The Council of Deans of the Schools of Education in the Wisconsin State Universities undertook to (1) identify emerging roles and functions of campus laboratory schools, (2) establish roles and functions for laboratory schools operated by the Wisconsin State Universities, and (3) suggest steps for implementation of roles and functions. A review of the history of laboratory schools in the United States, a review of the functions of the Wisconsin State Universities' laboratory schools, and a report from the Wisconsin Conference on Campus Laboratory Schools (1967) reveal the present status of laboratory schools. It is concluded that while laboratory schools are meeting the roles and functions defined by the Coordinating Committee for Higher Education in Wisconsin in 1959, there is a need to redefine the roles and functions of laboratory schools, and laboratory schools should continue to deemphasize the student teaching role. Some identifiable emerging and expanding roles and functions include innovation, dissemination, experimentation, demonstration, new designs for teacher education, change, new media development, service, observation, and participation. Finally, laboratory schools may need to modify their administrative organization as emerging and expanding roles dictate. (Appended are "Utilization of Public Campus Laboratory Schools in Wisconsin, 1968" and 15 other reports on the status of the laboratory school in Wisconsin.) (SG)
ROLES AND FUNCTIONS OF LABORATORY SCHOOLS

A Report to the Council of Presidents

The Editing Committee
B.J. Young, Chairman for
The Councils of the Deans of Education and Directors of Laboratory Schools
Wisconsin State University System
November 1, 1967
Revision of 10/16/67 statement

IN-SERVICE EDUCATION
A Statement of Roles

Individual Teacher: Professional responsibility to maintain his maximum level of competence.

Local Education Agency: Basic responsibility for stimulating and providing individual and group programs with emphasis on the educational needs and concerns of the community and its schools. Resources are secured from inside and outside the school system.

Colleges and Universities: Traditional role of community service includes an obligation to provide and participate in in-service education programs. The assumed responsibility for pre-service teacher-education includes a continuing responsibility for the teaching competence of graduates. This responsibility can be discharged, in part, through the provision of appropriate in-service education opportunities. Participation in in-service activity as a means to enhance pre-service teacher education programs.

Department of Public Instruction: Maintain communications channels enabling:

--knowledge by colleges and universities of developments, programs, and needs concerning schools, such as new curriculums, status studies, financial matters, and federal programs.

--information by local education agencies regarding in-service education resources, such resources being available from professional organizations, colleges and universities, state departments, business-industry, and other education agencies.

The three agencies recognize the mutual concern that each must be provided sufficient financial support to enable it to fulfill its roles.
FORWARD

This report is in response to the request of the Presidents' Council who sought information and recommendations about campus laboratory schools. The challenge from the Council of Presidents came at their Eau Claire meeting in April, 1967. They requested the Council of Deans to prepare a report for them.

As a result of this request, the Council of Deans had prepared by their members four status reports dealing with these topics: The Laboratory Schools in the U.S., Cost Analysis of Wisconsin State University Laboratory Schools, Research Activities in the Laboratory Schools, and Current Uses and Functions of Wisconsin State University Laboratory Schools.

An evaluation of these reports at a meeting of the Council of Deans of Colleges of Education resulted in The Wisconsin Conference at Racine (Wingspread) on June 28-30, 1967. This Conference was titled, "Roles and Functions of the Laboratory Schools in the State University System". It was jointly sponsored by The Johnson Foundation and The Upper Midwest Regional Educational Laboratory.

The participants in this conference were in attendance because of their interest and concern for quality teacher education programs and the kinds of related, essential laboratory experiences in those programs. These educational agencies or groups were represented: The Coordinating Committee for Higher Education, The Board of Regents of the Wisconsin State Universities, The Council of Presidents of the Wisconsin State University System, The Wisconsin State Department of Public Instruction, The Upper Midwest Regional Educational Laboratory, The Laboratory School Directors of the Wisconsin State University System, and the Council of Deans of Education of the Wisconsin State University System.
Representatives also were in attendance from the University of Wisconsin-Madison, the University of Wisconsin-Milwaukee, and the education departments of the state universities.

These interested people plus resource persons, who are national leaders in education, objectively and rather exhaustively surveyed the Wisconsin State University Laboratory School situation. This report attempts to summarize the deliberations of this conference. It underscores needs in teacher education for leadership, varieties of complementary laboratory methods both real life and vicarious, selected personnel, adequate facilities and equipment, satisfactory budgets, and consistent, strong support from top leadership among members of the Presidents' Council, Board of Regents, and Coordinating Committee for Higher Education. It is intended that this summarizing report of the Wingspread Conference will assist the Council of Presidents in effectively dealing with the topic of discussion, "Emerging Roles and Functions of Campus Laboratory Schools."
A Progress Report

January 1968

The following actions stem from the Wisconsin Conference on Campus Laboratory Schools which was held at Wingspread in June of 1967.

At that conference, Dr. Lester Emans, chairman of the Council of Deans of the Schools of Education in the Wisconsin State Universities, issued a challenge to conference participants, it reads as follows:

> In our very first session here, our opening remarks attempted to say here's the status quo. Let's move on to something else. The Deans of the Schools of Education were charged by the Council of Presidents with presenting a report on the laboratory schools. This we attempted to do in those four early reports. We did not in any way attempt to say that those status reports were complete reports and a look ahead. We are sorry if we disappointed some of our friends in these reports, but we did feel obligated to talk a little bit about the old system. But now, now in the last day or so the entire spirit of the rest of this Wisconsin conference has been on the new laboratory school, her changing functions. And I as chairman of the council would like to throw to each of you a torch of the new school. I throw it to my fellow deans, all of whom are present here. We do have a responsibility. I throw it to the chairmen of the laboratory schools, all of whom are here. I throw that torch to the chairmen of the departments of elementary education, under which our laboratory schools operate.

The challenge was obviously accepted and the following actions and reactions would serve to substantiate that acceptance.

Immediately following the conference an Ad Hoc Committee was appointed by Dr. Emans to initiate an administrative structure for cooperative attitudes between and among the State Department of Public Instruction, local school systems, State University personnel and other educational agencies.
The State Department of Public Instruction then developed a position paper which was presented to the Council of Deans indicating the need for a continuing cooperative relationship of the State Department of Public Instruction, the local schools and the State Universities. Soon after the conference the Coordinating Committee for Higher Education organized a state-wide committee to formally study the Campus Laboratory Schools and secured professional assistance to carry out a review of current roles and functions of the Laboratory Schools.

The Dean's Report, a comprehensive review of emerging roles and functions of Campus Schools including current status studies was prepared and distributed. The By-Product Report, a study of the Utilization of Public Campus Laboratory Schools in Wisconsin was completed and incorporated in the Dean's Report for distribution. A film, The Wisconsin Conference, was completed illustrating the process of objective self-evaluation as educators examine and analyze the contributions of Campus Laboratory Schools in the State of Wisconsin.

The Wisconsin School District Administrators Association and its Professional Education Laison Committee have worked closely with the Council of Deans in identifying concerns and questions relative to laboratory school activities being carried on in classrooms in local schools.

Finally, a continuous in-house study and evaluation is being conducted in each Laboratory School and some recognition should be given these efforts.

These then are some of the activities which have come about as a result of the Wisconsin Conference.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. STATEMENT OF THE PROBLEM</td>
<td>1</td>
</tr>
<tr>
<td>Complexities of the Problem</td>
<td>1</td>
</tr>
<tr>
<td>The CCHE Question</td>
<td>2</td>
</tr>
<tr>
<td>Wingspread Conference</td>
<td>5</td>
</tr>
<tr>
<td>II. HISTORY AND PRESENT STATUS</td>
<td>7</td>
</tr>
<tr>
<td>A Synoptic History</td>
<td>7</td>
</tr>
<tr>
<td>Campus Schools Today</td>
<td>9</td>
</tr>
<tr>
<td>III. PROSPECTIVE ROLES AND FUNCTIONS</td>
<td>12</td>
</tr>
<tr>
<td>Some Foundational Statements</td>
<td>12</td>
</tr>
<tr>
<td>A Report from the "Wingspread Conference"</td>
<td>15</td>
</tr>
<tr>
<td>Philosophical Foundations for Change</td>
<td>17</td>
</tr>
<tr>
<td>Some Specific Goals and Objectives of Laboratory Schools</td>
<td>18</td>
</tr>
<tr>
<td>Some Specific Procedures for Developing Operation Phases</td>
<td>21</td>
</tr>
<tr>
<td>Ways and Means of Evaluation</td>
<td>24</td>
</tr>
<tr>
<td>IV. CONCLUSIONS AND RECOMMENDATIONS</td>
<td>27</td>
</tr>
<tr>
<td>Conclusions</td>
<td>27</td>
</tr>
<tr>
<td>Teacher Education</td>
<td>27</td>
</tr>
<tr>
<td>Campus Schools</td>
<td>28</td>
</tr>
<tr>
<td>Organization and Administration</td>
<td>29</td>
</tr>
<tr>
<td>Recommendations</td>
<td>30</td>
</tr>
<tr>
<td>Teacher Education</td>
<td>30</td>
</tr>
<tr>
<td>Campus Schools</td>
<td>31</td>
</tr>
<tr>
<td>Organization and Administration</td>
<td>31</td>
</tr>
<tr>
<td>Summarizing Statements</td>
<td>32</td>
</tr>
</tbody>
</table>

Utilization of Public Campus Laboratory Schools in Wisconsin 1968

APPENDIX | 34
SECTION I. STATEMENT OF THE PROBLEM

The purpose of this report is succinctly stated in the Forward. In simple listing it is to:

1. Identify the emerging roles and functions of the campus laboratory schools.
2. Establish roles and functions for the laboratory schools operated by the Wisconsin University System.
3. Suggest steps for implementation of the roles and functions identified in the report.

Complexities of the Problem

In order to understand adequately the many ramifications of the problem it is necessary to be aware of several unanswered questions that impede the laboratory schools from operating at a level of maximal effectiveness. (See Appendix A.) These unanswered questions relate to:

1. **Finance.** The laboratory schools' per pupil cost is somewhat higher than comparable public schools. However, this figure appears to be low when the multiple tasks before the laboratory schools are considered.

2. **Facilities.** Five of the laboratory schools operated by the Wisconsin State University System are housed in modern structures. The changing role of the laboratory schools may require unique and flexible facilities as yet undesigned.

3. **Staff.** Two major concerns are identified when considering staff problems. First, what kind of teachers are needed? Second, how can the appropriate work load needs be identified?
4. **Relationships with area schools.** Most laboratory schools presently operate independently of any consciously structured relationship with area schools. For purposes of in-service programming, innovation, evaluation, and shared pre-service responsibility, perhaps some new relationship should be developed with public schools.

5. **Research.** As will be indicated, the CCHE assigned the laboratory schools some nebulous responsibility toward research. This needs definition before viable action programs can be developed.

6. **Dissemination.** Research, innovations or experiments lacking consumers can be compared to books without readers. If changes in role and function are identified, concomitant distributive machinery must be developed.

7. **Change process.** What machinery needs to be developed to enable the laboratory school to become a more dynamic agent for change? Should innovations be evaluated prior to field testing? What is the necessity or desirability of laboratory school participation in evaluative activities? Can or should laboratory schools become testers, experimentors, and evaluators of educational ideas that have passed through the first phase of basic research and now need to be tested carefully before widely disseminated?

The CCHE Question

In July, 1967, the Coordinating Committee for Higher Education in Wisconsin, realizing the considerable investment in the operation of university operated laboratory schools, questioned whether these services could not be performed by public schools. (See Appendix B.) What unique
or irreplaceable qualities do the laboratory schools under discussion have that cannot be found in other places? The answer to this question will ascertain the recommendation on which the CCHE position will be based.

In order to answer this question it will be necessary to review the position of the CCHE in 1959 when they endorsed the position of the supportive posture assumed by the State Universities in this matter. (See Appendix B.) At that time the role of the campus schools was identified as follows:

The Coordinating Committee believes that the Laboratory School is essential to a first-class program of teacher education. The laboratory school serves four basic purposes:

1. Demonstration of superior pedagogical methods and procedures.
2. Observation and participation by student trainees.
3. Professional and lay leadership.
4. Basic research and experimentation.

The indications were then that the major efforts of the laboratory schools were of a pre-service nature. However, since this time the CCHE independently and the laboratory schools evolutionarily have effected a reallocation of priorities. (See Appendix B.) The trend, evolutionary in nature, has been to move toward innovation while retaining most of the old functions. This has led to increasingly complex combinations of responsibilities that sorely try present administrative devices and physical resources. The important laboratory school functions now seem to be:

1. Pre-student teaching observation and participation.
2. Innovation and experimentation.
3. Demonstration and dissemination.
Increasing emphasis upon in-service programming has recently been supported in a report on laboratory schools dated May, 1967 by the Deans of the Colleges of Education (See Appendix D):

1. A de-emphasis of the student teaching function and a marked increase in the use of the laboratory schools by college students for pre-student teaching experiences including observation, psychological case studies, and study of the use of new media and techniques by laboratory school faculty.

2. Greater use is being made of the laboratory schools and its staff by the area schools, especially in studying new media and innovative techniques.

3. The laboratory school has changed to a center for some experimentation, innovation in techniques, media and curriculum development, and has become a demonstration center for both college students and area school faculty members.

4. Curriculum development and experimentation with curriculum innovations, has become an increasingly important function of the campus laboratory school.

5. Media innovation including all types of projectors, closed circuit television, video taping, electronic learning centers, etc., has been developed and tried out in the campus laboratory school.

Department chairmen, campus school directors and deans of the colleges of education, recognizing the accelerated tempo of change and its challenges, are concerned about effectively identifying and employing rational professional leadership to provide the best clinical laboratory experiences for quality teacher education programs. Professional leadership at campus level will not be effective unless policy direction and functional guide lines for the future are developed through broadly based dialogue of a cross agency nature. This is the rationale that led to the Wingspread Conference with its involvement of many agencies.
Wingspread Conference

In alluding to the statement of the problem and considering the foregoing commentary regarding rapid change in educational leadership, a conference was designed, planned and held with the primary purpose of considering objectively the emerging roles and functions of laboratory schools in the Wisconsin State University System. This conference initiated a study of the current status of laboratory schools and their specific roles, present and future. It also recognized the necessity for developing means of implementing emerging roles and functions of laboratory schools and need for continuous evaluation of them. (See Appendix E.)

As of now the question posed by the CCHE is not completely answered. It may be, as seems true in all areas of curriculum, that fielding the question is much easier than finding an answer. The deans of the colleges of education of the Wisconsin State University System agree that the question cannot seriously avoid two facts. First, because it is a part of a university, the laboratory school can take a "universal" look at educational change. Whether it be in Madison or Mondovi, the public school must always be "parochial" in outlook. This is a basic, indisputable, philosophic point. Second, the teacher education programs of the state universities are presently consciously geared to use of the laboratory school. A public school relationship only, because of inaccessibility and uncontrollability, would necessitate major altering of all teacher education curricula in these universities.

