbet

Pettee, Petty

Peterson, Pederson, Pedersen, Petersen, Petterson

Page, Paige

Polak, Pollack, Pollak, Pollock

Polson, Paulsen, Paulson, Poulsen, Poulsson

Paine, Payn, Payne

Parry, Perry

Parr, Paar

Park, Parke

Parks , Parkes

-133-

T T T AT M 1T T

e ¥ TR T TR SR e 5 e e T 1

P¥RS
P¥RS
P¥RS
P¥RSN
PR¥KR
PR¥NS
PR¥*R
R¥*

R¥
R¥BNSN
R¥D
R¥D
R¥D
R¥DR
R¥DS
R¥GN
R¥GR
R¥K
R¥K
R¥KR
R¥L
R¥*MNGTN
R¥MR
R¥MS
R¥N
R¥NR
R¥*S
R¥*3
R¥*3
R¥3
R¥VS
S¥BR
S¥FL
S¥FN
S¥FNS
S¥FNSN
S¥FR

S¥FR
S*GL
S*GLR
S*K
S¥KS
S¥L
S¥*L,
S¥LR
S¥LS

S¥LV
S¥LVR
S¥MKR

Pierce, Pearce, Peirce, Piers

Parish, Parrish

Paris, Parris

Pierson, Pearson, Pehrson, Peirson

Prichard, Pritchard

Prince, Prinz

Prior, Pryor

Roe, Rowe

Rae, Ray, Raye, Rea, Rey, Wray

Robinson, Robison

Rothe, Roth

Rudd, Rood, Rude

Reed, Read, Reade, Reid

Rider, Ryder

Rhoades, Rhoads, Rhodes

Regan, Ragon, Reagan

Rodgers, Rogers

Richey, Ritchey, Ritchie

Reich, Reiche

Reichardt, Richert, Rickard

Reilley, Reilly, Reilli, Riley

Remington, Rimington

Reamer, Reimer, Riemer, Rimmer

Ramsay, Ramsey

Rhein, Rhine, Ryan

Reinhard, Reinhardt, Reinhart, Rhinehart, Rinehart

Reas, Reece, Rees, Reese, Reis, Reiss, Ries

Rauch, Rausch, Roach, Roche, Roush

Rush, Rusch

Russ, Rus

Reaves, Reeves

Seibert, Siebert

Schofield, Scofield

Stefan, Steffan, Steffen, Stephan, Stephen

Steffens, Stephens, Stevens

Steffensen, Steffenson, Stephenson, Stevenson

Schaefer, Schaeffer, Schafer, Schaffer, Shafer,
Shaffer, Sheaffer

Stauffer, Stouffer

Siegal, Sigal

Sigler, Ziegler

Schuck, Shuck

Sachs, Sacks, Saks, Sax, Saxe

Seeley, Seely, Seley

Schell, Shell

Schuler, Schuller

Schultz, Schultze, Schulz, Schulze,
Shults, Shultz

Silva, Sylva

Silveira, Silvera, Silveris

Schomaker, Schumacher, Schumaker, Shoemaker, Shumaker

~134-

S*MN
S*MN
S*MRS
S*MS
SEN
S*N
S*¥NR
S*NRS
S*PR
S*R
S*R
S*R
S*R
S*R
S*¥RL
S*RLNG
S*RMN
S*¥RN
S*RR
S*3
SM*D
SM¥D
SN*DR
SN¥L
SP*LNG
SP¥R
SP*R
SR¥*DR
SR¥DR
T*D
T*MSN
T¥*RL
TR¥*S
V¥LL
V*L,
V¥R
W¥D
W¥DKR
W¥DL
W*DMN
W¥DR
W*DRS
W¥GNR
W¥L
W*L
WL
W¥LBR
W¥LF

W*LKNS
W¥LKS
W¥LN
W¥LR

Simon, Symon
Seaman, Seemann, Semon
Somers, Sommars, Sommers, Summers
Simms, Sims
Stein, Stine
Swseney, Sweeny, Sweney
Senter, Center
Sanders, Saunders
Shepard, Shephard, Shepheard, Shepherd, Sheppard
Stahr, Star, Starr
Stewart, Stuart
Storey, Story
Saier, Sayre
Schwartz, Schwarz, Schwarze, Swartz
Schirle, Shirley
Sterling, Stirling
Scheuermann, Schurmen, Sherman
Stearn, Stern
Scherer, Shearer, Sharer, Sherer, Sheerer
Sousa, Souza
Smith, Smyth, Smythe
Schmid, Schmidt, Schmit, Schmitt, Smit
Schneider, Schnieder, Snaider, Snider, Snyder
Schnell, Snell
Spalding, Spaulding
Spear, Speer, Speirer
Spears, Speers
Schroder, Schroeder, Schroeter
Schrader, Shrader
Tait, Tate
Thomason, Thompson, Thomsen, Thomson, Toms on
Terrel, Terrell, Terrill
Tracey, Tracy
Vail, Vaile, Vale
Valley, Valle
Vieira, Vierra
White, Wight
Whitacre, Whitaker, Whiteaker, Whittaker
Whiteley, Whitley
Whitman, Wittman
Woodard, Woodward
Waters, Watters
Wagener, Waggener, Wagoner, Wagner, Wegner, Waggoner
Willey, Willi
Wiley, Wylie
Wahl, Wall
Wilber, Wilbur
Wolf, Wolfe, Wolff, Woolf, Woulfe,
Wulf, Wulff
Wilkens, Wilkins
Wilkes, Wilks
Whalen, Whelan
Walter, Walther, Wolter

-135-

e 77 W o e

Walters, Walthers, Wolters

Wallace, Wallis

Welch, Welsh

Welles, Wells

Willson, Wilson

Winn, Wynn, Wynne

Worth, Wirth

Ware, Wear, Weir, Wier

Wehrle, Wehrlie, Werle, Worley

Warner , Werner

Weis, Weiss, Wiese, Wise, Wyss‘

Weismann, Weissman, Weseman, Wiseman,
Wismonn, Wissman '

REFERENCES

Cox, N.S.M. and J.L. Dolby. "Structured Linguistic Data and
the Automatic Detection of Errors." In: Advances in Com-
puter Typesetting. London, Institute of Printing, 1966.
pp. 122-125.

Cox, N.S.M., J.D. Dews, and J.L. Dolby. The Computer and the
Library. Hamden, Conn., Archon Press, 1967.

Dolby, J.L. "Efficient Automatic Error Detection in Biblio-

graphic Records." R & D Consultants Company Report,
Aprii 1968.

Becker, Joseph and Robert M. Hayes. Informg@ion Storage and
Retrieval. New York, Wiley, 1963. p. 1L3.

Davidson, Leon. "Retrieval of Misspelled Names in Airlines
Passenger Record System." Communications of the ACM,
v. 5 (1962), pp. 169-1T1.

Blair, C.R. "A Program for Correcting Spelling Errors."
Information & Control, v. 3 (1960), pp. 60-67T.

Schwartz, E.S. "An Adaptive Information Transmission System
Employing Minimum Redundancy Word Codes." Armour Research
Foundation Report, April 1962. (AD 274-135).

Bourne, C.P. and D. Ford. "A Study of Methods for Systemat-
ically Abbreviating English Words and Names.'" Journal of
the ACM, v. 8 (1961), pp. 538-552.

Tukey, J.W. "A Tagging System for Journal Articles =nd Other
Citable Items: a Status Report." Statistical Technigques
Research Group, Princeton University, 1963.

Resnikoff, A. and J.L. Dolby. "A Proposal to Construct a
Linguistic and Statistical Programming System." R & D
Consultants Company, 1967.

-136-

APPENDIX ITI

USER'S GUIDE TO THE TERMINAL MONITOR SYSTEM (TMS)

By

Williem D. Schieber
Institute of Library Research
University of California
Berkeley, California

B el FRORRTET S

A ==

USER'S GUIDE TO THE TERMINAL MONITOR SYSTEM (TMS)

By

William D. Schieber
Institute of Library Research
University of California

Berkeley, California

A, INTRODUCTION

The Terminal Monitor System (TMS) provides on-line terminal
access to the Computer Center's IBM 360/L0. All files are main-
tained on ILR's private disk facilities and are not accessible
by other 360 users. The system performs five general functions:

1. Text entry: the establishment of new files in which
the records can later be processed randomly.

5. Tle search: retrieval and display of records within
an existing file.

3. Text editing: addition, replacement, and deletion of
character strings and individual records, within an
existing file.

4, Compilation of source programs: conversion to execut-
able instructions from source language entered in same
fashion as text.

5. Interface to special user-written routines: ability for
terminal user to load and execute special-purpose pPro-
graums . :

B. GENERAL DESCRIPTION OF TMS

TMS has a time sharing design which allows multiple terminals
to operate at the same time. Like any conversational system it
allows the user to carry on a dialog with the computer, and will
wait for the user to enter his response before continuing the pro- .
cessing. Descriptioas of the formats of monitor messages and user
responses to thase messages are described in the following sections.
One section is included for each of the first three of the proces-
sing modules. The last two functions will be described in a subse-
quent edition of this guide.

C. 2740 OPERATION

The IBM 2740 terminal is, in most respects, similar to a
normal typewriter. In order to use it as a computer terminal, the
switch on the right marked 'COM' and 'LCL' must be set to 'COM',
and the ON-OFF switch set to 'ON'. At this point the standby
light (marked 'S') should be on. Messages sent to the terminal
by the monitor will cause the receive ('R') light to go on during
the transmission. When the terminal is requested to send text
(Transmit) the user must press the 'Bid' key (which causes the
transmit ('T') light to go on). At this point he may type the
message he wants to send. The message must be ended with the

'"EOT' character. This signals the monitor that the terminal

‘Cﬁjy/'139‘

EE RN gl

et =

has completed transmission, so that it may process the incoming
text.

D. DETAILED DESCRIPTION OF UTILITY PROCESSORS

There are six different utility processors which the ter-
minal user may summon. However, before calling any of these
for the first time he will be asked by the monitor to log in.
The format is currently as follows:

The monitor sends:

[TERMINAL READY--PLEASE LOG INJ

Terminal user responds with his name:
[doe, john]

Following thlis, the monitor will respond:

| THANK_YOU--TERMINAL CLEAR!

At this point the terminal is ready to enter any processor
existing in the ILR processor library. Processors currently
operational are:

1. Text Processor. The text processor is used to cireate
a new file. Records so entered can be retrieved later by Key.
The keys generated by the processor, have numeric value. To
enter this processor, type in:

text

TMS responds:
TEXT PROCESSOR=--TYPE FILE NAME[

At this point, type the name by which you wish the file to
be known. If you are typing a source program, the file name
must be the name of the entry point (in assembler: the
CSECT name; in PL/1: the PROCEDURE name). The file name
may be up to 8 characters in length. The format of it is:

(name of file)

If this name has not been used before, you will receive
space for the new file on the disk; before beginning text
entry, you will be asked to indicate the treatment of lower
case characters in creating the file:

SPECIFY CASE

If you wish lower case letters to be translated into upper
case, (you must if you are typing a program), type:

1/u] (indicating lower to upper case translation)

If you wish lower case characters to maintain their values,

type:
-140-

e e s _ - b 7 . e e . SIS e | W a AT e v € mr - wae o S v e er e——— -

[Sy

[1/1] (for lower to luwer case translation)

If you had specified 11/u' case, ™S would respond with:
[L/U CASE--BEGIN TEXT ENTRY |

and would go on to the next line to type the first key:

0010
You may now enter the first record. It must not
exceed T2 characters and must end with an "EOT". Do not

enter a carriage return at the end of the line: TMS will
do this before it types the next record number.

To close the file when you have finished entering
text, type '+#++' in position 1. TMS responds:

[EXIT TEXT PROCESSOR

o, Search Processor. The search routines are used to
display one or more records from an existing file. To call
the processor, type:

TMS will respond:
[SEARCH ROUTINES--SELECT FILE |

User responds by typing the file name:

(file name)

™S, after locating the file, will respond:
TYPE SEARCH REQUEST

Two facilities for search are available. One is
display of one or more records, where the records are
jdentified by the exact full key. If one specific re-
cord is desired, type:

display | {key)

If you want to display a group of records type:
display | (key 1) | to | (key 2)

where the value of key, is less than keyp, and key; is an
actual key in the file. Both values must be of full length.

The second type of search enables the user to scan
the file using abbreviated key prefixes, or portions of
the key. In this type of search all records of the given
key class will be presented. For example, if a given
file contains records having keys of oooLk, 001G, 0015,
and 0020, and a scan on key class 001 is requested, only
records whose leftmost three key characters match the
three-character scan value will be presented; here, re-
cords 0010 and 0015. The format for this request is:

scan | (key class)l

141~ -

e meven eem e et e w———— i e

. T S

e o

After a search request is entered, records are pre-
sented sequentially until the request has been satisfied,
or until the end of file is reached. However, to enable
the user to stop printing of the file., a checkpoint is
entered following printing of the tenth record. If you
want to continue display, type a carriage return. If you
want to stop processing the request, type three plus signs
"t

When the request is satisfied, or when it has been in-
terrupted at a checkpoint TMS will type:

[TYPE SEARCH REQUEST |

at which time the user may enter another request or leave
the search mode. To exit, type '+++'., TMS then responds:

[EXIT SEARCH PROCESSOR]

3. Edit Processor. This facility is used to edit exist-~
ing files. There are three conventional edit functions: re-
placement, addition, and deletions. These functions may be per-
formed on individual characters, on character strings, on re-
cords, or on groups of records within a file.

The edit processor is called by typing:

|edit|

TMS responds:
[EDIT MODE -- SELECT FILE]

User types in:

(file name)

TMS replies:

[SPECIFY CASE|

To which the user must respond:

1/u| if he wishes lower case characters to be mapped
into upper, or:

if he wishes lowe: to retain their values.

TMS now responds with:
PLACE EDIT REQUEST

The general format for an edit request is:

(code) | + | (key) |+ | (character string) |+

where 'code' is a two-character code which identifies the
edit function, '+' is the tab character, 'key' is the actual
key value of a record, and 'character string' represents _
data to be added to, replaced in, or deleted from the record.

-1ho-

—— i —— S——"" e . - oo R e w

The edit codes are summarized in the table below:

Edit Done On

Function Characters Recordéi;
Replacement RC —_—
Addition AC AR
Deletion DC DR

Specific edit formats are as follows:
1) REPLACE CHARACTERS - RC.
re | + | (key) |+ | {01d string) | + | (new string) | +

where 'old string' is the group of characters which are to
be replaced by those presented in the 'new string'.

2) ADD CHARACTERS - AC.
AC |+ | (xey) |+ | (o1d string) |+ | (new string) l+

where 'old string' is a character sequence following which
the 'new string' will be inserted.

3) DELETE CHARACTERS -- DC.
DC [+] (key) | + (string)| +

where 'string' is the character sequence to be deleted.
4) ADD RECORD - AR.
AR | + | (key) |+ | (new record)

where 'key' is the key of the new record.
5) DELETE RECORD - DR.

DR |+ | (key) | +
where key is the key of *he record to he deleted.

Following execution of the edit request T™S will in-
dicate completion and invite you to place your next edit

request. When you have no more editing to do on the current

file you may exit by typing three plus signs. TMS then
responds with '

EDIT MODE EXIT
| TERMINAL CLEAR]| .

e e — o e . . ow PRp— - PR - . -
—— ——— R . = - e e BT e e =

'

APPENDIX III !

A DESCRIPTION OF LYRIC, A LANGUAGE FOR REMOTE INSTRUCTION BY COMPUTER !

Stephen S. Silver
Institute of Library Research
University of California

Los Angeles, California

e et i wae g o ——— T T R " iy o Ty N w i x e m b e wreretm vttt iw s e aw s

A DESCRIPTION OF LYRIC, A LANGUAGE FOR REMOTE INSTRUCTION BY COMPUTER

By

Stephen S. Silver
Institute of Library Research
University of California

Los Angeles, California

A. PURPOSE AND SCOPE

LYRIC (Language for Your Remote Instruction by Computer) was.
originally intended by its authors, Gloria and Leonard Silvern, for
use in computer-assisted instruction (CAI).* The language is, how-
ever, so simple and general that it can be used with ease in on-line
processor simulation and tightly controlled interactive situations.
The instructional strategist (programmer) can selectively display
text, and read and analyze user-supplied answers. Branching and
jumping based on user-supplied information may be performed. These
text display and answer checking functions have been implemented at
the Institute of Library Research (Los Angeles) using IBM 2260 dis-
play consoles and the System/360 model T5 computing system, con-
trolled by 0S/360.

In addition, the full language implementation will give the
programmer the ability to set counters and constants, store text,
and display this stored information at any time. It will be possi-
ble to identify each student uniquely and to record his answers and
progress in the instructional program.

The current LYRIC monitor has infinite loop protection. When
eighty operations are performed without an intervening write com-
mand, a read operation is forced. Typing the word 'end' at the top
left of the screen will return control to the time-sharing monitor.

B. LYRIC RELEASE II

1. General Features. Release II of LYRIC will, when completed,
have enough data acquisition and manipulation commands to perform
most of the error checking functions normally required by batch
scanning programs. The goal of this release is to give an informa-
tion retrieval specialist the ability to write a LYRIC program that
will make requests, accept answers, test the answers for acceptabil-
ity, and modify a file used by other information processing programs.

The other use for LYRIC is for its original intended purpose
of computer assisted instruction. Courses can be prepared to give

¥Silvern, Gloria M. and Leonard C. Silvern. "Computer-assisted in-
struction: specification of attributes for CAI programs and pro-

grammers." Association for Computing Machinery. Proceedings, 2lst
Netional Conference. Washington, D.C., Thompson, 1966, pp. 57-62.

/‘4;‘:‘; - l)'l'F{"

1;

a student enough background to use an information system or for any
course of study that lends itself to this technique.

Specifically, LYRIC will have many of the answer manipulation
and storage commands that were lacking in the first ILR implemen-
tation. A whole series of inter-program linkage commands will be
written to allow LYRIC to control the flow of an information search.

9, Limitation of the Current Release. The major limitation of
this release will be its inability to format output files in any
precise manner. Output will be in a format similar to 0S/360's
RECFM=VB. Other limitations will be the techniques for indexing
counters. Only addition and subtraction will bte allowed at first.

3. Card Format. Each LYRIC statement is one line long and
consists of a label, an operation code, and a text or operand field.
The label is at column 1, the operation code at 10, and the text
at 16.

i, Blocking of Lyric Records. The LYRIC executer will be
able to sense and debleck records up to 12 cards per physical re-
cord. This block size is controlled by the BLKSIZE sub-parameter
in the DCB parameter on the OUTPUT DD card used by the assembler.

5. .Implementation Restrictions. The current implementation
restrictions are:

1) labels shall be = 8 characters in length;
2) operation codes shall be = 5 characters in length;

3) text or operand fields shall be = 4O characters in
length.

All constants shall be S360 halfwords, except string-defining
constants which shall be two l-byte instructions packed into a half-
word. One byte will be a length specification and the other will be
a location for the start of the operand.

6. Basic Programming Concepts. Executor and assembler opti-
mization will take second place to logic and simplicity of structure.
Use of subroutines (BAL type) will be used whenever possible. Table
look-up will be used whenever feasible to facilitate debugging and
modification of the system. Optimization for a particular system
will NOT be performed in this release. Absolute references to a
LYRIC record will not be done. Only relative statement numbers will
be used. Input/Output will be well defined and in subroutine form
to allow use on smaller machines not having a universal character
set.

C. THE LYRIC ASSEMBLER

The LYRIC ass abler processes LYRIC source input, converting
it to executable LYRIC object code. The assembler .is divided into
two passes. Pass 1l reads in all of the LYRIC source data, modifies

an interpretable LYRIC object data set, and generates numerous
~148-

e g ivwr Tt 1 AP TRETCA T m R X e T M ERT T W —_— S — o 43

label tables for use in pass 2. Pass 1 updates and completes the
object module produced in pass 2, based on label table information
and generates a complete listing of the LYRIC program including any
error messages which may have been generated.

1. Pass I. Pass 1 reads in each LYRIC source statement sequen-
tially, producing an object record for each input statement. Before
processing each statement, error flags which are analyzed an: printed
in pass 2, are cleared. The default TRUE and FALSE LYRIC branch
locations are set to the default value of the next relative LYRIC
location. A running "current LYRIC location" is kept and updated
each time a LYRIC source statement is read in. This location value
is the basis for most entries in the various label tables.

Explicit labels on source statements are entered into a general
label table which saves the literal value of the label and its loca-
tion value relative to the beginning of the LYRIC data set (using
the previously mentioned location pointer). If the label table is
full, an error flag is generated within the object LYRIC statement
and no entry is made in the label table.

Pass 1 continues with a branch to an operation code analysis
routine. This routine is divided into two sections: section 1
searches a list of all known valid op codes. If the op code under
analysis is not entered in this table another error flag is set in
the object record and processing continues by moving the operation
code, text, and label information into the in-core object record,
writing it out in the object data set (error flags and all) and
looping back to read more LYRIC source statements. If the operation
code is found inthis section, control is turned over to the appro-
priate routine in section 2.

Section 2 is a series of macro-defined subroutines containing
all the information necessary to set pointers and otherwise process
a LYRIC op code. These subroutines can define the existence of a
statement, decide whether or not a LYRIC block starts at this point,
decide whether a LYRIC block can end at this statement, define the
setting of object constants within the object module, and decide the
branching to NEX or PRO. These fuanctions are performed by the use
of some standard utility routines which modify label tables and
analyze operands.

An indicated branch to NEX or the start of the next LYRIC block
is accomplished by setting a global flag indicatirg that a NEX branch
is being attempted, setting a flag in the LYRIC object record indi-
cating that a NEX has been requested and a label resolution is to be
performed in pass 2. A system generated number is loaded into the
TRUE branch constant of the object record. This system number is
the same number that will be forced into the general label table when
the next statement that may legally start a LYRIC block is encoun-
tered and the NEX global flag is on.

A branch to PRO is resolved in pass 1 by loading the present
value of the current step (which is updated each time an op code

| ———r e o A - ——r v 2~ -

TR A =

s

that starts a step is encountered) into the TRUE lecation and setting
an indicator flag in the record showing that the TRUE pointer has
been set.

At present operands are analyzed as either numerical fields or
text-character strings. By specifying what you wish to be searched
for, subroutines are invoked which search the proper fields on the
source statement and which load corresponding constant areas in the
object statement. Any error encountered will be flagged in the ob-
ject statement.

The assembler parses an operand in a number of separate phases
for simplicity of coding and debugging.

Phase 1 (STRUCTURE) scans the whole operand field from left to
right looking for operand separator delimiters (usually ''') or
bracketed by blanks. Starting at the boundaries of the operand sub-
field, the search starts from the left to the right until either a
non-blank or a string delimiter is rcached. The scan then searches
from right to left for a non-blank or string delimiter. The routine
then returns the true length of the searchable part of the string
(less the string delimiters, if any) and the starting point of the
string (also less string delimiters) relative to the first position
of the whole operand field.

A possible difference for the quoted string is for a verbatim
test of the answer, starting and ending at the correct boundaries.
The unquoted string should be used for logical answers where the
operand is a logical word or phrase which is logically but not
physically surrounded by blanks. The difference between the two
should be interpreted by the executer. The real differences come
only at the boundaries of the answer where a non-existent blank
overhang should be assumed for non-quoted strings.

2, Pass II. Pass 2 produces a final LYRIC listing and resolves
all label references, which results in a fully executable LYRIC ob-
jeet module.

When the last source statement encountered in pass 1 is pro-
cessed, the object data set is closed, rewound, and opened for up-
date so that the labels can be resolved in place.

Pass 2 now reads the object record as input. As each record
js read a subroutine is called which tests the object flags to see
if a label resolution must be done. If so, a match is attempted
comparing either the label table entries with the explicit label
in the object record or the label table's implicit system labels
with the system label value saved in the TRUE pointer. Any unre-
solved labels will print out an error message.

If a branch to the next phrase is required, a subroutine will
extract the relative length of the branch from a table generated in
pass 1 and add it to the current location, thus generating the

-150-

relative location of the next phrase. This value is then loaded
into the FALSE pointer.

After these operations are finished the completed object re-
cord is printed in an exranded format, followed by any error
messages that may have been generated. The object record is
updated to its final value and the program continues with the next
object record.

When the object deck has been exhausted, assembly is terminated.

D. THE LYRIC EXECUTOR

The LYRIC executor is designed to interpret a LYRIC object data
set produced by the LYRIC assembler. While the LYRIC assembler is -
for most purposes - device independent, the executor is quite machine
dependent. The executor must interface between the intent of the
LYRIC programmer, the computer operating system, and the particular
graphical output terminal being used. The first function of the
executor is to try to find and open a LYRIC student record. This
record saves status information on a particular student and can be
displayed only by the instructor or, under certain conditions, the
student. If this data set is not found, it is assumed that any in-
structions in the LYRIC program requiring the use of the student
data set will be treated as a "no operation."

Next, the LYRIC object deck is located and opened for use.
Execution will start wither at the beginning or at a location indi-
cated by status information in the student record.

The general construction of the executor is very similar to the
assembler since there is a driving section and many utility and
operand analysis subroutines.

Execution starts by branching to the statement extraction rou-
tine which reads in one object record as pointed to by the last
branch address (set by TRUE or FALSE pointers depending on the exe-
cution of the last instruction). If this turns out to be an invalid
record (not within the scope of the LYRIC data set) execution is
terminated and control is passed back to the operating system. If
the instruction defines the start of a new LYRIC step, an appropriate
pointer is set. A default value for the next retrievable record is
taken from the TRUE pointer in the object record. Control is passed
back to the driving routine. The rest of the executor deals with
the execution of each of the individual commands. If the command
agrees with a list of legal commands, control is passed to that par-
ticular subroutine.

For example, GTO's would simply cause the record extraction
routine to get a record from the location pointed to, in the instruc-
tions operand field. A test continuation card would load a buffer
which, when filled (device dependent), would be dumped onto a dis-
play screen. ~151-

E. CONCLUSION

The remarks made above should suggest some of the major aspects
of LYRIC in its present form.

A sample LYRIC program, a list of statements now implemented,
and three key operands are presented in the sections which follow.

F. UCLA LYRIC SYNTAX AND DEFINITIONS
Capital letters must be used exactly as shown.

"text". Refers to any string of written information (including
blanks) not exceeding 40 characters.

"number". Any integer not exceeding 255 (360 one byte constant).
"character string". Any series of 4O or less characters.

"(label)". An optional label not to exceed 5 characters in
length.

"label". A required label not exceeding 5 characters in length.

"executable statement". This is, at present, considered any
statement except additional text or GTO (see section on Operations
and Their Formats.)

NOTE: All labels must be left Justified in their fields. No more
than 40 labels per program including system labels generated by each
step using a PRO operand.

G. A SAMPLE LYRIC PROGRAM

PROBLEM: Ask a user if he would like to know how to use LYRIC.
If 'yes' give him a positive response. If 'no' tell him he is 'nega-
tive' and he should type in 'yes'. If he does not type in either
'vyes' or 'no' give him an error message and ask him thc¢ question
again. If he is again wrong, terminate the program.

START PRE THIS IS A TEST OF LYRIC.
PRO WOULD YOU LIKE TO LEARN MORE ABOUT
LYRIC? ANSWER YES OR NO.

ANS

KEY YES
YOU INDEED REALIZE THAT LYRIC IS WELL
WORTH LOOKING INTO.

GTO NEX

KEY NO
YOU ARE DEFINITELY NEGATIVE.
TRY A Y7S.

GTO START

-152-

UNX 1
YOU DIDN'T TYPE YES COR NO.
YOU HAVE ONE MORE CHANCE

GTO PRO

UNX 1
YOU HAVE AGAIN FAILED TO ENTER A
'YES' OR A 'NO'.

GTO NEX

PRE GOOD-BY

END PRE
END

H. OPERATIONS AND THEIR FORMATS
1. STATEMENT: PRE
ABSTRACT:

Defines the start of a screen of text and a
LYRIC block.

SYNTAX:
label PRE text
DESCRIPTION:
A new LYRIC block is defined and the text in

the statement field becomes the first text in the
block and on the screen.

EXAMPLE:

PRE This text does not require
user intervention but you
can ask for an ANS anyway.

ANS

COMMENTS :

(label) PRE (text)

Present new step, no response required.

Used for display of information and can be the
object of a NEX statement. Resets the 'current step'
location.

2. STATEMENT: PRO
ABSTRACT:

LYRIC problem statement.
~153~

L . m— - S— ——t— ot~ E " - e v o wr s mce Cox et mr T e wswes w2 -~

SYNTAX:

label PRO text

i

DESCRIPTION:

Defines the start of a LYRIC step requiring a
response. It is exactly the same as a PRE since
the ANS must always initiate an answer.

el

EXAMPLE: 1
sam PRO Hello there.
I will help you. «
What did vou say? 1
ANS
KEY Ok. .
ﬂ
COMMENTS @ ¢

(label) PRO {text)

Problem statement with required response.

Similar to the PRE but implies the use of a
trailing ANS.

Resets the 'current step' location.

" P o, Y

3. STATEMENT: (blank)
ABSTRACT:

Text continuation.

SYNTAX:

label {) text
DESCRIPTION:

Defines text as it will appear on a console
screen. If branched to without any preceeding PRE
or PRO's, the text is appended to the text on the |
screen with no break in flow.

EXAMPLE: |
|
PRE The rain in
Spain
GTO SAM
SAM falls mainly

on the piain.

15k~

COMMENTS:

(label) {) {text)
Additional text.
May be used anywhere additional text must be produced.

STATEMENT: ANS

ABSTRACT:

Request an answer from a student beginning at
a predefined location.

SYNTAX:

label ANS time_out_number,LOC=(column,row)
ARROW=(NO/column,row) ,CURSOR= (colunn,row)

DESCRIPTION:

The console will be placed in such a state that
when the ENTER button is pressed the text typed in
by the student will be read into an Answer save area
(ANS). If no options are specified an arrow will be
placed after the previous PRE/PRO text with the cur-
sor following it. The answer will be expected after
this point. Answers can be read in from any point
on the screen as defined by LOC=(column,row). The
default arrow can be eliminated or repositioned, and
the cursor can be positioned.

EXAMPLE:
PRO The rain in spain falls where?

ANS 10C=(1,3),ARROW=(1,3),CURSOR=(1,3)
PRO what now?

ANS
ANS 10
You have failed to enter anything.
GTO MORE
COMMENTS :

This may require special programming for d4if-
ferent consoles.

(label) ANS

Request an answer at this point.

A small arrow is displayed indicating the start
of the user's answer. The console will then wait
until information is typed in and the ENTER button
is pressed. The screen is read, the answer field is
loaded up to the cursor and execution continues. An
answer may not be longer than 255 characters. Excess
will be truncated. ~155-

e . - . N rar v ¥ e g - ek w ww o i e e W R e e . K e

5. ©STATEMENT: GUD

ABSTRACT:

Test the first characters of the input answer
for an exact comparison against a correct answer.

SYNTAX:
label GUD text

DESCRIPTION:

If the answer is exactly the same as the operand
up tc the cursor, then give a positive result as in

KEY.
EXAMPLE:
PRO What color is the sky?
ANS
GUD BLUE
BLUE is correct
GTO NEX
UNX 1

The sky is BLUE. You are incorrect.

COMMENTS :

(label) GUD (text)

Test for exact correct answer.

Using the text field, up to but not including
the last blank, the operand is compared with the
user's reply. Only an exact comparison, starting
directly after the arrow, will be considered cor-
rect. Operations proceed as in a KEY.

6. STATEMENT: KEY

ABSTRACT:

Search for a keyphrase in an answer.

SYNTAX:
label KEY 'keyphrase', 'keyphrase', 'keyphrase'...

DESCRIPTION:

Searches for a series of logically ORed key-
phrases. As soon as one is found the search is
terminated and the next sequential instiuction is
executeds and the required following GTO is exe-
cuted. If no match is found, the instruction
immediately following the next sequential GTO is
executed. The search for each keyphrase starts

-156-

at the first position of the answer field and ends
at the N+L-1 position where N is the length of the
snswer field and L is the length of the keyphrase
and the first position of the answer is at position
1. Each keyphrase is treated as a separate search
(at the same level).

EXAMPLE:
same KEY 'go','to', 'there’
Excellent job.
GTO ON 3L
GTO NOGOOD
lab KEY 'gin't','good' 77777277
GTO GLITCH
BAD English
GTO BAD9
COMMENTS :

Each keyphrase in the statement will be
searched for at the very start of the answer field.
The translator could supply the location for each
keyphrase in the statement as a constant. Lengths
would also be helpful but a pre-TRT for the deli-
meter would do as well.

(label) KEY (text)

Key word search.
Using the text field, up to but not including

the last blank, searches the user answer for a
mateh. If a match occurs execute the next sequen-
tial instruction. If not a match, go to the next
non-continue, non-GTO statement. The scope of a
KEY usually ends with a GTO display of information
and can be the object of a NEX statement. Resets

the current step location.

7. STATEMENT: BAD

ABSTRACT :

Test the answer for an exact comparison with
an incorrect answer.

SYNTAX:
label BAD text

DESCRIPTION:
Exactly the same as a GUD.

-15T=~

e ——————p—— T

BAD HOW
You said HOW.
THIS IS NOT A QUESTION.
GTO NEX
UNX 1
You haven't done anything wrong yet

COMMENTS :

This statement will be exactly equivalent to

the GUD statement. It exists only for the mnemonic
value.

(1abel) BAD (text)

Test for exact incorrect answer.

Acts exactly like GUD. Used for its mnemonic
value.

8. STATEMENT: UNX

ABSTRACT:

Define the action in the event of an undefined
answver.

SYNTAX:
label UNX number

DESCRIPTION:

The text of a UNX will be displayed each time
the user passes through the UNX code while in the
same LYRIC step. UNX's are executed when logically
encountered in the same way as a KEY. They fail
only when the statement has been exhausted. A UNX
with a O statement is a no-operation.

EXAMPLE:

YES

Good.

NEX

3

No no not that.
PRO

1l

Very bad.

PRO

Help.

MORE

Well here we are.

~158-

e

9.

COMMENTS :

UNX's initialize a special save area whenever
they are encountered by the executor. They may
occur at any location in a LYRIC step. Leaving a
step initializes the UNX save areas. This tech-
nique is compatible with almost any kind of imple-
mentation of the UNX function.

(label) UNX (number)

Unexpected answer: In the event of an unex-
pected answer the following additional text records
will be displayed. This display will occur each
time the UNX is executed but not more than the num-
ber of times shown in the statement field. When
the UNX is exhausted the next executable instruc-
tion is executed as in KEY.

STATEMENT: GTO

ABSTRACT:

Transfer control to the program location
indicated.

SYNTAX:
label GTO/PHR/PRO/NEX/ANS/label/*

DESCRIPTION:

Causes eontrol to be transferred to an expli-
citly or implicitly defined statement. The first
GTO after the start of a LYRIC phrase terminates
the phrase.

EXAMPLE:
GTO PHR
gto MAN
ANS
GTO ANS
GTO NEX
Jjoe PRO hi der
GTO PRO
COMMENTS :

A GTO should not force the dumping of the
buffer or you can not concatenate text lines.

GTO <NEX/PRO/{labeld>

Go to the indicated statement.

NEX = go to the next step: either the next
sequential PRE or PRO encountered.

PRO = Branch to the first preceding PRO

encountered.
(label) = To any legal five character label.

-159-

D i

10. STATEMENT: END

ABSTRACT:

Defines the end of a section of LYRIC code.

label END blank/'name of LYRIC processor module'

DESCRIPTION:

Defines the end of a section of LYRIC code. On
the execution of an END, control is passed to the
LYRIC program in the STATEMENT field, or, if the
STATEMENT field is blank the student is signed out
of the LYRIC processor.

EXAMPLE:
finish 'CSW015.SSS.LYR2!
end

COMMENTS :

If you branch to END, display the buffer first,
then transfer control.

(1abel) END

End of program.

STATEMENT: PAC

ABSTRACT:
Remove specified characters from the answer
field.
SYNTAX:
label PAC 'character string'

DESCRIPTION:

The individual characters in the statement are
removed whenever they are found in the answer field.

EXAMPLE:

Type in 'encyclopedia'.

'aeiou'

NCCLPD

very good.

MORE

1l

Not correct at all.

-160-

COMMENTS :

The data in the answer field is permanently
changed by this instruction.

(label) PAC (character string)

Compact the answer by eliminating the indicated
characters. If the string starts with a blank or
if the field is completely blank, the instruction
will eliminate blanks. After the execution of this
command, text manipulation commands must take into
consideration the loss of compacted information.

12. STATEMENT: PHR statement

ABSTRACT:
A LYRIC phrase.

label opcode PHR

DESCRIPTION:

A LYRIC phrase is defined as the sphere of in-
fluence of a standard LYRIC text and display command
(i.e. KEY). It is the location of the statement
immediately following the next executable GTO ending
the LYRIC phrase.

EXAMPLE:

KEY sam
hello sam
GTO phr
joe GTO Jim
The GTO is eguivalent to saying:
: GTO Jjim

COMMENTS:

The main use of this will be to define LYRIC
command extents.

STATEMENT: MOD

ABSTRACT:

Define device de endent considerations.

nolabel MOD device_information
-161-

DESCRIPTION:

Allows optimization for different display
devices.

EXAMPLE:

MOD 2260,LINE=80
MOD CCI,LINE=4O

~162~

APPENDIX IV

ILR PROCESSING RECORD SPECIFICATION

by

Jay L. Cunningham
Institute of Library Research
University of California

Berkeley, California

& — T

Ty

ILR PROCESSING RECORD SPECIFICATION
By
Jay L. Cunningham,
Institute of Library Research
University of California
Berkeley, California

NOTICE: The following specification was prepared to document the
preliminary version of an experimental bibliographic storage record
(internal processing format) for computer use. It presents the record
as of one point in time of an ongoing design. The reader should beware
+hat extensive changes in data element definition and codes are taking
place both at the Institute of Library Research where the record is
being formulated, and at the Library of Congress vwhere the MARC II
Communications Format is being devised in preparation for a nationwide
machine record distribution service. The ILR storage record will be
compatible with the MARC II record format. For this reason, the
present specification is to be considered a temporary working peper.

A. INTRODUCTION

This report provides the specification of the logical internal record
design for the ILR File Orgenization Project. The record is designed
to hold records for all types of library materials. At this writing the
field definitions and codes comprise the elements related to monographs.
In later phases, the design will be expanded to include elements pertinent
to journal articles and serial titles. The record is not identical to
the MARC II record. It is, however, intended to be convertible to and
from MARC II. 1In that sense the ILR record appears quite similar in
structure to the LC MARC II communications format.

This is a specification for programmer use and is not written as a
detailed explanation of the record content. For details on the field
definitions and codes, see the following two documents:

Avram, Henriette D., John F. Knapp, and Lucia J. Rather. The
MARC II Format; a Communications Format for Bibliog%aghic Data.
Washington, D.C., U.S. Library of Congress, 1968. Do

Cunningham, Jay L. Instruction Manual for Editorial Preparation
of Catalog Source Data. Preliminary Edition. Berkeley, Institute of
Library Research, University of California, 1968. 172 p.

B. PROGRAM NAME

This specification has been implemented in a computer program code-
named "INFOCAL"--"INput for File Organization at U. of CAL." The
program exists in Version 1 as of May 6, 1968. The program was written
in PL/I, Version 3, Release 14 of F-level, 08/360.

5// =165-

C. NATURE OF THE RECORD

The data base in the File Organization Project is record oriented.
That is, there will be one master record for each bibliographic entity.
The initial entity to be recorded is a single book, or "monograph."
The record design has two primary components: data elements and codes.
The data are organized into groups of one or more data elements. Such
a group is called a field.

The tag is the principal code used in the record. It both iden-
tifies the field by function and describes its type of content at the
most general level. Example: Tag 100 jdentifies the field by function
as MAIN ENTRY for a given record, and describes the fieid as containing
the name of an author of the type PERSONAL NAME.

If a field contains more than one kind of data element, or if it
contains two or more values representing a particalar kind of element,
the elements are separated by codes called sub-field delimiters.

A set of T auxiliary codes called indicators accompanies each
field. At present, only two of these indicators are implemented. The
indicators serve to provide additional information about the field.

An example is TAG 100, which will contain one of the following
values in Indicator 1:

FIGURE 1l: INDICATOR FOR MAIN ENTRY - PERSONAL NAME

Main Eiiry Main Entry
Form of Name is not Subject is Subject

Forename 0 L

Single Surname 1l

Multiple Surname 2 6
T

Name of Family 3

, The relationships among data elements and codes used in the record
are summarized in the following table:

FIGURE 2: STORAGE RECORD ORGANIZATION

Record Component Content of Componen: Type of Code Identifying
the Component

field data element (group of tag

one or more) indicators

sub-field data element delimiter

~-166~

The ILR storage record contains all data input from a pre-coded
catalog record, with the exception of supplementary data fields
containing what are called "dashed-on entries," in cetaloging termi-
nology. Such groups of fields describe a supplement to a becok, an
index, appendices, or other related meterial which is usually bound
separately and often is received after the main work for which the
catalog record was createzd. The supplementary fields will probably
Le stored in a separate record linked to the main record by a number
vwhich is an extension of the master record number. A final decision
has not been made regarding this problem at the time of writing.

D. RECORD COMPOSITION

The storage record is composed of a variable number of characters
placed in contiguous byte locations.

A complete storage record is composed of four segments, as
shown in Fig. 3. YXach segment is composed of one or more fields.
The fields are of either the fixed or variable-length type, depending
on their function. The fields are organized into one or more data
elements along with certain of their associated codes.* The biblio-
graphic data elements are variable or fixed in presence. The codes
are correspondingly fixed or variable in presence. The variable
length data elements are in principle repeatable, although in prac-
tice not all are defined as repeatable. The codes are likewise
repeatable in principle.

The four segments of the record are: the Leader (56 bytes); the
Record Directory (variable length, 12 bytes per directory entry); the
Fixed Length Data Elements (currently 26 bytes); and the Variable Fields
(variable in occurrence, variable in length).

All byte positions in the fixed length segments of the record
are expressed in terms relative to the first byte regarded as one.
This was done only for the purpose of conforming to an early draft
of the MARC II format, and will be changed in a future version of the
conversion program (INFOCAL).

All fields which always appear in the storage record and which
express the negative condition of a set of values, e.g., in the Fixed
Length Data Elements, will be set to either zeros or blanks. The zero
and blank carry meaning in these fields, usually as the default value.
The zero will normally be set as the default in a binary-valued fixed
length data element and blank will normally be set as the default in
a multiple-choice fixed data elements. The latter includes elements
which can have a range (e.g., one to three values).

*¥The tags and Indicators 1-5 are in the Directory. Indicators 6 and
T are at the head of the variable field.

-167-

FIGURE. 3:

SCHEMATIC OF ILR STORAGE RECORD, INFOCAL VERSION 1
(as of May 6, 1968)

Segment 1 Segment 2 Segment 3 Segment U4

LEADER DIRECTORY FIXED LENGTH VARIABLE FIELDS
DATA ELEMENTS

1 56 ' (N x 12) 1 26

NOTE: As currently defined in the record design, Variable Field
access is obtained by a scan of the Directory to find the Tag, then add
contents of "Base Address of Data" to Starting Character Position of
field desired. (S.C.P. is relative to the first character of the Fixed
Length Data Elements.)

Access to the first character of the Fixed Length Data Elements
can be obtained by finding the Base Address of Data at character
positions 19-20 of the Leader, then use the value therein as a dis-
placement from the beginning of the Leader.

The length of the Directory may be determined by a data elcment
contained in character positions 48-50 in the Leader. It is called
"Number of Entries in Directory." Its contents multiplied by 12 gives
the length of the total Directory.

In the record currently implemented, there are no field terminators
and no record terminator. Control is maintained by a total record
length field in the Leader, and field lengths in the Directory Entry
for each variable field (and for the Fixed Length Data Elements field).

E. LEADER

The Leader occupies the first 56 chearacters of every record. It
contains elements describing and identifying the record, in contrast to
the variasble data fields, which describe a bibliographic entity (i.e., &
monograph). Thus the leader tells the type of content included in the
record, in terms of the form of library material represented; the com-
ponents of the record structure in terms of the meanings of the tags
and codes for the particular form of library material indicated; and
the hierarchical level at which the record is pitched (e.g., for a mono-
graph which is a member of a series, the record is for the monograph,
not the series).

The program symbol name for the entire Leader is LIPREFX.
168~

FIGURE k:
ILR PROCESSING RECORD - SEGMENT 1, LEADER

PROGRAM | DATA CHAR.
SYMBOL ELEMENT POSITION CONTENTS, REMARKS, ETC.
LILENGTH | Record 1-5 Total number of characters in
Length record,stored as EBCDIC codes;
right Justified, with blank fill,
LISDATE | Status Date 6-11 Six-character date referring to
LISTATUS. Currently all blanks.
LISTATUS | Record Status 12 One character. Contents:
O - uncertified
l - certified
2 - changed record
3 - deleted record
LILEGCNT | Legend 13 Provides facility for extending
Extension record type (characters 14-1T7).
Not currently used. Set to
zero.
LITYPE Record Type 14 One Character. Contents:

B P K & B D
[

a - book

b - manuscript

- music (sheet)

- music (manuscript)
maps and atlases

- maps (manuscript)

&K » o A 0
1

- motion pictures and
filmstrips

- microfilm (original edition)
- phonorecords (spoken)

- phonorecords (music)
pictures, etc.

- computer media

- other

-169-

(Continued on next page)

FIGURE 4 (Cont.):
ILR PROCESSING RECORD - SEGMENT 1, LEADER

PROGRAM | DATA CHAR.
SYMBOL ELEMENT POSITION CONTENTS, REMARKS, ETC.
LIBLEVIL | Bibliographic 15-17 Contents: One to three charac-
Level ters, left Justified, with blank
£ill.
a - analytic
¢ - collective
m - monograph
s - serial
LIINDCNT | Indicator .18 Number of indicator bytes in a
count directory entry. Now set to 5.
LIBASE Base Address of]| 19-20 The displacement to the first
Variable Fields character of the fixed fields.
A binary number equal to '56 +
12%n', where n is the number of
entries in the directory.
LIORIGIN | Origin of 21-23 Three EBCDIC digits identifying
Record the agency which keyboarded the
record. '003' = ILR; 'T790' =
U C Santa Cruz.
LIPDATE | Processor 2l-29 Six character date referring to
Date LIPROSOR. Currently all blanks.
LIPROSOR | Processor or 30-32 Three EBCDIC digits indicating
Record the agency modifying/processing
the machine record. If LIORIGI)!
is 790, LIPROSOR is 003.
LISOURCE | Source type of | 33 A code identifying the general

Catalog card

source of the original catalog
card.

a - central (e.g., LC card or

proofslip)
b - local origin (original
cataloging at LIAGENCY).
¢ - NUC
d - other library or source

(e.g., Alanar)

-170~

(Continued on next page)

FIGURE 4 (Cont.):
ILR PROCESSING RECORD - SEGMENT 1, LEADER

PROGRAM | DATA CHAR.
SYMBOL ELEMENT POSITION CONTENTS, REMARKS, ETC.

LIAGENCY |Agency of 34-36 Code for specific agency of
Source Type LISOURCE, when it is known.
Three EBCDIC digits. Intended
for UC network use.

LIADAPTR |{Adapter of Three EBCDIC digits identifying
Catalog Card the adapter of the catalog card
when LISOURCE code is other tha%
"b". If not known, set to
blanks.

LINUMBER |[Master Record EBCDIC master record number.
Number (ILR- Taken from cols. 1-6 of decklet.
assigned) Character 40 is zero, currently.

LICHECK |Checksum on A checksum on characters LO-L6.
Record Number

LIDIRLEN | Number Entries EBCDIC digits with leading
in Directory blanks.

LIDEOF Date Entered EBCDIC in the order 'mmddyy'.
on Master File Now set to date of program
execution.

[END OF LEADER]

F. DIRECTORY

The record directory is an index to the kind and location of the
variable fields within the record. It contains a series of fields
(called directory entries) which contain the teg numbers, the lengths
of the variable fields, and the starting character positions of the
fields. The directory entry is fixed in length, but the number of
entries in a given record cannot be predetermined, so the directory as
a whole is variable in length. The directory is automatically gener-
ated by the INFOCAL program.

The program symbol name for the entire directory is LIDRTRY.

-171~

~ FIGURE 5: .
ILR PROCESSING RECORD - SEGMENT 2, RECORD DIRECTORY
Length Char. Pos. Content

Directory Entry 1 3 0 Tag (3 EBCDIC digits.)+

Indicator 1* (EBCDIC character.
If not used, blank.)

Indicator 2* (Repeatable tag
number, applicable to those
tags which can appear more
than once in a given record.

If tag is not currently repeat-
able, indicator will be set to
binary zero. An 8-bit binary
digit.)

Indicators 3,4,5 (Character
positions provided for future
expansion. Currently set to
blanks.)

Field Length (A 16-bit number
giving the character length of
the variable field, including
Indicators 6 and 7.)

Starting Character Position (A
16-bit number giving the posi-
tion of the first character of
the variable field. Currently
the first character will always
contain Indicator 6. This posi-
tion is relative to the first

Directory Entry n character of the Fixed Length

] Data Elements Field (Segment 3).)

[End of Directory]

The total length of the Directory Entry is 12 Characters. The
total length of the Directory is 12 x the number of directory entries.

+See Fig. T for a list of tags and field names.

*For the most part, Indicator 1 has contents identical to that defined
in the LC MARC II specification. Indicator 2 is a feature defined by
ILR, but suggested by the Library of Congress for the purpose of in-
suring unambiguous access to data fields having duplicate tags in a
record. -172-

The Tags are sorted by the program on the first digit of the tag
number only. The variable fields are stored in the order in which they
were input (which generally corresponds to the order of appearance on
the source catalog card).

The Justification for storing some of the Indicators in the Direc-
tory and the rest in the Variable Field was as follows: Indicators
which by their nature apply to the variable field as & whole (e.g.,
code for sub-type of name) were stored in the Directory. This renders
them easily accessible when searching the record at the level of the
Directory only, e.g., to test for the presence of certain conditioms.

A search for the variable field data itself thus will not have to be
made in each case.

Indicators which by their nature apply only to parts of fields (or
even one character), such as codes for diacritical marks, were placed
within the variable field data itself. Such indicators will most likely
be addessed only when there is actual need to piocess the variable field
content.

G. FIXED LENGTH DATA ELEMENTS

Elements in the Fixed Length Data Elements Field are assigned fixed
locations and lengths. The entire field may, in various types of
records, assume a variable length, and therefore it has been given a
tag number and a Directory Entry. For the initial version of the
INFOCAL program, only monograph catalog records are being processed.

The Fixed Length Data Elements for monographs have a field length of
26, currently.

The program symbol name for the entire Fixed Length Data Elements
Field is LIFIXED. Its Tag No. is 000.

FIGURE 6:
ILR PROCESSING RECORD - SEGMENT 3. FIXED LENGTH DATA ELEMENTS
PROGRAM DATA CHAR.
SYMBOL ELEMENT POSITION : CONTENTS, REMARKS, ETC.
LIDTYPE Date Type 1 ¢ - two dates, second is copy-

right

m - two dates, second is
terminal

n - date not known

q - digits missing in original
date

r - reprint

single publication date

-173- (Continued on next page)

FIGURE. 6 (Cont.):
ILR PROCESSING RECORD - SEGMENT 3, FIXED LENGTH DATA ELEMENTS

PROGRAM
SYMBOL

DATA
ELEMENT

CHAR.
POSITION

CONTENTS, REMARKS, ETC.

LIDATEl

First or Only
Date

2-5

Four digits, or blank if not known

LIDATE2

Second Date

6-9

Four digits, or blank if not
present.

LIMICROR

Form of
Reproduction

a - microfilm ¥ - none
b - microfiche

¢ - micro-opaque

Content
Form

One to four, or no characters.
Left-Jjustified, with unused char-
acters filled with blanks.

- bibliographies

- catalogs

- indexes
abstracts
dictionaries
encyclopedias
directories
yearbooks
statistics
handbooks

other
medical atlases

a
b
c
d
e
3
-3
h
i
J
k
m

LIGOVPUB

Government
Publication
Indicator

U.S. federal

California state
California county/municipal
international

other governments

o A& 0 O P

=

none

-1Th-

(Continued on next page)

FIGURE 6 (Cont.):
ILR PROCESSING RECORD - SEGMENT 3, FIXED LENGTH DATA ELEMENTS

PROGRAM DATA | CHAR.
SYMBOL ELEMENT POSITION | CONTENTS, REMARKS, ETC.
LICONPUB | Conference 16 '0' = no
Publication 11' = ves
Indicator y
LIMEBODY |Main Entry 17 '0' = no
In Body 110 = yes
LILITGRP | Literary 18 a - complete/collected works
Group b - selected works
¢ - prolific writer
¥ - none
LICNCELT |Cancel Title 19 '0' = no, don't cancel
Ent
?ﬁdgictn zit 'l' = yes, cancel in dictionary
. . catalgg; make for div.
LICNTRY Country of 20-22 All blanks. Not currently
Publication implemented,
LPILLUS Illustration 23-26 One to four characters, left-
Codes Justified with blank fill. Set

by scan of Collation Input Field.

a - illus.

o’

- map

- portraits

- charts

- plans

- plates

music

- coats of arms

- genealogical tables
- forms

H ® <& ¥ B B 0 & 0
|

- diagrams

[End of Fixed Length Data Elements]

-175-

R < e T

2 ars ==

H. VARIABLE FIELDS

The variable fields include all the standard bibliographic data
elements defined for monograph catalog records, plus various control
numbers pertaining to catalog records, such as the LC Card No. (The
Fixed Length Data Elements Field, Tag 000, although not strictly a
variable field, may vary in length from one kind of record to another.
Because of its complexity, it was defined in detail above, in Part G.)

The variable fields contain data which by its nature is variable
both in presence and in length. The fields are packed into the last
portion of the storage record with no intervening gaps.

Currently, the individual variable field begins with two special-
purpose character positions, Indicators 6 and 7, which are set to zero.
These are provided for future use. It is intended to use them to
control diacritical marks and similar special characters occurring in
the field, and to control the applicability of the field to a given
library on the basis of set-inclusion or exclusion codes.*

The principal identifying codes (tags, and indicators 1-5) for
a given variable field are, as indicated previously, stored in the
Directory Entry for the field, along with the field length and address
of its starting character position.

A list of tagged fields and the data elements contained in each
is presented in Fig. T, below.

A list of the meanings of Indicator 1 which are currently
implemented, is presented in Fig. 8.

This does not exhaust the coding supplied in the storage rzcord.
There is a third and last component, sub-field identification. This
code, called a delimiter, serves to identify and describe particular
data elements which may be contained in the tagged fields.

Delimiters are currently stored interspersed with the data in
position ahead of the sub-field they identify. It is not certain
whether this method will be retained in future versions of the storage
format. Currently a "%" is stored as the delimiter symbol in storage
records produced by INFOCAL. A chart listing the present contents of
the delimited sub-fields in each tagged field is presented in Fig. O.

*See Part J.

FIGURE T:
VARIABLE FIELD TAGS AND DATA ELEMENTS
(as of May 6, 1968)

Tag | Variable Field Data Element ||Tag | Variable Field Data Element
CONTROL FIELDS
000 | FIXED LENGTH DATA ELEMENTS ||110 | CORPORATE NAME
FIELD 111 | CONFERENCE OR MEETING
001 | CONTROL NUMBER (ic CARD NO.) 112 | FIRM NAME*®®
002 | LEGEND EXTENSION 118 | TITLE SUBHEADING
003 | LANGUAGES 120 | CORPORATE NAME WITH FORM
CONTROL NUMBERS SUBHEADING
010 | ILC CARD NUMBER® 128 | TITLE SUBHEADING
011 | NATIONAL BIBLIOGRAPHY 130 | UNIFORM TITLE HEADING
NUMBER 131 | ARONYMOUS CLASSIC HEADING###
012 | STANDARD BOOK NUMBER¥*#* 138 | TITLE SUBHEADING
013 | PL 480 NUMBER SUPPLIED TITLES
014 | SEARCH CODE . 200 | UNIFORM TITLE
019 | LOCAL SYSTEM NUMBER+ 210 | ROMARIZED TTTLE
KNOWLEDGE NUMBERS 220 | TRANSLATED TITLE*#*
020 | BNB CLASSIFICATION NUMBER** TITLE PARAGRAPH
030 ggngéRDECIMAL CLASSIFICATION|| o | mimip STATEMENT
050 | LC CALL NUMBER 250 | EDITION STATEMENT
051 | COPY STATEMENT (LC CARD) IMPRINT
052 | CATALOGING SOURCE### 260 | PLACE
060 | NLM CALL NUMBER 261 | PUBLISHER
070 | NAL CALL NUMBER*# 262 | DATE(S)
071 | NAL SUBJECT CATEGORY NUMBER || 300 | COLLATION
080 | UDC NUMBER#*#* 350 | BIBLIOGRAPHIC PRICE**
090 | LOCAL CALL NUMBER (HOLDINGS)|| 360 | CONVERTED PRICE+
col %gggAiTgiggfﬂf, SERIES NOTES
400 | PERSONAL NAME (TRACED THE
MAIN ENTRY SAME)
100 | PERSONAL NAME 408 | TITLE SUBHEADING
108 | TITLE SUBHEADING 410 | CORPORATE NAME (TRACED THE
SAME)
-177- (continued on next page)

FIGURE 7 (Cont.):

VARIABLE FIELD TAGS AND DATA ELEMENTS
(as of May 6, 1968)

Variable Field Data Element

Tag

Variable Field Data Element

CONFERENCE (TRACED THE SAME)
FIRM NAME###*

TITLE SUBHEADING

TITLE (TRACED THE SAME)
SERIES UNTRACED OR TRACED
DIFFERENTLY

BIBLIOGRAPHIC NOTES
BIBLIOGRAPHY NOTE
DISSERTATION NOTE

CONTENTS NOTE (FORMATTED)
"BOUND WITH" NOTE

"LIMITED USE" NOTE
GENERAL NOTES (ALL OTHERS)
ABSTRACT#*#*

"IN ANALYTIC" NOTE®##
"FULL NAME" NOTES*##*

SUBJECT ADDED ENTRY
PERSONAL NAME

TITLE SUBHEADING
CORPORATE NAME
CONFERENCE OR MEETING
FIRM NAMEW##

TITLE SUBHEADING

CORPORATE NAME WITH FORM
SUBHEADING

TITLE SUBHEADING

UNIFORM TITLE HEADING
ANONYMOUS CLASSIC HEADING*##
TITLE SUBHEADING

BOOK TITLE AS SUBJECT###

650
651
652

653

655

656
657
660
661
662
663
664
670

690

T00
708
710
71l
112
718
T20

728
730
731
738

TOPICAL
GEOGRAPHIC NAMES

POLITICAL JURISDICTION ALONE
OR WITH SUBJECT SUBDIVISIONS

PROPER NAMES NOT CAPABLE OF
AUTHORSHIP

GENERAL SUBDIVISIONS (OTHER
THAN PERIOD AND PLACE)

PERIOD SUBDIVISION

PLACE SUBDIVISION

NLM SUBJECT HEADINGS (MESH)
TOPICAL MESH SUBHEADINGS
GEOGRAPHIC MESH SUBHEADINGS
TIME PERIOD MESH SUBHEADINGS
FORM MESH SUBHEADINGS

NAL AGRICULTURAL/BIOLOGICAL
VOCABULARY ##

LOCAL SUBJECT HEADING SYSTEMS'

OTHER ADDED ENTRIES
PERSONAL NAME

TITLE SUBHEADING
CORPORATE NAME
CONFERENCE OR MEETING
FIRM NAME®###

TITLE SUBHEADING

CORPORATE NAME WITH FORM
SUBHEADING

TITLE SUBHEADING

UNIFORM TITLE HEADING
ANONYMOUS CLASSIC HEADINGH*#
TITLE SUBHEADING '

-178-

(Continued on next page)

FIGURE 7 (Cont.):
VARIABLE FIELD TAGS AND DATA ELEMENTS
(as of May 6, 1968)

Variable Field Data Element Tag |Variable Field Data Element

740

753

800
808
810
811
812
818
8ko
900

TITLE TRACED DIFFERENTLY

PROPER NAMES NOT CAPABLE OF
AUTHORSHIZ

SERIES ADDED ENTRIES

PERSONAL NAME

TITLE SUBHEADING
CORPORATE NAME
CONFERENCE OR MEETING
FIRM NAMEW¥##

TITLE SUBHEADING
TITLE-ONLY SERIES HEADING

BLOCK OF 100 NUMBERS FOR
LocAL Use*

NOTES:

*

%* %

% %%

++

An alternaste code defined in LC MARC IT for optional local use.

TILR will use Tag 001 for LC Card Nos. available to it, thus
maintaining compatibility with the anticipated LC tape distribution
service,

Provided in LC MARC II for future use. ILR will supply this data
in its records only if the information is already available on the
LC cards used as input records at the time of original. conversion.

A local code or data element specified for original conversions by
ILR, but not defined in LC MARC II.

Code and data elements not currently implemented by ILR, but
defined in LC MARC II.

An alternate code defined in LC MARC II for optio: ~1 local use.
ILR will place its own locally-generated master record number in
positions 40-46 of the storage record Leader.