It is believed that the contents of this report may provide data from which professionally sound answers can be formulated. It is worth noting that if laboratory schools are to become effective catalytic
agents for improvement of teacher education, they must have:

1. Appropriate role definition.
2. Appropriate facilities and staff.
3. Appropriate administrative organization.
4. Adequate budget.
5. Functional flexibility to allow educational and community agency involvement.
SECTION II. HISTORY AND PRESENT STATUS

A Synoptic History

The Campus Schools have played an important role in preparing teachers in the United States. For over a century laboratory schools have served as places for observation, participation activities, as well as the pre-service clinical experiences for teachers in training. Historically the campus schools have been known as normal or training centers and as such devoted themselves primarily to the student teaching and demonstration functions of teacher education.

In the State of Wisconsin the campus or "model" schools were developed as an integral part of the early normal schools. In most instances the campus schools were part of the main building and were viewed by educators of the time as an essential part of the teacher education program. The prime purpose of these early campus schools was observation of superior instructional techniques by student teachers. This observation function for both pre-service and in-service teachers, along with the actual student teaching, comprised the primary responsibilities of the laboratory school.

The answers and position established for laboratory schools were endorsed by the CCHE (See Appendix C.) and the roles of the campus schools were identified as:

1. Demonstration of superior pedagogical methods and procedures.
2. Observation and participation by student trainees.
3. Professional and lay leadership.
4. Basic research and experimentation.

In the June, 1959 report, "Justification for Laboratory Schools, Wisconsin State Colleges", the specific questions and answers regarding
laboratory school operation along with their justifications were developed by the state colleges. (See Appendix F.) This report with that of the Joint Staff paper #27 of 1960 established a position labeling the campus laboratory school "as essential for a well-rounded program of teaching, research and experimentation". (See Appendix G.)

The State University at Oshkosh, in response to a request by the Department of Administration of the State of Wisconsin, in 1962 formulated a position paper which established the basic functions of the campus schools. (See Appendix H.) These include: (1) observation, (2) demonstration, (3) research, (4) teacher education. It should be noted that the report prepared by the University at Oshkosh was well received and supported by the Board of Regents and the state legislators.

In the early 1950's increased attention was given the laboratory schools as expanding enrollments and demand for more realistic pre-service experiences were encountered. These problems, along with some creative thought on the part of educators and the age and condition of the buildings housing the campus schools, raised the question of the role and function of the laboratory school in the changing teacher education programs of the mid-fifties.

In Wisconsin, as well as in the United States, the ferment in the campus school issue continued as legislators and educators attempted to define the campus school's role in a time of change. In Wisconsin the Coordinating Committee for Higher Education at the direction of Governor Nelson, reviewed the campus school operation in 1959. Questions posed of campus school officials were answered by representatives of the University of Wisconsin and the state colleges. (See Appendix I.)

It should be noted that although the campus schools in Wisconsin have
been used continually as a place for student teaching, the dramatic
growth of the university system held some implications for change as
early as 1960. Increased enrollments caused school of education staffs
to develop new methods of providing the critical fourth year pre-service
classroom experience for student teachers, and certain modifications in
utilization of campus schools were established during the ensuing five
years. These modifications were universal in nature as campus schools
in general subjected themselves to self-evaluation and re-definition of
role and function.

Campus Schools Today

The Wisconsin State University Campus Schools’ basic functions have
shifted from the original roles as identified by the Coordinating Committee
in 1959 to those more in keeping with current needs and demands of
teacher education. Observation activities especially for university
students enrolled in education courses prior to student teaching are now
more prominent in campus schools. (See Appendix J.) Teacher education
candidates are now participating in numerous off campus teaching activities
designed to complement and compensate for controlled clinical experiences
developed in the campus school.

The Universities’ campus school philosophy has undergone modification
as educators noted changing needs of public school teachers. The campus
school now provides a variety of opportunities for in-service training
of public school personnel. The faculties of campus schools are often
used as consultant and resource people by local schools in the university
service community, demonstrating a leadership capacity and potential as
teacher education staff members. Campus school administrators and staff
have initiated new techniques for preparing teachers. Pilot projects in the clinical professorship, internship, and the professional semester have evolved at some universities in our state.

The shift is sharper in the demonstration activities where students preparing to be teachers are now viewing selected micro-teaching sequences of the teaching-learning process along with planned simulation of the varied teaching experiences rather than participation solely in the observation of actual demonstrations. Observation of "live classrooms" is now being supplemented by some use of technology. Study of new media and current educational technology is now very much a part of the laboratory school effort as students have opportunity to see new practices put to use.

Today's campus schools in Wisconsin provide a very small percentage of controlled student teaching. Two of the state universities do not assign any student teachers to the laboratory school. This de-emphasis of the student teaching function is in keeping with the shift of the role campus schools are undergoing throughout the country. The campus schools increasingly are becoming involved with state-wide curricular experimentation and innovation.

The State University Schools of Education now list an imposing set of research activities currently underway in campus schools. (See Appendix K.) These research efforts are supported in part by United States Office of Education Bureau of Research in the form of research grants and small contracts. It should be noted that Dr. Nolan Estes, Associate Commissioner for Elementary and Secondary Education, Department of Health, Education and Welfare, Office of Education, recently qualified the laboratory schools at the Wisconsin State Universities as local educational agencies under Titles I, II, and III of the Elementary and Secondary Education Act of 1965,
clarifying the manner in which they may participate in those kinds of programs. (See Appendix L.)

The state campus schools are now evolving as a potentially effective agency for dissemination of innovative practices. (See Appendix M.) This emerging function holds implications for involvement with the Regional Educational Laboratory, State Department of Public Instruction, Cooperative Educational Service Agencies, and local school systems. (See Appendix N.)

The role of the campus school has changed. The functions have shifted to meet these demands and currently are placed in nine categories by the Deans of the Schools of Education in the state university system. These categories are enumerated and discussed in Section III of this report. These nine categories differ somewhat from the roles identified by CCHE in 1959, but they are substantiated by the shifting needs of the Teacher Education programs. (See Appendix O.)

The expanding number of student teachers, the high cost of operation, and the need for a re-definition of the campus school role are cause for concern. However, if pre-professional experimental activities are important, and if dissemination of tested experimental practices is vital to teacher education, then perhaps the campus schools of the state of Wisconsin are a solution to providing these elements of a quality teacher education program. (See Appendix P.)
SECTION III. PROSPECTIVE ROLES AND FUNCTIONS

Some Foundational Statements

The first part of this section emphasizes ideas and concepts related to the nature of teacher education and of Campus Schools. The term, laboratory school, indicates generically, any school on or off campus, that serves in some way to provide clinical environments for observation, participation, laboratory testing, student teaching or interning, and similar clinical experiences. When referring to an on campus laboratory school the term, campus school, is used.

Some assumptions about teacher education and laboratory schools are cited to provide a point of reference for the reader. It is believed by the deans of education and the Campus School directors that some commonly held philosophy is essential to enable those who are to provide direction and means for teacher education institutions to identify expanding and emerging roles and functions of laboratory schools. These statements are not listed in order of importance nor are they here grouped for any purpose.

1. Programs employing courses about teaching minus conscious utilization of a variety of planned laboratory experiences will possess little strength as dynamic change agents in teacher education. Some kind(s) of laboratory introduction to teaching is essential if change in attitudes and practices is to be effected.

2. Planned active involvement in observation, participation, student teaching or interning, research, experimentation, and other clinical experiences is essential for quality teacher
13. Preparation. A quality teacher education program must include selected and directed pre-student teaching experiences in a classroom setting. Significant learning about teaching takes place only within such participatory situations.

3. Identification and limitation of their specific roles and responsibilities are essential if laboratory schools are to provide positive, productive leadership in curriculum change, K through 16. Employing their unique strengths, as well as area school district needs, some laboratory schools should deliberately stress certain functions; other schools should focus on laboratory responsibilities and programs in terms of their particular strengths.

4. There is no satisfactory substitute for a teacher education program which offers a full, articulated sequence or block of professional laboratory or clinical activities during its last two or three years. As important as they are, use of video tape recordings, simulation, micro-teaching, etc., are supplementary to not replacements of real life supervision in laboratory schools.

5. Teacher education candidates should progressively become involved in more complex teaching-learning situations with pupils if they are to observe, hypothesize, test, demonstrate, criticize, identify, and evaluate principles of teaching-learning.

6. If a variety of purposeful professional activities is essential for quality teacher education programs, then it is imperative to provide means for successful implementation of these activities.
7. It is essential that all institutions involved in teacher education together work toward common goals—in this case identifying roles and functions of laboratory schools.

8. Necessarily and cooperatively involving area public schools in providing the mix of pre-student teaching laboratory experiences should free the campus laboratory school to perform better whatever functions are identified for it by the parent college, the Department of Public Instruction, and regional agencies.

9. If a primary purpose of teacher education is to design, produce, and disseminate ideas, there must be policy and administrative acceptance and recognition of need to provide for these ventures the necessary time, talent, facilities, and materials.

10. As laboratory schools deliberately disseminate new educational practices to the field practitioner, they must do this with increased coordination and cooperation among the parent university, the public schools, the state department, and other community agencies. Effective dissemination requires flexibility and mobility allowed by adequate budgets of time, staff and money.

11. Innovation is a continuous need in our fast moving world. The campus school, uncontrolled by local community pressures and interests, provides a setting in which innovation can be encouraged.

12. As it involves implementing a new approach from innovation to practice, research might also simply relate to verification of an experimental program. The continuum of experimentation, research and evaluation may all be a primary function of some
campus schools. As cited here experimentation involves making a designed project work in a school setting. Research and evaluation employ rigid controls to analyze strengths and weaknesses of an experiment.

These twelve statements serve to reflect some changing functions of laboratory schools and of other agencies that must operate cooperatively with them. The statements were accepted in principle by the deans of education and the campus school directors at a joint meeting September 29, 1967.

As stated elsewhere increasing numbers of schools are eliminating student teaching as a function. Many stress observation and participation prior to senior year student teaching or interning. Campus school staffs increasingly are experimenting with new curricular and/or methodological ideas, and are attempting innovations based on concepts researched elsewhere which they intend in some fashion to disseminate to pre-service and in-service teachers. Little basic research takes place in most campus schools.

The activities of most campus schools seem to be functions of personnel hired as expert teachers not researchers. Campus school activity and programs are also prescribed by the nature and extent of facilities, supplies, and budgets.

A Report from the "Wingspread Conference"

The remainder of this section of the report will deal with selective data from written reports completed by the study or work groups participating in The Wisconsin Conference (Wingspread) scheduled at Racine on June 28-30, 1967.
First are reported some data compiled by all "Wingspread" conference members as they attempted early in the conference to identify emerging roles and functions of laboratory schools. The four conference study groups separately engaged in discussion. The ideas from all four groups were then examined and compiled by a standing committee whose responsibility was to keep the conference moving and to provide conference continuity and periodic summarizations and progress reports. (See Appendix Q.)

Early in the conference this group summarized roles and functions of laboratory schools in order that all participants might use the summary as a point of common reference for future conference deliberation. It is assumed that roles and functions of a laboratory school, on or off campus, are reflections of the philosophy and objectives of the school of education and of the educational institution of which it is a part. Roles and functions of laboratory schools relate to all community agencies accepting mutual responsibilities for preparing teachers.

The nature and functions of a particular laboratory school are unique to the philosophy, the professional leadership, and the community support of the parent institution. Broadly categorized, four roles and functions were initially identified as: teacher education, experimentation, leadership, and university service.

More specifically, nine expanding and emerging roles and functions of laboratory schools were cited, minus rank ordering, as providing opportunities for:

1. **Innovation.** The testing of new ideas, either of campus school origin or researched initially elsewhere.

2. **Dissemination.** The growing responsibility for effectively serving local school districts by providing staff and program assistance with some emphasis on vanguard-type programs.
3. **Experimentation.** The development and initiation of new methods, patterns, techniques of instructional practices in a controlled environment.

4. **Demonstration.** The presentation of broad concepts and programs as well as specific methods, procedures and practices, not only for pre-service teaching personnel, but also for the experienced teachers in the field.

5. **New Designs for Teacher Education.** The development of new designs in longitudinal experimentation for interesting and innovative teacher education programs.

6. **Change.** Being an agent for change by taking a leadership responsibility in instituting new ideas and demonstrating the processes of change.

7. **New Media Development.** The improvement of instruction as related to the selective employment of new media, the utilization of curricular resource materials, and providing operational guidelines for media course planning.

8. **Service.** The rendering of services to local school districts in the service community of the university by providing consultant assistance for in-service programs with special emphasis on improvement in the areas of supervision of student teachers and the development of a corps of cooperating teachers.

9. **Observation and Participation.** Providing for significant teacher education practices for both pre-service and in-service teachers.

Philosophical Foundation for Change.

One of the conference groups dealt with the topic, "Philosophical Foundation for Change." (See Appendix R.) A basic position statement included these points of emphasis:

1. The laboratory school must serve as an agent of change.

2. As such an agent, the laboratory school should have its base of control extended beyond the university. A regional entity or board should be formed with representatives from the participating university, the Department of Public Instruction, the intermediate educational agency (CESA), and the regional public schools from the university's immediate service area.

3. To effect change the laboratory school should assume the roles and functions requisite to the achievement of its goals and functions as determined by its control body (board).
4. To serve as an agent for change the laboratory school will need to be appropriately staffed for its specific regional purposes with new and flexible patterns of staff utilization emerging.

5. The laboratory school has an obligation to initiate and test new designs of teacher education.

6. The laboratory school is an inseparable and integral part of the entire teacher education process.

7. Campus laboratory schools have the potential for uniqueness in these ways:

 (1) Facilities for observation and participation are conveniently available and accessible.

 (2) The campus laboratory school exists in a community of scholars.

 (3) As a creature of an agency which prepares teachers, the laboratory school can include new ideas, techniques and curriculum patterns in its pre-service program which should result in faster implementation.

 (4) A campus laboratory school potentially has greater freedom to act and greater innovated freedom. It is not subject to pressures of the school boards, parent groups, etc.

 (5) Being under the control of a single governing board, it is possible for several campus laboratory schools to establish consortia for a broad front attack upon innovative ideas.

 (6) A campus laboratory school may be in a better position to establish relationships between pre-service and in-service training.

 (7) With its pupil population readily accessible the campus laboratory school can help the teacher-preparation student to understand the maturation process of the child.

Some Specific Goals and Objectives of Laboratory Schools.

A second conference group gave serious collective thought to the assigned topic, "Some Goals and Objectives of Laboratory Schools." (See Appendix S.) The deliberations of this group, minus additional refinement are reported here synoptically. Concern is to provide for the Council of
Presidents an accurate report of their conclusions, not to offer a worked over sample of fine rhetoric.