-179-

N AT

T AT A

FIGURE 8:
VALUES FOR INDICATOR 1 IN APPLICABLE FIELDS

J Tag | Field Indicator and Value
003 | LANGUAGES Single or Multilanguage 0
Translation 1l
050 | LC CALL NUMBER Book in LC 0
Book Not in LC 1l
{' .
j 100 | MAIN ENTRY Main Entry Not Main Entry is
(Personal Name) Subject Subject
Foreneme | O L
i Single Surname |1 5
| Multiple Surname| 2 6
g ‘ Name of Family| 3 T
110 | (Corporate Name) Surname (Inverted)|O i
111 | (Conference) Place + Name|l 5
Name (direct Order)|2 6
112 | (Firm Name) 0 1
120 | (Corporate Name with
Form Subheading)
130 | (Uniform Title 0 1
Heading)
200 | UNIFORM TITLE Not Printed on LC Cards O
Printed on LC cards 1l
210 | ROMANIZED TITLE No Title Added Entry 0
Title Added Entry 1l
| 240 | TITLE STATEMENT No Title Added Entry 0
Title Added Entry 1l
261 | PUBLISHER Publisher Not Main Entry O
Publisher is Main Entry 1l
g 400| SERIES NOTE Author Not Main Author is Main
‘ (Personal Author/ Entry Entry
f Title)
! Forename| O L
; Single Surname|l 5
Multiple Surname|2 6
i Name of Family|3 T
| +This value not presently implemented. (Continued on next page)

—

-180-

FIGURE 8 (Cont.):
VALUES FOR INDICATOR 1 IN APPLICABLE FIELDS

Field Indicator and Value

(Corporate Author/ Author Not Main Author is Main
Title) Entry Entry
(Conference/Title)

Surname (inverted) L
Place + Name 5
Name (direct order) 6

(Firm Name)

(Series Untraced or Series Not Traced
Traced Differently) Series Traced Differently

SUBJECT ADDED ENTRIES Forename
(Personal) Single Surname
Multiple Surname

Name of Family

(Corporate) Surname (inverted)
(Conference) Place + Name
Name (direct order)

OTHER ADDED ENTRIES Alternative |Secondary
(Personal)

Forename

Single Surname
Multiple Surname
Name of Family

(Corporate) Surname (inverted)
Place + Name
Neme (direct
order)

{(Firm Name)
(Corporate with Form
Subheading)

(Uniform Title
Heading)

(Title Traced
Differently)

FIGURE 8 (Cont.):
VALUES FOR INDICATOR 1 IN APPLICABLE FIELDS

SERIES ADDED ENTRIES

800| (Persomnal Author/ Forename 0
Title) Single Surname 1
Multiple Surname 2
Name of Family 3

810 (Corporate Author/
811 Title) Surname (inverted) 0
Place + Name 1l
Name (direct order) 2

-182-

I. SUB-FIELD DELIMITER CODES

In the current version of the INFOCAL program, most sub-field
delimiters have a form of coding as follows: each sub-field beyond
the first is signified by a combination of one or more per cent (%)
symbols in the storage record. That is, the sub-field coding is
positional rather than explicit. Two %'s followed by & data string,
for example, means the first and second sub-fields in the given field
are vacant.

DATA PRESENT: 1st Sub-field data%2d Sub-field data%3d Sub-field data
DATA ABSENT: %%3d Sub-field data

Because this area is the most volatile one in terms of changes
in the form of the coding in the MARC II record design, both the
presently implemented INFOCAL coding and the latest known MARC II
coding are presented, for comparative purposes. This will assist
retrofit of INFOCAL in the future.

It should be noted that changes in the coding imply no change
in the kind or amount of bibliographic data included in the record.
Full data will be included in all cases. The changes relate to
the method of coding and the amount of detail in data element
definition. Since the changes in sub-field definition affect field
tags, the programmer should consult the latest MARC II record speci-
fications issued by the Library of Congress before proceeding with any
changes to the coding produced by INFOCAL. (Certain of the data
elements currently defined in INFOCAL as tagged fields are redefined
in the new MARC II record as delimited sub-fields. Also, certain
data elements have been defined as sub-fields by MARC II which have
not yet been implemented in INFOCAL).

The revised system of sub-field coding announced by the Library
of Congress, as currently understood, is as follows:

In a field in which only one data element has been defined
(e.g., Standard Book Number), the field will begin with the delimiter
code "$a'". The same data element may be repeated in a field as many
times as necessary by preceding it with its identifying delimiter.
For example, there may arise a need to assign more than one Standard
Book Number to a single catalog record.

Only fields which can contain more than one kind of defined
data element are listed below.

-183-

e e e e e 4 b e« rarAP it o e A A T . 5 e e 1T

S,

At acs sy

[S—

FIGURE 9:

SUB-FIELD DELIMITER CODES

The word "None" in this table means that the data element
was not defined by ILR for sub-field coding purposes at
the time the INFOCAL program was implemented.

Sub-field Code in
INFOCAL Storage
Record

Revised MARC II
Code

TAG, FIELD NAME, AND SUB-FIELDS

003 | Languages

The group of 3-character language
codes needed to describe the
languages of the text or its
translation

Summaries

$aengfre$bgerrus

Example:

050
060
070

LC, NLM, and NAL Call
Numbers

Class Number
Book Number

$a
$b
$c

051
091

LC Copy Statement
Copy Statement (LOCAL CARD)

Class Number
Book Number
Copy Information

(Not defined in
MARC II)

052

Cataloging Source

Name of Library Contributing Cat.

Copy
Class No./Call No. (when present)

$a

(Not def. in
MARC)
$v
$c

Ap—

090 | Local Lib:ezy Holdings

Call Number
Copy Number

Library Code
No. of Copies

(Continued on next pagz)

FIGURE 9 (Cont.):
SUB-FIELD DELIMITER CODES

Sub-Field Code in Revised MARC II

INFOCAL Storage Code : TAG, FIELD NAME, AND SUB-FIELDS
|Record ‘
100
400
600/| Personal Name
700
800
None $a Name
None $b Numeration
% $c Titles and other words
% $a Dates
% $e Relator
None $k Form Sub-heading
Tag¥ $t Title (of book or title series)
None $u Filing Information (in TOO only)
% $v Volume or No. (in 400/800 only)

110 Corporate Name

410 (also for 112/k12/612/
T12/812 which are ILR

R

LT e

¢ T VT

610 tags for firm nemes)
T10 (also for 120/620/T20,
810 Corp. Name with Form
Subheading)
None $a Name
% $b Each subordinate unit in
hierarchy
$k Form Sub-hzeading
Tag $t Title (of book or title of series)
None $u Filing Information (in T10 only)
% $v Vol. or No. (in 410/810 only)
117}
411
611 Conferen.e or Meeting
T11
811
None $a Name

#The word "Tag" here means that the data element is identified in the
current version of INFOCAL as & tagged field. See Fig. T.
-185~

p

FIGURE 9 (Cont.):
SUB-FIELD DELIMITER CODES

Code in INFOCAL Revised MARC II
Storage Record Code TAG, FIELD NAME, AND SUB-~-FIELDS
% $b Number
% $c Place
% $a Date
None $e Subordinate unit in Name
None $g Other information in the heading
$k Form Sub-heading
Tag¥ $t Title(of book or title of series)|
None $u Filing Information (in T1l only)
% $v Vol. or No. (in 411/811 only)
130\ Uniform Title Heading
630 (also for 131/631/731,
; Anon. Classic heading -
730 an ILR tag)
None -~ $a Uniform title (Main portion)
Tag $t Title (of part)
None $u Filing Information (730 only)
245 Title Page Title
Kone $a Short title from which added
entry is made
% $v Remainder of title
2 $c Remainder of title page trans-
cription
250| Edition Statement
None $a Edition
% $v Additional information after
edition
260{ Imprint
Tag $a Place
Tag . $b Publisher
Tag $c Date
300 Collation Statement
None $a Pagination
% $v Tllustrative Matter
% $c Size
None $d Thickness

¥The word "Tag" here means that the data element is identified in the
current version of INFOCAL as a tagged fggld. See Fig. T.

FIGURE 9 (Cont.):
SUB-FIELD DELIMITER CODES

Sub-Field Code in Revised MARC II
INFOCAL Storage Code TAG, FIELD NAME, AND SUB-FIELDS
Record
44o| Series Note Traced Same
(Title)
None $a Title Portion
% $v Vol. or No.
650
651
652| Subject Added Entries
653
654
None $a Main Subject Heading (650-654 only)
Tag* $x General Subject
Subdivisions
re o[omiet) (g0 s
610/611/612
Tag $z Place Subject and 630)
Subdivisions '
Tag $t Title portion of a
subject heading
840| Series Traced Differently
(Title)
None $a Title of series
% $v Vol. or No.

#The word "Tag" here means that the data element is identified in the
current version of INFOCAL as a tagged field. See Fig. T.

-187-

|

T R

3
= mmAys XA s T

= =

J. ADDITIONAL VARIABLE FIELD FEATURES

Two character positions (Indicators 6 and T) have been placed at
the head of each variable field occurring in the record, beginning with
Tag 002, Legend Extension.

These indicators serve as the nucleus for expension of the leading
portion of the veriable field to allow encoding of three types of
information which can be applied to the field when it is prepared for
output display: the alphabet of the field, location-specific informstion,
and a list of diacritical marks. A proposed encoding sequence is shown
in Fig. 10. (These features have not been implemented in INFOCAL).

FIGURE 10:
PROPOSED VARIABLE FIELD HEADER

START OF FIELD | IND. 6 | IND. 7 | DATA
alphabet location- diacritics variable field
code specific codes list content

1. Alphabet Code. A flag to shift the encoding of the field from
the English alphabet to some other character set such as Cyrillic. It
would specify both the fact of the shift and the particular encoded
alphabet. An unresolved problem is that a deshift back to English or
to a third alphabet can occur within the field. The flag must be kept
distinct from the first byte of the location-specific information. The
alphabet code could be omitted in the default case of "a1l-English."

2. Location-Specific Codes. Indicator 6 has been reserved as a
flag to show whether a given field content is desired by a given
library to which the record applies. For example, the record might
contain both LC subject headings and Medical Subject Headings. Library
A might want only the LC headings; library B only the MeSH headings.
This Indicator will facilitate the composition end display of the record
according to each library's specifications. Four configurations are
possible: :

a. If the field is wanted by all locations, the indicator is to be
set to FOj¢ (currently, perhaps it should be 00). This would be the
default case. The next character in sequence is the diacritics indicator

(Ind. T).

b. If all but certain locations are to be provided with the field,
the indicator will be set to a stacked code of h°16 plus the number of
location codes which follow. Location codes are set as three-digit
EBCDIC numbers, following Indicator 6 and preceding Indicator T.

c. If only certain locations are to be provided with the field,
the indicator will be set to a stacked code of 8016 plus the number of

location codes which follow.
~-188-

- i - - o —r —— e

d. If none of the libraries are to be supplied with the field, a
code of 0074 is set. This will be rarely used, and will perhaps apply
to information used only by the processor of the records--e.g., the ILR

master record number, if stored in a variable field, would not conceivably
by desired as a "print'" field by any libraries to which the record applies.

The location-specific code will always be present.

3. Overpr:nted Character Coding. Indicator T is the nucleus for a
proposed method of storing diacritical marks and any other characters
which are overprinted and thus require special processing, or which
might well be omitted from certain kinds of displays, e.g., CRT's. The
major objective of the code will be to preclude a character-by-character
scan of the field content to determine if overprinted characters exist.
Rather a simple test on the indicator will yield the desired information.
The text string in the field will thus not be interrupted by special
codes, and no special processing will be necessary should it be desired
to bring the field out for display without the overprinted characters.

The proposed technique is as follows:

a. Each variable field will have a one-byte signal in Indicator T,
which will always be present. It will be followed by ¢-g_sub-fields,
each containing a value corresponding to a diacritical present in the
field, and a pointer (a relative character position).

b. If the signal is set to zero, there are no special characters,
and the variable field data is free of special handling. Data starts in
Field + 2.

IND. 6 IND. T
0 Data

c. If the signal is set to an even-numbered multiple n (n=2—> 25L)
there are n/2 diacriticals in the field's data. The signal will be set
to the relative character position in the field of the first data
character. The signal will be followed by one or more sub-fields which
will show the value of the diacritic together with a pointer to the data
character to which the diacritic is to be applied. (The value comes
first so that the program can be set up to determine whether or not an
actual operation on the data should be subsequently performed.) The
second pointer is counted from the position of the text character
to which the preceding diacritic was applied. Etc.

n Value 1 | Pointer 1| Value 2 | Pointer 2 | Data ...

[

E.g.,| WR'2|Therese ...

d. If the field length exceeds 255, and one or more diacritics
occurs at a position beyond the 255th relative position, the signal
will be set as above, but the first (or subsequent) sub-field will be
set to blank as a Value, and 255 as a Pointer to serve as & displacemen’.

-189-

¢ STANTELING e W

- U —

s

RS

value. The next sequential subfield will show the relative position
beyond 255 of the character to which the next diacritic applies.

Value 1
¥ 255 Value 2 | 5 Data ...

K. EXAMPLE OF STORAGE RECORD

LEADER

¥HTTL | HHOOmasS°2003 | BUBKHOOTAH35WY (01000136 16050468

LILENGfﬁ
DISDATE—
LISTATUSe——

LILEGCN——
LITYPE
LIBLEVEL
LIINDCRT
LIBASE-
LIORIGIN
LIPDATE
LIPROSOR
LISOURCE-
LIAGENCY.
LIADAPTR-
LINUMBER
LICHECK:
LIDIRLEN
LIDEOF:

DIRECTORY

arjon

FIELD LENGTH (16-BIT
START. CHAR. POS. (16-BIT

260 2610 262 300

550 65001 65002 741l

END OF DIRECTORY (CHART CONT'D NEXT PAGE)
~190-

‘FIXED LENGTH DATA ELEMENTS FIELD I START OF VARIABLE FIELDS

1964)5)51#1 ﬁﬁﬁﬁ#{#bb&w‘*Orusengoo am 64-3%01%435x%01

LIDTYP l
LIDATEl—
LIDATE2—
LIMICROR—"
LIFORM~
LIGOVPUB—
LICONPUB—
LIMEBODY-
LILITGRP.
LICNCELT
LICNTRY.
LIILUS—
Indicators 5 and 6 for Tag 003 - Languages
Data for Tag 003 - Languages codes-
Data for Tag 090 - Local Library Call No. & holdings info

g)c*-armash, Vilo\uan':i:ation of signals with non—unifcg
Data for Tag 100 - Autho

Data for Tag 240 - Title———

{ rm steps .IOOE\edondo Beach, Calif.,00TRW Space Technologyé

Data for Tag 260 - Place of Pub.— \
Data for Tag 261 - Publisher

; Laboratories ,lOOp.96h . 00|6 1. %%ZBF(#TL Technical Library. $T§

Data for Tag 262 - Da.tex
Date for Tag 300 - Collation—
Data for Tag 490 - Series Note

granslation,%no. 8(*)41‘1-anslation of Kvantovanie signalov sé

Data for Tag 550 - Note—

?neravnomernym shagom (CHART CONT'D NEXT PAGE)

gfrom Elektrosvyaz, no. 10, p. 10-12, l957.001nformatioﬁ§
T)

Data for Tag 650 - Subject Heading (1st)

3
g;easurement.OOFignals and signaling.OOFlektrosvyaz,%v. lO{E

Data for Tag 650 - Subject Heading (2d)
Data for Tag T4 - Added Entry for Periodical—

?;. 10-12, 1957.00Fpace Technology Laboratories, Inc, ng

Data for Tag 812 - Series-Traced-Differently Added Entrfs~

%fAngeles.%Technical Library.00lrenslation,%no. 80

END OF RECORD

Data for Tag 818 - Series titl

The catalog card shown below was used as the source for the
preceding example of a storage record.

] D’\g. -*Mlth.
Sciences
Pam Germash, V A
6h=3 Quantization of signals with non-uniform

steps. Redondo Beach, Calif., TRW Space Tech-
nology ILaboratories, 196k.

6. 28 cm, (STL Technical Library. Trans-
lation, no. 80)

Translation of Kventovanle signalov s nerav-
nomernym shagom from Elektrosvyaz, no. 10, p.
1012, 1957.

1. Information measurement. 2, Signals and
si . I. Elektrosvyaz, v.10, p, 10=12,
UCLA 1957. TII, Title. (Series: Space Technology
Leboratories, Inc. , Los Angeles. Technical
ILibrary. Translat ion, no.

-192~

APPENDIX V

SUMMARY OF RECORD FORMATS FOR DATA BASES TO BE CONVERTED
TO ILR PROCESSING RECORD FORMAT

1. Santa Cruz Record Format
2. ILR Input Record Format

3. Experimental On-line Mathematics
Citation Data Base

V - 1. SANTA CRUZ RECORD FORMAT

FIGURE 1:
SAMPLE CATALOG RECORD IN ORIGINAL SANTA CRUZ FORMAT

/o Ab11._Hb3 1961

~HOCXING, _JOBN _GILBERT, 1920
YOUNG, _GAIL _S

M

== 0POLOGY, BY _JOHN _G. _HOCKING A

~READING, _MASS-, _ADDISON ALSLAY

| PEBRS T
Z ADDISON WESLEY SERIES 1N MAZiLH
TOPOLOGY
|1 3k |
Col.
Card Type No.‘
0367 O 374 (¢ loo0
100
101
ND GAaIL S. _YOUNG A\ (200
T PUB. rY co- e m et or - BAw s AvepmmAT W AvmayTemS e ———paps 0. 1 4 i ...a 30
400
éATICS(“INCLUDES BIBLIOGRAPH 2%0
|35 60169] ...] 89|
70=T2

The above is an example of a catalog record punched in the
local input format devised at the University of Santa Cruz
Library in 1965. Fram this kind of card-image file, the conver-
sion program being written by ILR will produce card images re-
formatted into the ILR standard input format for subseguent
processing by the program entitled "INFOCAL." The INFOCAL out-
put will be the same record in ILR Storage Format (see Appendix
IV). The latter record is the one that is convertible to and
from the MARC II communications format devised by the Library
of Congress.

The following pages constitute a summary of the card for-
mats for each card type in the Santa Cruz record. The information
has been excerpted from: Computer Usage Co., Inc. Specification
for an Automated Library System. Prepared for University of
Californie at Santa Cruz. Palo Alto, Calif., April, 1965.

pp . 51"’60 . s e 2
L4 =195-

SHELF KEY CARD - CARD TYPF NO. 000

FIELD ID

COMMENTS

Call number

Series

Blank, Alpha, or Numeric

Volume

Blank or 1 - 999, Left Justify

Part number

Blank or 1 - 99, Left justify

Year

Year of publication

Donor number

Blank or Donor number from Gift list

Date rec'd.

Month and year received

Location

Alpha code designating Campus or Library

Type Code

0 = book 2 = reference L = see author
l = serial 3 = govt. pub. 5 = see subje
6 = see also subje o'pch'-' = So. Pacific

Language
Codes

Up to 5 Alpha Language codes, or 4 codes
followed by '+!'

Pages

Left Justify

Correct/
Delete

Delete o0ld records if 'C' or 'D!
Substitute new records if 'C!

- unused -

'00G'

Currently unused, but available as part
of Accession number field

Accession Number

-196-

B. PERSONAL AUTHOR - CARD TYPE NO. 100-10k

Limit: O - 5 Cards

FROM | TO
FIELD ID COL | COL COMMENTS
Author 1 60 |name of author - left Justified
61 68 |- unused -
Special 69 - - see page following corporate author
Code card -
Card No. T0 72 100 tiru 104
Accession No. T3 80 |same as Shelf Key card
Note: The 1st Author to be processed by the

computer is considered the main author.
The Main Author appears on all catalogs

and is represented in the title by "¥¥",

-197-

s et e e v vt mn % T ¢ < ATWE S Tt ot W WM YT 7 % e S — T

e TS AT

O T ——— e, T

R s e -t e T

———

C. CORPORATE AUTHOR - CARD TYPE NO. 110-119

Limit: 1 or 2 cards per suthor/ 0 - 5 Authors
ROM | TO
FIELD ID COL | COL COMMENTS

Corporate

Author 1 60 | May be continued on second card
61 67 | - unused -

Continuation is '=' if author is continued on -

Irdicator 68 -~ | second card '

Special

Code 69 - |~ see next page -

Card No. TO T2 1110 - 119

Accession No. | T3 80 | same as Shelf Key Card

See note concerning mein author on
Personal Author card.

-198-

et m s e m et - ews t s s e e e S T mAM—— ———— A

SPECIAL CODES FOR AUTHORS

Type 1: To create added notation on Author.Catalog
CODE MEANING NOTATION
J Joint Author Joint auth.
C Compiler comp.
E Editor ed.
G Joint Editor Joint ed.
I Illustrator illus.
P Publisher publ.
T Translator trans.
Type 2: To specify a substitute sort key.
X Use this author as a substitute sort key

for previous author. Previous author
will appear on appropriate catalog but

this author will not.

-199-

Lo o

D. TITLE CARD - CARD TYPE NO. 200-224

g Limits: 1 to 5 cards per title/ O - 5 Titles

4
! FROM | TO
| FIELD ID coL | coL COMMENT S
I
j Title 1 |60 |may be continued on up to 4 additional
| cards

! 61. 67 |- unused -

Continuation
Indicator 68 - |is '-' if continued on next card
Special Code 69 - |- see next page -

% Card No. 70 T2 |200-224

A '

: Accession No. | T3 80 |same as Shelf Xey card

-200-~

I e - oy ot - men w4 - 2t Ve m v ue e me v e vea e AiE -

Note:

SPECIAL CODES FOR TITLES

CODE MEANING
(blank) Suppress listing this title in TITLE catalog
T Title is a transliterated title
S Title is a series title
P Partial title
D Standard title
L Thig title is to be listed in TITLE catalog

In all cases, the lst title encountered when processing
a given entry will be the only title which appears in
the Shelf, Author, anda Subject Catalog.

-201-

b o E

PR T e SR S

e T S~ T

R Y

R

e B TR | e TETERTT T MM M, > cmube P

E. PUBLISHER/SOURCE CARD - CARD TYPE NO. 300-305

Limit: 1 - 2 cards per publisher/source/3 publi./sources total

FROM | TO
FIELD ID COL | COL COMMENTS

Publisher)

Source 1 60 |may be continued on a second card
61 67 |- unused -

Continuation is '-=' if publ./source is continued

Indicator 68 - | on next car:

Special

Code 69 - | P = publisher S = source

Card No. TO0 T2 | 300-305

Accession No. | T3 80 | same as Shelf Key card

202

I
¥
|
i
%
F. COLLATION CARD - CARD TYPE NO. 400 {
FROM | TC
FIELD ID COL COL COMMENTS -
Collation 1 £0 |as desired : f
61 69 |- unused -
Card No. 70 |72 {400 (1 card only) ’
o
Accession No. | T3 80 |same as Shelf Key card
R
!
=203~ ‘

S

v e e v e ot e v wt T ——— e —— T W

:

P L 2

ram—

—

G. COMMENTARY CARD - CARD TYPE NO. 500-509

Limit: 1 - 5 cards per comment/2 commentaries (1 of each type)

FROM [TO |
FIELD ID COL COL COMMENTS

Commentary 1 60 |may be continued on up to L more cards
61 67 [~ unused -

Continuetion is '=!' if commentary continued on

Indicator 68 - |ncxt card

Special Code 69 - 'S!' for commentary to appear on shelf

list only

Card No. T0 T2 1500-509

Accession No. |73 80 |seme as Shelf Key card
Note: If 2 commentary entries are used, at

least one must have an 'S' code.

-20L4-

DU PR e+ et ot - [a——— -

H. SUBJECT CARD -~ CARD TYPE NO. 600-60L

Limit: 1 card per subject/5 subjects

FROM | TO
FIELD ID COL COL COMMENTS
Sub ject 1 60 |as desired

61 68 |- unused -

Special Code 69 - |may be used to indicate level of subject¥®

Card No. 70 72 |600-604

Accession No. |73 80 |same as Shelf Key card

#*the special code is ignored by the
system at present time.

-205-

V-2. ILR INPUT RECORD FORMAT

By

Jay L. Cunningham
Institute of Library Research
University of California
Berkeley, California

A. INTRODUCTION

In this report, a specification for a, bibliographic data
input record is presented. It was developed for use in converting
catalog cards for monographs on an original basis - i.e., when no
machine record is found to exist or expected to be obtainable
elsevhere.* Because the format is experimental, the specification
is presented in two parts: 1) the preliminary version, which has
been programmed and is operational in a prototype production for
test and evaluation purposes, and 2) suggestions for a revised
and improved version which has not been programmed but which is
based on the experience gained from the initial model.

The principal conclusions drawn from the evaluation of the
prototype input format for this project are that a record of the
complexity and variability of the MARC II record (to which the
input record is convertible) is very costly to prepare. It is
difficult to recruit and retain personnel of the quality appro-
priate to this work yet suited to its semi-clerical nature. Pre-
liminary estimates are that average editing time per record will
range from about 2-1/2 minutes to 4 minutes per man-record. The
coding required by the MARC II format is the principal reason
for these figures. That is quite aside from the unaveailability
at this time of an editing manual from the Library of Congress,
and the fact that the MARC II design is itself still developmental
(with the result that the instructions for editors are continually
subject to revision). The reasons lie elsewhere: in the ill-
structured nature of cataloging itself, in the ambiguities of
the rules and the consequent ambiguities built into MARC (which
is based on the rules), and the variance over the years of these
rules and the reflection of this in catalog cards. Retrospective
cards in particular have caused considerable delay in the project.
Adjustments in the coding prescribed by MARC (which was aimed at
current and future records) have repeatedly been necessary when
older records are to be converted.

Nevertheless, these problems comprise a small percentage of
the records. Therefore, the source of improvement does not seem

*¥The writer is indebted for the great deal of groundwork on this
record design done by Kelley Cartwright, formerly of the Institute
staff at Berkeley, and Miss Martha Bovee, of the Technical Services
Staff, University Library, University of California, San Diego.

02074/ ~207-

to lie in a reduction of the MARC design to a less complex level.
Rather the approach has been to utilize the MARC data definition
to the fullest degree, in the expectation that the residue of
coding interpretation problems will disappear as the format is
"debugged." Only the form of coding has been altered in our input

format.

We are employing a more concise notation in the coding,
exploiting the concept of "default" settings, and building computer
algorithms for the recognition and identification of the data
elements in catalog records. The improved version of the input
format extends this approach, and reflects a number of recommenda-
tions that we now feel confident can be implemented by program, as
a replacement for a certain asmount of manual editing effort.

These program routines would operate either by simple key word
matching or by more complex data recognition algorithms which
process clues imbedded in the fields. The new format takes advan-
tage of a minimum of human-applied codes that serve as boundary
markers for the operation of the algorithms. Where possible

these markers would be set by actions such as paragraph indention
symbols keyed by the device operator without detriment to a normal

typing rhythm.

;B. NATURE OF THE MACHINE RECORD

1l. General. As implied above, the input record format is
compatible with the MARC II Communications format. Strietly speak-
ing, the input record is converted in our system to the ILR Pro-
cessing format. The latter is convertible to and from MARC II.

For all of these record formats, however, the machine record
organization can be summarized as follows: the two primary build-
ing blocks are data elements and codes. The data elements and
codes are organized into the components shown in Fig. 1. The
field is the basic component for processing purposes.

FIGURE 1:
STORAGE RECORD COMPONENTS AND ORGANIZATION

Typé of Code Identifying

Record Component | Content of Component the Component

data element (group

field .
of one or more)

tag+indicators

sub-field data element delimiter

~208-

It is important to understand the reasons for the organization of
the record into these components, in order to see why the input
format while identical in content, is different in structure and
coding from the other formats.

The MARC record coding is intended to serve four basic func-
tions:

printing

sorting

information retrieval
. catalog division

In the simplest design to serve these functions each data element
in the computer record could have been defined as occupying its
own field. Each field would have an identifying code or 'tag."
Due to the desire to use a record directory technique in the
Processing and Communications Formats, the use of a field tag for
each value of an element occurring in a given record becomes
inefficient, since each tag is stored in a directory entry of 12
characters in length. (This constraint does not apply to the
input record, since it does not have a directory of its own
contents.)

Moreover, the data elements in many cases naturally group in
clusters that will respond to the functions mentioned above. Many
elements are both derived and manipulated in combinationg for
instance, the Imprint field comprises place, publisher and date
of publication. It is thus logical to group more than one element
in a field. There is still the requirement to identify individual
elements, however, so a form of sub-field identification, less
clumsy than the tag and its directory information was created.
These are called delimiters and are embedded in the wvariable data.
(The tag is relegated to a separate directory section of the
logical record).

The ILR input format takes no intentional cognizance of the
four functions. Its only requirement is to uniquely but concisely
identify each element so that it may be transformed into another
code which itself is more efficient for either internal processing
or communications. It acts only as a one-directional data con-
version vehicle from source to machine edit program. As a con-
sequence the codes used in the input format must be adjusted to
the structural patterns - options, alternations, repetitions - in
catalog data in different ways than the processing format codes.

These field patterns arise from the ways the values for
bibliographic data elements are organized in a given catalog
record:

+ Single occurrence of a value for a single element field,
e.g., LC Card Number;

« Repeated valves for a single element, e.g., several Dewey

numbers on one card; 509~

. Sequences of values for two or more different data
elements, e.g., place, publisher, date;

. Variability in presence of values in these sequences,
e.g., place, date;

. Combinations of the above, e.g., place, place, publisher,
date, date; place, publisher, date, place, publisher,

date.

In the input format, convenience in editing demands that
complex patterns of elerents in dense catalog text be coded as
concisely as possible. Input tags for a pattern such as "place,
place, publisher, date, date" may be coded as

/place,$place, /publisher,/date,date

The slashes identify the data by ordlnal position, i.e., the
5th slash in an input string is always place. In the processing
format (MARC II) each of the above symbols might be coded by a
three digit tag and generate a directory entry. The MARC design,
which is still evolving, tries to balance the assignment of the
tag level of format definition to a data element by consideration

of such factors as:

Is the data element processed frequently?

. If so, is it searched for or manipulated independently
or in combination with other elements?

. What is the average length of the values of the data
element?

. How often do sequences of repeated values of the element
occur?

« Does it ocecur in every record?

. What is its format function (does it convey information
about the document, about the record, about the file or
even gbout other fields or codes in the record)?

Fig. 2 shows the structural patterns in the revised coding
for MARC»records. From this, it is evident that our input record
represents a more primitive coding. This is-acceptable in this
format because the heavy volume of input symbol-s«anning and
syntactical checking is done only once: when the input compila-
tion is performed. Once the internal record with its apparatus
of field starting position pointers, field length counters, end-
of-field/record/file signals etc. has been constructed, the user
may process the data in strings and with table-driven routines.

-210~

[e et e e e YT T N——— m—————— 3

FIGURE 2:

STRUCTURAL PATTERNS IN MARC RECORD DATA DEFINITION

Single-Element |[Multiple-Element
Field Field

Single|Mult. Single | Mult.
Value |Value Value Value

Repeatable 1%

Repeatable Sub-Field Code

Field Code

Non=-Repeatabie
Sub-Field Code

Repeatable

Non-Repeatable Sub-Field Code

Field Code

Non-Repeatable
Sub-Field Code

*Entries correspond to-explanations and examples immediately
following the diagram.

STRUCTURAL PATTERNS

Multiple Element Field, Multiple Values.

1. TField Repeatable, Sub-field Repeatable.

Example: 6XX--Subject Tracings, with Subject Sub-
divisions.

Form: $aMain Subject Heading$xSubject Subdivision-
$xSubject Subdivision$xSubject Subdivision.

Field Repeatsble, Sub-field Non-Repeatable.

Example: 440--Title-Only Series Note (Traced Same).

Form: $aSeries Title, $vVolume,Volume,Volume,...
or inclusive numbers, e.g., $vv. 11-15.