It is recommended that goals of laboratory schools be expanded from concerns largely limited to services for undergraduate teacher education to a larger role of providing educational services to all the schools of the areas. The larger role would encompass services for teacher development, research dissemination and improvement of curricula, teaching methods, and learning materials.

1. To develop collaborative relationships between laboratory schools, area schools, educational service organizations, in internal departments of the University and the State Department of Public Instruction to improve educational practices in the University service areas.

Illustrations:

a. Establishment of a committee representing the above groups.
b. Establish media by which area school personnel may identify problems within administrative and geographic areas.
c. Establish instruments and mean for the periodic dissemination of pertinent information to area schools and to all laboratory schools of the state.

2. To provide pre-teaching experiences to teachers in preparation.

Illustrations:

a. Bridge the gap between theory and practice.
b. Provide teaching-learning experiences with individuals, small groups and large groups of pupils.

3. To facilitate articulation among the departments within the university and between the university and the public and private schools.

Illustrations:

a. Develop performance criteria as measures of the sequential development of understandings and competencies within each of the academic disciplines.
b. Heighten the sensitivity of the academicians toward the problems and goals in elementary and secondary education.

4. To create new options for pre-service teacher education which will provide opportunities to test existing convictions about the role of the laboratory school and to seek to identify new roles.
Illustrations:

a. Use of area school for teacher education purposes.
b. Use of area school teachers to teach educational methods.

5. To test ways of working on educational problems which will result in improved practices.

Illustrations:

a. Seek strategies which may result in effective collaboration between various educational agencies.
b. Seek the superior alternative as to whether research should be first studied for its applicability to a problem or whether the problem should first be identified and the solution sought through research.
c. To consider some of the research methods used in such areas as biology, medicine and industry to test their applicability to the study of educational problems.
d. To develop working models for applied research.
e. To develop means of effectively utilizing new media.
f. To seek ways of involving college and university personnel in curriculum development at the local level.

6. To identify teaching-learning problems which can be alleviated through the application of research findings and to create innovative processes to make these findings operable. (Example: to bring the findings of different areas of research to bear on the tuned-out child.)

7. To provide on-going and active instructional experiences for teachers of college methods courses.

8. To analyze the teaching-learning processes with the aim of conceiving implementing and evaluating teaching techniques, materials, and organizational patterns, in order to insure that the components of those teaching-learning processes are most effectively and efficiently carried on.

a. Appropriate use of teaching machines.
b. Studies of suitable subject matter content, goals and situations for small group instruction or inductive and deductive approaches to teaching.

9. To provide laboratory school facilities and experiences for the implementation of improved graduate programs.

10. To seek ways of using the technological resources of the universities in search for effective learning and teaching.

Illustrations:

a. Optimum use of computers for scheduling and programming learning.
b. A search for effective methods of utilizing TV.
11. To provide the media by which studies could be developed leading to a cost-benefit analysis of quality situations; that is, to demonstrate what quality education is, and to provide the data essential to help the public understand the amount of support which must be given to provide quality education.

Illustrations:

a. Attempt to demonstrate the extent that increased dollars spent wisely, result in improved quality of education.
b. Attempt to demonstrate the extent to which facilities and equipment result in increased quality of education.

12. To develop and strengthen pre-service and in-service demonstration centers to encompass the entire range of teaching education programs for which the university has accepted responsibility.

13. To develop a system of coordinated laboratory school research and development programs; so that each laboratory school may be identified with one or two areas of special expertise, with the result that the total impact of the state laboratory schools and university departments of education may be enhanced.

Illustration:

a. Specific emphasis on one kind of teaching-learning method also could be worked in one school. Another school could concentrate on another emphasis, but all schools should be knowledgeable about all aspects of teaching and learning.

14. To serve as pilot and demonstration agents for the dissemination and implementations of State Department of Public Instruction curricular materials.

15. To develop models for the continuous self-appraisal of curriculum and instruction of the laboratory schools in terms of changing social, economic and political factors.

16. To maintain a continuous flow of information for public consumption concerning the activities of laboratory schools.

Some Specific Procedures for Developing Operation Phases.

A third working group of the conference focused attention on some ways and means by which campus laboratory schools might develop functionally their emerging roles and goals. To provide the Council of Presidents a clear report of its thinking minus editorial comment, reproduced below is
a summary report of this group as "refined" after two days of give-and-take discussion at The Wisconsin Conference at Wingspread. (See Appendix T.) Note the treatment of three broad categories of "specific procedures".

Some specific procedures for developing the operational phases:

1. Experimentation, research and innovation:
 a. Inviting research initiated elsewhere and providing a setting for applied research.
 b. Having the campus school as a focal point for regional, state and national programs.
 c. Using the CESA Agency for new ideas in cooperation with laboratory schools.
 d. Creating a department of educational development as a framework for the laboratory school.
 e. Changing the population of the laboratory school should be consistent with its purposes.
 f. Specialists in various departments of the university might teach or carry on research in the laboratory school.
 g. Specialization for each institution which has significant competency in a particular area.
 h. Serving as a focal point for a cluster of public schools with a regional study council.
 i. Employing a director of research for the laboratory school.
 j. Developing in cooperation with public schools an organizational structure for research and development.
 k. Establishing R and D centers in laboratory schools.
 l. Submitting proposals for grants--institutional and Regents.
 m. Securing foundation assistance in developing ideas for funding purposes.
 n. Translating basic research into programs to establish feasibility.
 o. Making the laboratory school a model of self-renewal.
2. Dissemination
 a. Preparing articles on research accomplished.
 b. In-service work by teachers, directors, or teams.
 c. Interaction with public school staffs and administration.
 d. Participation in professional organizations.
 e. Presenting papers at research meetings.
 f. Establishing newsletters for dissemination of information.
 g. Implementing the "short course" approach in in-service training to area school personnel.
 h. Production of films and tapes interpreting the role, functions, and production of laboratory schools.
 i. Hosting various types of conferences.

3. Demonstration
 a. Providing for observation of classes in the laboratory school.
 b. Providing many kinds of laboratory experience.
 c. Implementing the relationship between theory and practice.
 d. The in-service function of bringing the teachers from other schools for demonstrations.
 e. Media capabilities for demonstrations. Availability and accessibility are significant factors.
 f. Providing opportunities for teaching-learning experiences for interns and student teachers.

In the session dealing with the specific procedures for developing operation phases we desire to indicate a possible framework that would be of assistance in determining what procedures might be used in laboratory schools and the techniques for developing these procedures in the program. Four possible points of departure are suggested:

1. Statement of philosophy would be followed by statement justifying the completion of basic research and then building an appropriate program and implementing it.

2. Concerns of the teachers followed by research, implementation of projects in the concerns of the teachers. From this the philosophy is built inductively.
3. End product is the prospective teacher and should shape the pattern.

4. Important end products are promising educational practices which can be utilized by cooperating public schools.

It was suggested by the committee that a state-wide planning group composed of individuals from all appropriate level and agencies be formed to implement the role of the laboratory schools.

Ways and Means of Evaluation.

The fourth conference group, assembled for work sessions simultaneously with the other three groups, did not obviously have the benefit of the productive thinking of the latter. Therefore, they were obligated to make some beginning assumptions prior to discussion in order to have a reference point upon which to develop their assignment, the identification of some ways and means of evaluating roles and functions of laboratory schools.

(See Appendix U.)

Two assumptions were made. One is that the campus laboratory school does have a unique function to serve. The second is that the emerging roles of laboratory schools are defined to be: (1) change agent, (2) diffusion, (3) leadership. The elements of each of these functions are:

I. Function

A. Change Agent

(1) Action research
(2) Program translation
(3) Dissemination of information

B. Diffusion

(1) Pre-service education
 a. Observation
 b. Participation

(2) In-service education, with and for experienced teachers
 a. Observation
 b. Participation
 c. Demonstration
C. Leadership

(1) Development of learning environments.
(2) Resource center for the educational community.
(3) In-service education as mentioned above.

II. Evaluation of these roles will be carried out using the following criteria:

(1) The establishment of a rationale for the roles or functions of the laboratory school.

(2) A description of the unique capabilities of the laboratory school in this role.

(3) Assessment of the achievements of the laboratory school in this role.

(4) Evaluation of this role in terms of hypothesis testing, e.g., "How can this be described as carrying out the role or function uniquely better than any other form of institution?"

(5) Observation.

(6) Testing of hypothesis.

(7) Summarization.

III. Activities in Evaluation by Role

A. Leadership

(1) Frequency of request for consultant service.

(3) Committee Evaluation

a. State-wide committee of about 20-25 members.

b. Membership from state universities, State Department of Public Instruction, local school district administrators, teachers and interested citizens.

(4) Sub-committees from state-wide committee membership for specific appraisal purpose.

B. Diffusion

(1) Above activities suggested will fit this category in addition to self-evaluation made by local committee.

(2) Self-evaluation, including among others, the use of video tape and film.

C. Change Agent

(Same apply in this role.)
This section of this report has utilized the reports of the four "Wingspread" conference discussion groups essentially as they were compiled by those groups. This has been deliberately done to preserve for the readers the flavor and dynamics of that conference. Hence, there exists some lack of continuity, some areas of redundancy, and a few mechanical blemishes not erased by editing. Censure for failure to polish thoroughly this product is taken with the intent and hope that the ideas in this section will better be communicated as presented.
SECTION IV. CONCLUSIONS AND RECOMMENDATIONS

As these conclusions and recommendations were materializing, thought focus concentrated axiomatically on basic areas of concern held by the deans of education with their responsibilities for the total teacher education program. Since the emerging roles and functions of campus laboratory schools is the topic of current interest for both the Council of Deans and the Council of Presidents, one would expect the largest number of concluding statements to be about campus laboratory schools.

The listing of both conclusions and recommendations in statement form will be under three arbitrarily assigned headings: Teacher Education, Campus Schools, and Organization and Administration. Some statements about campus schools seem best considered in relation to the total teacher education program. Most of these statements seem appropriate under the heading, Campus Schools. Two comments refer to administration or organization.

No brief is held for this organization. It does provide a beginning place for further discussion and refinement. In fact, a series of serious discussions, as implied several times in this report, is essential for making objective long range decisions of consequence to the programs of teacher preparation in the state university system.

Conclusions

Teacher Education

1. Campus Schools are meeting the roles and functions which were developed and supported by the CCHE in 1959. (See Appendix C.)

Evidence supports this fact.

2. There is a need for re-definition of the roles and functions of campus laboratory schools.
3. Campus laboratory schools should continue to de-emphasize the student teaching role.

Campus Schools.

1. Campus schools possess the uniqueness or potential for uniqueness in these ways:
 a. Facilities for observation and participation are conveniently available and accessible.
 b. The campus laboratory school exists in a community of scholars.
 c. As a creature of an agency which prepares teachers, the laboratory school can include new ideas, techniques and curriculum patterns in its pre-service.
 d. A campus laboratory school potentially has greater freedom to act and greater innovated freedom. It is not subject to the pressures of the school boards, parent groups, etc.
 e. Being under the control of a single governing board, it is possible for several campus laboratory schools to establish consortia for a broad front attack upon innovative ideas.
 f. A campus laboratory school may be in a better position to establish relationships between pre-service and in-service training.
 g. With its pupil population readily accessible, the campus laboratory school can help the teacher-preparation student to understand the maturation process of the child.

2. Campus school responsibilities in a quality teacher education program are very complex.

3. Some identifiable expanding and emerging roles and functions of campus laboratory schools should include the following nine points which are treated more completely on pages 16 and 17 of this report:
 a. Innovation
 b. Dissemination
 c. Experimentation
 d. Demonstration
e. New Designs for Teacher Education
f. Change
g. New Media Development
h. Service
i. Observation and Participation

4. "Emerging roles and functions of laboratory schools" is considered such a vital topic because of the essentiality of laboratory-clinical activities.

5. Not all but many of these laboratory-clinical activities can be planned and carried out with some degree of modification of current campus school plants and staff.

6. Currently campus schools of the state university system are not research oriented but are involved in experimentation.

7. Campus laboratory schools receive inadequate budgets.

8. Campus laboratory schools are inadequately staffed to perform the multiplicity of functions facing them currently and in the future.

9. Campus laboratory schools do provide controls and immediate accessibility for clinical experiential activities for teacher education candidates.

Organization and Administration

1. Campus laboratory schools may need to modify their administrative organization as expanding roles dictate.

2. Campus laboratory schools have expanding roles in areas encompassing services for teacher development, research dissemination, and improvement and selective employment of learning materials.
Recommendations

These recommendations represent assessment of the thinking of the Deans of Education and the Campus School Directors, who have a heavy responsibility for preparing increasing numbers of high calibre teacher candidates for Wisconsin schools.

In times of rapid change, this challenge must be faced by the decisions made after the many professional groups referred to have time to investigate thoroughly and cooperatively our broad goals and needs in teacher education and the selective means for approximating them. Selection of goals and establishment of programs minus crystal clear understanding and acceptance of the operational means of their achievement will likely lead to a teacher education program bankrupt qualitatively.

This is not to be interpreted as lack of concern by college of education deans for getting about the business of change. It does suggest that the long-range productive process requires serious deliberations by many groups. A few comments to this point are found at the end of this section of the report.

Teacher Education.

1. In a generic sense teacher education is the responsibility of the total teacher education community in the state. Therefore a state-wide research effort should be developed to study innovative methods and techniques of providing the pre-service teacher with clinical experiences, e.g., micro-teaching, video-taping, clinical professorship, simulation, etc.

2. Increasing enrollments in teacher education will require selective use of innovative techniques in order to maintain quality teacher education programs without materially increasing the unit costs of instruction.
Campus Schools.

1. Campus laboratory schools should continue and expand as centers for experimentation and innovation.
2. Campus laboratory schools should continue and expand as centers for dissemination of new educational ideas.
3. Campus laboratory schools must continue and expand as agents of change.
4. The emerging roles of the campus laboratory school should be implemented by a state-wide planning group composed of individuals from all appropriate levels and agencies.
5. Campus schools should continue to provide pre-student teaching laboratory experiences, which are a universally recognized part of quality teacher education programs.

Organization and Administration.

1. Campus laboratory schools need to experiment with administrative organizational patterns which provide for operational flexibility in order to continue effectively their institutions as action agencies. Public school people, including the State Department of Public Instruction, should continue to be involved at the policy and operational levels.
2. An appropriate administrative mechanism is essential for such reorganization. Change will take place more rapidly if public school people are involved. Such interaction provides opportunity for both administrative involvement and the exchange of public and campus school personnel in implementing new concepts and practices.
3. Serious study should be given to the emerging role of this campus educational center, the laboratory school. This would involve a philosophical and increasing financial commitment for cooperative effort to upgrade instruction at both college and pre-college levels—and the two needs are really inseparable. Agencies involved would include the Coordinating Committee for Higher Education, Board of Regents, the universities, State Department of Public Instruction, the CESA Agencies, and local school systems.

Summarizing Statements

It is sincerely hoped that this report results in opportunity for the Deans of Education to further communicate with the Council of Presidents in the on-going efforts to deal with this integral part of the total teacher preparation program in each of the state universities. This report concludes stressing two summarizing statements.

1. The presidents, deans, education department chairmen, and campus school directors should set a deadline for implementation of recommended roles and function. See pages 16 and 17 for a more complete discussion of these roles and functions.
 a. Innovation
 b. Dissemination
 c. Experimentation
 d. Demonstration
 e. New Designs for Teacher Education
 f. Change
2. If in assuming these changing roles, campus schools are to exist as quality teacher education agencies making unique contributions to improvement of teacher education and their products, adequate financial, personnel, and facility resources are requisite. (See Appendix V.)
UTILIZATION OF
Public Campus
Laboratory Schools
IN WISCONSIN
1968
FIIAL REPORT

Committee On Campus School Programs, Utilization Etc.

Dr. Robert Polk, Chairman
Dr. Lester Emans
Dr. Harold Hutcheson
Mr. Richard Rasmussen, Consultant

February, 1968
TABLE OF CONTENTS

I. A Statistical Description of Wisconsin Public Lab School

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summation</td>
<td>1</td>
</tr>
<tr>
<td>Enrollments</td>
<td>2</td>
</tr>
<tr>
<td>Teaching Experience</td>
<td>3</td>
</tr>
<tr>
<td>Faculty By Rank</td>
<td>4</td>
</tr>
<tr>
<td>Income/Cost Items</td>
<td>5</td>
</tr>
<tr>
<td>Physical Plant</td>
<td>5</td>
</tr>
<tr>
<td>Classified Staff</td>
<td>6</td>
</tr>
<tr>
<td>Research Programs</td>
<td>6</td>
</tr>
</tbody>
</table>

II. How the Laboratory Schools Are Used

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitions</td>
<td>9</td>
</tr>
<tr>
<td>Summation</td>
<td>11</td>
</tr>
<tr>
<td>Number of University Students Involved</td>
<td>11</td>
</tr>
<tr>
<td>Number of Demonstrations</td>
<td>12</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>12</td>
</tr>
<tr>
<td>Number of Participations</td>
<td>12</td>
</tr>
<tr>
<td>Number of Inservice Programs</td>
<td>13</td>
</tr>
<tr>
<td>Number of Service Functions</td>
<td>13</td>
</tr>
<tr>
<td>Amount of Involvement With University Academic Program</td>
<td>13</td>
</tr>
<tr>
<td>Amount of Innovation</td>
<td>13</td>
</tr>
<tr>
<td>Number of Student Teachers</td>
<td>14</td>
</tr>
<tr>
<td>Appendix A--Philosophy of UW-M</td>
<td>15</td>
</tr>
<tr>
<td>Appendix B--Special Service to School of Education</td>
<td>16</td>
</tr>
<tr>
<td>Appendix C--Staff Publications</td>
<td>18</td>
</tr>
<tr>
<td>Appendix D--Non-Published Projects</td>
<td>23</td>
</tr>
</tbody>
</table>

III. Qualitative Aspects of the Campus School Program

Questionnaire Response to Question 1--Related to Human Growth	28
Questionnaire Response to Question 2--Individual Differences	29
Questionnaire Response to Question 3--Classroom Climate	30
Questionnaire Response to Question 4--Planning for Teaching	31
Questionnaire Response to Question 5--Use of Audio-Visual Aids	32
Questionnaire Response to Question 6--Understand the Curriculum	33
Questionnaire Response to Question 7--Evaluation	38
Questionnaire Response to Question 8--Community Resources	35
Questionnaire Response to Question 9--Parent Community Resources	36
Questionnaire Response to Question 10--Professionalism	37
Questionnaire Response as to Need for Access	38
Questionnaire Response as to Need for Control	39
Sample Questionnaire	40
INTRODUCTION

It is the purpose of this report to depict in as quantitative a fashion as possible, the nature of the public CLS (Campus Laboratory Schools) as presently operating in Wisconsin. Attention is directed to activities undertaken by these institutions as well as estimate of the quality aspects of their contributions to teacher education. Data for this report has been supplied by Deans of Education, Directors, CLS faculties and members of the professional education faculties.

The report is divided into three sections beginning with a statistical description of the facility, faculty, and student body, followed by a detailed analysis of activities and concluding with a composite, qualitative statement derived from information supplied by the members of the professional education faculties. Each chapter is preceded by an overview condensing the general findings of that chapter.
Currently (September, 1967), 2197 students ranging from headstart age through the ninth grade are enrolled in CLS in Wisconsin. They are taught by 140 full-time equivalent faculty persons, the majority of whom hold the rank of Instructor or Assistant Professor and have achieved tenure. The study reveals that CLS faculty members have had considerable experience in higher education as well as public school education. The faculties are supported by 23 classified staff members. Total salary of the faculties is in excess of $1,200,000.00 for the academic year while classified staff members add another $120,000.00 to this budget item. The Campus Laboratory School instructional supply and equipment budgets amount to about $90,000.00 with an additional $40,000.00 being collected through fees paid by the pupils. Six of the nine structures housing the CLS have been built in the past 15 years; total square feet used for the CLS functions amounts to 244,000.

The CLS are participating in a variety of research projects with funds coming from Federal, State, and private sources. Each year six members of the CLS faculty take part in the Teacher Improvement Program.
Enrollments By Grade Level in Campus Schools

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Eau Claire</th>
<th>La Crosse</th>
<th>Oshkosh</th>
<th>Platteville</th>
<th>River Falls</th>
<th>Stevens Point</th>
<th>Superior</th>
<th>White-water</th>
<th>Total</th>
<th>UW-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nursery</td>
<td>15</td>
<td>--</td>
<td>48*</td>
<td>16</td>
<td>21</td>
<td>--</td>
<td>19</td>
<td>--</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>Kindergarten</td>
<td>25</td>
<td>24</td>
<td>22</td>
<td>26</td>
<td>16</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>188</td>
<td>65#</td>
</tr>
<tr>
<td>Grade 1</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>25</td>
<td>198</td>
<td>45#</td>
</tr>
<tr>
<td>Grade 2</td>
<td>25</td>
<td>26</td>
<td>25</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>21</td>
<td>25</td>
<td>197</td>
<td>45#</td>
</tr>
<tr>
<td>Grade 3</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>26</td>
<td>26</td>
<td>25</td>
<td>27</td>
<td>25</td>
<td>201</td>
<td>45#</td>
</tr>
<tr>
<td>Grade 4</td>
<td>25</td>
<td>25</td>
<td>21</td>
<td>26</td>
<td>20</td>
<td>25</td>
<td>26</td>
<td>25</td>
<td>193</td>
<td>48#</td>
</tr>
<tr>
<td>Grade 5</td>
<td>23</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>26</td>
<td>24</td>
<td>26</td>
<td>25</td>
<td>192</td>
<td>48#</td>
</tr>
<tr>
<td>Grade 6</td>
<td>23</td>
<td>26</td>
<td>25</td>
<td>26</td>
<td>21</td>
<td>25</td>
<td>27</td>
<td>25</td>
<td>197</td>
<td>49#</td>
</tr>
<tr>
<td>Grade 7</td>
<td>--</td>
<td>23</td>
<td>19</td>
<td>23</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>25</td>
<td>164</td>
<td>19#</td>
</tr>
<tr>
<td>Grade 8</td>
<td>--</td>
<td>26</td>
<td>26</td>
<td>22</td>
<td>27</td>
<td>25</td>
<td>29</td>
<td>25</td>
<td>180</td>
<td>49#</td>
</tr>
<tr>
<td>Grade 9</td>
<td>--</td>
<td>26</td>
<td>25</td>
<td>--</td>
<td>25</td>
<td>25</td>
<td>17</td>
<td>--</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Special Ed</td>
<td></td>
</tr>
<tr>
<td>Total of Schools</td>
<td>186</td>
<td>250</td>
<td>264</td>
<td>239</td>
<td>254</td>
<td>247</td>
<td>269</td>
<td>225</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>2198 (including UW-M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Head Start
Ungraded
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Associate Professor</td>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Assistant Professor</td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td></td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Project Assistant</td>
<td></td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Faculty Assistant</td>
<td></td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: The table represents the years of service for different ranks from 1965-1966 to 1967-1968.
<table>
<thead>
<tr>
<th>Number of Faculty in Campus School, Fall 1967</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
</tr>
<tr>
<td>Professor</td>
</tr>
<tr>
<td>Associate Professor</td>
</tr>
<tr>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Instructor</td>
</tr>
<tr>
<td>Faculty Assistant</td>
</tr>
<tr>
<td>Project Associate</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Faculty on tenure by rank, in Campus School Fall, 1967</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
</tr>
<tr>
<td>Professor</td>
</tr>
<tr>
<td>Associate Professor</td>
</tr>
<tr>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Instructor</td>
</tr>
<tr>
<td>Faculty Assistant</td>
</tr>
<tr>
<td>Project Associate</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Campus School**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty Members in each WSU Academic Preparation Category, Fall, 1967</td>
</tr>
<tr>
<td>Category</td>
</tr>
<tr>
<td>0--Bachelor's</td>
</tr>
<tr>
<td>1--Master's</td>
</tr>
<tr>
<td>2--1½ yrs. Graduate</td>
</tr>
<tr>
<td>3--2 yrs. Graduate</td>
</tr>
<tr>
<td>4--Doctorate</td>
</tr>
</tbody>
</table>

*Nursery through six
Gross Salary, Campus School Faculty, Academic Yr. '67-68

<table>
<thead>
<tr>
<th>School</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td>$97,636</td>
</tr>
<tr>
<td>Iowa</td>
<td>$126,841</td>
</tr>
<tr>
<td>South Dakota</td>
<td>$119,937</td>
</tr>
<tr>
<td>Minnesota</td>
<td>$114,645</td>
</tr>
<tr>
<td>Idaho</td>
<td>$164,213</td>
</tr>
<tr>
<td>Oregon</td>
<td>$129,399</td>
</tr>
<tr>
<td>Washington</td>
<td>$149,461</td>
</tr>
<tr>
<td>Total</td>
<td>$172,581</td>
</tr>
</tbody>
</table>

Gross Salary, Campus School Faculty, Summer, 1967

<table>
<thead>
<tr>
<th>Campus School</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$12,297</td>
<td>$8,219</td>
</tr>
<tr>
<td>$27,715</td>
<td>$12,192</td>
</tr>
<tr>
<td>$6,162</td>
<td>$9,623</td>
</tr>
<tr>
<td>$24,717</td>
<td></td>
</tr>
</tbody>
</table>

Campus School Budget for Academic Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966-67</td>
<td>$5,697</td>
</tr>
<tr>
<td>1967-68</td>
<td>$10,450</td>
</tr>
<tr>
<td></td>
<td>$6,200</td>
</tr>
<tr>
<td></td>
<td>$7,500</td>
</tr>
<tr>
<td></td>
<td>$17,000</td>
</tr>
<tr>
<td></td>
<td>$51,297</td>
</tr>
<tr>
<td></td>
<td>$91,642</td>
</tr>
</tbody>
</table>

Dollars Expended for "Agency Minor Projects" Improvements to Campus School in:

<table>
<thead>
<tr>
<th>Year</th>
<th>Expenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966-67</td>
<td>$19,000</td>
</tr>
<tr>
<td>1967-68</td>
<td>$14,576</td>
</tr>
</tbody>
</table>

Yearly Tuition Charges to Campus School Pupils

<table>
<thead>
<tr>
<th>Grade</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-6</td>
<td>$14</td>
</tr>
<tr>
<td>7-9</td>
<td>$16.50</td>
</tr>
</tbody>
</table>

Date of Construction of Physical Plant

<table>
<thead>
<tr>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
</tr>
<tr>
<td>1939</td>
</tr>
<tr>
<td>1929</td>
</tr>
<tr>
<td>1954</td>
</tr>
<tr>
<td>1963</td>
</tr>
<tr>
<td>1935</td>
</tr>
<tr>
<td>1959</td>
</tr>
<tr>
<td>1960</td>
</tr>
<tr>
<td>1960</td>
</tr>
</tbody>
</table>

Pro Rata Cost of Heat, Utilities, Maintenance, etc., for Campus School

<table>
<thead>
<tr>
<th>Year</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>$7,100</td>
</tr>
<tr>
<td>1939</td>
<td>$12,023</td>
</tr>
<tr>
<td>1929</td>
<td>$9,297</td>
</tr>
<tr>
<td>1954</td>
<td>$10,056</td>
</tr>
<tr>
<td>1963</td>
<td>$22,805</td>
</tr>
<tr>
<td>1935</td>
<td>$14,636</td>
</tr>
<tr>
<td>1959</td>
<td>$16,596</td>
</tr>
<tr>
<td>1960</td>
<td>$17,244</td>
</tr>
<tr>
<td>1960</td>
<td>$5,750</td>
</tr>
<tr>
<td>115,033</td>
<td></td>
</tr>
</tbody>
</table>

Net Assignable Sq. Ft. to Laboratory School Function

<table>
<thead>
<tr>
<th>Year</th>
<th>Sq. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>19,231</td>
</tr>
<tr>
<td>1939</td>
<td>24,346</td>
</tr>
<tr>
<td>1929</td>
<td>26,038</td>
</tr>
<tr>
<td>1954</td>
<td>22,553</td>
</tr>
<tr>
<td>1963</td>
<td>30,099</td>
</tr>
<tr>
<td>1935</td>
<td>24,741</td>
</tr>
<tr>
<td>1959</td>
<td>32,361</td>
</tr>
<tr>
<td>1960</td>
<td>24,551</td>
</tr>
<tr>
<td>37,489</td>
<td></td>
</tr>
<tr>
<td>244,3°2</td>
<td></td>
</tr>
</tbody>
</table>

* Differences in methods allocating money in supplies and capital outlay from campus to campus makes these totals only approximate.
Number of classified staff in Camus School, Fall 1967

| Eau Claire | La Crosse | Oshkosh | Platteville | River Falls | Stevens Point | Superior | Wausau |
|------------|-----------|---------|-------------|-------------|--------------|---------|
| 1 | 3 | 3 | 3 | 3 | 21 | 3 | 1 |

Gross Salary of Classified Staff in Camus School, Fall 1967

| Eau Claire | $6,657 | $15,750 | $16,325 | $16,400 | $19,700 | $13,150 | $6,300 | $7,898 | $15,741 |

Research Programs of a formal nature funded from State, Federal or Private sources in 1966-67 and 1967-68 with indications of money provided for each source.