Field Non-Repeatable, Sub-field Repeatable.

Example: 260--Imprint.

Form: $aPlace$bPublisher$cDate ; $aPlace$bPublisher-
$cDate.
(Dates non-contiguous)
-211-

.

i, TField Non-Repeatable, Sub-field Non-Repeatable.

Example: 260--Imprint.

Form: $aPlace$aPlace$bPublisher$cDate ,Date.
(Dates contiguous; delimiter not required)

Multiple Element Field, Single Value.

5. Field Repeatable, Sub-field Non-Repeatable.
Example: O051-~LC Copy Statement.

Form: $aClass No.$bBook No.$cCopy Information.

6. 'Field Non-Repeatable, Sub-Field Non-Repeatable.

Example: Tag Obl--Languages.

Form: $aLanguage Codes of Text$bLanguage Codes of
Summaries

Single Element Field, Multiple Values.

T. Field Repeatable, Sub-field Non-Repeatable.
Example: U90--Series Untraced or Traced Differently.
Form: L90$aXXXX; XXXX.

8. Field Non-Repeatable, Sub-field Repeatable.

Example: 082--Dewey No.
Form: $aXxX$aXxxX$a. ..

Single Element Field, Single Value.

9. TField Repeatable, Sub=-field Non-Repeatable.

Example: 500--General Notes.
Form: $aXXXAXXXX.

10. Field Non-Repeatable, Sub-field Non-Repeatable.

Example: 24l--Romanized Title.
Form: $aXXXXKXXX.

2. Mapping of Input Codes. To illustrate more preci~ely how
the input format works, it must be remembered that the input codes
do uot necessarily bear a one-to-one correspondence to the field
codes in the Processing Record. The external fields generally
speaking map into logically identical internal fields, sometimes
on a many-to-one basis (e.g., the place, publisher, and date elements
are separate fields in the input record but map into one internal
field with three sub-fields in the revised MARC II format).

-212-

. e+ o —— ~—— .

Notationally their codes are different, usually in a one-to-many
relation, e.g., the second A-Field slash, with no "ua" code,
translates to Tag 100, Indicator value of 1l=Main Entry, Personal
Name, Single Surname sub-type, Condition: main entry is not
subject. The mapping is complex, that is, input fields and codes
are translated (expanded), re-arranged, concatenated, or split
up to form the internal fields. Fig. 3 is an illustration of
such a mapping.

There are four levels of coding in the tag and indicator
of a MARC record. These encompass the aspects of each data
entity needed to serve the four functions mentioned above. 1In
some cases, the coding has been extended by the device of "stacked"
coding, to serve auxiliary functions such as recording the fact
that the main entry heading is identical with the subject of the
book. This allows the user the option of printing out the
record under the name as a subject heading in a divided catalog.

FIGURE 3:
EXAMPLE OF INPUT FORMAT MAPPING INTO PROCESSING FORMAT

INPUT RitCORD PROCESSING RECORD

External Data Element Value
Field Code or Code Value

. . (DIRECTORY ENTRY)
v
. . PRRE
" lp1l060¥¥Ydaada

(UACODR - MAIN ENT. TYPE)

ab

- M.E. IS SUBJ.)

(VARIABLE FIELD)

. 0 O AUTHOR NAMEZZDATE |

ND A--FIELD)

(ZQTHOR NAME%%DA%%X
.

LA NN

In Fig. 3, the four levels are exemplified as follows:

MARC II
Code Type

Level I - Function of the Field identified TAG
by the code (digit 1)

e.g., 2nd A-Field slash = Main] xx
Entry Heading

Level II - Type of Entity in a Heading (ua) TAG
(digits 2-3)

e.g., ¢ = Corporate Body 1]E

Level III - Sub-Type of Entity (Indicator 1)

e.g., 2 = Corporate Body in form 110 @
of Direct Order and Role
Relation is Main Entry is
Not Subject ("stacked code")

Level IV - Role Relation of Functional Fatity (Indicator 1)

e.g., "ub" code in input stream 110 EI
resets Role Relation in
staci.ed code above to 6 =
Main Entry is Subject

It should be noted that there is no necessary dependence
between coding in the input format and the processing format. The
internal code could, for example, be stored in two separate indi-
cators, e.g., Indicators 1 and 2, with no effect on the input
format except to change a table in the input edit program.

As part of this tramslation process, the edit program must
perform all the bookkeeping &actions necessary to assemble the
record in Processing Format (e.g., placing tags in directory
entries, counting field lengths, etc.). .Redundant data or purely
intermediary codes are purged. Defauli settings and initializa-
tions are completed. Computed values are set, either from the
input data (e.g., illustration codes in the Fixed Fields) or by
logical combinations (e.g., a blank 2nd slash with the absence of
a "ua" code means a title main entry is being input). Character
translation (dependent upon the particular keyboard device used)
ig made into the representation of the computer.

Some other dAifferences between the input format and the
processing format are:

Repeatability. Certain codes in the input record,
e.g., the 10 A-Field slashes, are not repeatable, whereas their
corresponding internal codes are repeatable.

-21h4~

Presence. Certain Fixed Length Data Elements are input
only when present, whereas the internal record always contains
each of these elements, even if the value is "off", "mone", or
such.

Level. Certain codes in the input format may translate
to a tag in one case and a sub-field in another case, e.g., the
3rd A-Field slash translates to a tag (Title); the fourth slash
translates to a sub-field delimiter (remainder of title).

C. RECORD COMPOSITION

1. Logical Structure. A complete input record is composed
of a stream of data and codes, in three segments: The Indicator
segment (I-Fields), the Body of the Catalog Card (A-Fields), anc.
the Remaining Data (B~-Fields). Each segment is composed of several
fields. The fields are of either fixed or variable-length type,
depending on content. The data elerents are variable or fixed
in presence. The codes arz correspondingly fixed or variable
in presence. The codes to the left end below the catalog card
box on the coding sheet are the I-Fields, in pre-printed form.

The coding sheet* designed-for experimental use in the
File Organization project provides space to record certain in-
formation which is not explicitly recorded on the catalog card,
or for combining in one field the information (e.g., on holdings)
gattered from several cards representing the same title, or to
reccrd information in coded rather than natural form. The I-Fields
are structured in two ways: either checklist or fill-in. The
codes are pre-printed on the sheet in checklist format as a merory
aid to the editor. The boxes are checked tc indicate that they
should be keyboarded. Codes which are merely checked are of the
self-transmitting type - the information they carry is embodied
in a first letter defining the general group of the code; the
second letter is a specific value for the code. In some cases
there are multiple values assumed by a particular internal data
element (e.g., Content Form may be checked from O-l4 boxes). The
second letter values will be inserted into the proper element in
the Fixed Length Data Elements Field in the Processing Format.

Where the list of options for a code is too lengthy to be
pre-printed on the coding sheet, the editor selects a code from
a reference list in the coding manual and writes in the proper
values in the box. In Type of Main Entry, "ua" merely identifies
the value which it transmits. An entry could be "uac@'" meaning
"Pype of Main Entry = Corporate Name, Direct Order, Main Entry
in this record is not subject of the work".

*¥See Fig. 11, Part III, Final Report of File Organization Project,

Phase I.
~-215-

SRR T

S

he - =

fem e P e ST

o ——— e T

Tores

sy

Certain data elements are not explicitly coded: e.g., the
Master Record Number is always placed first in the input record

and is recognized by position.

The lst section of the coding sheet is that outside of the
catalog card image. It contains boxes:

. to provide values to certain elements in the Record
Leader.

. to transmit codes to elements in the Fixed Length
Data Elements Field in the Processing Record.

. to provide values for parts of tags and indicators
that are not supplied by coding in the other seg-
ments of the input record.

. to supply date that cannot be recorded on the compact
face of the cztalog card image, e.g., call numbers
from other campuses possessing copies of the work.

. to record certain control infcrmation, such as
editing and keyboarding statistics.

The codes are alwayé 2 or b character combinations, both to
facilitate expansion and for validity checking.

In the card image portion there are two types of coding:

A-fields. The body of the source record, the ten fields or
data elements most frequently occurring on the card.

B-fields. Collateral data which occurs with less pre-
dictability on the cards, such as supplementary notes.

The tables in Section D list the data element names and their
codes in the ILR input format, together with the corresponding
Processing Format codes into which they map.

2. Physical Record. The input record is composed of a
variable number of characters placed in contiguous locations on
an input medium, e.g., punched cards. A physical input record
is composed of one unit of the medium used by the keyboarding
device: e.g., a tab card. There might be several tab cards in
a complete logical record. (See Fig. L4.)

a. Beginning of record. A master record number is
placed at the beginning of the input record. For the purposes
of the present conversion, it is 6 characters in length.

b. Continuation segments. If a medium such as tab
cards is used, the record number is repeated in character posi-
tions 1-6 in each succeeding card. A serial card number is
placed in c.p. 7-8, right justified, beginning with "01". A
maximum of 15 cards per decklet is currently permitted in the
INFOCAL program. =016

ot e e mmmere e e AR e mteer W P ey I T W T3

//'iBUGiIUH AIGEIES. Z_TECHNICAL 1 IRRARY. s_TRANSLCATINNSZNO, 20+

) [] » o9
1NN 107202, 10s P. 10-12 1957, %F_SPACE _TECHNOLOGY _LABORARTORIES, _IMC.» _LOS

[L [[LK 'L]] = 1] - LE) - o

10001106 1957, %H_INFORMATION MEASUREMENT . *M_SIGNALS AND SIGNALING. *¥0_ELEKTROSYYA

. i » L) L) 1] .p u_ = e g "R we g e pe ~ - |
{NN0110STE SIGNALOY S NERAYNAMERMYM SHAGOM FROM _ELEKTROSYYAZs HO. 10 P. 10-12s
_ _ . rr R B . P » nap r L 3 “ b .
100011 04_L _TECHMICAL -LIBRARY.S_TRANSLATIONs ZHO. SUSK_TRANSLATION OF _KYANTOVRN
. PR REw L I | |) [L | L = 11 = = =
10001102 _CALIF.s~_T_R_U _SPACE _TECHNALARY _LARNRATORIES /1564, 77 f..7/722%D_8_1

- —.-‘ -

rrore -1 zan 3 1% 5 <1 =
10011 02Y, _A.7_AUANTIZATIMN OF STGNALS UITH NOH-UNIFORM STEPS./)LREHthH ~BERCH

[4 | [v oy ¥ ® [= ' 3 b 1 1 I3
100011 011964 1 9S7ERIADSE BFE435.JA/ 224352 SAENGRUSHTANIU00S1C2/_PAM 84-3/_GARMASH.
1 100 ERDD i il i i i i mii
i i 11 i1 1 L]

0|00000000000000'00000UOUUIIIOOUIIOUOUUIII|0I gpRmocommooooooooMMosoooMoNoOl
525354 55
INR R

vy FooTT OB L

B 7 8 93101112121415161718192021222024252827 2829 901 323334 3536 37 38 394041 428 4445 46 47 484950 51 S6S7 50596061 626364 6556676897071 727374757677 787300

0

i|l|||ll|ll|l|lllIllIIIIIIIIIIIIIIIIIIIIIIIIIIl "ERN IRN IRARRRN IRE 1R1 LRRARR
2222222222222222|2222|2|22222222222222|222222|22322222I22|22222222222922222I222?
333333333333333333333333333!3333333I33333333333|33333333I3333333333I333433333I33
a4a444444441444444|A|44444I44444III44I444444I4I444444444444444I44I4444444|44444a
55555555555555I5555555I55555I5555555!555II55555555555555555I555555555I555555555I
6666666666M6666666666666M666666666666666666666666ME6666666666666M6666666666666686
R AR ta Rt AR AR AR AR AR R Rn] (AR AR RN RRA IRRRRRRRR) ERRRRRNRY,
a388888aaasasaaasssssssaaassssasllasslsssasssslsssﬂaasaasaalaaaasasaslssasasllal
sggsss999I999I999I9999999999999999999999999I9999999999999999999999999999!9999999

45§ T NI0NI2I3IS1617 8192021222324 262821 28290000 323334353‘37“”404]42434“54“74”550515253545555575”!5061""638‘555“18"97071 TATIATSI6 77707980
1am CEORT)

il
231
i1

\

IVIWMOd INdNI ¥TITI - LITHOHA QUVD 9VL J0 HTdNVXHE

c. End of record. An explicit symbol is used to signify

the end of the logicel record. Currently, a "#" is used for this
purpose.

2. Logical Reccrd. The logical record content and encoding
is organized to be independent of the physical medium used for
input. (It is "free-floating".) It is not dependent on the
symbols provided on any particular device, although a particular
implementation of the input format implies selection of a particu-
lar set of symbols for a given device. The set chosen in the
remainder of this specification is based on the keyboard of a
Standard 029 keypunch.

D. DATA ELEMENTS AND CODES

The following tables list the complete data elements and
codes currently implemented in the ILR Input Record Format.

-218-

-

- a

1
2l

. |
€

&

FIGURE 5:
ILR INPUT RECORD FORMAT

I-FIELDS: DATA ELEMENTS AND CODES PROCESSTHG FORMAT
- -
FIELD | CODE 5 53 | B4
ELEMENT NAME CODE | VALUE(S)| O S 2 | =R
AEIEEREL S
O & Om | Bnos
1. Master Record Number (ILR)| None L L0-L46
2. Record Status: L 12
Uncertified new record None (0)
Certified new record " (1)
Changed record a a (2)
Deleted record None (3)
3. Publication Date 1 None F 2=5
4. Publication Date 2 " F 6-9
5. Pub. Date Type: F 1
2 dates, 2nd is copyrt b c (e)
2 dates, 2nd is terminal| D m (m)
Date not known b n - (n)
Digits missing b q (a)
Prev. public., all digits| Db r (r)
Single date, all digits b s (s)
6. Type of Record: L 14
Language materials (books|) c a (a)
Language materials (mss.)| c b (b)
Music, printed c c (c)
Music, manuscript c d (d)
Maps/atlases, printed c e (e)

KEY to components: L = Leader, D = Directory, F = Fixed Length Data
Elements Field, V = Variable Fields

~-219-

e U e TP

FIGURE 5 (Cont.):

TLR INPUT RECORD FORMAT

I-FIELDS: DATA ELEMENTS AND CODES

PROCESSING FORMAT

CODES
2 zq |4 B
wsam a7 oo B | B2 Edn
5| g| Eg | E85C
ol & = CnO=

6. Type of Record (Cont.): L 14
Maps, manuscript c f (f)
Motion pic. & filmstrips| c g (g)
Microform publications c h (h)
Phonorecords, spoken c i (i)
Phonorecords, music c j (3)
Pictures, designs, etc. c k (k)
Machine-readable data c 1 (1)

7. Bibliographic Level: L 15-17
Analytical a a (a)
Collective d c (c)
Monograph ol I (m)
Serial ol s (s)

8. Cataloging Source Type: L 33
Central (LC Card) e a (a)
Local original e b (b)
NUC e c (c)
Other e d (a)

9., Book Not in LC (LC Call e 4 D 050 1
No. Bracketed)

10. Agency Code for Cataloging | f a L 34-36
Source
11. Agency Code for Adaptor f b L 37-39
of Catalog Card
-220-

J;ﬁ;_g & L

FIGURE 5 (Cont.):
TLR INPUT RECORD FORMAT

I-FIELDS: DATA ELEMENTS AND CODES

PROCESSING FORMAT

CODES
_ o
> s |4 .7
e e el coms | B | 23| Edn
AEIREEREEES
o| | H BnoO=
12. Form of Micro-reproduction: F 10
Microfilm a (a)
Microfiche b (o)
Micro-opaque c (c)
13. Content Forms: F 11-1h4
Bibliographies h a (a)
Catalogs h b (b)
Indexes h c (c)
Abstracts h d (d)
Dictionaries h e (e)
Encyclopedias h f (f)
Directories h g (g)
Yearbooks h h ()
Statisties h i (i)
Handbooks h 3 (3)
Other h k (k)
14, Holdings: 3 a-j D {090
Call Number None V' None
Copy Number % \ (%)
Library Code/Location % v (%)
Total copies in location | % v (%)
15. Government Publication: F 15
U.S. Federal k (a)
California State k (b)

-221-

FIGURE 5 (Cont.):

ILR INPUT RECORD FORMAT

I-FIELDS: DATA ELEMENTS AND CODES

PROCESSING FORMAT

CODES
,_.| Y,
- =
= 58 |8 ."
FIELD CODE fx] & sV N
ELEMENT NAME CODE | VALUE(S)| & 3 2 | A
Slz| B3 | 2852
ol B — DNnO=
15. Government Publication F 15
(Cont.):
California County/Muni. k (c)
International Orgn. k a (d)
Other Countries k e (e)
16. Conference Publication m a F 16
(1)
17. Main Entry Heading Is n a F 17
Repeated In Body of Card (1)
18, Literary Group Filing F 18
Indicator:
Complete/collected works| p (a)
Selected works P (b)
Prolific author P o] (c)
19. Cancel Title Added Entry a a F 19
in Dictionary Cat. Only (1)
(See AA 33P3 and 6)
20, Cancel Title Added Entry r a D |240 0
in Both Dict. & Divided
Catalogs
+
21. Language codes: S a D |003 X
Lang. of text sub-field | None V' None
Summaries % Vv (%)
22, Translation Indicator t a D |003 1

+
An "X" means this portion of the code is supplied via the input code
in another element of this table, or another table (gq.v.).

-222-

PR

FIGURE 5 (Cont.):
ILR INPUT RECORD FORMAT

PROCESSING FORMAT

I-FIELDS: DATA ELEMENTS AND CODES CODES

ELEMENT NAME

INDICATOR 1
HAS VALUE
CODE IF IN
mey

SUB-FLD.

COMPONENT
CHAR. POS.;

23. Type of Main Entry Code
(See Fig. g for table
of values which complete
the tag and indicator)

2L, Main Entry is Subject
Indicator (See Fig. 8
for table of values for
Indicator 1, for which
this is a stacked code)

25. Main Entry is Publisher u c

26. Type of Added Entry Codes 2-char.
(See Fig.9-12 for table repeat-
of values for each cate- able
gory of added entry): codes

Series Traced Same
Subject Added Entries
Other Added Entries

Series Traced Diff.

+
An "X" means the 2-character codes in the Value column translate into

the 2nd and 3rd character of the tag and the value for Indicator 1.

FIGURE 6:
ILR INPUT RECORD FORMAT

PROCESSING FORMAT

A-FIELDS: DATA ELEMENTS AND CODES CODES
£ — -
8| cox |E| |853[ESF
ELEMENT NAME o | vawue(s) | 5 5’:‘3).
: SEREHEIS
ey O B EE; C>§nq
1. Local Call Number / D 090
2. Main Entry Heading: / D | 1XX | X+
Personal Name
Name sub-field None Vv None
Titles of honor, etc. % v (%)
Identifier % Vv (%)
Relator % Vv (%)
Corporate Name (¢ Firm Name)
Name sub-field None V' None
Each subheading unit % v (%)
Conference Name
Name sub-field None V' None
Number % Vv (%)
Place % v (%)
Date of conf. % v (%)
Corporate with Form Subhd.
Name sub-field None Vv None
Form subheading % v (%)
Uniform Title M.E. Heading
Title sub-field None v None
Other information " v "

+An "X" means this portion of the code is supplied via the input codes

described in another table in this specification (q.v.).

field contains 2 positions for Indicators 6 and 7 at the beginning of
the field. The data starts in character position 3.

-224-

Each variable

ey |

FIGURE 6 (Cont.):
TLR INPUT RECORD FORMAT

PROCESSING FORMAT

A-FIELDS: DATA ELEMENTS AND CODES CODES
T
— -3
£ e B B O
FIELD| CODE E oSH|R g°
ELEMENT NAME CODE | VALUE(S) é §; E E'.E
& .
5| & |B® 85"

3. Supplied Title (Uniform
Title in Iaterposed

Position):
Not printed on LC cards $$+
Printed on LC cards $ D |200 1
4, Title Statement:
Short Title / D |2L40 X | None
Remainder of Title / s | (%)

Remainder of Title Page
Transcription % Vv (%)

5. Edition Statement:

Edition # D |250 None
3 Remainder of Statement % (%)
6. Place of Publication / R($)++ D |260
} 7. Publisher / R($) D |261 X
8. Date of Publication / D |262
] 9, Collation Statement:
pagination/Volumes / D |300 None
Tllustrative Matter / v (%)
Size / v (%)
10. Bibliographic Price $ D |350 R(%)++

+This code does not exist in the present version of INFOCAL.

++An "R" means the data element is repeatable. If tag is non-repeatable,
the 2nd and succeeding values of the element occurring in a record are
assigned a preceding delimiter ("%"). If tag is repeatable, "$" trans-

lates to tag. 205

FIGURE T:
ILR INPUT RECORD FORMAT

PROCESSING FORMAT
B-FIELDS: DATA ELEMENTS AND CODES CODES

ELEMENT NAME
(Primary Series of Codes)

HAS VALUE

CHAR. POS;
SUB-FLD. CODE
IF IN "()1'

o |COMPONENT
»s [INDICATOR 1

1. Series Note, Traced Same
(Auth. +Title form):

Personal Name
Sub-fields are the same as {in Main Entry Hea Lion of':

Series title sub-field $ None
Volume/Number % (%)

Corporate Name (& Firm Name

Sub-fields are the same as n Entry Hea cion of':
Series title sub-field None
Volume/Number (%)

Conference Name

Sub-fields are the same as n Entry Hea cion of':
Series title sub-field $. None
Volume /Number % (%)

See Fig. 9 for codes which jdentilfy remainde
Indicator.

Series Note, Traced Same b
(Title only)

Series Note, Not Traced

Series Note, Traced
Differently

National Ribliography Number
Bibliography Note
"IN" Analytic Note

Dissertation Note

FIGURE T (Cont.):
ILR INPUT RECORD FORMAT

ROCESST
B-FIELDS: DATA ELEMENTS AND CODES PROC SSngEQORMAT

CODE
ELEMENT NAME VALUE(S)

HAS VAL

CHAR. POS;
SUB-FLD. CODH
IF IN "()"

COMPONENT
INDICATOR 1

(w)

Contents Note (Formatted)
"Bound With" Note

General Notes

O o

Dash Supplements
LC Subject Headings:

Personal Name

Sub-fields are the same as i n Entry Head
addition of:

Title of Book
Corporate Name (& Firm Name)

Sub-fields are the same as i 1 Entry Head
addition of:

Title of Book

Conference Name

Sub-fields are the same as i 1 Entry Heading,
addition of:

Title of Book D
Corporate with Form Subhd.

Sub-fields are the same as i Maifh Entry Heading,
addition of: .

Title of Book $ D
Uniform Title Heading

Sub-fields are the same as ip Main Entry Heading,
addition of:

Title of Book $ D
See Fig.1l0 for codes which iBlentify other tyqes o ubjecr Hdgs.

+This code does not exist in the present version of INFOCAL.

~227-~

FIGURE T (Cont.):
TLR INPUT RECORD FORMAT

B-FIELDS: DATA ELEMENTS AND CODES PROCESSgggEgORMAT

ELEMENT NAME CODE
VALUE(S)

HAS VALUE

IF IN "()Eﬂ

CHAR. POS;
SUB-FLD. CO

COMPONENT
EINDICATOR 1

(w)

14, LC Subject Subdivisions 2 hyphens)
15, Bibliographic History Note pt

16. Added Entries, Non-Subject q
& Non-Series:

Personal Name

Sub-fields are the same as in Entry He £, Wit
addition of:

Title of Book $ 708

Corporate Name (& Firm Nam£)

Sub-fields are the same as]in Mgin Entry Headin*, wit
addition of:

Title of Book D | 718

Conference Name

Sub-fields are the same as|in Main Entry Heading, with the
addition of:

Title of Book D | T18
Corporate with Form Subhd.

Sub-fields are the same as{in Mgin Entry Hehding, wit
addition of:

Title of Bwok D 728
Uniform Title Heading '

Sub-fields are the same as lin Entry He
addition of':

Title of Book D

See Fig.1ll for codes whicl 1tify other pre entries
of this category.

+This code does not exist in the present version of INFOCAL. The
processing Format tags referred to are MARC ITI definitioms.
-228-

FIGURE T (Cont.):
TLR TINPUT RECORD FORMAT

PROCESSING FORMAT
B-FIELDS: DATA ELEMENTS AND CODES CODES -

ALUE

ELEMENT NAME

HAS V.

INDICATCR 1

© |COMPONENT

Lo

17. Series Added Entries
(Traced Differently):

Personal Name

Sub-fields are the same as i) Entry Headliing,
addition of:

Series title sub-field

Volume/Number
Corporate Name (& Firm Name)

Sub=-fields are the same as 1 1 Entry Head
addition of:

Series title sub-field
Volume/Number

Conference Name

Sub-fields are the same as ip Main Entry Head
addition of:

Series title sub-field $
Volume/Number %
See also Fig. 12 for Seriesz Added|Entry in Ti

Title Romanized Note * n
(No Added Entry)

LC Call Number:
Class Number sub-field

Book Number

FIGURE 7 (Cont.):
TLR INPUT RECORD FORMAT

PROCESSING FORMAT
B-FIEILDS: DATA ELEMENTS AND CODES CODES
_ =F
e O
E =3 £°F
A 22 & ﬁ -
ELEMENT NAME FTELD CODE() 3 §; Ry=g=
copel VALUE(S) E
2| o | edlZen
o (&) = — 0 0
20. LC Copy Number Statement: * t D |[051
Class Number sub-=field None Vv None
Book Number " v "
Copy Information % v (%)
21. Local Library Copy Statement: * u D (091
Class Number sub-field None \' None
Book Number " v "
Copy Information % v (%)
22, Dewey Decimal Class No.: * W D {030 R(%)
Segment sub-field / v R(/)
23. LC Card Number * X D 001
2L. Overseas Acquisition No. * ¥ D |013

) o

[End of primary series]

-230-

FIGURE 7 (Cont.):
ILR INPUT RECORD FORMAT

B-FIELDS: DATA ELEMENTS AND CODES PROCESSING FORMAT
. A | B
; 2 £ =B 885
- CODE = | o |§ g Q: 9=
ELEMENT NAME % VALUE(S) é 5 |8, E%H
(Secondary Series of Codes) o S %é 3 E a
1. Standard Book Number ! a+ 0l2
2. "Limited Use" Note ! b 540
| 3. Abstract or Annotation ! c D | 560
‘ 4. [Reserved for later use] ! a+
5. MeSH Main Headings ! e D | 660
I 6. NAL Agric./Biol. Vocab. ! £+ D | 670
T. Local Subject Heading System | ! g+ D | 690
8. NIM Call Number ! h D | 060
‘ 9. NAM Call Number ! i D | o070
| 10. NAL Subj. Category No. ! gt D | 071
j ll Cooperative Cataloging ! k D | 052
Library Call Number
z 12, Special Classification ! 2+
System
13. Supt. of Documents Catalog ! m+
} Number
14, Agency Name of Cooperative ! n vV | 052 (%)
: Cataloging Source
% 15. "Full Name" Notes ! D D | 580
16. Title Romanized Note ! q D | 210 1
’P (Make Added Entry)
3 17. MeSH Topical Subheadings ! t D | 661
B 18. MeSH Geographic Subheadings | ! u D | 662
B 19. MeSH Time Period Subheadings| ! W D | 663
. 20. MeSH Form Subheadings ! x D | 664
@ 21. NUC Card Number ! y+

el

[End of Secondary Series]

+This code does not exist in the present version of INFOCAL. The

. Processing Format tags referred to ;fe MARC II definitions.
-231.~

FIGURE 8:

INPUT CODE VALUES TABLE FOR TYPE OF MAIN ENTRY

(UA CODE)
TYPE OF ENTITY SUB-TYPE | PROCESSING FORMAT
& | e CODES
>
(Function = Main B | @®
Entry Heading) A
[T A
Combined with: ~ | | Tac| INDICATOR 1
A-Field 2nd "/" 818
(&) (&)
Main EntJMain Ent.
Not Sub. | Is Sub.
PERSONAL NAME Forename p |0/L4*| 100 0 L
Single Surname p {1/5 | 100 1 5
Multiple Surname p (2/6 | 100 2 6
Name of Family p {3/7 | 100 3 T
Surname (Inverted) | c |0/4 | 100 L
CORPORATE NAME |Place or Pl.+ Name | c [1/5 | 110 1 5
Name (Direct Order) | c¢ |2/6 | 110 2 6
Surname (Inverted) | e |0/4 | 111 0 n
CONFERENCE NAME |Place or Pl.+ Name | e [1/5 |111 1 5
Name (Direct Order) | e [2/6 | 111 2 6
FIRM NAME £ |o/1 | 112 0 1
CORPORATE NAME 1.4
WITH FORM SUBHD. r |0/1 120 0 L
General u {0/1 | 130
UNTFORM TITLE Anonymoug Classic a |0/1 | 131 0
TITLE MAIN ENTRY t | 0 |2ko 0 1

+One-digit codes to the right of the slash are set by input of the "ub"

code in the I-Fields.

-232-

e e i g wE

4
!

FIGURE 9:
INPUT CODE VALUES TABLE FOR TYPE OF ADDED ENTRIES
(W CODE)

PROCESSING FORMAT

TYPE OF ENTITY SUB-TYPE CODES

(Function = Series
Notes, Traced Same,
Author+ Title form)

INDICATOR 1

Combine with:
B-field *a -

Auth. In
Main Ent]

CODE FOR TYPE
CODE FOR SUB-
TYPE

PERSONAIL: NAME
Forename

Single Surname
Multiple Surname

Name of Family

Surname (Inverted)

CORPORATE N Place or Pl. + Name

Name (Direct Order)

Surname (Inverted)

CONFERENCE NAME |f+8ce or Pl. + Name

Neme (Direct Order)

FIRM NAME

+One-digit codes to the right of the slash are set by input of the
"ac" code in the I-Fields.

FIGURE 10:

INPUT CODE VALUES TABLE FOR TYPE OF ADDED ENTRIES

(W CODE)
PROCESSING FORMAT
TYPE OF ENTITY @l CODES
&
(Function = Subject el s
Added Entries & x| o m
- |subj. Subdivisions) o EE
Combine with: SUB-TYPE | @ " |TAG| INDICATOR 1
B-Field "#*m" 818
Forename p | 0O |600 0
Single Surname p | 1 |600 1
PERSONAL NAME Multiple Surname p | 2 |600 2
Name of Family p | 3 [600 3
Surname (Inverted) | c 610 0
CORPORATE NAME Place or P1. + Name |c | 1 |610 1
Name (Direct Order) | c 610
Surname (Inverted) |e 611
CONFERENCE NAME Place or Pl. + Name |e |1 |611 1
Name (Direct Order) |e 611 o
FIRM NAME f |0 |612 None
CORPORATE NAME
WITH FORM SUBHD. r |0 620 None
General u {0 630 None
UNIFORM TITLE Anonymous Classic |a |0 [631 None
TITLE OF WORK t |0 |6Lo None
TOPICAL 0 |0 |650 None
GEOGRAPHIC NAME 1 |0 |[651 None
POLIT. JURISDICT. 2 0 652 None

-23L-

i
i

FIGURE 10 (Cont.): .
INPUT CODE VALUES TABLE FOR TYPE OF ADDED ENTRIES
(W CODE)

PROCESSING FORMAT

TYPE OF ENTITY SUB-TYPE CODES

(Function = Subject

Added Entries)
INDICATOR 1

TYPE

Cont'd.

CODE FOR TYPE
CODE FOR SUB-

NAMES NOT CAPABLE
OF AUTH.

GENERAL SUBJ.*
SUBDIVISIONS

PERIOD SUBJ.*
SUBDIVISIONS

PLACE SURBRJ.*
SUBDIVISIONS

+See also B-Fields, Primary Codes, item No. 1k,
-235-

R

FIGURE 11:

INPUT CODE VALUES TABLE FOR TYPE OF ADDED ENTRIES

(W CODE)
TYPE OF ENTITY SUB-TYPE @ [PROCESSING FORMAT
= CODES
=l
(Function = Non- x| mm
subject, Non-series Q EE
Added entries) e | = TAG INDICATOR 1
=)
Combine with: S| 8
B-Field "¥q"
Role
Alt.| Conn.|Analyt.
PERSONAL NAME Forename p 8/d/H 700} @ d h
Single Surname p la/e/i] TO0| a e i
Multiple Surname P Lb/f/j 700 © f j
Name of Family p le/e/k| TOO| e q k
Surname (Inverted) | c [@d/m]| T10| @ d h
CORPORATE NAME Place or Pl. + Name| c la/e/i] T10| a e i
Name (Direct Order)| c [o/f/j| T10] b f 3
Surname (Inverted) | e |@/d/h| T11]| @ a h
CONFERENCE NAME | Place or Pl. + Name| e [g/e/i] T1ll| a e i
Name (Direct Order)| e [/ f/j| T1l{ b f 3
FIRM NAME f [o/1/2] T12| O 1 2
CORPORATE NAME
WITH FORM SUBHD. r|0/1/2) Te0[O | 1 2
UNTFORM TITLE General u 0/1/2 T730f O
TRACING Anonymous Classic u (0/1/2] T31] O
Part;a}nT;:ig - t| o | 7ho| O
TITLE ADDED or% i =
ENTRIES (TRACED Title Added Ent.-~- " 1 740 1
DIFFERENTLY FROM Another Work
SHORT TITLE) Analytic Title s 2| b0 2
NAME NOT CAPABLE
OF AUTHORSHIP ni0/1/2 1531 0 | 1 2

~236-

o v e e rEm r s TE Y. GmE W ewan wrir YW

it

FIGURE 12:
INPUT CODE VALUES TABLE FOR TYPE OF ADDED ENTRIES

(w CODE)
TYPE OF ENTITY SUB-TYPE ay| | |FROCESSING FORMAT
oy g CODES
(Function = Series Bl a
Added Entry, Traced g ggﬂ
Differently) | E
m | m TAG INDICATOR
Combine with: 8 8 1
B-Field "¥pr" OO
Forename plO 800 0
Single Surname pll 800 1
{ PERSONAL NAME | y1tiple Surname | p| 2 800 2
Name of Family pl|3 800 3
Surname (Inverted) | c]| O 810
CORPORATE NAME Place or PL + Name c| 1l 810 1
Name (Direct Order) | c| 2 810
Surname (Inverted) | el O 811
CONFERENCE NAME Place or Pl. + Name| e| 1 811
Name (Direct Order) | el 2 811
FIRM NAME ¢l O 812 None
TITLE-ONLY FORM l t! 0 840 None

-237T~

. et e aman s r t ey WY P —— ¥ o~ w5

E. PRESENCE AND DEFAULT CONDITIONS

For purposes of the logic of the computer edit program, the
I-Field elements have special "presence" conditions. Fig. 13
1lists the status of each input field code according to its
presence. Note that the absence of an input field does not
necessarily imply that the data element will be absent from the
processing record. For those I-fields always present, it was
decided to define default settings that could be made by program
without any action by human editor or keyboard operator. These
experimental default coding conditions are listed in Figs. 1k4-15.

For purposes of setting Indicator 2, the value of which
records the sequence numbers of fields with multiple occurrences
in a record, Fig. 16 shows the fields which are currently repeat-
able in the INFOCAL program.

~-238-

FIGURE 13:

PRESENCE OF FIELDS IN AN INPUT RECORD (MANUAL EDIT)

PROGRAM
SYMBOL

LISTATUS

RECORD COMPONENT
EXTERNAL CODE

I-Fields "a"

DATA ELEMENT

Record Status

AILWAYS PRESENT

Only
ride

present to over-
default setting

LIDTYPE

I-Fields "b"

Date of Publica-
tion Type

Only
ride

to over-~
setting

present
default

LITYPE

I-Fields "e"

Record Type

Only
ride

to over-—
setting

present
default

LIDATEL

I-Fields - no
external code

Date of Pub. 1

No

LIDATE2

I-Fields - no
external code

Date of Pub. 2

No

LIBLEVEL

I-Fields "4"

Bibliographic
Level

to over-
setting

present
default

LISOURCE

I-Fields

Source Type of
Catalog Card

to over-
setting

present
default

LIORIGIN

I-Fields

Agency Code of
Origin of Mach.
Rec.

to over-
setting

present
default

LIPROSOR

I-Fields

Agency Code of
Processor of
Mach. Rec.

to over-
setting

present
default

LIMICROR

I-Fields

Form of Micro-
reproduction

No

LIFORM

I-Fields

Content Form(s)

No

JCODE

I-Fields

Holdings Field(s)

Yes (part set by de-

fault)

LIGOVPUB

I-Fields

Govt. Pub. Indic.

No

LICONPUB

I-Fields

Conference Pub.
Indicator

No

LIMEBODY

I-Fields

Main Entry in
Body

No

-239~

FIGURE 13 (Cont.):
PRESENCE OF FIELDS IN AN INPUT RECORD (MANUAL EDIT)

PROGRAM | RECORD COMPONEN#' DATA ELEMENT ALWAYS PRESENT
SYMBOL ZXTERNAL CODE)

LILITGRP | I-Fields "p" Literary Group
Indic.

LICNCELT I-Fields Cancel -Title Added
Entry - Dicte.

RCODE I-Fields Cancel Title Added| No
Ent.=-Dict. & Div.

SCODE I-Fields - | Languages Codes Only present to over-
ride default setting

TCODE I-Fields Translation No
Indicator

UACODE I-Fields Type of Main Only present to over-
Entry | ride default setting

UBCODE I-Fields Main Eatry Is No
Subj. Indic.

UCCODE I-Fields Main Entry is

WCODE I-Fields Type of Added
Entries Codes

FIGURE 1k:

INFOCAL DEFAULT INITIALIZATIONS REFLECTED IN PROCESSING
RECORD FORMAT WHEN NO INPUT CODES ARE RECEIVED

PROGRAM DATA ELEMENT VALUE(S)
SYMBOL
LIPREFX | LEADER
LISDATE Record Status Date 6 blanks
LISTATUS |Record Status EBCDIC zero = uncertified
LILEGCNT |Legend Extension EBCDIC zero = no extension
LITYPE Record Type a- = language material,
printed
LIBLEVEL |Bibliographic Level mpy = monograph
LIINDCNT |Indicator Count EBCDIC 5 = no. of indicator
bytes in a directory entry
LIORIGIN |Agency Code for Origin of |003 = original input at IR
Machine Record 790 = original input at UCSC
LIPDATE Date of Processing of 6 blanks (Refers to date of
Machine Record |translation of UCSC original
format to ILR processing
format)
LIPROSOR |Agency Code for Processor |003 = format translation
of Machine Record done by ILR from UCSC orig-
nal format
LIPSOURCE |Source Type of Catalog a = central (LC Card)
Card
LIAGENCY |[Agency Code of Source 000 = LC
Card
LIADAPTR fﬁﬁgﬁﬁgyOCode of Adaptor of |3 blanks
""" Source Card
LIFIXED FIXED LENGTH DATA ELEMENTS
FIELD
A1l elements are set to blanks except:
LIDTYPE Date of Publication Type s = single date
LICONPUB | Conference Publication 0 = no
Indicator
LIMEBODY | Main Entry in Body Indi- | O = no
cator
LICNCLT Cancel Title Added Entry | O = no (don't cancel title
added entry--make one from
short title for dict. cat.)

-241~

¢ romm— - € Tr P

E e

T

FIGURE 14 (Cont.):

INFOCAL DEFAULT INITIALIZATIONS REFLECTED IN PROCESSING
RECORD FORMAT WHEN NO INPUT CODES ARE RECEIVED

PROGRAM
SYMBOL DATA ELEMENT VALUE(S)
FLEMENTS FROM I-FIELDS WHICH|ARE TRANSMITTED TO VARIABLE
DATA FIELDS
JCODE Holdings: Copy No. at This Ol = Copy No. at the shelf
Location (24 sub-field) location indicated is
Copy 1.
Holdings: ©Shelf Location X = Stacks
(3rd sub-field)
Holdings: Total Copies at Ol = There is one copy
This Location (4th sub- assigned to this
field) shelf location, with
the copy no. shown in
the second sub-field.
SCODE Language Codes eng = English is the language
of the text.

=242~

FIGURE 15:

DEFAULT SETTINGS FOR INDICATOR 1 IN VARTIABLE FIELD DIRECTORY
ENTRIES TO WHICH INDICATOR IS APPLICABLE

INPUT COMPONENT ATTRIBUTE OF CODE

AND CODE DATA ELEMENT INDICATOR VALUE

I-Field sa Languages Single or Multi- 0 §
language ;

B-Field *s LC Call Number Book in LC 0 |

A-Field /2 Main Entry Personal Name, 1

I-Field ua Single Surname,

I-Field ub Not Subject

A-Field $ Uniform Title Printed on LC Cards 1

A-Field /3 Title Statement Make title added 1

I-Field ra entry

A-Field /6 Publisher Publisher Not 0

I-Field uc Main Entry

These codes are set programmatically in the absence of an external
input code.

~2h3-

sy
4

e et e 5 pan o i wt g . e e ntee £oe m. ST)y S T R T MR TR 6 aa—, T ———— . T - © e mmm e e maeia

FIGURE 16:

LIST OF TAG NUMBERS WHICH ARE CURRENTLY REPEATABLE

IN PROCESSING FORMAT

TAG NUMBER

FIELD NAME

051
090
091
260
261
400
550
6XX
TXX

8XX

LC Copy statement

Holdings

Local Library Copy statement
Place of Publication
Publisher

Series Notes.

General Notes

Subject Added Entries

Other Added Entries

Series Added Entries

-2hh-

{1

F. SUGGESTIONS FOR REVISION OF THE INPUT RECORD

1. General. The revised input format is predicated on a
number of factors:

a. Unavailability of human editing talent in sufficient
nmbers to accomplish large scale conversion of bibliographic files.

b. Catalog cards follow a number of long-standing
notational and stylistic conventions, e.g., Arabic numerals pre-
ceding subject tracings, series tracings enclosed in parentheses.
These conventions will provide the textual clues in a bibliographic
string that will support computer algorithms to accomplish a
reasonably high degree of reliable field editing.

c. Ability of keyboard device operators to perform a
minimum of obvious coding, e.g., keying a symbol which stands for
a paragraph indention revealed by simple inspection of the catalog
source card.

d. Sufficient regularities in catalog data, by form
of material (e.g., monographs) and by language (e.g., English)
that computer-assisted formatting will prove feasible. Large
volumes of non-standard cards and idiosyncratic cataloging prac-
tices will tend to reduce the effectiveness of computer assigned
codes.

e. The burden of proofreading and correction key-
boarding must be less than in the straightforward system.

f. The conversion may have to be "phased", i.e., the
Processing Format with full MARC II coding down to the level of
every data element and indicator may not be achievable on the
first pass of the conversion effort. Several iterations pre-
ceded by development and re-design may be necessary to achieve
a fully-encoded machine file.

The following table (Fig. 17) is illustrative of the kinds
of clues and patterns found on standard catalog cards which might
be utilized in computer-assisted formatting. A total of six
slash marks are used to break the card up into a set of segments.
Various stylistic and notational clues are used to recognize by
algorithm the fields within each segment. This is a proposed
technique; more or less slashes may be required.

The recognition of sub-types of name and of the roles played
by names in added entries, form perhaps the most difficult problem
of tagging in MARC II. However, it is not unreasonable to sappose
that a degree of accuracy could be attained that would be high
enough so the total effort in proofing and correcting would be
less than that now required to manually edit and proofread a
record.

~2U5~

FIGURE 1T7:

REVISED FIELD CODING: A-FIELDS & B-FIELDS

MANUAL EDIT COMPUTER EDIT

ELEMENT NAME Examples of Conditions
Field Providing Clues to
Code Recognize by |Algorithms

Master Record Number None Position in input
(MRN) string; length in
digits

Local Call Number Position following MRN

Main Entry Heading Positionjfont |Punctuation; content
patterns

Supplied Title Brackets (left & right)
(Interposed) must be present

Title Statement: Right bracket of unif.
Short Title Paragraph title, if present
indention

Remainder of Title Punctuation; length
in characters for
title added entry
purposes

Remainder of Title Page Key word (e.g., "by")

Edition Statement Key words; digits; etc.

Place of Publication Punctuation

Publisher Punctuation at end of
rlace; authority table
look-up; etc.

Date of Publication Digits pattern

Collation Statement:

Pagination Paragraph Punctuation; character
indention patterns ("v%, "pV)

Illustration ~ |Key words; set Fixed
Field codes also

Size Key word ("em!); digits

Price Key symbols; digits;
punctuation

Series Notes (lst group) Parentheses; sequence
after collation or
price

FIGURE 17 (Cont.):

REVISED FIELD CODING: A-FIELDS & B-FIELDS

MANUAL EDIT COMPUTER EDIT
ELEMENT NAME Field . Examples of Conditions
Recognize by Providing Clues to
Code .
Algorithmg
Key words & patterns
Series Notes (2nd -/ Paragraph (this is the most
group) and all other indention ambiguous region on &
notes catalog card)
National Bibliography None Sequential position;
Number key symbols; digits
Tracings: (code even if / Paragraph
none present) indention;
Beginning of subject Arabics & Arabic numerals; match
tracings Roman Num. after conversion to a
tagged authority file
Subqec? Subdivisions Two hyphens (==)
Beginning of Other Roman numerals
Added Entries
Series Added Entries Parentheses; key word;
position
Fields at bottom of card:] / Position
LC Call Number Character patterns
LC Copy Statement Multiple hyphens
("dash"-on format)
Dewey Number Digit pattern
LC Card Number Digit pattern
Overseas Acquisition
Number Key symbols & abbrev.

247-

o. An Illustrative Example. As an example of what can be
done to design computer-assisted formatting, the following is
a preliminary algorithm for delimiting the Short Title sub-field
of a MARC II record. This procedure is a special case of string
decomposition. This algorithm is phrased in such a form that it
can be used either for manual editing or in a computer program.
In essence, it is "machine-like" editing which is now performed
manually by card preparation sections in libraries. It is of
coursie subject to review by the cataloger on the basis of judg-
ment as to what makes a title semantically informative and lin-
guistically or grammatically acceptable. The algorithm is exper-
imental and has been tested only in the manual coding effort
undertaken during Phase I of the File Organization Project.

~248~

e wrn ea e m e s e o - ¥ e D . emew - e o — T

ALGORITHM FOR DELIMITING SHORT TITLE

Comment. It is assumed that the beginning of the title-
page title statement will be explicitly identified in some way
(visually, by a paragraph indention, or in the case of some title
main entries, by hanging indention). The same will be true for
the Collation field. An explicit field code such as "' owill
precede the first word in the title. The problem is to determine
the end of the Short Title, as defined in MARC II. The operational
definition of Short Title is: that portion of the title statement
which is to be used as & catalog entry heading or as a part of
a heading, either main or added, and which might be used separately
from the remainder of the catalog record, e.g., in index lists
rather than in card catalogs. The short title will always be ‘
delimited when more than one of the MARC II sub-fields are present.
This is independent of the Tndicator setting for title added

entry.

The algorithm does not jdentify the. content of the next
succeeding sub-field: that is assigned to a separate routine.
This set of rules is still "fuzzy" in that cases of long titles
in older catalog records which force the procedure to be carried
through the string length cutoff step will not always produce
a semantically or grammatically acceptable result.

A weakness in the procedure is its heavy dependence upon the
punctuation used on the title pages of books and upon that inserted
by catalogers according to conventional practie. Since this
practice is rarely documented or consistently adhered to because
of the variability of title pages and the need to rely on cataloger
judgment, it is likely that the approach through punctuation is
not susceptible of successive improvements.

Another weakness of the algorithm is that it cannot be
consistently applied for situations where the beginning of the
short title contains one or more words from the name of a real
person (e.g., "Arthur Quiller-Couch; a biographical study of Q.").
A title added entry would be more suitable if the subtitle were
included, and so the delimiter is not placed after the semi-

colon.

The algorithm in draft form operates on single intervening
marks of punctuation or other special symbols, multiple patterns
of occurrence of a symbol, and combinations of symbols. A
potential source of improvement in the algorithm would be a
statistical study of frequency of these symbol patterns in catalog
records, in order to optimize the sequence of the steps. At
this stage the steps are presented in purely "intuitive" order.

=249~

- ——— e o ey - M

[ERRa GERERE -

FIGURE 18:
TABLE OF VALID SYMBOLS

GRAPHIC NAME EBCDIC HEX
[Left Bracket 3E
] Right Bracket 3F
. Period LB
{ Less Than Sign LC
(Left Parenthesis LD
! Exclamation Point 5A
) Right Parenthesis 5D
5 Semi-colon 5E
. Comma, 6B
> Greater Than 6F
? Question Mark 6F

Colon TA
" Quotation Mark TF

-250-

o

PP GO - '}

o e N

TABLE 1

UNCONDITIONAL (START) Rule

1. ;Scan left-right from start of X

| Title paragraph to start of

}Collation field (count)

2. :Flag end of each sentence X

' :found (valid markers)#¥

3. :For each intervening mark or symbol X

!prior to first sentence marker, set

| T

,a position pointer (show type of

| symbol)#**

h. :Go to Table 2 1l %

¥A sentence is defined operationally as a phrase containing at least
one character the end of which is marked with one of the L4 marks:

| . ' 2 and right (close) qQuotation mark " (the latter cannot be in
character position 1).

i ¥%¥The first sentence is initially defined to be that string which is
marked by one of the U4 symbols, whichever comes first. See Fig.
18 for list of valid marks and symbols.

- 251 -

a

it

~x

TABLE 2 -~
]

SENTENCE END MARKER Rule ({1 2345678 E*

1. :End of sentence marker for first YY n
'sentence in Title para. is Period ' ~1

2. 'End marker is Exclamation Point Y Y

3. lEnd marker is Question Mark Yy : !E

k. 'End merker is Right Quote Mark Yy 3

5. |Valid punc. symbol intervenes YNYNYNYN ‘?
{(other than one of the U4 end ‘ .
:markers) E

6. Go to Table 3 x x x| x @[

7. 'Go to Table 4 x

8. !Go to Table 6 x|z ; QL

9. !Go to Table T | | x

lO.iGo to Exception Table¥¥ f x 11

*Means "Else" - the rule to follow when none of the others apply. 1.

oy

**Not yet defined.

A

- -

-~ 252 -

*%

TABLE 3

VALID SYMBOL SWITCHES¥ Rule 123456789 10E
1. :Next intervening symbol is Y

2. !|Next intervening symbol is Y
3. lNext intervening symbol is . Y

L, {Next intervening symbol is Y

5. :Next intervening symbol is Y

6. :Next intervening symbol is Y

T. INext intervening symbol is ; Y

8. :Next intervening symbol is Y

9. :Next intervening symbol is Y
_;O.:Next intervening symbol is : Y

I ,

_EEuEGo to Table 8 *tf

12.:Go to Table 9 X X X
13.!Go to Table 10 X

lh.:Go to Table 11 X xT

15.Go to Table 12 x

16.!Go to Table 13 . x
17.,Go to Table 14 i X
18. ! Reiterate Table 3 ** x

¥Wor symbols other than the 4 end of sentence markers, except a period.

Valid symbols (such as left ") not listed, and non-valid symbols
encountered in the string, follow "Else" rule.

Exit when no further intervening valid symbols exist in the string,
or when $b and $c have been set, or any combination of these: $b +
no $c found; $c + no $b found. Length limit must always be tested.
(The logic for $c is dependent on a further algorithm). In any case,
if no further processing can be done for short title, procedure con-

tinues to further algorithms.

- 253 -

TABLE 4

PERIOD (FULL STOP) Rule |1 2 3 L4 5 6

1. |Period occurs in char. position Y ¥ Nx N N N
:1,2,3, or 4 B

2. LHit on author statement key Y K Yi Y N N
:words list (test left & right)+ %

3. :End marker occurs in position - - 1f QT IE GT

:compared to string length limit* ; |

4. | Insert Interim Delimiter after { x

l ‘
end warker

5. | Do Table 5 ' x x
6.4}Insert a $c delimiter prior to author||x x| x
:statement key word (in "word - 2" |
:position if non-blank in Word - 1 %
:position) E
1. :Go to next end marker p:d
8. lGo to Table 2 P 5
9. !|Go to [tables for further algorithms,||x ., . x, x x %X

]

+
l i
¢

' as needed¥**] o | !

¥Length 1limit is a parameter for string length of n where n is the
maximum number of characters desired in the output for which Short
Title is being used, e.g., two lines of text overprinted in a
heading on an added entry card.

*¥¥Not included in this presentation. A positive determination of the
explicit code for the sub-field following short title will often
depend on algorithms for the subsequent parts of the title para-
graph, including imprint. Moreover, the Interim Delimiter may be
deleted altogether if neither Remainder of Title nor Remainder of

 Title Page Transcription sub-fields are determined to exist in the
record at hand. (A Place of Publication sub-field always exists).
Finally, a check should always be made at the end for the length
limit, which may involve insertion of a $b delimiter on a rather
arbitrary basis, in some older records.

+The anomalies that this test must cope with are many: €.8., the period
may be embedded, as in 'Ed. by ...'; it may appear to the left, as in

ttitles. By ...'; and it may be in the title proper, as 1in 'Philosoph-

2
ies men live by.' or 'Great teachers, portrayed by those who studied...'

- 254 -

TABLE 5

LENGTH LIMIT (CLOSED) Rule

1

2

3

L 5

1.

Relation of author state-~

Hit left

Hit right

Hit Rt.

NoHit NoHit

ment key word to end

marker

Character to which length

limit signal points

.| No short title delimiter

required

. ! Scan right to left for 1s]

non-blank character (hope-

. fully an interword ¥)

.| Insert $b delimiter

in blank position

Exit

TABLE 6

! or 7 END MARKER

Rule

1.

:Insert Interim Delimiter immediately

iafter the ! or 7 mark

:Go to Table 3

TABLE 7

RIGHT QUOTE MARK END MARKER¥ Rule

1 2 3 L

1. :Character in next right character

; or , 3 or, Blank Blank

{position from Right Quote Mark

2. {Hit on author statement key words

| 1ist (test word to right of Right

{Quote)

3. :Insert Interim Delimiter to right

I . .
| of punctuation mark in next

succeeding character position to

right of Right Quote Mark

Insert Interim Delimiter to Right

of Right Quote Mark

Insert $c delimiter to left of

author statement key word (or

left bracket if any)

|
i
i
!
l
L
I
I
!
!
|
|
!
|
|

6. | Go to Table 3

X : X X X

« ¥A left Quote Mark is assumed to have been found in the initial scan

of the Title Statementsentence.

TABLE 9§

LEFT BRACKET Rule

1l 2

1. :Digits in character positions

'1-4 in Title Statement**

:Hit on author statement key words

. |Bracket position: Length limit

2
3
4, |No $b delimiter needed
5

X, R A
. JInsert Interim Delimiter ;7 , x;; |
1preceding left bracket L E
6. :Do Table 5 L x% X
T. :Insert $c delimiter preceding tx? o

left bracket

8. |Go to Table 3

X, X xix x !

*¥#¥A1so scan to right of Left Bracket for string: "i.e., ...

- 256 -

"

—

TABLE 9
NEXT SYMBOL =]) or Rule ||1 2 3 L 5 6 71
l.,] Interim delimiter already set Y N N N N N
2.| Symbol is followed by ";" - Y Y Y N N _ -
3.| Symbol is followed by a ¥ - Y N N Y N “-
then cap letter not in auth. |
statement key word list %5
4.| Hit on author statement key - N_ ¥ N N Y - %
word list (word to right) ‘ é
5.] Site counter - EQ EQ EQ E¢ EQ GT j
6.| Insert Interim Delimiter after";[| X X X
T.| Insert $c delimiter X X
prior to key word i
8.! Go to [tables for further X x X X X X
algorithms]
9.| Return to site of corresponding L X
(or{
10.| Go to Table 3 X

- 257 -

TABLE 10

PERICD (NON FULL STOP) Rule{/1 23456789
1, :Interim Delimiter already set YNNNNNNUNN
2. !Period is "inside" to right of string|| Y NNNNN NN
| starting with [< ((©F left "
3. !Period foll. by right " then ¥ or ; YYNNNNN
L. :Hit on author statement key words YNYNNDNN
' 1ist (test left and right) }
5. :Single preceding character Y NNN
6. :Single preceding word . YNN
7. :Next word after period is a repeat of AL, YN g
:first word or root thereof in Title ! f
:Statement ; g
8. :Ellipsis found, or string of inter- ! Y f
Espersed periods#_“_ U] | % |
9. | Insert Interim Delimiter after X, §
:right " or ;5 : i
10. :Insert Interim Delimiter after period 4; X X ;
ll.;LInsert $c delimiter prior to key word X xé ‘ é
12. LDo Table 15 ? ’x
13. :Go to Table 3 ‘xfi»xj X X XX
1k, iGo to [tables for further algorithms] x X X XXX

258

- —— i — ~

TABLE 11
LESS THAN OR LEFT PAREN. Rule {({1

|
1., Interim Delimiter already set Y

2.! First{or (in Title Statement -

3.: Set site counter

h.} Insert Interim Delimiter prior to
|

1<OI‘(

Go to Table 3

Go to [tables for further algorithms]

|
I
I
1

SENI-COLON

1

Left Quote Mark pointer on

¢ or (site counter non-even

Interim Delimiter already set

1
2
3.
Y
2

Semi-colon is first intervening

symbol., other than 1-3 above

6.

Insert Interim Delimiter after

semi-colon

Go to Table 3
Go'to [tables for further
algorithms]

T
8.

|
!
|
MI
.: Left Bracket pointer
I
I
|
!
I
1
I
|
I
|
]
!
I
!
|
|
I
!
|
I
|
!
I
|

TABLE 13

COMMA Rule

" "

1., Left Bracket pointer "on

Left Quote Mark pointer "on

(or (site counter non-even

Interim Delimiter already set

Digit pattern following comma

Comma is 1lst interven. symb.

Hit on author statement key words

list (test right)

Hit on multiple title conditions¥*

Insert Interim Delimiter after comma

Insert $c delimiter after comma

and prior to key word

Go to Table 3

Go to [tables for further

algorithms]

123456789 10E

N ™

*E,g., combination of ", and 0..." where U= Capital letter.

-260-

TABLE 14

COLON Rule |1 2 345678 9 E

1., Left Bracket pointer "on" Y

1" 1"

Left Quote Mark pointer "on

{ or (site counter non-even

Interim Delimiter already set

Hit on author statement keyv

words list

Next is period or ;

Next is ,

Next is [(_or £

Next is another colon

Set Interim Delimiter after .3

Insert $c delimiter prior +o word

Set Interim Delimiter after .,

Set Int. Delim. prior to [etec.

Go to Table 3 XX XX X X X,

Go to [tables for further

X X X X

algorithms]

Repeat starting at Step 5

F"-T"-'“‘J

TABLE 15

ELLIPSIS (CLOSED) Rule 1

2

P50

I
3rd period followed by Valid symbol

Blank., letter, or

W
|
l

non-valid symbol

Insert Interim Delimiter

X

prior to first period in

ﬁ, \SF-!!—" - 'q M‘

ellipsis

Exit X

.
]

[END]

-261

Reog——.

V-3. EXPERIMENTAL ON-LINE MATHEMATICS
CITATION DATA BASE*

By
Mary L. Tompkins
Institute of Library Research
University of California
Los Angeles, California

A. INTRODUCTION

A Mathematical Citation Index was started in March 1965 under
the auspices of the UCLA Computing Facility with the encouragement
and cooperation of the University Research Library, the Engineering
and Mathematical Sciences branch library and the Numerical Analysis
Research Library. Starting in May 1966, the project was continued
by the Institute of Library Research as an example of mechanized
services which would be provided by the Center for Information Ser-
vices in the University Research Library.

It is of particular value because a real data base is accumu-
lating which will be of direct value to mathematicians and other
scientists on the campus, as well as contributing to increased
expertise in the utilization of large files.

Publication of a series of indexes designed to identify scien-
tific serials has been started. These are generally being identified
as MAST: Minimum Abbreviations of Serial Titles. The first volume
in this MAST series, on Mathematics,was to appear in 1968, published
by Western Periodicals, Inc.

Not only do we foresee the need to publish for wide distribu-
tion some products of our work, but we will need to utilize products
produced by others. To recreate files already compiled by others
is not feasible in terms of time or money. Thus, our planning for
an operational citation index at UCLA assumes the purchase and
wtilization of existing files, or selections from them, such as the
T1.S.T. Science Citation Index tapes and the Physics citation data
being developed by M. M. Kessler at M.I.T. Such acquisitions would
then be augmented to satisfy local specialized demands.

B. MAST: MINIMUM ABBREVIATIONS OF SERIAL TITLES

Before the compilation of citations was begun it was evident
that some way was needed to identify bibliographic references which
were incomplete, ambiguous or otherwise unidentifiable. Hence, the
preliminary work on the project concentrated on a circularly shifted
index of abbreviations of mathematical journals.

¥The following material is excerpted from "Experimental On-line
Mathematics Citation Data Base," by Mary L. Tomkins. Part 8 of
tne Final Repoit on Mechanized Information Services of the University

Library, Phase I - Planning. Los Angeles, Institute of Library
Research, Dec. 15, 1967. pp. 3-13. Work on this particular phase
of the project was supported under NEF Grant GN-503.

2 o/-263-

ST T R

What has been widely discussed as a K-W-I-C (Keyword-in-Context)
or permuted index, we prefer to call by the more accurately descrip-
tive name Circularly Shifted Index. In this index of abbreviations
of serial titles, the abbreviation of every significant word in a
title appears alphabetically at a center gutter, with its preceding
and following words around it. Each indexed abbreviation is accom-
panied by an identification number and a short one-line title. The
identification number refers to a Reference Section which lists
(for the more than 2000 serials) full and complete titles, dates
of publication, and histories of title changes.

For any journal with more than one title, corresponding addi-
tional abbreviations are entered. Likewise, if a journal is some-
times known by a name not appearing as part of its title, tais
name would be added. An example of this is "BIT," which is used
for the "Nordisk Tidskrift for Informations-Behandling"--the result
of a fancy cover design.