<table>
<thead>
<tr>
<th>Eau Claire 1966-67</th>
<th>Federal</th>
<th>State</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV Monitors and Installations</td>
<td>$1,667</td>
<td>$3,333</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eau Claire 1967-68</th>
<th>Federal</th>
<th>State</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics Lab</td>
<td>2,633</td>
<td>5,266</td>
<td></td>
</tr>
</tbody>
</table>

La Crosse

Oslokosh 1966-67

| Mathematics Research Project, Grades 1 and 2 | 215 |
| Multisensory Learning Facility Development | 1,286 | 2,572 |

Oslokosh 1967-68

Mathematics Research Project, Grades 1 & 2	215	
Language Arts Approach to Reading		
Dial Access Retrieval		
4 yr. old Head Start, Pre-School Program	53,000	11,000
Training Teachers for Disadvantaged	60,000	

Materials (approximately $250)
<table>
<thead>
<tr>
<th>Location</th>
<th>Years</th>
<th>Project Title</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platteville</td>
<td>1965-67</td>
<td>Reading Vocabular Development for Brain Damaged Child</td>
<td>$400</td>
</tr>
<tr>
<td>River Falls</td>
<td>1965-66</td>
<td>Project Tree (Teacher Research in Elementary Education)</td>
<td>$1,600</td>
</tr>
<tr>
<td></td>
<td>1966-67</td>
<td>Project Tree</td>
<td>$1,600</td>
</tr>
<tr>
<td></td>
<td>1967-68</td>
<td>Project Tree</td>
<td>$1,600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Department of Public Instruction Mathematics Program</td>
<td>$200</td>
</tr>
<tr>
<td>Stevens Point</td>
<td>1967-68</td>
<td>Typewriting and Reading, Special Education of Handicapped Children</td>
<td>$1,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1,000</td>
</tr>
<tr>
<td>Superior</td>
<td>1967-68</td>
<td>AAAS Project</td>
<td>$1,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observation Attitude Study</td>
<td>$10,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Field Testing-Social Studies Skills Equipment</td>
<td>$3,400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Closed-circuit Television Installation</td>
<td>$1,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humanities-Values Content Experimental Study</td>
<td>$12,000</td>
</tr>
<tr>
<td>Whitewater</td>
<td>1966-67</td>
<td>HIT (Highly Integrated Teaching) Experimental Program</td>
<td>$400</td>
</tr>
<tr>
<td></td>
<td>1967-68</td>
<td>Expansion of HIT Program</td>
<td>$7,512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Foreign Language Education Center</td>
<td>$600</td>
</tr>
<tr>
<td>Objective Evaluation of Intensive Inquiry Training</td>
<td>$84,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-School Research and Demonstration</td>
<td>$187,162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Counseling Fractions</td>
<td>94,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relationship Between Learning Tonal Patterns and Ability to Read</td>
<td>3,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Office of Education Project on Teacher Training</td>
<td>22,800</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Definitions

In order to understand fully data collected in Chapter Two, it will be helpful to define terms as follows:

a. Demonstration--As used in this report, the term "demonstration" shall be most often interpreted to mean a demonstration less or as a pre-planned controlled group situation so organized and executed before a group of pre-service trainees in such a manner as to make more meaningful educational theory or philosophy.

b. Observation--The pre-service students make extensive use of the on-campus facilities for "free observation" on an unscheduled basis as well as the opportunity to observe for specific purposes under the guidance of an instructor. The in-service teachers from the area in the state use the laboratory school as a source of exemplary practices.

c. Participation--As used in this report, the term "participation" shall be interpreted as opportunities for the pre-service student to actively participate in many phases of the learning-teaching situation in a limited role under the direct and controlled guidance of the supervising teacher.

d. Professional and Lay Leadership--As used in this report, the terms "professional and lay leadership" shall be interpreted to mean the obligation of the members of the staffs of the laboratory schools to provide leadership in the dissemination, dispersion, or distribution ofanguard type ideas, proposals, suggestions and programs to local, area and state schools as well as to the public.

e. Experimentation and Innovation--As used in this report, the terms "experimentation and innovation" shall be interpreted to mean the development, initiation and testing of new ideas, methods, patterns and techniques of instructional practices in a controlled environment. Such efforts should be so designed as to provide evidence of practicability and utility to educators in the field.

Summation

Based on figures collected during the 1966-67 academic year, the CLS had contact with 9,183 college students. The students observed 3,500 demonstration lessons performed as well as registered 30,000 individual observations. 14,000 participation opportunities were extended to the teacher candidates by CLS faculties. In addition to the aforementioned activities, CLS faculty members made 900 appearances before college classes to assist in closer articulation of theory with practice.
Most CLS faculty members teach college courses or advise students while a substantial part in public school inservice programs. Area schools have been enriched by 400 "service functions" performed by CLS faculty members while sending 2,400 teachers to visit the CLS during the academic year. 723 student teachers have been assigned to the CLS for the 1967 academic year and summer session.

A substantial effort toward innovation has been made by the members of CLS faculties. Publication of professional papers is concurrently emphasized.

Special note of the diversity and magnitude of the summer program should be made.
EXHIBIT A

"HOW ARE THE LABORATORY SCHOOLS USED?"

<table>
<thead>
<tr>
<th>Academic Year</th>
<th>Eau Claire</th>
<th>La Crosse</th>
<th>Kohler</th>
<th>Platteville</th>
<th>River Falls</th>
<th>Stevens Point</th>
<th>Superior</th>
<th>White-River</th>
<th>UW-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>3947</td>
<td>896</td>
<td>414</td>
<td>203</td>
<td>364</td>
<td>68</td>
<td>383</td>
<td>440</td>
<td>770</td>
</tr>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td>756</td>
<td>55</td>
<td>NA</td>
<td>140</td>
<td>270</td>
<td>68</td>
<td>287</td>
<td>360</td>
<td>670</td>
</tr>
<tr>
<td>Sophomore</td>
<td>558</td>
<td>140</td>
<td>55</td>
<td>203</td>
<td>386</td>
<td>96</td>
<td>283</td>
<td>440</td>
<td>770</td>
</tr>
<tr>
<td>Junior</td>
<td>575</td>
<td>39</td>
<td>212</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Senior</td>
<td>575</td>
<td>39</td>
<td>212</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Total</td>
<td>6623</td>
<td>39</td>
<td>2174</td>
<td>NA</td>
<td>420</td>
<td>NA</td>
<td>186</td>
<td>1589</td>
<td>2211</td>
</tr>
</tbody>
</table>

2. Number of university students enrolled in teacher education not involved in lab school experiences:

<table>
<thead>
<tr>
<th>Academic Year</th>
<th>Eau Claire</th>
<th>La Crosse</th>
<th>Kohler</th>
<th>Platteville</th>
<th>River Falls</th>
<th>Stevens Point</th>
<th>Superior</th>
<th>White-River</th>
<th>UW-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>3947</td>
<td>896</td>
<td>414</td>
<td>203</td>
<td>364</td>
<td>68</td>
<td>383</td>
<td>440</td>
<td>770</td>
</tr>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>NA</td>
<td>NA</td>
<td>1309</td>
<td>NA</td>
<td>420</td>
<td>NA</td>
<td>36</td>
<td>917</td>
<td>1119</td>
</tr>
<tr>
<td>Sophomore</td>
<td>1677</td>
<td>NA</td>
<td>518</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>12</td>
<td>672</td>
<td>475</td>
</tr>
<tr>
<td>Junior</td>
<td>570</td>
<td>NA</td>
<td>135</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>61</td>
<td>374</td>
<td>247</td>
</tr>
<tr>
<td>Senior</td>
<td>375</td>
<td>39</td>
<td>212</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>77</td>
<td>371</td>
<td>247</td>
</tr>
<tr>
<td>Total</td>
<td>6623</td>
<td>39</td>
<td>2174</td>
<td>NA</td>
<td>420</td>
<td>NA</td>
<td>186</td>
<td>1589</td>
<td>2211</td>
</tr>
</tbody>
</table>

3. Number of demonstrations performed:

<table>
<thead>
<tr>
<th>Academic Year</th>
<th>Eau Claire</th>
<th>La Crosse</th>
<th>Kohler</th>
<th>Platteville</th>
<th>River Falls</th>
<th>Stevens Point</th>
<th>Superior</th>
<th>White-River</th>
<th>UW-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>3947</td>
<td>896</td>
<td>414</td>
<td>203</td>
<td>364</td>
<td>68</td>
<td>383</td>
<td>440</td>
<td>770</td>
</tr>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td>8134</td>
<td>5679</td>
<td>6672</td>
<td>NA</td>
<td>2245</td>
<td>4000</td>
<td>7654</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophomore</td>
<td>5901</td>
<td>1250</td>
<td>779</td>
<td>NA</td>
<td>2408</td>
<td>448</td>
<td>800</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>Junior</td>
<td>575</td>
<td>39</td>
<td>212</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Senior</td>
<td>575</td>
<td>39</td>
<td>212</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>46409</td>
<td>7374</td>
<td>8913</td>
<td>5679</td>
<td>9080</td>
<td>NA</td>
<td>2693</td>
<td>4800</td>
<td>7870</td>
</tr>
</tbody>
</table>

4. Number of students observing the demonstrations.

-11-
5. Number of Individual Observations.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Eau Claire</th>
<th>La Crosse</th>
<th>Oshkosh</th>
<th>Platteville</th>
<th>Fifes</th>
<th>Point</th>
<th>Superior</th>
<th>White Water</th>
<th>UW-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Year</td>
<td>24737</td>
<td>3668</td>
<td>3161</td>
<td>609</td>
<td>5810</td>
<td>426</td>
<td>2499</td>
<td>5000</td>
<td>3564</td>
<td>See Appendix A-end of this chapter</td>
</tr>
<tr>
<td>Summer School</td>
<td>6508</td>
<td>1256</td>
<td>325</td>
<td>527</td>
<td>1650</td>
<td>NA</td>
<td>676</td>
<td>1000</td>
<td>1030</td>
<td>1844</td>
</tr>
<tr>
<td>Total</td>
<td>31245</td>
<td>4918</td>
<td>3486</td>
<td>1136</td>
<td>7460</td>
<td>426</td>
<td>3175</td>
<td>6000</td>
<td>4644</td>
<td></td>
</tr>
</tbody>
</table>

6. Number of "participation opportunities"; i.e., active participation in the many phases of the learning-teaching situation, extended to pre-student teachers.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Eau Claire</th>
<th>La Crosse</th>
<th>Oshkosh</th>
<th>Platteville</th>
<th>Fifes</th>
<th>Point</th>
<th>Superior</th>
<th>White Water</th>
<th>UW-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Year</td>
<td>11986</td>
<td>2181</td>
<td>3762</td>
<td>1325</td>
<td>1778</td>
<td>142</td>
<td>968</td>
<td>600</td>
<td>1230</td>
<td>See Appendix A-end of this chapter</td>
</tr>
<tr>
<td>Summer School</td>
<td>2415</td>
<td>2000</td>
<td>3767</td>
<td>Inc.</td>
<td>160</td>
<td>NA</td>
<td>125</td>
<td>125</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14441</td>
<td>4181</td>
<td>3767</td>
<td>above</td>
<td>1938</td>
<td>142</td>
<td>1093</td>
<td>725</td>
<td>1230</td>
<td></td>
</tr>
</tbody>
</table>

7. Number of contacts of Campus School faculty as resource persons before university classes, other than those assignments that are part of the normal load.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Eau Claire</th>
<th>La Crosse</th>
<th>Oshkosh</th>
<th>Platteville</th>
<th>Fifes</th>
<th>Point</th>
<th>Superior</th>
<th>White Water</th>
<th>UW-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Year</td>
<td>819</td>
<td>14</td>
<td>141</td>
<td>40</td>
<td>NA</td>
<td>18</td>
<td>27</td>
<td>449</td>
<td>124</td>
<td>15</td>
</tr>
<tr>
<td>Summer School</td>
<td>114</td>
<td>14</td>
<td>2</td>
<td>5</td>
<td>NA</td>
<td>3</td>
<td>7</td>
<td>69</td>
<td>NA</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>933</td>
<td>28</td>
<td>143</td>
<td>45</td>
<td>NA</td>
<td>21</td>
<td>34</td>
<td>516</td>
<td>124</td>
<td>18</td>
</tr>
</tbody>
</table>

8. Number of professional observations by in-service teachers.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Eau Claire</th>
<th>La Crosse</th>
<th>Oshkosh</th>
<th>Platteville</th>
<th>Fifes</th>
<th>Point</th>
<th>Superior</th>
<th>White Water</th>
<th>UW-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Year</td>
<td>2337</td>
<td>35</td>
<td>80</td>
<td>50</td>
<td>125</td>
<td>245</td>
<td>257</td>
<td>200</td>
<td>445</td>
<td>200</td>
</tr>
<tr>
<td>Summer School</td>
<td>491</td>
<td>30</td>
<td>37</td>
<td>29</td>
<td>NA</td>
<td>NA</td>
<td>35</td>
<td>10</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2828</td>
<td>65</td>
<td>117</td>
<td>79</td>
<td>125</td>
<td>245</td>
<td>292</td>
<td>110</td>
<td>455</td>
<td>350</td>
</tr>
</tbody>
</table>

9. Number of CLS members involved in the public school in-service programs.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Eau Claire</th>
<th>La Crosse</th>
<th>Oshkosh</th>
<th>Platteville</th>
<th>Fifes</th>
<th>Point</th>
<th>Superior</th>
<th>White Water</th>
<th>UW-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Year</td>
<td>117</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>22</td>
<td>3</td>
<td>45</td>
<td>20</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Summer School</td>
<td>12</td>
<td>NA</td>
<td>NA</td>
<td>2</td>
<td>45</td>
<td>5</td>
<td>NA</td>
<td>25</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>129</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>24</td>
<td>3</td>
<td>49</td>
<td>25</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Program will change allowing for a great increase in number of participation opportunities summer, 1963.
10. Estimated number of hours expended by CLS faculty in public school inservice programs.

<table>
<thead>
<tr>
<th></th>
<th>Eau Claire</th>
<th>La Crosse</th>
<th>Gale-Kosh</th>
<th>Flattieville</th>
<th>Falls Point</th>
<th>Stevens</th>
<th>Superior</th>
<th>White-water</th>
<th>UN-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Year</td>
<td>4154</td>
<td>261</td>
<td>242</td>
<td>200</td>
<td>325</td>
<td>250</td>
<td>227</td>
<td>2400</td>
<td>99</td>
</tr>
<tr>
<td>Summer School</td>
<td>236</td>
<td>0</td>
<td>40</td>
<td>44</td>
<td>10</td>
<td>NA</td>
<td>22</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4390</td>
<td>261</td>
<td>202</td>
<td>244</td>
<td>335</td>
<td>250</td>
<td>249</td>
<td>2500</td>
<td>99</td>
</tr>
</tbody>
</table>

11. Number of "service" functions provided by lab school staff; i.e., P.T.A. talks, etc.

<table>
<thead>
<tr>
<th></th>
<th>Academic Year</th>
<th>Summer School</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
<td>372</td>
<td>45</td>
<td>417</td>
</tr>
<tr>
<td>Total</td>
<td>409</td>
<td>46</td>
<td>455</td>
</tr>
</tbody>
</table>

12. Do CLS members advise college students?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Involved</td>
<td>241+</td>
<td>1</td>
</tr>
<tr>
<td>Average Number of advisees</td>
<td>25</td>
<td>1</td>
</tr>
</tbody>
</table>

13. Do CLS faculty members teach college classes?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of semester hours</td>
<td>292</td>
<td>0</td>
</tr>
</tbody>
</table>

14. Number of experimental or innovative projects conducted 1966-67 school year.

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Number of faculty hours devoted to the above.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Year</td>
<td>11397</td>
<td>NA 1209 2520 294 NA 1054 4500 NA NA</td>
</tr>
<tr>
<td>Summer School</td>
<td>873</td>
<td>NA 10 NA 20 NA 243 400 NA NA</td>
</tr>
<tr>
<td>**Total (Partial)</td>
<td>12270</td>
<td>NA 1219 2520 314 NA 1297 4900 NA NA</td>
</tr>
</tbody>
</table>
15. Number of research projects conducted 1966-67 school year in the CLS.

<table>
<thead>
<tr>
<th>Total</th>
<th>Eau Claire</th>
<th>La Crosse</th>
<th>Oshkosh</th>
<th>Platteville</th>
<th>River Falls</th>
<th>Steven Point</th>
<th>Superior</th>
<th>White-water</th>
<th>UW-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>26</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

16. Number of student teachers assigned to the CLS.

Academic Year	439	58	26	97	80	51	NA	45	66	16
Summer School	284	49	8	122	37	6	NA	10	50	2
Total	723	107	34	219	117	57	NA	55	116	18

17. Special Service

See Appendix B at the end of this chapter.

18. Staff Publications

See Appendix C at the end of this chapter.

19. Non-published projects

See Appendix D at the end of this chapter.
APPENDIX A

The following information is helpful to interpreting Exhibit A. The statements apply to UW-M exclusively.

1. Approximately five years ago the primary function of the CLS at the University of Wisconsin-Milwaukee was changed to that of research and experimentation and this remains the primary function of the school today.

2. Those college students who observe or participate in activities at Campus School do so primarily for the purpose of observing boys and girls in a classroom situation. Only rarely do teachers have planned demonstrations for college students.

3. During the two year period 1965-67, the entire faculty of Campus School was involved in a major research study, with focus on inquiry training and decision making. For this reason, the participation of staff members in other activities was more limited than had been true of prior years.

Two mimeographed reports and a supplementary report were issued during the 1965-66 school year and a final report of the study will be published in December, 1967.
APPENDIX B

Does the laboratory school serve the college or school of education in some "special" or unique manner not indicated previously? (i.e., advance planning with college method teachers) The responses to this question are not readily quantifiable and are, therefore, summarized in the form of an annotated list.

Eau Claire
1. All Lab School instructors teach some professional education courses.
2. Elementary Coordinator of EDEA Geography Institute (SS).
3. Upward Bound, University sponsored Institute (SS).
4. Director Outdoor Education Workshop Pigeon Lake.

La Crosse
1. Psycho-Education Clinic Staff member.
2. Campus School Library has exclusive holdings in Adolescent Literature--Children's Literature--Practice Teaching--Library Science.
3. Provide individualized student teaching programs for experienced non-degree teachers.

Oshkosh
1. Clinics in various areas in conjunction with student teaching link theory and practice. The summer program has provided unique opportunities for non-degree certified teachers to work toward and complete the bachelor's degree.
2. The CLS provides pre-intern participation opportunities as a means of evaluating the potential of those selected to try for entry into the intern program.
3. Advanced planning among the Campus School faculty and the methods teachers enable the students to be better oriented to relate methods theory and the practical situation which they are viewing. Critiques held jointly by methods teachers and CLS faculty with the methods class after an observation or demonstration allows the students to gain more insight into the behaviors of relationships between teacher and students.
4. Plans are being made to construct and develop tapes and a library of tapes of examples of methods and educational psychology concepts and principles. These would be available to the University courses for viewing at the time most appropriate to the needs of the specific classes.

Stevens Point
1. The CLS provides an opportunity for many varied experiences for the college student--cooperative planning by the subject matter specialist and the CLS professional is a necessary and vital part of this service.
Micro-teaching program involving a close correlation and planning between laboratory school faculty and methods instructors. Small groups of children participate in micro-demonstration in the university class.

White-water

1. F.L.E.C. (Foreign Language Education Center). The Campus School and its program and facilities serves as a coordinating unit for the Departments of Foreign Language and Elementary Education.

2. Use of facilities in Campus School for demonstration teaching and observation of children with learning disabilities. (Special Education Conference Annual).

3. Experimental program in student teaching--H.I.T. Program.

4. All University-Inter-Department Committee involved in planning--experimental values--Humanities teaching project in 6-7-8 grades of the Campus School.

UW-M

1. For the past five years the Campus Elementary School has serves as a center for research and experimentation for The University of Wisconsin-Milwaukee.

2. Within the last two years a Resource Center has been established at CLS for use by faculty and by students. Visitors to the school observe the newer media and materials being used in the Resource Center.

Platteville

1. A reading clinic is conducted in connection in the Campus School during the summer sessions.

2. Video-taping of demonstrations is made in the Campus School.

The micro-teaching program has served to provide a dynamic reality to methods instruction. Students in methods courses teach in the on-going classroom of the Laboratory School and are video-taped. Later, they view this lesson and participate in a critique with their clinical professor.

McCaskill Laboratory School has served as a center for research studies undertaken by the Education faculty, particularly in the area of observation attitudes of college students and reading techniques.
APPENDIX C

Staff publications (1960-67)

Eau Claire

Keem, George, "A Study of Selected Elementary School Student Teaching Failures", Association for Student Teaching, 1964; Bulletin No. 22.

Nagel, Paul, Teachers Edition World Cultures, Past and Present, Harper and Row, 1964; and all instructional materials within the pupils edition of World Cultures, Past and Present.

Burk, Donald; Primer on School Acoustics; Overview, 1961.

Burk, Donald, Text and Trade Book reviews published by Curriculum Advisory Service, Chicago. Mr. Burk is on permanent National Review Board. About 12 published a year.

Thews, Duane; "F.L.E.S. Some Considerations", Wisconsin Spanish Teacher; Fall, 1964.

Oshkosh

Gunderson, Doris, Research in Primary Grades, Government Publication (review of Dr. Jean Caudle's research findings), 1964.

NCTE, Committee on English Curriculum, 1960, Hutchinson, Earl J. (Contributor).
Project English - Wisconsin, Department of Public Instruction, Hutchinson, Earl J. (Contributor).

Platteville
Edwin E. Moore and others, "The Role of Administration in Developing the Programs and Environment in which students are regarded as persons", North Central News Bulletin, January, 1966.

Stevens Point
Rexine Langen, "Exploratory Project in Multi-Age Education at the Pre-Primary Level," Reports published by UW-M, 1964.
Rexine Langen, "Multi-Media Approach In A First Grade Reading Program," Instructor, May, 1968.
Co-Author of K-6 series - Worked on Teachers' annuals at all levels.

Superior
Cumming, John "Student Teaching Evaluation a 8mm Film", Audiovisual Instruction, January, 1966.
Superior

Whitewater
Ernella Hunziker, A Series of three filmstrips for the State Department of Public Instruction entitled: "Art in Wisconsin Elementary Schools."

UW-M
Raths, James - Values and the Involvement of Children in Learning; Research Bulletin 62-1, Campus School, School of Education, UW-M 1962.

Harney, Irene, McElwee, Gregory (assisted by John Belton and Shirlyn Nash) Enhancing the Creative Potential of Children, Campus Elementary School, UW-M August, 1964.

Classroom Assessment of Student Attitudes: A guidebook prepared by the faculty of the Campus Elementary School, University of Wisconsin-Milwaukee: Summer Session, 1965.

Belton, John (with assistance from Irene Harney and Shirlyn Nash) A Study of Children's Attitudes, Campus Elementary School, August, 1965.

Langen, Rexine, A Report of Exploratory Project in Filming Television Programs for Children at the Pre-Primary Level, Campus Elementary School, University of Wisconsin-Milwaukee, 1965.

Matheson, Donald M., Development of Teacher Insight Into Individual Differences in Children; An Action Research Activity, Campus Elementary School, University of Wisconsin-Milwaukee.

Lange, McElwee, Belton, Nash, Spodek, Exploratory Project in Multi-Age Education at the Pre-Primary Level, Campus Elementary School, University of Wisconsin-Milwaukee, August, 1964.

APPENDIX D

Please list non-published projects taking place in the Campus Laboratory School.

Eau Claire
Burk, Donald; Monograph on Individualized Reading.
Burk, Donald; Monograph on Free and Inexpensive Materials.
Burk, Donald; Monograph on Elementary School Science.
Burk, Donald; Monograph on the Ten-Year Old.
Joyal, Lloyd and Nagel, Paul; Series of slides with narration on Unit Teaching.
Carson, Janet; De Cinque - Original Prints: Philadelphia, six prints are on exhibit in professional traveling print show.
Carson, Janet; "We love to Draw Ourselves Skating." School Arts Illustrated Articles.
Carson, Janet; "Building with Boxes," Arts and Activities.
Numerous resource units which have been disseminated from several faculty members.

La Crosse
Orton Gillingham Method of Teaching Remedial Reading--crosses grade lines.
Developmental Spelling Program.
Math Program with State Department.
Team Teaching.
Individualized Spelling, Math, Reading.
 Junior High Newspaper.
Laboratory Periods.
Junior High Flexible Program "Student Selection".
Foreign Language Exchange.

Oshkosh
Math Project: Grades 1 and 2. Three different approaches to math. Designed to determine most effective approach in first and second grades.
Language Arts Approach to Reading: Grades 1 and 2. In conjunction with Encyclopedia Brittanica materials, a pilot project with the top third of the class in reading. Based on the theory that children are motivated and will be able to read what they say and write. Children develop own stories, and through this their vocabulary and reading skills.
Individualized Approach to Spelling: Grade 5. Attempts to allow students to develop spelling skills at own rate. Includes both list words and those chosen on self-selected need basis. Utilized tapes through electric tables and headphones for independent study.
Senesch Social Studies: Grades 1 and 2. Piloting new approach to social studies.
Core Curriculum: Junior High School Social Studies. The definition of the core approach is that of Anderson's, namely, a way of organizing some of the common learnings in the curriculum, using a problem-solving approach as its procedure, having social and personal problems significant to youth as its content, and the development of the behaviors needed in a democratic society as its purpose.
Oshkosh

Music: Grade 1. Pilot project operating concurrently with a research project in the Oshkosh Public School System, involving an attempt to teach first graders notations, utilizing a new method of teaching.

Gymnastics: Girls. Use of video-taping in teaching gymnastics.

Video-Taping: Teacher Training. Utilizing concept of instant feedback and critiquing, with student teacher viewing his performance, a pilot study of the use of videotaping of student teacher lessons will be attempted the second semester.

Projected: Micro-Teaching Experiment in Summer School.

Platteville

A 4-year-old kindergarten is being operating with children selected by criteria similar to that of Head Start. Follow-up of these children in subsequent grades will be made.

The Campus School is working with AAAS Science materials integrating them into the established science programs at all grade levels K-8.

The Campus School teachers are working in a cooperative program with the State Department of Public Instruction to develop mathematics curriculum materials and evaluation instruments for the new mathematics program in the State.

Stevens Point

Development of Primary Writing Inventory--Pilot Project.

Continuous Progress Program (K-3).

Computerizing records.

Non-graded program -- K-3.

Two years -- room meetings -- once a week computerizing data.

Creative Writing Project.

Speech-content area correlation project.

Aerospace Education.

Individualized Planning Program.

Math Inv. of Pre-Schoolers Possessed before having school math--6 or 7 years study.

Science Inventory Test.

Lenthened Kindergarten Day Project--The Return of Small Groups in the P.M. for More Experiences.

Pre-Planning of K-3 Non-Graded Program.

Comparing Guidelines to Mathematics to the S.M.S.G. Program.

Initiating an Appropriate Placement Organization for Grades 4 through 6.

Kindergarten in the Special Subject Areas.

French Instruction.

Music, Art, & Physical Education Instruction.
Superior

Elementary School Science Project: pilot school for the American Association for the Advancement of Science working cooperatively with several school systems in northern Wisconsin.

Observation Attitude Study: in cooperation with the Department of Education, involving Laboratory school faculty and students, as well as students in University Educational Psychology classes.

Mini-teaching Study: students in methods courses, beginning with mathematics are participating in lesson presentations in the Laboratory school; these micro-lessons are carefully evaluated.

Individualized Instruction Project: junior high school language arts children are being taught through individualized materials prepared by the Language Arts instructor.

Project "Mirror": this is an experimental program of evaluation of student teaching utilizing closed-circuit television and video-tape recordings coupled with evaluation teams.

Programmed Reading: special materials are being used with remedial groups in the Primary Department to determine the value of the materials.

Elementary School Mathematics: the Laboratory School is working with the State Department of Public Instruction as well as the University system Laboratory Schools.

White-water

Use of Overhead Projector in teaching First Grade Reading.

Effectiveness of the Student Teaching Program in the Primary Grades.

Child-Centered Science Curriculum.

Tom Grotelueschen. The Prejudiced Teacher.

Olive Reeve, Gladys Petersen, Helen Swartz. The Effectiveness of the Student Teaching Program in the Primary Grades.

E. P. Kruchoski. Physical Education in the Primary School.

Ernella Hunziker. Preparing an Article on Request by Darnell Publishers for the secretary's bulletin - From Nine to Five.

Vern Herdendorf. A survey on children's library books which are sold in packaged lots requested by the Toy Book Company.

River Falls

Administrative Organizational Patterns.

Development of Scheduling Variations.

Project TREE - Teacher Research in Elementary Education-Media Availability.

Development of Independent Research Projects.
The Campus School faculty has been involved in a major research study since November, 1965. This project is designed to study a number of assumptions regarding the educational process, with major emphasis on the decision making process. Total staff involvement; no outside funding. Two publications are currently available. The final report will be published in December, 1967.

Child Psychiatry Residency Training - A continuing association between The Milwaukee Children's Hospital, Child Psychiatry Center and The Campus Elementary School.

Pre-School Research and Demonstration Program (1967-68). This program serves as a demonstration center for the Project Head Start Training Program which is financed by a $187,162.00 federal grant from the Office of Economic Opportunity.

Graduate Counseling Practicum of UW-M's Department of Educational Psychology. Graduate students are participants in the federally sponsored Elementary Pupil Personnel Specialist Program.

An investigation of possible relationships of selected variables (including dominance and motor ability) to the ability to sing an integrated extended series of familiar tonal patterns (a song) and to the ability to read. 1967-68. School of Education, UW-M. Research Funds, $3,500.00.