Minimum abbreviations (Minabbs) of serial titles and the in-
dexing of them instead of the full titles, is a scheme devised by
John W. Tukey at Princeton University and the Bell Telephone Labo-
ratories in connection with his Citation Index for Mathematical
Statistics and Probability, and in response to a wide-spread desire
for a means of identifying journals cited by unclear and unexpand-
sble abbreviations. The work at UCLA has been a direct outgrowth
of the author's work with Professor Tukey.¥

Briefly, a minimum abbreviation is formed by using the initial
letters of the word up to the second vowel., (For this purpose,
contiguous vowels are considered one.) Minabbs are not necessarily
the most common abbreviation and they are frequently not unique,
but they may be formed from longer abbreviations and from words
in any language. As a example: either the title, "Verhandlungen
der Naturforschenden Gesellschaft im Basel", or the acceptable
abbreviation "Verh. Naturforsch. Gesellsch. Basel" can be shortened
to the Minabb VERH NAT GES BAS, which can be located in the Circu-
lar Shift Index in any one of four places.

Anbiguity in an abbreviation is useful in this index because
it immediately displays where confusion may lie. J MATH PHYS may
indicate either the "Journal of Mathematics and Physics (MIT)" or
the "Journal of Mathematical Physics (New York)". The reference
section indicates that the former dates from 1921; the latter from
1960. A rough volume-year correlation will help determine which
serial was intended.

¥Tompkins, Mary L. and John W. Tukey. "Permuted Circularly-Shifted
Indexes: A Mechanically Prepared Aid to Serial Identification". 1y
Progress in Information Science and Technologys Proceedings of the .
Tmerican Documentation Institute, 1966 Annual Meeting. Adrianne

Press, 1966. pp. 347-355.

-264-

Another type of confusion rests in multiple titles. The
"annales Academiae Scientiarum Fennicae Series A" is usually
catalogued under its Finnish title "Suomalaisen Tiedeakatemian
Toimituksia. Sarja A", but is usually cited under the Latin.
The entry under the abbreviation of the first title will lead to
the second through the identification number, and thence to the
library classification and shelving of the volume.

The results of this phase of the Citation Index project are:

1. A dictionary of acceptable abbreviations for editing
input to the Mathematical Citation Index files, for
indicating new or omitted titles of mathematical
serials and for drawing together in the citation
files different versions of a single title.

o. An Institute of Library Research-UCLA Computing
Facility report on the computer programs . ¥

3. Publication of Minimum Abbreviations of Serial Titles:
A Circularly Shifted Index to Mathematical Journals.

C. SELECTION OF SOURCE JOURNALS

At the time this project was started "Mathematical Reviews"
listed 872 journals which publish research in mathematics. In
order to determine how many of these journals constitute the "core"
of the literature, several mathematicians at UCLA and Princeton
were asked to indicate journals in which most of the significant
research appears. Each listed about 100 titles, and a set of 53
journals appeared in all lists. Our "core" consists of these 53
and other multiple but not unanimous choices.

From this an ordering of journals to be processed was estab-
1lished. First, twenty-two current issues of nineteen different
journals were scanned and the number of times journals were cited
was counted. There were 215 papers which referenced 1294 items
distributed among 325 different journals. Those journals most
cited were given priority in processing. A slightly changed prior-
ity list reflected the rankings after 13,500 citations could be
counted. A third count of 22,800 journal citations substantiates
these rankings. They are also compatible by and large with those
made by Charles H. Brown using 3,168 citations from ten journals
published between 1950 and 1952, %%

¥Johnson, G. D., and Tompkins, Mary L. A Circular Shift Index
of Abbreviations of Journal Titles: Description of the 7094
Computer Program, ILR-UCLA Computing Facility Report, 1966.

*¥Brown, Charles Harvey. Scientific Serials. Chicago, Association
of College and Research Libraries, 1956.

-265-

o —— e we ot cmmecv e et Kt T e S I -

S ORI T FS T T VT

s o= 1 2

D. SCOPE OF CITED ITEMS

During the first two phases of this project, 4094 articles
were processed. They were drawn from 25 journals published from
1965 to 1967. Five journals were covered from 1965 to mid-196T;
nine more were covered for 1965 and 1966; eleven more were covered

in 1966 only.

New titles were introduced starting with their current issue,
working backward as time allowed. Once undertaken, the journal
was completed for the entire volume except when all processing had
to stop temporarily in July 196T7.

At present 31,424 citations exist on punched cards and on
magnetic tape. 22,823 (or T3%) cite journal literature; 5840 (18%)
cite books; 3% cite material unpublished at the time of citation;
and the remaining 1829 items fall in the miscellaneous category
of reports, theses, lecture notes, proceedings of meetings, etc.
(These precentages substantiate those compiled on 18,000 citations
six months earlier: journals, T1%; books, 18%; and, unpublished,

3-1/2%.)
E. PROCESSING CITATIONS

Material for the Citation Index is keypunched on cards which
are later transferred to magnetic tapes, disks or data cell for

computer manipulation and storage.

Current issues of scientific journals have been the sole
source of citations and T3% of the input citations have referred
to scientific journals. Therefore, the card format and the exper-
iments with on-line input have been geared to journal identification.
It is possible, however, that bibliographies from other sources,
particularly from proceedings of meetings or Festschrifts, may be
desirable for inclusion. The format for a citing journal is read-
ily adaptable to a book by merely assigning an arbitrary seven
character designation to the item to correspond with the Jjournal
serial and volume numbers. This number with that of the first page
serves to bind related citations to the source item.¥

The author and title of the citing paper and of each referenced
work (excepting only personal communications) are recorded. An

¥NOTE: The data record formats used in the early stages of the
UCLA Citation Indexing Project were developed in advance of the
Library of Congress MARC format. It is expected that analysis of
the feasibility of adapting a version of the MARC II format to the
journal article file format will be undertaken during a later phase
of the File Organization Project so that a uniform record structure -
concept can be tested in an on~-line environment, and for purposes
of making the data base convertible to MARC II for transmission
to other agencies.

~-266-

m -m

S E———T.

sty

attempt is made to preserve all bibliographic information given

by the author. That which will not fit conveniently on the rigidly
formatted citation or C-card is expanded in full text on supple-
mentary or S-cards. Extra long names, or multiple authors which
exceed the 15 character cited-autnor field are recorded on name

or N-cards.

Fig. 1 illustrates the cards punched for citations from
a single paper.

F. USE OF DISPLAY STATIONS FOR ON-LINE EDITING

Programming the IBM 2075 for the Mathematical Citation Index
has been designed to exploit the display potential of cathode ray
tube terminals. These instruments provide on-line visual access,
query, and input to computer stored data. Man-machine communica-
tion with them requires a minimum of special operator skills.
They can be used geographically distant from the computer.

The program we call CITATION is an entry into the UCLA time
sharing system. It is designed to facilitate input of new data
into the Citation Index file or correction of existing records.
It edits input records, refusing to store illegal numerical data.
An illegal entry may be one that is too long, or too small, or
one that contains a blank or an embedded character. A message
indicating the error will appear on the scregen until correction

is made.

Separate formats accommodate information about cited and
citing items. These have been based on the punched card format
for easier conversion. Since journal articles predominate, atten-
tion has been paid to their peculiar bibliographic conventions.

The program commences by clearing the screen (buffer) and
displaying MAIN TITLE:

CITATION INDEX

TYPE A FOR CITING AUTHOR FORMAT
T FOR TITLE OF CITING PAPER
C FOR CITATION FORMAT

R FOR CITED TITLE |

I T0 INITIALIZE

D TO DISPLAY

S

T0 STORE
When the letter I is typed the screen displays:
JOURNAL FORMAT

JOURNAL NUMBER
VOLUME NUMBER
YEAR

-26T=

FIGURE 1:

CARDS PUNCHED FOR ONE PAPER PUBLISHED IN VOL. 66
OF THE COMMUNICATIONS IN PURE AND APPLIED MATHEMATICS

o
(o)
2]

the Citing Papgr

Type Card (Al = Author; Tl = title)
Type Number '
Yeear

Journal _

-Volume

First Page

Last Page

Author name or title statement

co-10n\ndE=EwmPH-

For its Cited Items

Type of Card

No. of Citation

Citing Journal

Citing Volume

Citing Page

Author

Designation of Multiple Author
Designation of Non-journal
Abbreviation of Location (title of source of cited
Volume item)
Issue :

Year

First Page

Last Page

3 o 3

O =\ +=—w -

The volume, year and assigned identification number of the
journal containing the citations to be recorded are entered in the
INITIALIZE routine. These numbers provide the link between cited
and citing papers and automatically become a part of every succeed-
ing record until the program is reinitialized.

Typing letter A presents the AUTHOR display:

CITING AUTIOR INPUT

FIRST PAGE NUMBER
LAST PAGE NUMBER
YEAR

Entered page numbers are checked to be sure the last is at least
ac large as the first. Multiple authors may be listed.

The TITLE display is simply:
TITLE OF CITING PAPER
and allows for LU0 characters of free text.

The citations are now entered on the following format.

CITATION INPUT

VOLUME

YEAR

ISSUE, EDITION
FIRST PAGE CITED
LAST PAGE CITED
JOURNAL ABBV
AUTHORS

The CITATION FORMAT is displayed automatically with serially
increasing numbers for each entry until A is called, for the next
citing author input. Before the next series of citations can be
entered, however, a subtitle asks the operator,

ARE YOU STILL IN TEE SAME
VOLUME AND JOURNAL? TIF YOU ARE
NOT, PLEASE RE-INITTALIZE.

The editing routines of this program are being constantly
expanded. The next powerful addition to the system will be a check
of journal abbreviations to insure that all citations to a given
paper are being lumped together regardless of the vagaries of
referencing by the citing authors.

-269-~

o e o

APPENDIX VI

SAMPLE SIZE DETERMINATION FOR DATA CONVERSION QUALITY CONTROL

By |

Jorge Rodriquez 1

Institute of Library Research |

University of Californis |
Berkeley, Californisa

'

5

L e g e € . S S Wt v . mmwem e e T et Tk S Eesw o b

SAMPLE SIZE DETERMINATION FOR DATA CONVERSION QUALITY CONTROL

By

Jorge Rodriguez
Institute of Library Research
University of California
Berkeley, California

A. INTRODUCTION

This analysis aims to solve a specific problem of the
Tnstitute of Library Research, summarized as follows: it is
desired to investigate the possibility of using e statistical
control method to determine the accuracy of the data conversion
process and to estimate the frequency of errors associated with
a cammon source.

The constraining factor involved in the control process is
the cost of sampling as opposed to the cost fluctuation of the
conversion process as a function of the level of accuracy.

B. DISCUSSION

It has been suggested that sampling inspection, and more
specifically, sequential sampling inspection, be studied as a
possible control method. It will later be explained that the
neture of the problem suggests other means of control.

In sampling inspection, whether it is single, double, or
sequential, we normally start with two fixed points. Assuming
that the parameters in question lie on the mean of a distribution
(as in the present case) these two points are: a previously
estimated mean value, which is assumed to remain fairly constant
and considered acceptable; and the worst value of the mean that
will be considered acceptable. This introduces the notion of
acceptance and rejection of the lot in question.

The test consists of obtaining a sample from which the
mean of the population is estimated using a proper estimator.
Then, using the lot size and sample size, obtain some measure
of the quality of the decision. For this purpose, two types of
errors are defined and their probabilities estimated: namely,
the probability of error of type I, which is the probability of
rejecting a good lot; and the probability of error of type II,
which represents the probability of accepting a bad lot.

The situation in the data conversion is somewhat different.
In the present problem it is not assumed that the mean of the
distribution remains fairly constant, nor that there is a region
of acceptance opposed to one of rejection. The problem here is
more related to point estimation, to the actual estimation of
the expe.ted number of inaccyrate records, and to obtaining some

2 7.4/-213

e M————————-t Sti B P} S e e s e . PR . i e TR KN T ATR T Ceemer MR TR e s a1 ¥

measure of the estimate in the form of a probability that deviates
by an amount less than & .

C. PROPOSAL

Consequently, it seems appropriate to use a simple point
estimation procedure. In this procedure, the size of the sample
will be determined by economic factors. Then the weight of the
estimate will He measured by fixing a deviation & , and eval-
uating the probability of the estimate being within a plus or
minus A from the exact value.

The following is an analysis and detailed description of
the steps of the proposed method.

1. Selection of Lot Size N. The lot size will be determined
by the frequency at which the control is performed, and/or by
the total number of records to be processed. This decision is
not critical as long as it is over a reasonably large number of
sampled records (not less than 1000). 1In general though, it is
desirable to use ag large a lot size as possible.

2. BSelection of the Sample Size. The sample size will
mainly be determined by economic considerations, and for this
purpose a cost function is defined which includes all the
variable costs of interest:

¢, = fy(m) - f2(ﬁ) + f£3(n) (1)

where,
fl(M) = cost function representing the cost of correcting

M wrong records.

M = exact number of wrong records due to the conversion
procesgs.

M = estimate of M,

f2(ﬁ) = cost function representing the discount when the

A
number of wrong records due to the conversion process is M.
n = sample size
f3(n) = cost function representing the cost of obtaining a

minimum sample of size n.

It is reasonable to adopt a minimum sample size. 1In other
words, the estimate will not be accepted if it is obtained using
a sample smaller then the lower limit. The first step, then, is
to obtain a sample whose size is equal to the lower limit and to
estimate the number of wrong records by using a simple average
as the estimator, or

W= (2w (2)

where m = number of defective records in the sample (records
containing at least one error).

~2Th~

The next step is to investigate the possibility of increas-
ing the sample size by comparing the cost of obtaining the previous
sample size with the expected saviag, which can be expressed by

(M) (3)

N
S = f2(M) - fl

If this value is less than f.(n), then a larger sample is not
econamically Justified, and ée proceed to para. 3. If 8 is
larger than f_(n), then the sample size can be increased to some
value n' such that:

f3(n') =S (4)

We can obtain a new estimate of the number of defective records
(M') by using equation (2) again

m' u

M' = (Eu) N (5)
where m' is the total number of defective records in the sample
of size n'.

By repeating the process of camparing sampling costs with
expected saving we can determinc whether it is Justified to
increase the sample size.

It is also reasonable to set an upper limit on the sample
size. In other words, the sample will not be increased beyond
that limit even if it is economically feasible.

3. Measure of the Estimate'ﬁ. Once we have obtained tne
sample size n' and the number of defective records in the sample
m, we can obtain a statistical measure of the estimate by using
a convenient sampling table.

The table referenced (1) gives a relationship of five
parameters: N, n', m', coniidence level, and the precisicn.
Any four of them will determine the other.

In our case we already have N, m' and n'. And from the
structure of the table, it is easier to decide on the confidence
level desired and then obtain from the table the precision.

To clarify the meaning of each of these terms, the following

equation is presented, ~howing the relationship among them:
A

A A
P {IM - M| = (Precision) M %-= %- and the population is

N} = confidence level (6)
-275~-

D. ILLUSTRATIVE EXAMPLE

1. Given: 200,000 records to be processed in 50 weeks.
Cost of correcting one wrong record = $0.10
Discount per wrong record = $0.25
Cost of sampling = $0.C5/record.
It is desirable to obtain a control output every week.

2. Solution.
Select the lot size N, which is given by:

200,000 records
50 weeks

= 14,000 records/week

Select lower and upper bounds for sample size, and set these
at 5% and 20% of the lot size, respectively.

Now, to perform a control for one week we proceed as follows:
By using a table of random numbers we select a sample size of
n = 200, Assume that we found 9 defective records in the sample,
then m = 9. We obtain the first estimate by using equation (2)
where,

o= ®) v = (5%50 4000 = 180.

By using equation (3) we evaluate the expected savings:

S =180 (25) - 180 (10) = $27.00

Evaluate f3(n) = 200 (5) = $10.00

Comparing S and f_ (n) we see that it is Jjustifiable to
increase the sample siée in order to get a better estimate. By
using equation (4) we obtain a new sample size.

n'(5) = 2700¢, or n' = 540, which is only about 15% of the
lot size. We obtained 340 more records. Suppose that we obtain
15 more defective records. Then m' = 15 + 9 = 24, and our new
estimate fram equation (5) will be M'= 178.

The new expected savings are then S' = $26.7T0, which is less
than f3(5h0) = 2700, and therefore we do not increase the sample
size.

Now, suppose we want to obtain the precision of the estimate
with a confidence level of 95%.

To use the table, first we calculate p, the proportion of
defective records in the sample

m' _ 24 _
P=27 =%Ig (100) = L. 4%
-276-

Rounding this to the larger integer, to be on the conser-
vative side, we have p = 5.

Using Table I, page 23 of the referenced source we find
that if n were 409 the precision would be 2%. Consequently,
we conalude that 100<M <260, with a confidence level better
than 95%.

[M- .02M<M<M '+ .02M]

If it is desired to estimate the errors attributable to
each type of source, we need only to use formula (2) with the
corresponding m's, and by using the tables obtain a measure of
the estimates.

REFERENCE

1, Brown, R. Gene and Lawrence L. Vance. Sampling Tables for
Estimating Error Rates or Other Proportions. Berkeley, Public
Accounting Research Project, Institute of Business and Economic
Research, University of Californis, ¢1961l. p. 23.

- 277 -

Ly g = YRE wmer T TG AT WSSO pasem O eas

o ———— ——— = ="

IR vims T~ LR SN

APPENDIX VII

THE ORGANIZATION, MAINTENANCE AND SEARCH
OF MACHINE FILES

Ralph M. Shoffner
Institute of Library Research
University of California
Berkeley, California

(Published in the Annual Review of Information
Seience and Technology, V.3, edited by Carlos A. Cuedra.
Chicago, Encyclopaedia Briticanna, Inc., 1668. pp. 137-16T)

ke AV W T T e SOT S T MY T TS UM T MRGA SRS m— —_ I

i B, AP 5. o oy A—— -

———— T D ——— & s v S

o,

UNIVERSITY OF CALIFORNIA
INSTITUTE OF LIBRARY RESEARCH
Berkeley, California 94720

Reprinted from The Annual Review of Infor-
mation Science and Technology, Vol. 3, 1968,
edited by Carlos A. Cuesdra, by permission of
Encyclopaedia Britannica, Inc. Copyrighted 1968.

Permission to reproduce this copyrighted
material has been granted by Encyclopaedia
Britannica, Inc., to the Educational Resources
Information Center (ERIC) and to the organization
operating under contract with the Office of
Educatior to reproduce ERIC documents. Repro-
duction by users of any copyrighted material
conteined in documents disseminated through
the HRIC system requires permission of the
copyright owner.

TSRS T e

LSy

hac oiar =4

e s -

e

me e

&
cx®
\)

L &S o
The Orgarization, ,bﬁf@te\%\f” &@\
Maintenance and é\“f\‘{@*@%\"p
Search of R S Q¥ 0
Machine Files! & Nore®

<‘v '\% ,\\Oelc}oq

RALPH M. SHOFRNER2 &%
University of California N
Berkeley, California ‘©

INTRCGDUCTION

File organization and search is concerned with the structure and operation
of computer systems that store and retrieve large amounts of information.
The following are four key questions about file systcms that, ideally, a
review article of the current literature should answer: How well do such
systems operate? What are the structures of file systems? What is the
nature of the system operation? How does one design an appropriate
system?

Unfortunately, there are no simple answers to these questions—first,
because the literature contains only partial answers, and second, because
of the great diversity among file systems and file system languages. These
two reasons give rise to a host of other reasons:

1. With many new people working in the field, undefined
vocabulary increases more rapidly than strict definition reduces
it.

2. File systems have to be designed to resolve contradictory goals,
such as rapid access, high capacity, low user training, and high
reliability.

3. The machine system does more of the processing to organize
and group related information.

4. There is an increase in different kinds of information to be
processed.

"This review was supported in part by the U.S. Office of Educaticn Grant No. OEG:-1-7-071083-5068.
’I am indebted to Luke T. Howe for his extensive help in preparing this review.

2 et

138 RALPH M. SHOFFNER

5. Desired modes of access to information are increasing.
6. Machme processes are being developed to reduce the need for
’ expeuenced specialists to act as broker between the users and
- the systems

Z Even with a determined file structure, the performance of

. large-scale, multiple-access file systems can be significantly

" ”affected by the search procedures used.

8. The expanding computer field means there are more computer
systems and programming languages with which to implement
file systéms.

9. Many special-purpose systems are being developed and their
reports are being published.

10. In spite of all these trends, that Holy Grail —the all-purpose data
management system—is being sought by an ever-increasing
number of people.

One evidence of the increasing interest in file structures is the
establishment by the Association for Comiputing Machinery of a one-day
professional development seminar in “File Structures for On-line Sys-
tems.” As with the other ACM seminars, it was scheduled and presented in
several cities throughout the United States. The material was well
organized and the meetings were well attended. No doubt the specific
material will change, but seminars should certainly be continued. Another
important event in 1967 was the publication of Meadow’s excellent book
(60) devoted to file organization. It will serve as a text around which file
systems courses can be organized. These courses will also be able to make
good use of several other recent books that devote sections to file
organization and search (37, 72).

This review is divided into three sections: General Issues, Aspects of
File Systems, and File Systems. The division between the last two areas is
somewhat artificial, both in the sense that some of the literature must be
discussed in more than one place and in the sense that one aspect of a
report is emphasized to the exclusion of other aspects where the chosen
aspect seemed most important. However, rather than attempting to give a
balanced review of individual papers, we have tried to report significant
changes occurring over the entire literature of file organization.

GENERAL ISSUES

Evaluation of Systems

Although a separate chapter of this volume (Chapter 3) is devoted to
evaluation, a portion of that literature needs to be considered here because
of its potential importance in system design. The growth of machine files

[

I

e

==

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 139

has increased the capability for making partial searches, and it is important
to be able to determine the extent to which file structure and search
techniques influence recall, precision, and other measures of system
performance.

Pollock (68) provides a brief but excellent review of some of the
measures which have been used for the evaluation of systems. He then
defines another, a normalized “sliding” ratio measure. Instead of having
two classes, his measure has multiple classes to which each retrieved
document is assigned according to its relevance to the query. This
approach should prove useful since it avoids the difficulty of having to
judge a document as completely relevant or irrelevant.

The primary measures for the evaluation of document retrieval systems
continue to be those of recall and precision. Swets (79) provides an
interesting representation of these measures, in which, by a change of
variables, he plots an operating characteristic curve of the type used in
statistics. His objective is to simplify the task of evaluation by replacing the
two measures with a single measure of performance. This, he argues, can
be done by treating the slopes of the operating characteristic curves as
equal. If they are equal, they can of course be ignored. However, his data
do not appear to justify this treatment. That is, a different selection method
will provide the best performance, depending upon the ratio of recall to
precision one is willing to accept.

As an alternative to the use of recall and precision for the measurement
of information transfer, Hayes (37) has suggested an abstract measure that
takes into account the amount of information in the search specification,
the total size of the file from which the result is selected, and the size of the
resulting retrieval.

While such an approach may prove useful, the measure developed still
will not incorporate the issues of system and user time and cost. So long as
this is the case, evaluation will be largely irrelevant to the design of file
systems. Hayes recognizes this in his introduction:

The third aspect—organization—arises because as the file gets
large enough, it is impossible, at least uneconomical, to scan every
item in the file to judge its relevancy. It is therefore necessary to
structure the file to provide indexing mechanisms, and to provide
intermediate measures of degree of match which are less sophisticated
than the ultimate measure of relevancy. It is this third aspect which
really constitutes the technical problem in information retrieval
system design, since it is here that the size of the file, the requisite
response time, the degree of selectivity, and the accuracy of the
response all interact. (p. 265)

TETS

140 RALPH M. SHOFFNER

When measures incorporating all of these aspects are developed, they
will provide a quantitative basis for file systems design. Until that time,
design will continue as a highly subjective process.

Measurement of Association

The measurement of association is central to the organization and search
of machine files. Such measure:nent is needed in order to associate file
records with each other and to associate them: with a search request.
Usually this measurement is of the match-mismatch type. That is, either a
given file record matches the search specification completely or it is
considered a mismatch. In this case, no estimate of the relative mismatck: of
the file records is made.

While most operating file systeins have been based on exact match,
considerable experimental work with statistical measures of association
has been performed. As a result of this work, associative measures have
reached the stage whzre they will be used in operating file systems. Jones
& Curtice (41) provide a comparison of term association measures. The
authors use a framework that encompasses most associative measures.
They define a weighting in which the measure of association of two index
terms is equal to the frequency of the joint occurrence of the terms divided
by the nth power of the frequency of one of the ierms. By varying the value
of n, the behavior of the various associative measures can be approximated.
The authors provide an illustrative example, using a term taken from the
NASA collection, which contains 100,000 documents and 18,000 index
terms. In addition to providing useful approximations, the authors also
show that a specific value of n in the approximation formula implies a
weighting of the relative importance of recall versus precision in a search
operation.

Salton’s work (71) gives experitaental evidence of the usefulaess of
associative techniques.

Specifically, the procedures based on synonym recognition,
weighted content identifiers, cosine correlation to match documents
and search requests, and document abstract processing are always
more effective than methods using simple word stem matches (without
synonym detection), nonweighted terms, correlation terms based only
on the number of matching terms, and analysis procedures which
consider only the titles of the documents being examined. (p. I-4)

The importance of these procedures for operational systems appears to
be in the order in which they are mentioned. In general, the importance of
synonyms is already recognized. To a limited extent, weighted index terms

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 141

are already in use. The next important step will be the incorporation of
term pairs with associated frequency information so that requests tailored
for recall and precision can be satisfied without significant increases in
search cost.

Research on associative measurement is continuing, with two major
areas of investigation. One is the machine analysis of text to obtain the
appropriate index terms. (This work is covered in Chapter 6, on automated
language processing.) The other is iterative search, in which the retrieval
results and the associative measure are used to modify either the search
request or the indexing provided in the file. In additior: to Salton’s group,
groups reporting on associative adjustment systems include Jones, et al.
(42), Bryant, et al. (16, 73) and Lehigh University (2). The work reported
by Salton’s group is of the greatest interest in that experimental results are
provided for techniques utilizing user feedback for the modification of
search.

ASPECTS OF FILE SYSTEMS

Logical Record Encoding

Record encoding has two separate components. The first component is the
specification of the logical content of the record. The literature concerned
with the determination of logical content is found in the preceding chapter

on document description and representation. However, a few documents
are discussed in this section because they have as a common characteristic
emphasis upon the development of a hierarchical classification system for
encoding the record information. The second component of record
encoding is that of the representation of the record as it is held in computer
storage. This physical encoding is discussed in the next section.

Two papers report on the experimental application of the Uriversai
Decimal Classification (UDC) to machine search systems. Freeman &
Atherton (32) report on its application to 250 documents in the field of
oceanography, and Caless & Kirk (17) report on its applicatioii to an
unknown number of seismological documents at the VELA Seismic
Information Analysis Center (VESIAC), University of Michigan. Both
papers conclude that the UDC can be used for encoding and searching
documents. However, Freeman & Atherton point out that there is an
unanswered question of whether it should be used in preference to an
iridexing language designed specifically for machine processing. Both
papers give an indication of some of the difficulties in adapting UDC for
machine search. Caless & Kirk indicate that extensive skills and
preparation were needed. The skills were in the subject area, in the
application of UDC, and in library classification. Their system is highly
dependent upon a skilled staff performing the encoding both of the

X

Rt == EWRETE P g

S A LT = T

142 RALPH M. SHOFFNER

documents and of the search requests.

This dependence upon skilled staff is not unique to the UDC system,
but, rather, is inherent in any highly structured representation of document
content. The proper conclusion from this is not necessarily that such
systems should be abandoned, but, rather, that when they are used,
specialized information centers such as VESIAC should be set up. In this
way, the record encoding can be performed, in all of its complexity, by
information specialists and then can be distributed and used wherever
there is need for that literature. This, of course, is the direction in which
machine information systems have been proceeding during. the last decade.

Just as many problems are encountered in the application of UDC,
many problems have been encountered in the use of classification
structures for chemical information systems. In general, the literature of
the current year represents a continuation of work reported by Tate (80).
Bowman (13) reports on the use of the Wiswesser line notation for 100,000
chemical compounds at Dow Chemical. He gives costs for their method of
encoding the chemical structure information. Starting with a legible
structure diagram and a molecular formula, only $176 was required to
code and check the notations and formulas for 1,000 compounds. He does
not indicate the length of training time for the encoders, nor does he
indicate how familiar they were with the process prior to its operation.

Lefkovitz (48, 49, 30) compares the two main approaches to the
encoding of compounds, the connection table and the line notation
methods, with respect to the requirements of a system handling approxi-
mately 3,000,000. In addition to the two basic approaches, he discusses a
derivative system called the Mechanical-Chemical Code (MCC). Although
not as complicated as the others, this code could serve as a rough screen in
an on-line retrieval system.

Two reports of the continuing work at Canadian Industries, Ltd.,
appeared during the year (39, 59, 82). The objective of this work has been
the automatic generation of a connection table from the Wiswesser
notation. This table is to be used in place of the original notation for
internal storage, search, and display purposes.

A study at Chemical Abstracts Service is concerned with automatic
translation from one representation to another. This one is concerned with
the conversion of traditional systematic nomenclature. Vander Stouw,
et al. (86) provide a preliminary discussion of this study, which shouvld
produce some generally useful results.

Bobka & Subramaniam (10) report on the development of a chemical
coding system, called Medical Coding System (MCS). The system, which
was developed in the Comparative Systems Laboratory of Case Western
Reserve’s Center for Documentation and Communication Research, is

i s 2 I oy e ——

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FiLES 143

based upon a classification of chemicals by the type of units or groups
present. It does not record the sequence in which the functional units
appear; rather, each group is coded individually without reference to other
parts of the molecule. No comparison with other notation schemes is made,
and it is not clear why a different system was felt to be necessary for
encoding the compounds. Presumably some of the experimental and
operating systems that are capable of incorporating more than one type of
notation system will provide some of the comparative information
necessary to clarify the advantages and disadvantages ot the various
notational schemes (38, 87).

Physical Record Encoding

Character Encoding. Physical encoding is concerned with the binary
representation used to encode the data within the computer system. Most
systems have used encoding schemes in which characters are the units that
are independently represented. For alphanumeric data the most common
coding systems 7.re the well-known Binary Coded Decimal (BCD), and the
American Stazidard Code for Information Interchange (ASCII) six-bit and
eight-bit codes. Morenoff & McLean (64) recommend an Information
Processing Code (IPC), an eight-bit code constructed so that subsets of
seven, six, five, and four bits can be derived from it. While dcfined as an
eight-bit code, the eighth bit is not used, and thus it is the seven-bit subset
that is presented in the paper. The intention of the authors is not to replace
the function of ASCII as an information interchange standard; rather, it is
to use 1PC for internal information storage, particularly in on-line systems.
As the authors indicate, the internal information processing and system-
user interface requirements of on-line systems are of sufficient importance
to warrant consideration of specially designed codes to satisfy them. As the
number and size of on-line file systems increase, further attention to the
internal codes can be anticipated.

Word Encoding. Whereas a character-by-character representation of
nonnumeric information is likely to be the most desirable for manipulation
within the central processing unit and for output over the various
peripheral units, the increasing use of mass storage will foster the
development of coding schemes that require less storage than character-by-
character encoding. As is generally known, the encoding of natural
language is not compact because our words use only a small proportion of
the very large number of possible combinations of the 26 letters of the
alphabet. One approach to obtain a more compact representaiion has been
to develop systems that encode word-by-word rather than character-by-
character. These are oi:en referred to as code-comy. ression systems.