"Instructional Strategies in Conceptual Learning" Department of Psychology, UW-M 1967-68.

"The Effect of Pre-Training in Hypothesis Formation on Subsequent Concept Identification." 1967-68 Department of Psychology, UW-M.
CHAPTER THREE

Qualitative Aspects of the Campus School Program

The primary purpose of Chapter Three is to evaluate the impact of the CLS upon teacher candidates. This was done through the use of a questionnaire (Appendix A) distributed to the professional education faculties excluding the CLS faculties. All members of the professional education faculties were polled without regard to the percentage of their time devoted to professional education. The number and percentage of returns of the questionnaires by schools are as follows:

<table>
<thead>
<tr>
<th>School</th>
<th>Percentage</th>
<th>Total Number Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eau Claire</td>
<td>65</td>
<td>31</td>
</tr>
<tr>
<td>La Crosse</td>
<td>88</td>
<td>15</td>
</tr>
<tr>
<td>Oshkosh</td>
<td>78</td>
<td>28</td>
</tr>
<tr>
<td>Platteville</td>
<td>69</td>
<td>36</td>
</tr>
<tr>
<td>River Falls</td>
<td>80</td>
<td>15</td>
</tr>
<tr>
<td>Stevens Point</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>Superior</td>
<td>80</td>
<td>17</td>
</tr>
<tr>
<td>Whitewater</td>
<td>80</td>
<td>35</td>
</tr>
<tr>
<td>UW-M</td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>

The questions asked of this group of professional educators center around behavioral attributes of teachers. In each of the questions, a substantial majority of respondents indicated that in their opinion a CLS helps prospective teachers develop the teacher traits designated in the questionnaire.

A secondary purpose of this questionnaire was to ascertain the opinion of the group as related to:

A. What degree access to a Campus Laboratory School provides assistance in bridging the gap between theory and practice as related to educational procedures.

B. The degree that control of a program used for observation, participation and demonstration is necessary.

The detailed responses to these questions have been placed on file. However, an arbitrary categorization of the responses to question A regarding access finds 50% of respondents claiming access as essential, 40% maintaining it is necessary to a considerable degree while the remaining 10% feel the public schools are adequate to meet the needs in this area.

In responding to question 2 regarding control, 59% felt control is essential, 36% replied that a considerable amount of control is necessary, and 5% indicated that they felt little need for control.
1. A Campus Laboratory School helps a prospective teacher: Develop a set of basic notions pertinent to learning and to human growth.*

<table>
<thead>
<tr>
<th>School</th>
<th>Rating Scale</th>
<th>Highest 5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>Lowest 1</th>
<th>No Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Crosse</td>
<td></td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oshkosh</td>
<td></td>
<td>57</td>
<td>29</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Platteville</td>
<td></td>
<td>53</td>
<td>31</td>
<td>8</td>
<td>5.5</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>River Falls</td>
<td></td>
<td>73</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Superior</td>
<td></td>
<td>24</td>
<td>29</td>
<td>29</td>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U.W.-Milwaukee</td>
<td></td>
<td>42</td>
<td>30</td>
<td>14</td>
<td>6</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Whitewater</td>
<td></td>
<td>54</td>
<td>31</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eau Claire</td>
<td></td>
<td>42</td>
<td>39</td>
<td>13</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Stevens Point</td>
<td></td>
<td>50</td>
<td>37.5</td>
<td>0</td>
<td>0</td>
<td>12.5</td>
<td>0</td>
</tr>
<tr>
<td>Average Percentage</td>
<td></td>
<td>48</td>
<td>33</td>
<td>11</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*Recorded as percent.
2. A Campus Laboratory School helps a prospective teacher: Identify, understand, and accept individual differences among pupils.*

<table>
<thead>
<tr>
<th>School</th>
<th>Highest Rating Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>La Crosse</td>
<td>40</td>
</tr>
<tr>
<td>Oshkosh</td>
<td>36</td>
</tr>
<tr>
<td>Platteville</td>
<td>55</td>
</tr>
<tr>
<td>River Falls</td>
<td>73</td>
</tr>
<tr>
<td>Superior</td>
<td>35</td>
</tr>
<tr>
<td>U.W.-Milwaukee</td>
<td>44</td>
</tr>
<tr>
<td>Whitewater</td>
<td>42.5</td>
</tr>
<tr>
<td>Eau Claire</td>
<td>58</td>
</tr>
<tr>
<td>Stevens Point</td>
<td>62.5</td>
</tr>
<tr>
<td>Average Percentage</td>
<td>50</td>
</tr>
</tbody>
</table>

*Recorded as percent.
3. A Campus Laboratory School helps a prospective teacher: Organize the classroom, utilize control techniques, and establish a socio-emotional climate so that effective teaching-learning is enhanced.*

<table>
<thead>
<tr>
<th>School</th>
<th>Highest</th>
<th>Rating Scale</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>Lowest</th>
<th>1</th>
<th>No Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Crosse</td>
<td></td>
<td>Scale 5</td>
<td>40</td>
<td>33</td>
<td>20</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U.W.-Milwaukee</td>
<td></td>
<td>Scale 4</td>
<td>35</td>
<td>36</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>River Falls</td>
<td></td>
<td>Scale 3</td>
<td>36</td>
<td>36</td>
<td>17</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Superior</td>
<td></td>
<td>Scale 2</td>
<td>40</td>
<td>46</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Whitewater</td>
<td></td>
<td>Scale 1</td>
<td>34</td>
<td>35</td>
<td>12</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eau Claire</td>
<td></td>
<td>Scale 2</td>
<td>34</td>
<td>31</td>
<td>20</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Stevens Point</td>
<td></td>
<td>Scale 1</td>
<td>48</td>
<td>36</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Average Percentage</td>
<td></td>
<td>Scale 2</td>
<td>25</td>
<td>37.5</td>
<td>12.5</td>
<td>0</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
</tr>
</tbody>
</table>

*Recorded as percent.
Exhibit B

4. A Campus Laboratory School helps a prospective teacher: Understand the values and techniques of planning for teaching.*

<table>
<thead>
<tr>
<th>School</th>
<th>Rating Scale</th>
<th>Highest</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>Lowest</th>
<th>No Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Crosse</td>
<td></td>
<td>53</td>
<td>27</td>
<td>13</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oshkosh</td>
<td></td>
<td>64</td>
<td>25</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Platteville</td>
<td></td>
<td>66</td>
<td>25</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>River Falls</td>
<td></td>
<td>73</td>
<td>20</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Superior</td>
<td></td>
<td>53</td>
<td>29</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U.W.-Milwaukee</td>
<td></td>
<td>42</td>
<td>28</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Whitewater</td>
<td></td>
<td>57</td>
<td>28</td>
<td>3</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eau Claire</td>
<td></td>
<td>59</td>
<td>16</td>
<td>16</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Stevens Point</td>
<td></td>
<td>62.5</td>
<td>12.5</td>
<td>12.5</td>
<td>0</td>
<td>12.5</td>
<td>0</td>
</tr>
<tr>
<td>Average Percentage</td>
<td></td>
<td>59</td>
<td>23</td>
<td>12</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

*Recorded as percent.
5. A Campus Laboratory School helps a prospective teacher: Make effective use of audio-visual and other teaching aids.*

<table>
<thead>
<tr>
<th>School</th>
<th>Rating Scale</th>
<th>Highest</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>Lowest</th>
<th>No Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Crosse</td>
<td></td>
<td>46</td>
<td>27</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oshkosh</td>
<td></td>
<td>47</td>
<td>28</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Platteville</td>
<td></td>
<td>30</td>
<td>39</td>
<td>20</td>
<td>8</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>River Falls</td>
<td></td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Superior</td>
<td></td>
<td>35</td>
<td>26</td>
<td>29.5</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U.W.-Milwaukee</td>
<td></td>
<td>36</td>
<td>26</td>
<td>22</td>
<td>12</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Whitewater</td>
<td></td>
<td>57</td>
<td>28</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Eau Claire</td>
<td></td>
<td>42</td>
<td>36</td>
<td>13</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Stevens Point</td>
<td></td>
<td>37.5</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>12.5</td>
<td>0</td>
</tr>
<tr>
<td>Average Percentage</td>
<td></td>
<td>48</td>
<td>29</td>
<td>17</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

*Recorded as percent.
6. A Campus Laboratory School helps a prospective teacher: See the curriculum as an entity and understand the scope, sequence and function of all subjects including the specials such as art, music, and physical education.*

<table>
<thead>
<tr>
<th>School</th>
<th>Rating Scale</th>
<th>Highest</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>Lowest</th>
<th>No Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Crosse</td>
<td>46</td>
<td>27</td>
<td>13</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oshkosh</td>
<td>43</td>
<td>29</td>
<td>14</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Platteville</td>
<td>35</td>
<td>39</td>
<td>14</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>River Falls</td>
<td>47</td>
<td>33</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Superior</td>
<td>23</td>
<td>29</td>
<td>18</td>
<td>18</td>
<td>12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>U.W.-Milwaukee</td>
<td>30</td>
<td>14</td>
<td>30</td>
<td>14</td>
<td>0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Whitewater</td>
<td>28</td>
<td>31</td>
<td>26</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Eau Claire</td>
<td>32</td>
<td>23</td>
<td>39</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Stevens Point</td>
<td>50</td>
<td>25</td>
<td>12.5</td>
<td>0</td>
<td>12.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Average Percentage</td>
<td>37</td>
<td>28</td>
<td>21</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

*Recorded as percent.
Exhibit B

7. A Campus Laboratory School helps a prospective teacher: Evidence skill in the measurement, evaluation, recording and reporting of pupil growth and achievement.*

<table>
<thead>
<tr>
<th>School</th>
<th>Highest</th>
<th>Lowest</th>
<th>No Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>La Crosse</td>
<td>33</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Oshkosh</td>
<td>43</td>
<td>32</td>
<td>21</td>
</tr>
<tr>
<td>Platteville</td>
<td>38</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>River Falls</td>
<td>40</td>
<td>53</td>
<td>7</td>
</tr>
<tr>
<td>Superior</td>
<td>18</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>U.W.-Milwaukee</td>
<td>31</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>Whitewater</td>
<td>28</td>
<td>49</td>
<td>14</td>
</tr>
<tr>
<td>Eau Claire</td>
<td>26</td>
<td>45</td>
<td>13</td>
</tr>
<tr>
<td>Stevens Point</td>
<td>50</td>
<td>25</td>
<td>12.5</td>
</tr>
<tr>
<td>Average Percentage</td>
<td>34</td>
<td>35</td>
<td>17</td>
</tr>
</tbody>
</table>

*Recorded as percent.
Exhibit B

8. A Campus Laboratory School helps a prospective teacher: Utilize the school and community as resources for teaching-learning experiences.*

<table>
<thead>
<tr>
<th>School</th>
<th>Rating Scale</th>
<th>Highest</th>
<th></th>
<th></th>
<th></th>
<th>Lowest</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>No Answer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Crosse</td>
<td>53</td>
<td>27</td>
<td>13</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oshkosh</td>
<td>36</td>
<td>14</td>
<td>32</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platteville</td>
<td>27</td>
<td>31</td>
<td>31</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>River Falls</td>
<td>40</td>
<td>53</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superior</td>
<td>18</td>
<td>12</td>
<td>46</td>
<td>18</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.W.-Milwaukee</td>
<td>45</td>
<td>8</td>
<td>16</td>
<td>20</td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitewater</td>
<td>37</td>
<td>17</td>
<td>20</td>
<td>20</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eau Claire</td>
<td>36</td>
<td>39</td>
<td>19</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stevens Point</td>
<td>50</td>
<td>37.5</td>
<td>0</td>
<td>0</td>
<td>12.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Percentage</td>
<td>38</td>
<td>27</td>
<td>20</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Recorded as percent.
9. A Campus Laboratory School helps a prospective teacher: Recognize the value of such groups as parent and/or student organizations dealing with school affairs and cultivate appropriate activity or involvement therein.*

<table>
<thead>
<tr>
<th>School</th>
<th>Rating Scale</th>
<th>Highest</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>Lowest</th>
<th>No Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Crosse</td>
<td></td>
<td>33</td>
<td>13</td>
<td>47</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Oshkosh</td>
<td></td>
<td>28</td>
<td>11</td>
<td>36</td>
<td>21</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Platteville</td>
<td></td>
<td>22</td>
<td>22</td>
<td>42</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>River Falls</td>
<td></td>
<td>13</td>
<td>60</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Superior</td>
<td></td>
<td>12</td>
<td>18</td>
<td>29</td>
<td>35</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>U.W.-Milwaukee</td>
<td></td>
<td>22</td>
<td>29</td>
<td>22</td>
<td>16</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Whitewater</td>
<td></td>
<td>17</td>
<td>26</td>
<td>28</td>
<td>12</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Eau Claire</td>
<td></td>
<td>13</td>
<td>42</td>
<td>29</td>
<td>13</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Stevens Point</td>
<td></td>
<td>37.5</td>
<td>37.5</td>
<td>12.5</td>
<td>0</td>
<td>12.5</td>
<td>0</td>
</tr>
<tr>
<td>Average Percentage</td>
<td></td>
<td>22</td>
<td>27</td>
<td>30</td>
<td>12</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

*Recorded as percent.
Exhibit B

10. A Campus Laboratory School helps a prospective teacher: Understand the role of an educator as a professional person.*

<table>
<thead>
<tr>
<th>School</th>
<th>Rating Scale</th>
<th>Highest</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>Lowest</th>
<th>No Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Crosse</td>
<td>47</td>
<td>53</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oshkosh</td>
<td>64</td>
<td>18</td>
<td>14</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Platteville</td>
<td>47</td>
<td>36</td>
<td>11</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>River Falls</td>
<td>73</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Superior</td>
<td>41</td>
<td>23</td>
<td>18</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U.W.-Milwaukee</td>
<td>44</td>
<td>22</td>
<td>20</td>
<td>8</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Whitewater</td>
<td>60</td>
<td>28</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eau Claire</td>
<td>62</td>
<td>20</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Stevens Point</td>
<td>62.5</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>12.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Average Percentage</td>
<td>56</td>
<td>28</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*Recorded as percent.
1. In a brief paragraph, give your opinion as to what degree access to a Campus Laboratory School provides assistance in bridging the gap between theory and practice as related to educational procedures.

110 (50%) of the replies were in category one--ESSENTIAL
Samples of this category:

1. "It is invaluable for prospective teachers to have access to a Campus Laboratory School. Observation of children is only one aspect of the values of such a school. In my teaching of the methods of Language Arts, I use the method of micro-teaching, with small groups of children coming to the college class to be taught by college students, and the method of micro-teaching, with the entire college class observing and discussing and at times teaching an entire Campus School class."

2. "It does so, and should continue to do so, to a very high degree. I see the Campus Laboratory School as practically indispensable. This observation is made as a result of having taught in colleges with such schools and some without."