Although information theory provides a sound basis for the development

T R e A TR R T T

T

i44 RALPH M. SHOFFNER

of efficient coding structures, the file systems literature reveals little use of
this theory. Bemer (6) devotes his paper to the use of compressed codes to
reduce the cost of long-line communication of natural language. He shows
that if the codes could be generated properly, variable-tength coding would
be the most efficient because it can take advantage of the frequency of use
of words in the natural language. By this approach, the codes are
compressed to 35% of the space required for a character-by-character
representation. Although he does not discuss the compression technique,
he apparently assumes that ali programs and tables fit into the computer’s
main memory.

Bemer estimates total coding and decoding time at 250 microseconds
per word, on an IBM 7090. Using a ccst of $800 per hour, he computes the
total conversion cost to be $0.0056 per word. While the estimates were
made for a different purpose, they can be used to indicate the poteniial of
code compression for file system storage. In the interval since this work
was done, the cost of equivalent processing has been reduced by approx-
imately 90%. Assuming that encoding and decoding times are roughly
equivalent, encoding she.'d now cost approximately $0.0003 per word.

if the annual cost of the mass storage is $6 per thousand words, then a
code-compression strategy that reduces a space to less than half of the
original woulc provide a storage cost reduction of more than $3 per
thousand words per year. Obviously, retranslation and other requirements
must be considered in order to determine the effectiveness of code
compression for file systems. Even so, it is clear that systems with mass
random-access storage could benefit from attention to code compression.

In somz cases, non-unique codes may be usefui in file systems. In this
area, Bourne & Ford (12) report experimental work showing the degree of
non-uniqueness as a function of the length of code generated. The analyses
were performed on files of 2,082 index terms and of 8,207 student names.
The transformations used were variant methods of selecting letters to be
dropped from the source word. The letters were: chosen either on the basis
of position or on the basis of frequency of occurrence. They show that
savings in space—in an index, for example—can be achieved without a
great loss of uniqueness. Marron, et al. (58, 28) descrise COPAK, a
three-component code-compression system. One component, NUPAK,
converts fixed-point data to a compact form. Another, ANPAK, com-
presses alphanumeric data, either the suiput from the first component or
any other fixed string. The third component, IOPAK, prcvides a final
compression of the strings before output to a storage medium. At present,
NUPAK and ANPAK have been implemented.

ANPAK is the component of greatest interest for file systems. ANPAK
operates repetitively on the string of data and removes repeating elernents

TO——TE ey " ey b % W g o

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 145

from the string. The gensrated code contains all information necessary for
decoding without loss of original information. The authors give an
example of the use of ANPAK on text material for which character-by-
character encoding required 15,180 bits. This was encoded in 9,291 bits,
representing a compression to 61 % of the original size. No indication of
the processing requirements is given. However, the authors assert that such
compressior s economically feasitle, since read-in time for compressed
information plus time for decompression is significantly less than read-in
time for the original information.

Field Encoding. Beyond the representation of the information on a
character or word basis, the next problem is that of mapping the logical
fields of the records into internal storage. Benner (7) provides a design
technique for mapping logical records into physical records of fixed size.
By this method, a common program: can perform all direct-access file
handling regardless of the specific content or size of the logical records.
This approach encounte;s the probiem of determining the size of a physical
record and the fields of a logical record that it should contain. Benner’s
technique deals quantitatively with this issue in terms of the lengths of the
control versus the data portion of the fields, the activity of the fields, and
the distribution of field lengths. These variables are used to balance storage
utilization against access. From this balancing, the design of the record is
established. The author describes the results achieved using this technique
in the design of a business information system and estimates storage
utilization to be 65%. This is the expectation that a character of storage
will be occupied by a character of useful information from the data base
(excluding control information). The length chosen for the physical record
was 796 bytes. The ratio of file processing time to application program
execution time is 1:1.2. 'The system operates with a mean inquiry response
time of 10 seconds.

Graphic Data Encoding. The rapid development of peripheral equip-
ment providing input and output of data in graphical form has stimulated
interest in the development of data structures for the storage of graphical
information. As Van Dam & Evans (85) indicate, data structures for
storing line drawings have been at one of two extremes. They have been
either descriptions suitable for direct output to a specific display device, or
hierarchical, interconnected list structures. The authors provide another
list structure, but one with less structure provided within the data. They
achieve this by defining a set of primitives that opzrate on the data to
develop the more compiex structure. These primitives constitute the
Pictorial ENCodIng Language (PENCIL), major portions of which have
been implemented on an IBM 7040. In PENCIL, the unit of data is a
picture composed of points, lines, and other pictures. A picture is

e e s e m——— e e o AT E R wT G W R ma— A S—— L, -

N\

-5

146 RALPH M. SHOFFNER

represented by a Coiitrol Item and associated Line Items, Text Items, and
Information Items. Through the use of PENCIL primitives, one can define
or establish new data in the form of points, lines, etc. One can also
manipulate the data to move lines and points on the screen and can
perform affine transformations. Control can be used to clear working
stoiage, assign names to pictures, retrieve pictures frorm storage, display
therr. on an output device, delete components of the picture, etc.

The PENCIL approach is particularly interesting because it is integrated
within the more general MULTILANG system at the University of
Pennsylvania. Though MULTILANG is experimental, such mixed data
systemis socn will be common. Therefore, file system designers must begin
to give more attention to the storage and ratrieval of graphical information
as well as of alphanumeric information.

The Logical Grouping of Records

Toc facilitate retrieval, it is desirable to group records that have the same or
related content. Where the content of a record is identified by a set of
assigned index terms, a common method of grouping the records is to list
them under each assigned index terin. For systems of this type, Zunde,
et al. (94) define the distribution of index terms assigned to documents to
maximize information transmission. On the basis of information theory
argument, they obtain an equation for the desirable number of records to
which a term is assigned as a function of the average number of records
assigned per term for the entire file. This distribution is then compared
against the distribution of terms in two systems. Although one would
expect a uniform assignment of terms to be the most efficient, they do not
explain the reason this oes not occur.

Long, et al. (53) have &@nalyzed the rate at which the number of words in
a dictionary increases with the amounts of text analyzed. Their analysis is
part of an attempt to develop a set of keywords for the indexing of
radiological patient recorcls. They have er:countered difficulty in the use of
word-rank order to establish access in that, beyond the first several
hundred words, about 70 % of the remaining words occur with a frequency
of less than one in 10,000. They anticipate continuing the study to
determine whether filter technigues can be developed to give (approxi-
ruately) 2,500 words with which to characterize the file.

In a variation of analyzing text in order to determine appropriate terms,
Armitage & Lynch (4) present the development of articulated subiect
indexes by manipulating phrases. They show that for subject entries from
Chemical Abstracts, at least half of the articulated terms (i.e., @ main term
with a subliead) can be generated from more general phrases by the use of
their rules. They have also applied the technique to 479 abstracts from

=N el

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 147

Documentation Abstracts, and they conclude that an index can be de-
veloped from the titles of these abstracts.

Taken together, these papers show that a limited analyzis of text can be
used to determine the logical grouping of similar records in diverse subject
areas.

Beyond the grouping of records that have individual index terms in
common, it is possible to group records based upon a determination of
general similarity. One of the continuing studies is carried on at the
Cambridge Language Research Unit. Sparck Jones & Jackson (75, 76)
report on the current status of the Unit’s clump-finding investigations.
Clustering is another term that has been used to describe grouping

procedures. Ide, et al., and Grauer & Messier (in Salton, 71, same as 26)

report on the current state of the clustering programs under investigation
at Cornell. These programs are based upon the clustering algorithm
devzloped by J. J. Rocchio. This clustering algorithm is an alternative to
the Cambridge Language Research Unit’s clumping approach. It is being
tested on the same data base used in the clumping investigation:
Cleverdon’s collection of 1,400 documents from the Cranfield project.
From this, a comparison of the other two approaches should be possible.

A different approach to the grouping of records is that provided by a
document’s citations. These citations provide linkages between records
that can be used to infer similar content. Part of the current work is
concerned with the processing of common citations to infer similar
content. Thus, the objective is the same as that of clustering, but a different
kind of linkage information is used. Chien & Preparata (22, 69) use graph
theory to define a procedure for grouping documents by their “distance.” It
is not known whether any test has been made of the algorithm developed.
However, it would be most useful to apply the Chien-Preparata algorithm
to the index terins of the Cleverdon documents in order to compare them
with the methods of clustering and of clumping.

The citation approach is based upon the pricessing of “citing/cited by”
relations that exist between records in a file. Levien & Maron (52) have
generalized this approach in their discussion of a system for inference
processing. In this system, relations that exist between records in the file
are processed to derive information not explicitly contained in the file.
Although a wide range of problems remain to be studied, their approach is
important because it reduces the necessity to establish explicitly all of the
record groupings in the file structure.

Two papers are concerned with the grouping of records representing
chemical compounds. Uchida, et al. (84) are concerned with the evaluation
of fragmentation codes, linear ciphers and atom-by-atom topological codes.
Particularly, they have been concerned with a system capable of retrieving

- T LA T —— — e

s s LA e AR - ¥

148 RALPH M. SHOFFNER

material having common substructures. They discuss the results of 28
searches in a file containing 841 alkaloids and their derivatives. Annitage,
et al. (3) report on the development of algorithms to detect similarities
among chemical compounds. Their purpose is to determine the largest
connected set of atoms and bonds common to any pair of chemical
structures. As investigations such as these proceed, the concepts of
similarity of chemical compounds should be developed enough to allow
grouping of compounds with similar substructures. This grouping will
reduce considerably the required search effort.

File Structure

Given that the records and the logical grouping of these records have been
defined, the task remaining is to obtain a machine file to map this logical
structure into the physical structure of the computer systemn. In contrast to
records that are characteristically free in form with many partial con-
nections, the physical records of a computer system are normally fixed and
rigid. Thus, for example, the physical records of a computer system’s mass
storage have a given number of bits for each physical record. In this
situation, it is most unlikely that the logical records of the external world
will match the physical records of the computer system. Thus, computer
programs must be provided to translate the records from one form to the
other. The term “file structure” refers to the methods by which these
programs retain the logical records and their groupings within the rigid
system structure.

Two major concerns are reflected in the current literature. One is the
development of more general, and more complex, file structures. The other
is the analysis of the effect of structure or: access time.

Most of the current structure development involves variants of a
structure in which each logical record contains the information needed to
generate the address of the next logical record linked to it. Such structures
have been referred to as structured files, threaded-list files, multi-list files,
etc. Gray (35) provides a brief review of many of the list-structure
approaches that have been used in computer-aided design. Tieay include
the sketch-pad ring structures, the coral-ring structures, and numerous
others. This is a most useful paper because it shows the many siiniiarities
between these various approaches.

A number of specific list-linking techniques have been reported on
during the year. Gabrini (33) reports on an application of Multi-list, a
linked-iist file system developed at the University of Pennsylvania, to the
Project TIP file of Physical Review articles. Ross (70) describes the AED
free storage package, which is part of the AED-1 compi:zer system. The
package is general in that the blocks may be of any size and the programs

P

TR e O

T

- ot et~ o

|

T VO

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 149

provide several different strategies for maintaining storage accounting.
Storage accounting and the reassembly of released storage into usable
units is generally a problem in such systems. Haddon & Waite (36) discuss
their procedure for reallocating variabie-length records in order to free
space that was previously unallocatable because of its distribution between
these records. They describe the general procedure and give times for its
use on an English Electric KDF9. As described, the procedure is applied
to the fast memory of the central processing unit. Its extension to mass
storage is not discussed.

As list-processing languages make increasing use of mass storage, they
become more like general processors using list-linked structures. Two
papers related to list processing are concerned with the allocation of data
to mass storage or to fast memory. Cohen (24) discusses the results of a
program on an IBM 7044 with disc storage that allocates the records on the
basis of their frequency of utilization. Bobrow & Murphy (11) discuss a
similar application that utilizes a DEC PDP-1 with a drum memory. Both
conclude that frequency can be effectively used to allocate space.

Just as both of these approaches were heavily influenced by the
MULTICS system, so too was the system described by Barron, et al. (5).
They summarize the file handling facility that is provided on the Titan
computer at the University Mathematical Laboratory, Cambridge. In this
system, files are maintained over indefinite periods on a three-level system
having core, disc, and magnetic tape. Access is provided on the basis of the
name of a desired logical block of information—i.e., a group of records.
The system maintains necessary indexes to provide the physical records
associated with the name, and to reallocate the physical records among the
peripheral storage units.

Morenoff & McLean (63) discuss multi-leve! storage organization in a
more abstract fashion. They suggest the definition of levels of the file in
terms of the accessibility characteristics of the organization. On this basis,
they obtain something around 30 to 40 levels, with access times from
nanoseconds to minutes or hours. They suggest that the data have home
addresses in the system that may be specified by the users to provide the
desired accessibility. Beyond this, the statistics of frequency of use could
be used to make blocks of information more accessible and thus make the
operation more efficient. Whether this approach has been implemented is
not indicated. '

Several papers have been concerned with the quantitative effect of the
file structure on the expected average access time to obtain records from
the file. Lowe (54) has written a very good doctoral dissertation in which
he characterizes the average access time in terms of the number of index
terms per physical record that can be obtained in an inverted file

A h e S S S ermr 3= a7

SR S

B

150 RALPH M. SHOFFNER

organization, as opposed to a linked-list structure. He then extends his
consideration to the effects of truncating the index terms so that the full
index term does not necessarily appear within one physical record. This
latter portion of his work has been published as a separate paper (55).

Thompson, et al. (81) have produced a paper closely related to Lowe’s,
in which they are concerned with the number of logical branches that need
to be included at a decision point to minimize search time. Although they
deal entirely with logical records, the limitation of the nuinber of branches
that can be provided at a given decision point is a function also of the
physical record size.

Leimkuhler (51) takes a different approach. He considers the probability
of use of the logical records and organizes the file into zones of roughly
equivalent probabilities, in order to minimize the access time. He proposes
a distribution function for the spread of useful material through a file, and
he suggests that empiricai information indicates the desirability of a
two-level organization for scientific iiterature. In this organization, 15 to
20% of the most useful documents would be examined first and would
provide a success probability of approximately 0.67. The search time is
apparently considered to be that required for reading and reviewing the
documents retrieved rather than the time for machine retrieval of the

document references. The additional effort that would be reqaired to
retrieve all document references at the same time is not considered.

Although a number of papers relevani te file structure have been
published during the year, the most needed paper has not appeared. That
paper will provide a urifying quantitative model of file structure that will
cover the range from inverted file to linked-list structures and 1clate the
structures to space, search, and update requirements.

File Search

As was indicated earlier, a measure of association is necessary both for
determining the logical grouping of the records and for matching those
records with requests. In general, the match criterion specified has been an
exact match of the logical combination of the specified values of the fields
and subfields of a record. Brandhorst (14) has suggested a method of using
term weights to bypass the use of Boolean logic. The determination of
proper relative term weights appears fairly straightforward and the
programming for such an approach reasonably simple. First, the proper
Boolean specification is set up. Then arbitrary weight values are assigned
to search terms, and the minimum total weight any document must achieve
in order to become a “hit” is specified. The following are two exampies
(the plus denotes union and is read as “or,” while the dot denotes
intersection and is read as “and”):

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 151

(A+B)+(C-D) A=2, B=2,C=1, D=1, WEIGHT Minimum =2
(A+B)-(C-D) A=1, B=1, C=2, D=2, WEIGHT Minimum =35

Brown (15) reports on the use of a retrieval system with approximately
60,000 compounds in operation at Eli Lilly. While there are some logical
combinations of search terms that cannot adequately be reflected in the
weighting technique, such as a union of intersections—(A - B) + (C- D),
the technique may still be useful for operating retrieval systems.

The translation of the request from the user’s language into the structure
required for the search system is a continuing problem of search
specification. Much work has been put into developing systems to handle
the natural language of the system user. Since the general problem has
been so intractable, the current emphasis is upon the use of limited subsets
of natural language.

Kellogg (43, 44) and Tonge (83) are both concerned with limited
processes for translating from the user’s language to the system’s internal
search control. Both are concerned with the search of relational data files
and both have arrived at an approach by which the user is provided with
the translation of his request for his approval or modification prior to
search. Kellogg’s system, CONVERSE, is being constructed at System
Development Corporation (SDC) under the time-sharing system imple-
mented on the IBM Q-32. It appears that the portion of the CONVERSE
program concerned with the transiation of the question to the search
control is in operation. It is not clear whether searches are being driven by
the control information obtained. Tonge’s work appears to be in
approximately the same stage of development. It will be interesting to
follow both approaches as they develop.

A problem usually encountered in systems using a subset of natural
language is the tendency of the user to put in additional words that are
unnecessary and not defined in the system. It is desirable to have the
facility within the system to ignore such words. Easy English, under
development at the Moore School and reported by Cautin, et al. (19),
removes noise words and questions the user when it encounters words that
it cannot recognize. Such facility will be most important for the infrequent
users of the console system.

Closely related to the specification of the search is the strategy of
carrying out the search. Where probabilistic or associative indexing is
utilized, the opportunity exists for modifying the search request on the
basis of the results obtained. Anothar scarch of the file can then be made
with the new request. One o” *he most interesting programs in this area is
that of Salton’s group (71) in which the measure of association is the cosine
of the angle between the vectors represented by the index terms assigned

N\,

152 RALPH M. SHOFFNER

tc the request and the file record. The subsequent automatic adjustment of
the retrieval request vector is achieved by modifying the vector with
another vector chosen to maximize the difference between the retrieved
documents that the user felt to be relevant and those that he deemed
irrelevant. The results to date indicate that it is possible to develop
procedures for controlled search in a file with associative indexing. Thus,
one does not have to obtain ever-larger amounts of material in an
ever-larger sphere around the original request. As file sizes increase and as
associative techniques are used more, greater attention will be given to
search strategies and their relation to the objectives of the file system.

List-Oriented Programming Languages

As file systems deal with the variability in nonnumeric records, more
complex data structures are required. As complex structures are incor-
porated into general-purpose systems, list-processing techniques will have
to be incorporated into the system in order to provide satisfactory
manipulation of these records.

Foster (30) has written a very good monograph on list processing. He
discusses the various aspects of these techniques: the data representation,
the operators available in the system, and special features such as “garbage
collection.” This brief monograph is particularly useful because of his use
of ALGOL as a single language in which to define the list-processing
operations. He also discusses some of the well-known list-processing
languages, such as IPL-V, LISP and COMIT.

List-processing systems have had a significant impact on standard
computer languages. Lawson (47) discusses list processing in PL/i. While
the facility in PL/1 will certainly be most useful, it is well to note the
caution with which Lawson concludes his summary: “The user should be
careful to understand the structure and content of all list elements, since he
may inadvertently reference a value which has differing characteristics
from the based variable declaration.” This warning is particularly apt,
since the user is developing his own list-processing macros out of the basic
PL/1 language. Thus, he must maintain the caution appropriate to any
systems programming.

The development of new list-processing languages is continuing.
Biackwell (8) provides a brief discussion of a new list-processing language,
LOLITA. This language is being implemented in the Culler-Fried system,
which uses two keyboards and a display scope connected to a Bunker-
Ramo 340 computer. Many of the list-processing operations are controlled
by the console operator through a set of function keys. Blackwell discusses
the various function keys available to the operator. With these function
keys he can define, load, store, or concatenate list symbols. The major

B T

s s e ad TR

Wy

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 153

difference between LOLITA and other languages, such as LISP or IPL-V,
is the availability of these function operaiors io ihe man at the console. It
appears that the language structure is similar to an elementary CAl
language, but with the addition of a number of special-purpose algebraic
operators to make the system amenable to computational applications.
The investigation of list-processing techniques is continuing at the
Moore School of Electrical Engineering. Carr & Gray (18) report on the
current status of this work, in which they are attempting to extend the
limits of list processing in several directions. Among the issues they are
investigating are: the Growing Machine, a relocatable software system
with simple procedures for addition; an “all-pushdown” computer; and a
software system to produce software to specification. This project is quite
ambitious, and it should produce results of importance to file systems.

FILE SYSTEMS

The previous section reviewed the contributions that have been made to
individual aspects of file systems. This section reviews the operating file
systems on which there have been reports during the past year.

The section is divided into two parts—Data Management Systems and
Special-Purpose Systems. Data management systems are those designed to
be general purpose in the sense that they can be used to maintain and
search files with many different types of information in different file
structures. Special-purpose systems are those developed for specific
purposes, even though they may have some generality. The discussion of
these systems is divided into two parts, dealing, respectively, with
chemical information systems and other systems.

Data Management Systems

Most of the literature of the current year consists of reports on data
management systems that have been previously announced. Olle (66, 67)
has written two review articles in which he discusses GIS, IDS, INFOL,
and TDMS. Though brief, they serve as a good introduction for those who
wish to know how these systems relate to each other.

The Time-Shared Data Management System (TDMS) is continuing
under development at SDC (91). This system, an outgrowth of the
TSS-LUCID system, was discussed by Minker & Sable (61) and by Bleier
(9). The latter article provides information on the data structure definition
of TDMS. Data structure definition is critical to a data management
system, since it determines the amount of structural variation the cata can
have and implies the corresponding processing effort required. From
Bleier’s article, the TDMS data structure appears to be quite fiexible from
the point of view of the definition of the individual logical ecord. Variably

e e e e e R T " -t S Py 7

154 RALPH M. SHOFFNER

appearing fields and subfields can be maintained and searched with no
difficulty. Also, it appears that variable-length fields can be handled. With
respect to the logical grouping of records, indexes —referred to as
concordances—can be maintained as specified by the user. However,
Bleier does not discuss the structure of this concordance or the method of
specifying which elements of a logical record will be included in
concordances.

Williams & Bartram (93) discuss another aspect of TDMS, that of report
generation. The report generation program is called COMPOSE/
PRODUCE. The COMPOSE phase of the program is used for the on-line
development of the report specification. The PRODUCE phase of the
program obtains the information from the report files and produces the
report desired. This phase of the process is carried on with little or no
interaction with the user. From the paper it appears that the capabilities of
the report generator are standard. The significant difference between it and
traditional report generators lies in the user interaction in the COMPOSE
portion of the program. Tkere is little information about the nature of this
interaction beyond the statement that there has been an attempt to use a
restricted subset of English ar the control language for the console user. In
the examples given, this language appears to be very much like COBOL in
the English it uses. There is no indication whether the sophisticated user
can bypass the verbosity requ:red by such an approach.

Another group of SDC personnel have reported upon the problems of
statistical routines for data analysis in an on-line system. Shure, et al. a4
call these routines TRACE, for Time-Shared Routines for Analysis,
Classification, and Evaluation. This system is implemented on the Q-32
Time-Sharing System. As the authors indicate, such on-line general
analysis programs will be of considerable importance to the researcher
who is attempting to perform on-line analysis of very large quantities of
information such as that derived from experiments in the behavioral
sciences. As a result, it would seem most desirable to incorporate this
facility into TDMS.

In last year’s Annual Review, Minker & Sable discuss several other data
management systems that were in the developmental stage, including
DM-1, ADAM, and COLINGO. Dixon & Sable (29) provide a general
discussion of DM-1 and its current capabilities. They do not indicate the
stage of development of DM-1, but their discussion in the present tense
implies that DM-1 ¢xists. In providing an overview of the system, they
discuss briefly the languages used, the organization of the indexes needed
to provide for record definition and maintenance, the types of program
tasks that can be carried out, and the search capability of the system. The
structure of the indexing provided is such that records with variable-length

o e e e - - T~ ol T AR W~ P P VY VF (e -y e

A S A

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 155

fields and nested sub-fields can be specified to the system. Linkage of
separate records can also be performed. Thus, for example, the specifica-
tion of the vendor in an inventory record might be made by the vendor
number. This provides a reference to a separate vendor record in which the
vendor’s name, address, etc., are provided. Programs would then access
both records, to retrieve needed information. To indicate the flexibility of
the structure, it appears that the Multi-list structure could be duplicated
using this facility.

It is interesting to compare the index structure used in DM-1 with the
index structure provided in TDMS. On the surface they are very similar, in
that each goes through several decoding stages to convert a field name to a
code representing the position of that field and then to a record. To control
the highly variable data structure, every field in a record is separately
indexed so that access to the records in the file can be obtained via any of
the logical fields defined.

In DM-1, it seems that there is no way to define certain fields as report
fields only. If so, there would be an unnecessary expansion caused by
including these fields in the indexes.

Connors (25) provides an initial discussion of some of the experience
and results with ADAM (Advanced Data Management), the MITRE
Corporation’s experimental general information processing system. Char
& Foreman (21) provide a final report of the experiments utilizing ADAM.
These articles are refreshingly candid, and the system planner should read
them carefully before embaiking on the development of a data manage-
ment system.

One of the central problems mentioned is that a generalized system
requires a very sophisticated user if some ridiculously excessive machine
times are to be avoided. Connors indicates these requirements: “The user
must be aware of the implications of how his data is structured; he must
understand and control the optimization.” He then goes on to give an
example of a trivial but actual user-implemented problem—to multiply
price by quantity in order to obtain total price. Unfortunately, as a result of
the combination of the data organization and the file generation statements
he used, the fields were placed into different files and more than one hour
of running time was consumed on the IBM 7030 before the procedure was
killed. Connors points out that the user can specify a different data
structure that would make this search and computation faster, but that he
might at the same time be making the procedure more difficult for other
uses of the informaticn. Only the user is in the position to estimate what
the mix of his processing is going to be, and therefore only he can structure
his control of the system. All of this is based upon the assumption that he
knows how the system will perform in response to the processes that he

R e R TS

| TN

it S 2

.
L&

156 RALPH M. SHOFFNER

specifies, and thus can control the system to make it effective in response
to his requirernents.

Char & Foreman also encountered the problem of the sophisticated user.
Plans were developed for the installation of a remote station at
Headquarters, Air Force Logistics Command. This terminal was going to
be used so that all committee members, after training, could be making
their own queries and interrogations of the system.

Although a number of attempts were made by most members of the
committee at writing their own queries, they were successful at only
the simplest queries, and then quite often made mistakes of
punctuation or in typing. In nearly all cases, the mission personnel
were inclined to turn their more complex queries over to a committee
member who was a programmer and had mastered the Fable language
and remote equipment to a greater degree ... some mission person-
nel, as a matter of principle, did not believe it should be their function
to learn a programming language, and others who would try did not
have the time and/or patience to master the intricacies of the language
and equipment, and became discouraged after repeated failure in
attempting to use the English like syntax query language. (p. 52)

When taken out of context these remarks may seem very negative with
respect to the capability of the ADAM system. However, the ADAM
system is reasonably capable as a data management syster. In addition,
the experiment was well run, and its findings do indicate a need for
continued development of data management systems. There are, however,
serious problems in the proper use of such systems, and further controlled
experimentation with ther is needed to provide guidelines for their
development and use.

Another line of activity at MITRE has been the development of AESOP
(An Evolutionary System for On-line Processing). Summers & Bennett
(78) provide a final report on this prototype interactive system. AESOP is
an experimental system implemented on the IBM 7030 (STRETCH)
computer and using CRT consoles. Although the article describes AESOP
as a data-base-oriented system, it is concerned with the terminal control
aspects of the system, display, editing, printing, and programming. The
articlc gives no information about the system’s data management capabil-
ity.

Two new data management systems implemented on IBM 1400-series
systems, have been reported, along with additional reporting on two earlier
systems. The new systems are C-10 and GIPSY (Generalized Information
Processing System). The two older systems are MADAM (Moderately

L e e ma weeo. TR e e AW

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 157

Advanced Data Management) and CFSS (Combined File Search System).
Steil (77) describes work that was originally intended to implement
MITRE’s COLINGO (now called C-10) as a new version on the 1410. He
gives a very good history of the sequence in development objectives and
the changes in direction that took place as a result of their findings. For
example, they decided to program the system in a LISP-like interpreter.
When they began debugging their programs, they found that the
performance was off by several orders of magnitude. As a result, what
began as the development of another file management system became an
experiment to improve the performance of the LYSP-like language. The
paper is of interest because the author chooses to discuss some of the
things that were done wrong as well as those things that were done right.

GIPSY is being used by the International Atomic Energy Agency in
Vienna. Del Bigio (27) has developed a program manual for the system,
which was developed to process bibliographic information. Because of this
original objective, it has certain rigidities in terms of the way that fields are
identified. However, it does include the capability for variable-length fields
and repeating fields, and it permits specification of the fields that will serve
as indexes to the records. While a program manual is not meant for casual
reading, any who are interested in implementing an IBM 1400 file
management system would benefit from this document.

Freeman & Atherton (32) report on the application of another file
management system for the IBM 1400 to the problem of bibliographic
records. Specifically, they are concerned with organizing and searching
document files utilizing CFSS, previously discussed by Climenson (23).
Although the primary interest of the authors is the use of the Universal
Decimal Classification for retrieval purposes, they indicate briefly the
method by which the file was mapped into CFSS and the characteristics of
the system that made it beneficial to use for the experimental system that
they set up. CFSS is being reprogrammed for the IBM 360 by Service
Bureau Corporation. Its availability should be checked for the next review
articie.

Franks (31) has provided a nontechnical article on the characteristics of
the MADAM system. He indicates that MADAM is now available on the
IBM 360/30, but does not indicate whether this is through emulation or
reprogramming.

Given the development of on-line data management systems and the
proliferation of 1401-based systems, what else could possibly be done in
the development of general systems? Vinsonhaler (89, 90) has written a
systtm in FORTRAN IV. His system, BIRS (Basic Indexing and
Retrieval System), is used primarily for document control. The systei is
organized to utilize a 32,000-word core machine and six tape drives. The

158 RALPH M. SHOFFNER

description given is for the implementation on a CDC 3600 at Michigan
State University. This system provides for access to the file by index keys.
Such access can be on the basis of providing a printed listing of indexes, or
by automated search of the file. BIRS/II has been released for national
distribution. In addition to the capabilities of BIRS/I, it will include the
ability to handle coordinate and weighted indexing and will incorporate
sophisticated relevance-searching systems. Finally, it will include word-
root analysis and a synonym dictionary for improved searching capability.
While the inherent problems of tape-oriented systems for machine
searching have been well documented, there are at the same time many
applications in which such systems zie extremely useful. In this situation,
the BIRS/II system will provide a rapid method for a person to try out this
method of information contro! on his own files.

Special-Purpose Systems

Chemical Informatiox Systems. Several of the organizations that are
developing chemicai information systems have been mentioned in the
earlier description of the representation of chemical compounds. Hoffman
(38) discusses the chemical structure storage and search system now
operating at Du Pont. Climenson (23) discussed an early version of this
system. To provide access to the basic documents of the file, there are four

separate files: the compound file, the general term file, the thesaurus file,
and the fragment file. Chemical structures are stored in a separate registry
file, which is used for topological substructure search. Hoffman gives more
recent information on the file characteristics, size, growth rate, the cost of
data preparation, and the cost of file search operations. The registry files
contain 69,000 compounds, and the total input cost per compound is 88
cents. Whiie the computer cost for searching is, of course, a function of the
number of questions per batch, the indications are that for searches of the
nonpolymer registry file the cost is $55 (for 55,000 nonpolymers). The
incremental cost per search question is estimated to be $12. At the present
time, the system is implemented on an IBM 7010 with 1301 disc. During
1967 a major study of file organization was undertaken tc lead to the
storage of their files on direct access devices in preparation for on-line
searching. No report is available yet.

Registration and searching of chemical compounds is performed using
conventions that define a connection number and oxidation state for each
item. Polymers are described in terms of significant repeating units and
end groups. Characters in each registry record indicate the presence or
absence of information relating to the compound in the document system
files.

Van Meter, et al. (87) describe an experimental chemical information

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 159

system developed under the Army Chemical Information and Data
Systems Organization. The goal of the work is practical: to develop a
system to satisfy the needs of the Army for c:.emical information and data.
The input for the system consists of 230,000 chemical compounds from
three separate files—the Toxicological Information Center of Edgewood
Arsenal (TOXINFO) file, the Chemical-Biological Coordination Center
(CBCC) file, and the Chemical Abstracts Service (CAS) file. The contents
of the system include the rnolecular formula, structural formula images,
connection table representation of structural formulas, CIDS registry
number, nomenclature, litsrature references, file code, and file registry
number. The paper is heavily oriented toward the logical aspects of
representing information and the nature of the searches that are possible as
a result of the logical information included in the file. The physical aspects
of the operation are not included. The authors indicate that these aspects
will be discussed in a forticoming report on the system.

Matthews & Thomson (39) diccuss brieflv a COBOL-organized system
to carry out weighted coordinate ‘erm search utilizing an index stored on
magnetic tape. A weighted search is based on selecting a group of search
terms that express each concept ol the inguiry, assigning each a weight
indicative of its relative imporiance, and computing a “score” for answers
resulting from combinations of these terms. While it may appear that this
search method is similar to tha: proposed by Brandhorst, that is not the
intention. Rather, the logic is a conjunction of the terms, and the weighting
indicates the relative importance the user attaches to these individual
terms. This system has been used .o retricve patents from the Infermation
for Industry patent file. It is repoited that “A typical question with ten
terms having an average frequency of posting would require 12 minutes on
an IBM 1410 (40K) computer, for which current charges are $15. This time
assumes that the inquiry is one of about five inquiries which have been
processed together.” Such information would be more meaningful if it
indicated also the size of the tape tile over which the searches are being
processed.

Other Systems. Kessler (45) gives an oveiview of the on-line aspects of
project TIP (Technical Information Program) at M.I.T. There are now
60,000 articles, covering 32 of the physics journals, in the system. Half are
on disc. and half are on tape ready to go to disc. Access over the system is
to citations backed up by two microfilm-based printout facilities for access
to the documents. Through Project MAC, the experiment has a wide range
of users because access to the IBM 7094-based system is through 150
on-line keyboards.

Anderson, et al. (1) discuss the experimental literature system that is
available for reference retrieval experimentation at Lehigh University’s

R e R Al &

160 RALPH M. SHOFFNER

Center for the “nformation Sciences. The file at the present time contains
2,500 document references in the information sciences. These are being
transferred to disc, and on-line search programs are being set up to operate
through GE Data Net-15s and Model 33 Teletypes. The access will be to
both serial and inverted files, which will be maintained on the GE 225. The
search programs will be capable of both exact match and associative
searching. The conversation routine for specifying a search uses normal
search terms, not search codes. It appears, however, that the searches are
placed entirely in terms of conjunction of terms, without “or” logic
available.

The Information Systems Laboratory (ISL) of the Moore School of
Electrical Engineering, University of Pennsylvania, has been described by
Rubinoff (62). One of the interesting assertions made is that computer aid
must be provided not only for searching a document file but also for
librarian-like assistance that the user may obtain when he is operating in
real time with the computer system over his on-line console. In other
words, it must also be able to indicate to the user such information as how
the file is organized and what the meanings are of index terms that were
adopted by indexers at the time of indexing. The planned system will have
the following features: The user wili have direct console access to the
system. He will be able to obtain not only catalog and index data, but
descriptions of the system itself. He will be permitted an unrestricted
search vocabulary, and it will be the responsibility of the system to
interpret search terms, to request clarifications, or to provide meanings of
terms upon request.

Much like Project INTREX, the ISL document system is expected to
incorporate many different access points, such as language, color of the
document, etc. In its first form, this system is implemented on an IBM
7040 computer with an IBM 1301 disc. A DEC PDP-8 serves as an
interface between the users aixd the 7040 system. This laboratory wiil be
an outstanding place within which to do the research that will continue the
excellent reputation of the Moore School.

A set of reports by Magnino (56, 57) and Nelson (65) discuss an
operaticnal system that uses text processing of input docurients and
disseminates the information to 2,400 user profiles for IBM and World
Trade Corporation. The text processing is based upon the entire amount of
text available in machine form. In most cases this is an abstract of 200 to
300 words, plus title and other bibliographic data. It appears that searching
is based upon matching the text of the documents with the precise search
terms provided by the user. This requires the user to set up all of the
alternative terms that he wishes to have used in the search.

From an input of 12,500 documents, more than 500,000 abstiacts were

e e o s it wemad I T i W eme e = XTI e SR T o RN S

-y

- v o anG:

B SP S T

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 161

sent out during 1966, to approximately 1,400 users. Thus the ratio of
notifications per document per user was .030, meaning that the average
user received abstracts of 3 % of the documents announced during the year.
The 1966 data provided show that over 83 % of the notifications (on a
70% return of evaluation information) were judged by the users to be
relevant to their interests. While this judgment of relevance is extremely
different from the relevance determined when a person is making a specific
search yequest, it shows that the system is providing information the user
wants to see. It is most encouraging that an operation of this magnitude is
providing useful service to its users.

Two organizations that have been mentioned several times are MITRE
and Cornell University. Both organizations have made significant contribu-
tions to file organization and search, and both have embarked upon
significant efforts in text processing in file systems. From the two
documents provided on SAFARI (20, 92), the present concerns of
investigators are for text analysis and they have not attempted to
incorporate search and retrieval capabilities. By contrast, Salton’s work at
Cornell is well advanced. The SMART system is a proven research vehicle
within which the text processing is being incorporated. In the past,
excellent work has been provided by the many organizations in the field,
and it is likely that as they enter new areas of inquiry, they will similarly
make further significant contributions.

CONCLUSION

Because this has been a review of a single year’s literature, it has neces-
sarily covered only small portions of many ongoing projects. As a result,
it is difficult to isolate a single “significant event” for the year. Neverthe-
less, it is possible to derive an implied significance for the file system liter-
ature of 1967 by projecting what should occur within the next three years.

All programs in information processing education will incorporate at
least one course devoted to the creation and maintenance of file systems.
Quantitative models of file systems will incorporate characteristics of both
structure and use and will be used to predict the following: response time,
storage requirement, processing effort, and transaction capacity. Finally,
operational file systems will commonly utilize statistical analysis, such as
that of the co-occurrence of indexing terms, to improve their retrieval
performance.

In three years, the principal research concern will be user interaction
with on-line graphic display file systems. As a result of its dynamic aspect,
this research will necessitate further work on the issues of structure, search
strategy, quantitative analysis, and, of course, education. Overall, our
understanding of file systems is reasonably good. The work, in fact, is

| 162 RALPH M. SHOFFNER

more extensive and better than this reviewer anticipated. There are now a
. number of strong individuals and groups concerned with file systems. i
\ From this, we can anticipate that knowledge and application will be]
extended rapidly. i

REFERENCES

(1) ANDERSON, RONALD R.; AMICO, ANTHONY F.. GREEN, JAMES S.
Experimental retrieval systems studies, Report no. 2; Systems manual for experimental
literature collection and reference retrieval system. Center for the Information
Sciences, Lehigh University, Bethlehem, Pa., 15 April 1967, 59 p. (AFOSR-724-65)
(AD-652 279)

(2) ANDERSON, RONALD R.; KASARDA, ANDREW J.; REED, DAVID M.
Experimentai retrieval systems studies. Report no. 3. Center for the Information
Sciences, Lehigh University, Bethlehem, Pa., 15 April 1967, 88 p. (NSF-GE-2569)
(AD-653 280)

(3) ARMITAGE, JANET E.; CROWE, J. E; EVANS, P. N.: LYNCH, M. F;
McGUIRK, J. A. Documentation of chemical reactions by computer analysis of
structural changes. Journal of Chemical Documentation, 7 (November 1967) 209-215.

(4) ARMITAGE, JANET E.; LYNCH, MICHAEL F. Articulation in the generation of
subject indexes by computer. Journal of Chemical Documentation, 7 (August 1967)

‘, 170-178. Presented at the 153rd Meeting of the American Chemical Society, Division

of Chemical Literature, Miami, Fla., 9-14 April 1967.
(5 BARRON, D. W.; FRASER, A. G.; HARTLEY, D. F.; LANDY, B.; NEEDHAM,

: R. M. File handling at Cambridge University. In: AFIPS Conference Proceedings, vol.

| 30; 1967 Spring Joint Computer Conference, Atlantic City, N.J., 18-20 April.

! Thompson, Washington, D.C., 1967, p. 163-167.

(6) BEMER, R. W. Do it by the numbers—digital shorthand. Communications of the .
ACM, 3 (October 1960) 530-536.

(7) BENNER, FRANK H. On designing generalized file records for management

/ information systems. In: AFIPS Conference Proceedings, vol. 31: 1967 Fall Joint

3 Computer Conference, Anaheim, Calif., 14~16 November. Thompson, Washington,

k D.C., 1967, p. 291-303.

] (8) BLACKWELL, FREDERICK W. An on-line symbol manipulation system. In:

H Proceedings of 22nd National Conference, Association for Computing Machinery.

4 Thompson, Washington, D.C., 1967, p. 203-209.

i (9) BLEIER, ROBERT E. Treating hierarchical data structures in the SDC Time-Shared

| Data Management System (TDMS). System Development Corp., Santa Monica, Calif.,

: 29 August 1967, 23 p. (SP-2750) Also published in: Proceedings of 22nd National

] Conferenice, Association for Computing Machinery. Thompson, Washington, D.C.,

1967, p. 41-49.

(10) BOBKA, MARILYN E.; SUBRAMANIAM, J. B. A computer oriented scheme for
coding chemicals in the field of biomedicine. Center for Documeatation and
Communication Research, School of Library Science, Case Western Reserve Univer-
sity, Cleveland, Ohio, July 1967, 22 p. (Comparative Systems Lab. Technical report no.
1Y) .

(11) BOBROW, DANIEL G.; MURPHY, DANIEL L. The structure of a LISP system '
using two-level storage. Bolt Beranek and Newman Inc., Cambridge, Mass., 4 ‘
November 1966, 26 p. (Report no. Scientific-6) (AFCRL 66-774) (AD-647 601) Also : ,
published in: Communications of the ACM, 10 (March 1967) 155-159. L :

(12) BOURNE, CHARLES P.; FORD, DONALD F. A study of methods for systemati- !i
cally abbreviating English words and names. Journal of the Association for Computing

) Machinery, 8 (October 1961) 538-552. ,‘

y (13) BOWMAN, CARLOS M.: LANDEE, FRANC A.; RESLOCK, MARY H. A !

|

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 163

chemically oriented information storage and retrieval system. l: Storage and
verification of structural information. Journal of Chemical Documentation, 7 (February
1967) 43-47.

(14) BRANDHORST, W. T. Simulation of Boolean logic constraints through the use of
term weights. American Documentation, 17 (July 1966) 145-146.

(15) BROWN, WILLIAM F. A matrix information storage and retrieval system utilizing an
{BM-360, Model-30 Computer. In: Proceedings of the 30th Annual Meeting of the
American Documentation Institute, New York. October 1967. Thompson, Washington,
D.C., 1967, p. 36-40.

(16) BRYANT, EDWARD C.; SEARLS, DONALD T.. SHUMWAY, ROBERT H.:
WEINMAN, DAVID G. Associative adjustments to reduce errors in document
screening. Westat Research, Inc., Bethesda, Md., 31 March 1967, 78 p. (Final report
no. 66-301) (AFOSR 67-0980) (AD-651 630)

(17) CALESS, T. W.; KIRK, D. B. An appiication of UDC to machine searching. Journal
of Documentation, 23 (September 1967) 208-215.

(18) CARR, J. W,, 1ll; GRAY, H. J.; et al. List processing research techniques. Third
quarterly report, December 1966-April 1967. Moore School of Electrical Engineering,
University of Pennsylvania, Philadelphia, September 1967. 120 p. (Moore School
Report 68-03) (Technical report ECOM 02377-3)

(19) CAUTIN, HARVEY; LOWE, THOMAS C.;: RAPP, FREDERICKA; RUBINOFF,
MORRIS. An experimental on-line information retrieval system. University of
Pennsylvania, Moore School of Electrical Engineering, Philadelphia, April 1967,
107 p.; 1967, 20 p.

(20) CHAPIN, P. G.; GROSS, L. N.: NORTON, L. M.; BELLER, R.J.; BROWNE,C. T.
SAFARI, an on-line text-processing system user's manual. MITRE Corp., Bedford,
Mass. March 1967, 34 p. (Information System Language Studies no. 15) (MTP-60)
(MITRE Project 1108)

(21) CHAR, BEVERLY F.; FOREMAN, ALLING C. Joint AFLC/ESD/MITRE Ad-
vanced Data Management (ADAM) Equipment. MITRE Corp., Bedford, Mass.,
February 1967, 124 p. (Final report no. MTR-285) (ESD TR-66-330) (AD-648 226)

(22) CHIEN, R. T.; PREPARATA, F. P. Topological structures of information retrieval
systems. University of lllinois, Coordinated Science Lab., Urbana, October 1966, 19 p.
(Report no. R-325) (AD-642 501)

(23) CLIMENSON, W. DOUGLAS. File organization and search techniques. In: Annual
review of information science and technology. Carlos A. Cuadra, ed. Interscience, New
York, 1966, vol. 1, p. 107-135.

(24) COHEN, JACQUES. A use of fast and slow memories in list-processing languages.
Communications of the ACM, 10 (February 1967) 82-86.

(25) CONNORS, THOMAS L. Software concerns in advanced information systems. In:
Walker, Donald E., ed. Information system science and technology. Papers prepared
for the Third Congress. Thompson, Washington, D.C.. 1967, p. 395-398.

(26) CORNELL UNIVERSITY. DEPARTMENT OF COMPUTER SCIENCE. Informa-
tion storage and retrieval. Scientific report no. ISR-12 to the National Science
Foundation. Reports on evaluation, clustering, and feedback. Gerard Salton, Project
Birector. Ithaca, N.Y., June 1967, 1 vol. (various pagings)

(27) Del BIGIO, G. GIPSY: Generalized Information Processing System. Program manual.
Internal publicetion of International Atomic Energy Agency, Vienna, Austria, 16 May
1967, 92 p.

(28) DeMAINE, P. A. D.; KLOSS, K.; MARRON, B. A. The SOLID system. 1I: Numeric
compression. 111: Alphanumeric compression. National Bureau of Standards, Washing-
ton, D.C., 15 August 1967. (Technical note 413)

(29) DIXON, P. J.; SABLE, J. DM-1: A generalized data management system. In: AFIPS
Conference Proceedings, vol. 30; 1967 Spring Joint Computer Conference, Atlantic
City, N.J. 18-20 April. Thompson, Washington, D.C., 1967, p. 185-198.

(30) FOSTER, J. M. List processing. American Elsevier, London and New York, 1967,
54 p. (Macdonald computer monographs)

P

Ky

164 RALPH M. SHOFFNER

(31) FRANKS, E. W. The MADAM System: data management with a small computer.
System Development Corp., Santa Monica, Calif., 8 September 1967, 16 p. (SP-2944)
(AD-658 472)

(32) FREEMAN, ROBERT; ATHERTON, PAULINE. File organization and search
strategy using the Universal Decimal Classification in mechanized reference retrieval
systems. American Institute of Physics, UDC Project, New York, 15 September 1967,
30 p. (Report no. AIP/UDC-5) (PB-176 152)

(33) GABRINI, PHILIPPE J. Automatic introduction of information into a remote-access
system: a physics library catalog. University of Pennsylvania, Moore School of
Electrical Enginecring, Philadelphia, | November 1966, 79 p. (Technical Report, no.
67-09) (AD-64i 564)

(34) GRAUER, ROBERT T.; MESSIER, MICHEL. An evaluation of Rocchio’s clustering
algorithm. In: Comell University. Dept. of Computer Science. information storage and
retrieval. Report no. ISR-12 to NSF. Gerard Salton, Director. Ithaca, N.Y., June 1967,
sec.-6 (39 p.)

(35) GRAY, J. C. Compound data structure for computer aided design; a survey. In:
Proceedings of the 22nd National Conference, Association for Computing Machinery.
Thompson, Washington, D.C., 1967, p. 355-365.

(36) HADDON, B. K.; WAITE, W. M. A compaction procedure for variable-length storage
elements. Computer Journal, 10 (August 1967) 162-167.

(37) HAYES, ROBERT M. A theory for file organization. In: Karplus, Walter J., ed.
On-line computing: time-shared computer systems. McGraw-Hill, New York, 1967, p.
264-289.

(38) HOFFMAN, WARREN S. An integrated chemical structure storage and search
system operating at Du Pont. In: American Chemical Society. Abstracts of papers,
154th Meeting, Chicago, 10-15 September 1967. Washington, D.C., 1967, 16 p. (Sec.
G-Div. of Chem. Lit., paper 15)

(39) HYDE, E.; MATTHEWS, F. W.; THOMSON, LUCILLE H.; WISWESSER, W. J.
Conversion of Wiswesser Notation to a connectivity matrix for organic ccmpounds.
Journal of Chemical Documentation, 7 (November 1967) 200-204.

(40) IDE, ELEANOR; WILLIAMSON, R.; WILLIAMSON, D. The Cornell programs for
cluster searching and relevance feedback. In: Cornell University. Dept. of Computer
Science. Information storage and retrieval. Report no. ISR-12 to NSF. Gerard Salton,
Director. Ithaca, N.Y., June 1967, sec.-4 (13 p.)

(41) JONES, PAUL E.; CURTICE, ROBERT M. A framework for cornparing term
association measures. American Documentation, 18 (July 1967) 153-161.

(42) JONES, PAUL E.; GIULIANO, VINCENT E.; CURTICE, ROBERT M. Papers on
automatic language processing. Arthur D. Little, Inc., Cambridge, Mass., February
1967, 3 vols. (ESD TR-67-202, vol. 1-3) Vol. I: Selected collection statistics and data
analyses. {AD-649 073); Vol. 2: Linear modeis for associative retrieval. (AD-649 038);
Vol. 3: Development of string indexing techniques. (A D-649 039)

(43) KELLOGG, CHARLES H. CONVERSE —a system for the on-line description and
retrieval of structured data using natural language. System Development Corp., Santa
Monica, Calif., 26 May 1967, 16 p. (SP-2635)

(44) KELLOGG, CHARLES H. On-line translation of natural language questions into
artificial language queries. System Development Corp., Santa Monica, Calif., 28 April
1967, 47 p. (SP-2827)

(45) KESSLER, M. M. The “on-line” technical information system at M.1.T.— Project TIP.
In: 1967 IEEE International Convention Record. Institute of Electrical and Electronics
Engineers, New York, 1967, part 10, p. 40-43.

(46) LAMB, SIDNEY M.; JACOBSEN, WILLIAM H., JR. A high speed large capacity
dictionary system. Mechanical Translation (MT), 6 (November 1961) 76-107.

(47) LAWSON, HAROLD W., JR. PL/1 list processing. Communications of the ACM, 10
(June 1967) 358-367.

(48) LEFKOVITZ, DAVID. A chemical notation and code for computer manipulation.
Journal of Chemical Documentation, 7 (November 1967) 186-192.

C e e e, o G

e T S ——

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 165

| (49) LEFKOVITZ, DAVID. The impact of third generation ADP equipment on alternative

chemical structure information systems. Presented at the 153rd Mzeeting of the
‘ American Chemical Society, Division of Chemical Literature, Miami, Fla., 9-14 April

! 1 1967, 31 p.

" : (50) LEFKOVITZ, DAVID. Use of a nonunique notation in a large-scale chemical

. information system. Journal of Chemical Documentation, 7 (November 1967) 192-200.

‘ ‘ (51) LEIMKUHLER, FERDINAND F. A literature search medel. [Abstract] Builetin of

' the Operations Research Society of America. 15, supplement 1 (Spring 1967) p.

K b B56-57. (PB 174 390)

. (52) LEVIEN, R. E.; MARON, M. E. A computer system for inference execution and data

retrieval. Communications of the ACM, 10 (November 1967) 715-721.

(53) LONG, JOHN M.;: BARNARD, HOWARD J.: LEVY, GERTRUDE C. Dictionary
buildup and stability of word frequency in a specialized medical area. American
Documentation, 18 (January 1967) 21-25.

(54) LOWE, THOMAS C. Design principles for an on-line information retrieval system.
University of Pennsylvania, Moore School of Electrical Engineering. Phil:-delphia,
December 1966, 136 p. (Technical Report no. 67-14) (AFOSR 67-0423) (AD-647 196)

(55) LOWE, THOMAS L. Direct-access memory retrieval using truncated record names.
Software Age, | (September 1967) 28-33.

(56) MAGNINO, JOSEFH J., JR. IBM’s unique but operational international industrial
textual documentation system—ITIRC. Presented at 33rd Conference of FID and
International Congress on Documentation, Tokyo. 12-22 September 1967. (Preprint, 9
p. and appendix)

(57) MAGNINO, JOSEPH J., JR. Information technology and management science. Paper

; ‘ presented at the Institute of Management Sciences, 14th International Meeting, Mexico
. . City, August 1967. (Preprint, 8 p. and appendix)
'l (58) MARRON, B. A.; DeMAINE, P. A. D. Automatic data compression. Communica-
; tions of the ACM, 10 (November 1967) 711-714.
(59) MATTHEWS, F. W.; THOMSON, L. Weighted term search: a computer program for
an inverted coordinate index on magnetic tape. Journal of Chemical Documentation, 7
(February 1967) 49-56.
(60) MEADOW, CHARLES T. The analysis of information systems; a programmer's
‘ - i introduction to information retrieval. Wiley, New York, 1967, 301 p. (Information
: Sciences Series)
: (61) MINKER, JACK; SABLE, JEROME. File organization and data management. In:
i Annual review of information science and technology. Carlos A. Cuadra, ed.
Interscience, New York, 1967, vol. 2, p. 123-160.
(62) MOORE SCHOOL OF ELECTRICAL ENGINEERING. The Moore School
Information Systems Laboratory. Morris Rubinoff (principal investigator). University
of Pennsylvania, Moore School of Electrical Engineering, Philadelphia, May 1967,
28 p. (AFOSR 67-1952) (AD 657 809)
(63) MORENOFF, EDWARD; McLEAN, JOHN B. Application of level changing to a
multilevel storage organization. Communications of the ACM, 10 (March 1967)
149-154.
(64) MORENOFF, EDWARD: McLEAN., JOHN B. A code for non-numeric information
processing applications in online systems. Communications of the ACM, 10 (January
1967) 19-22.
. (65) NELSON, PAUL J. User profiling for normal text retrieval. In: Proceedings of the
30th Annual Meeting of the American Documentation Institute, New York, October
1967. Thompson, Washington, D.C., 1967, p. 288-295.
(66) OLLE, T. WILLIAM. Generalized systems for storing structured variable length data
and retrieving information. Presented at IFIP/FID Conference on Mechanized
Information Storage and Retrieval, Rome, ltaly, 14-17 June 1967. (Preprint, 18 p.)
(67) OLLE, T. WILLIAM. IDS and GIS: Chalk and untasted cheese. Prepared for
publication in: Newsletter of the ACM Special Interest Committee in Business Data
Processing, 28 September 1967. (Preprint, 7 p.)

o E

— A .

A e M 7t R e ———

166 RALPH M. SHOFFNER

(68) POLLOCK, STEPHEN. Measures for the comparison of information retrieval
systems, and the normalized sliding ratio. [Abstract] Bulletin of the Operations
Research Scciety of America, 15, supplement 1 (Spring 1967) p. B-57.

(69) PREPARATA, F. P.; CHIEN, R. T. On clustering techniques of citation graphs.
University of lllinois, Coordinated Scienca Lab., May 1967, 25 p. (Report no. R-349)
(AD-652 593)

(70) ROSS, DOUGLAS 7. The AED f{ree storage package. Communications of the ACM,
10 (August 1967), 481-492.

(71) SALTON, GERARD. The SMART Project—status report and plans. In: Cornell
University. Dept. of Computer Science. Information storage and retrieval. Report no.
ISR-12 to NSF. Gerard Salton, Director. Ithaca, N.Y., June 1967, scc.-1 (12 p.)

(72) SCHECTER, GEORGE, ed. Information retrieval —a critical view. Based on Third
Annual Colloquium on Information Retrieval, 12~13 May 1966, Philadelphia, Pa.
Thompson, Washington, D.C., Academic Press, London, 1967, 282 p.

(73) SHUMWAY, R. H. On the expected gain from adjusting matched term retrieval
systems. Communications of the ACM, 10 {November 1967) 722-725.

(74) SHURE, GERALD H.; MEEKER. ROBERT J.;: MOORE, WILLIAM H., JR.
TRACE — Time-shared Routines for Analysis, Classification and Evaluation. In:
AFIPS Conference Proceedings, vol. 30: 1967 Spring Joint Computer Conference,
Atlantic City, N.J., 18-20 April. Thompson, Washiigton, D.C., 1967, p. 525-529

(75) SPARCK JONES, KAREN; JACKSON, DAVID. Current approaches to classifica-
tion and clunip-finding at the Cambridge Language Research Unit. Computer Journal,
10 (May 1967) 29-37.

(76) SPARCK JONES, KAREN; JACKSON, DAVID M. The use of the theory of clumps
for information retrieval. Report on the O.S5.T.l.-supported project. Canbridge
Language Research Unit, Cambridge, England, June 1967, | vol. (various pagings)
(M.L. 200)

(77) STEIL, GILBERT P., JR. File managemerit on a small computer: the C-10 System. I:1:
AFIPS Conference Proceedings, vol. 30: 1967 Spring Jo:nt Computer Couference,
Atlantic City, N.J., 18-20 April. Thompson, Washington, [).C., 1967, p. 199-212.

(78) SUMMERS, J. K.; BENNETT, EDWARD M. AESOP-a final report: a prototype
on-line interactive information control system. In: Walker, Donald E.. ed. Information
system science and technology. Papers prepared for the Third Congress. Thompson,
Washington, D.C., 1967, p. 69-86.

(79) SWETS, JOHN A. Effectiveness of information retrieval methods. Bolt Beranek and
Newman Inc., Cambridge, Mass., 15 June 1967, 47 p. (AFCRL-67-0412)

(80) TATE, F. A. Handling chemical compounds in information systems. In: Annual
review of information science and tecknology. Carlos A. Cuadra, ed. Interscience, New
York, 1967, vol. 2, p. 285-309.

(81) THOMPSON, DAVID A.. BENNIGSON, LAWRENCE;: WHITMAN, DAVID.
Structuring information bases to minimize user search time. In: Proceedings of the 30th
Annual Meeting of the American Documentation Institute, New York, October 1967.
Thompson, Washington, D.C., 1967, p. 164-168.

(82) THOMSON, LUCILLE H. HYDE, E.; MATTHEWS, F. W. Organic search and
display using a connecivity mairix derived from Wiswesser Notation. Journal of
Chemical Documentation, 7 (November 1967) 204-209.

(83) TONGE, FRED M. A simple scheme for formalizing data retrieval requests. RAND
Corp., Santa Monica, Calif., May 1967, 31 p. (Report no. RM-5150-PR) (AD-652 201)

(84) UCHIDA, H.; KIKUCHI, T.; HIKAYAMA, K. Mechanized retrieval system for
organic compounds— An evaluation of the fragmentation code system. In: 33rd
Conference of FID and International Congress on Documentation, Tokyo, 12-22
September 1967. Abstracts. [Tokyol, 1967, 13 p.

(85) Van DAM, ANDRIES:; EVANS, DAVID. A compact data structure for storing,
retrieving and manipulating line drawings. In: AFIPS Conference Proceedings, vol. 30;
1967 Spring Joint Computer Conference, Atlantic City, N.J., 18-20 April. Thompson,
Washington, D.C., 1967, p. 601-610.

e a1 T Y YA g —— 2 SR T R 09 N M Sl B P 5

A

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 167

(86) VANDER STOUW, G. G.; NAZNITSKY, L;: RUSH, J. E. Procedures for converting
systematic names of organic compounds into atom-bond connection tables. Presented
at the 153rd Meeting of the American Chemical Society, Division of Chemical
Literature, Miami, Fla., 9-14 April 1967.

(87) VAN METER, CLARENCE T.; LEFKOVITZ, DAVID; POWERS, RUTH V. An
experimental chemical information and data system. Status report, January-December
1966. University of Pennsylvania, Philadelphia, January 1967, 220 p. (Report no.
CIDS-4) (Contract DA-18-035-AMC-288 (A)) (AD-657 575)

(88) VENNER, FRANK H. On designing generalized file records for management
information systems. In: AFIPS Conference Proceedings, vol. 31: 1967 Fall Joint
Computer Conference, Anaheim, Calif., 14-16 November. Thempson, Washington,
D.C., 1967, p. 291-303.

(89) VINSONHALER., JOHN F. BIRS: a system of general purpose computei programs
for information retrieval in the behavioral sciences. American Behavioral Scientist, 10
(February i967) 12, 21-24.

(90) VINSONHALER, JOHN F. BIRS: a system of general purpose computer programs
for information retrieval. Learning Systems Institute, College of Education, Michigan
State University, 9 February 1967, 19 p. (Papers of the Institute #39, revised)

(91) VORHAUS, ALFRED H.; WILLS, ROBERT D. The Time-shared Data Management
System: a new approach to data management. System Development Corp., Santa
Monica, Calif., 13 February 1967, 11 p. (SP-2747)

(92) WALKER, DONALD E. SAFARI, an on-line text-processing system. In: Proceedings
of the 30th Annual Meeting of the Amernican Documentation Institute, New York,
October 1967. Thompson, Washington, D.C., 1967, p. 144-147.

(93) WILLIAMS, WILLIAM D.; BARTRAM, PHILIP R. COMPOSE/PRODUCE: A
user-criented report generator capability within the SDC Time-shared Data Manage-
ment System. In: AFIPS Conference Proceedings, vol. 30; 1967 Spring Joint Computer
Conference, Atlantic City, N.J., 18-20 April. Thompson, Washington, D.C., 1967, p.
635-640.

(94) ZUNDE, PRANAS; ARMSTRONG, FRANCES T.: STRETCH, TERRANCE T.
Evaluating and improving internal indexes. In: Proceedings of the 30th Annual
Meeting of the American Documentation Institute, New York, October 1967.
Thompson, Washington, D.C., 1967, p. 86-89.

et Ly ek, £ AC'E A . A o M VRN S~ . - : o w—

Al mem oD e A T o e

s o

RETVOIE i T