3. "The close proximity of a Campus Laboratory School serves to improve the communications between the teachers and university faculty and between the students and the supervising faculty. Hence, the student teaching experience should provide more continuity with the didactic academic work. The presence of a Campus Laboratory School should also serve to keep the university faculty in closer touch with procedures and developments in the school; this should result in less disparity between theory and practices."

4. "Although the number of students who can do directed or practice teaching in the Campus School is limited, the Laboratory School provides a unique place for the development of finer teaching prospects. The Laboratory School by the very fact that it is on campus, in operation those hours (college classes in Education are meeting), provides that media for illustration of, observations on, clarification of or insights into, and practices with boys and girls of elementary school age, their development and growth relation of curricula to children, and the role of parents, teachers, and community in the curricula for today's children, and his preparation for tomorrow's world."

86 (40%) of the replies were in category two--CONSIDERABLE
Samples of this category:

1. "This is most important as without this bridge teaching methods and techniques are merely lecture courses and studies show this to be unsatisfactory as compared to actual observation and participation."
20 (10%) of the replies were in category three--LIMITED

Samples of this category:
1. "I do not feel that the Campus School is any better or even as good as a public school for this purpose."

2. "Comparatively little. Practice should be considered as those procedures which are used in the mass of public schools. Usually Campus Schools do not reflect the problems and needs of the public schools. Therefore, practices developed in Campus Schools to deal with an 'elite' student group too often cannot assist to reduce the gap mentioned above."

QUESTION TWO--EXHIBIT B

2. In a brief statement, give your opinion as to the degree that control of a program used for observation, participation and demonstration is necessary.

110 (50%) of the replies were in category one--ESSENTIAL

Samples of this category:
1. "Such a program is a vital aspect of Teacher Education. Unless control is vested in the Department of Education and laboratory school together, there is little chance for success in setting up observation and demonstration centers for teacher education work."

2. "Control of the program is the very essence of the entire operation. It is only through control that a meeting of minds occurs. Common understandings, concerns, and interests regarding the teacher candidate as a unique individual and as a person with highly specialized problems can best be sustained and motivated within the framework supplies by University faculty. The instinctive autonomous nature of public schools causes University control of teacher candidate experiences within that body to be nebulous at best. Differing and conflicting interests exist. Given adequate communication between University faculty, aided by written organizational documents, the Campus School surmounts the conflict of interest."

3. "Since the proof of all theory lies in practical application, I strongly believe that there must be as much control of a program used for observation, participation, and demonstration as one could possibly organize within human limitation. The philosophy, theories of learning and proposed teaching procedures that are advocated by any particular school
of education must be controlled in practice to be assured of its eventual realization. Furthermore, it is my belief that the more directly one can relate any specific procedure, method, device or personal professional relationship to a real life situation, the greater will be the effect upon the professional enlightenment of the prospective teacher. Such an arrangement would necessarily require extremely close and complete control of a program used for observation, demonstration and participation."

4. "Any program, to be effective, must have clearly defined goals and an orderly sequential development of study if those goals are to be realized. A Campus Laboratory School can be of inestimable value in this program for several reasons, to cite a few: a) its primary purpose in assisting in teacher education, b) availability for pre-planning in the development of an effective teacher education program, c) accessibility for efficiency in time as well as quality of work, d) a trained staff and strong leadership for high standards of attainment."

86 (40%) of the replies were in category two--CONSIDERABLE

Samples of this category:
1. "I can see the possibility of shared control; e.g., between the university and a public school district, but I'm firmly convinced that the university and Lab School Administrators must assume responsibility and decision-making power if there should develop a conflict concerning program, policy, purpose, etc."

2. "Control of a laboratory school program is not nearly as important a factor as ready accessibility and coordination. Most of the required flexibility can be provided in the professional courses using features of the laboratory school instructional program as they become available. Only occasionally would "special events" need to be scheduled."

20 (10%) of the replies were in category three--LIMITED

Samples of this category:
1. "Complete control is unnecessary. Clear understandings in writing between a teacher education institution and a school in which observation, participation, and demonstration are carried on is a must."
Exhibit B

To: Teachers of Courses in Professional Education

From: CCHE Advisory Committee on Laboratory Schools

We are soliciting your help in making a quantitative analysis of the contributions made by Campus Laboratory Schools to the product of the teacher education program. Assuming observation, demonstration, and participation to be the primary function of the Campus Laboratory School, please react to the following statements as indicated:

1. In a brief paragraph, give your opinion as to what degree access to a Campus Laboratory School provides assistance in bridging the gap between theory and practice as related to educational procedures.

2. In a brief statement, give your opinion as to the degree that control of a program used for observation, participation and demonstration is necessary.

3. By circling the appropriate numbers on the next page, indicate your opinion of the extent to which a Campus Laboratory School contributes to the items listed.
1. A Campus Laboratory School helps a prospective teacher: Develop a set of basic notions pertinent to learning and to human growth.

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Great Deal</td>
<td>Not At All</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. A Campus Laboratory School helps a prospective teacher: Identify, understand, and accept individual differences among pupils.

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Great Deal</td>
<td>Not At All</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. A Campus Laboratory School helps a prospective teacher: Organize the classroom, utilize control techniques, and establish socio-emotional climate so that effective teaching-learning is enhanced.

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Great Deal</td>
<td>Not At All</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. A Campus Laboratory School helps a prospective teacher: Understand the values and techniques of planning for teaching.

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Great Deal</td>
<td>Not At All</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. A Campus Laboratory School helps a prospective teacher: Make effective use of audio-visual and other teaching aids.

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Great Deal</td>
<td>Not At All</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. A Campus Laboratory School helps a prospective teacher: See the curriculum as an entity and understands the scope sequence and function of all subjects including the specials such as art, music, and physical education.

5 4 3 2 1

A Great Deal Not At All
APPENDIX

A Impact of Closing the Campus Laboratory School at Wisconsin State College Oshkosh in the Fall of 1964 (January, 1963)

B Cooperating Committee for Higher Education Joint Paper #44 (July, 1967)

C Cooperating Committee for Higher Education Joint Paper #2 (August, 1959)

E The Wisconsin Conference - Roles & Functioning Laboratory Schools in the State System (June, 1967)

F Justification for Laboratory Schools in Wisconsin State Colleges (July, 1959)

G Cooperating Committee for Higher Education Paper #27

H Statement in Support of Retention of the Campus School at Oshkosh (September, 1962)

I Answers to Governor Nelson's Question Concerning Laboratory Schools and Elementary Education (July, 1959)

J The New Laboratory School - Laboratory School Administrators' Newsletter page 28-29 - Eldon Duran, President, Morehead State College (February, 1966)

K Current Research and Innovated Projects Underway in State University Laboratory Schools (June, 1967)

L Nolan Estes Letter, Associate Commissioner for Elementary and Secondary Education (May, 1967)

M Statement of Laboratory School Directors K-6 Mathematics Project with State Department of Public Instruction (September, 1967)

N The Programatic Thurst of the Upper Midwest Regional Educational Laboratory (March, 1967)

O Eugene R. McPhee Letter (July, 1967)

P Need for Pre-Professional Laboratory Experiences (May, 1967)

Q Summary - Roles and Functions of Laboratory Schools (June, 1967)

R Group I Wingspread Conference - Philosophical Foundation for Change (June, 1967)

S Group II - Some Goals and Objectives of Laboratory Schools (June, 1967)

T Group III - Specific Procedures for Developing the Operation Phases (June, 1967)

U Group IV - Ways and Means of Evaluation (June, 1967)

V Campus Laboratory School Directors Report on Results of Wingspread Conference Council of Presidents' Meeting (July, 1967)
This report compiled by the Board of Regents of State Colleges in January, 1963 summarized the impact of closing a campus laboratory school in 1964. These reflections are generally applicable to the other campus schools in the State University system.
SUMMARY COMMENTS FROM THE REPORT ON THE FINANCIAL AND PROGRAM IMPACT OF CLOSING THE CAMPUS LABORATORY SCHOOL AT THE WISCONSIN STATE COLLEGE, OSHKOSH, IN THE FALL OF 1964

The Department of Administration, through the Bureau of Management, has requested a report on the financial and program impact of closing this facility in the fall of 1964. The attached report may be summarized as follows:

1 - The current operating budget for the campus laboratory school totals $144,484.

2 - The summer session program, as conducted during the 1962 summer session, should continue in facilities located close to the Oshkosh campus.

3 - The following comments relate to the academic year program:
 (a) Nine faculty positions at the current cost of $65,000 annually could be eliminated.
 (b) Six of the 15 positions would be needed to supervise off-campus student teaching, observation and demonstration programs.
 (c) The school of education at the Wisconsin State College, Oshkosh, has an enrollment of approximately 1,800 students in the fall of 1962. This enrollment is expected to increase to 2,300 by the fall of 1964.
 (d) The controlled demonstrations function would be the most difficult to integrate into the Oshkosh public school system, primarily because of the large number of students involved.
 (e) The student teaching function, particularly in the final stages, could be conducted in off-campus practice teaching centers.
 (f) The Oshkosh college enrolls some 800 students in elementary education, and in 1961 it graduated 265 elementary school teachers.
4 - It is anticipated that moving all of the student practice teaching, observation and demonstration functions off-campus would increase costs approximately $20,000 annually.

5 - The city of Oshkosh reports that State aids would increase by approximately $20,000 with the absorption of the college campus school children into the city schools.

6 - The campus school building is currently serving both the college and campus school children. The campus school normally is used six hours a day by campus school children and the rest of the periods are scheduled with college classes, if furniture is usable for this purpose.

Before expending a substantial amount of money remodeling this facility, consideration should be given to the amount of additional space that could be provided for college classroom purposes if this same amount of money was expended for new construction.

7 - The research function is receiving increasing attention by the Board of Regents, the administration of the college, and other state agencies. With the introduction of new graduate programs, this phase of the program can reasonably be expected to expand.

8 - If this request is approved, Section 37.10, relating to "model schools" in the Wisconsin Statutes, would have to be amended. It reads as follows: "37.10(1) The board shall also establish a model school for practice in connection with each state college, except Stout State College, and the Institute of Technology, and shall make all the regulations necessary to govern and support the same; and they may in their discretion admit pupils to such model schools free of charge of tuition. . . ."

The administrative office of the Board interprets this section of the Statutes to require each college, except Stout, to maintain a campus school.
CURRENT FINANCIAL OPERATION

The operating budget in the campus laboratory school at Oshkosh for the fiscal year 1962-63 is as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Session Faculty</td>
<td>$18,187</td>
</tr>
<tr>
<td>Academic Year and Annual Faculty</td>
<td>108,326</td>
</tr>
<tr>
<td>Clerical Salaries</td>
<td>4,386</td>
</tr>
<tr>
<td>Student Assistants</td>
<td>85</td>
</tr>
<tr>
<td>Sub-total</td>
<td>130,984</td>
</tr>
<tr>
<td>Material and Expense</td>
<td>5,500</td>
</tr>
<tr>
<td>Capital Outlay</td>
<td>8,000</td>
</tr>
<tr>
<td>Total</td>
<td>$144,484</td>
</tr>
</tbody>
</table>

Each of the above items is discussed separately in the following paragraphs:

Summer Session Faculty

Fifteen teaching positions were assigned to the laboratory school during the 8-week session. Eight of the appointments were made from staff employed during the academic year. Seven of the appointments were made from area public schools. The College believes this program should continue in public school facilities located close by if the campus school becomes unavailable. Wisconsin State College, Oshkosh had an enrollment of 1,192 students in the school of education on campus during the 1962 summer session, and all of them made direct or indirect use of campus school services. In the summer of 1962, some 200 were actively involved in the special laboratory set up to demonstrate developments in elementary education. In the kindergarten laboratory, 300 other persons were served through visits to it and conferences concerning the latest developments in kindergarten education. Oshkosh reported that 22 of these specialized laboratories during the 1962 summer session served approximately 6,000 teachers.
The college assumes that the summer program could be integrated into area public school buildings. Such facilities are not used by the community during the summer and are thus available for college use, free of rental, and with comparative freedom in use of the facilities to serve the specialized needs of a demonstration and observation school. Conducting the summer program off-campus, and in some cases on campus, could also be more easily accomplished because of lighter building, enrollment, and schedule loads in the summer programs. A program conducted off-campus, however, would result in such inconveniences as movement of classes in session to off-campus locations for observation and demonstration purposes.

Academic and Annual Faculty

The college assigned 15 faculty positions to the campus laboratory school in 1962-63 at a total cost of $108,326. If the campus school were closed, each of these positions would be assigned to other positions in college teaching areas or appointments would be terminated. The college reports that this could be accomplished with little or no difficulty. Approximately six of the 15 positions would be needed to supervise the off-campus programs.

During the academic year the college campus school performs the following functions:

(1) Observation — This is intended to provide students with a picture of a model school operation. Most students preparing to teach have had very limited experience with secondary and elementary schools. When they think of teaching, they invariably think of the practices and conditions in schools which they attended. The college holds it as a great importance to have a means of getting a different standard for the student. This is not to say that area schools in proximity of the Oshkoah campus could not be used for this purpose. However, the accessibility of a school on campus and the scheduling of frequent observation within the period of the school day allows this function to be carried on more efficiently.
(2) Controlled Demonstration Function — The professional sequence of courses for teacher preparation prior to student practice teaching includes many courses requiring controlled demonstrations. Such demonstrations are planned by laboratory school teachers for groups of 30 to 40 college students with the instructor primarily in the area of education, psychology, and the methods of teaching special subjects. Over 1,000 college students might be visiting campus school classes each semester in connection with approximately 36 planned demonstrations, (an average of four demonstrations per grade level per week).

It should also be noted that the present undergraduate enrollment at Oshkosh in teacher education program is approximately 1,800 students. It is estimated that this enrollment will increase to 2,300 by the fall of 1964.

To carry out the demonstration function efficiently for this number of students off-campus would place terrific demands on the local public school system, both in facilities as well as in staff time. It would be the most difficult part of the program to integrate into a local system. This program would not be so difficult to integrate if the education enrollment was only 100 or 200 students. Oshkosh college has an enrollment of 800 students in elementary education, or approximately 4% of the total. In 1961 the Oshkosh college graduated 265 elementary school teachers. This is considered substantially above the number graduated in any other public or private educational institution in Wisconsin.

The student practice teaching function traditionally was considered to be the most important. The controlled demonstration function now is considered to be the most important function.

(3) Student Teaching Function — The college reports that 150 student teaching stations per year are provided in the campus school and would have to be re-assigned to off-campus locations. This would involve an additional cost of approximately $20,000 annually. The cost of placing these students off-campus would be more per student than is presently expended for placing other
students off campus. Generally, students requiring the greatest supervision and help are placed in the college campus school for their initial practice teaching experiences. Consequently, placing them in off-campus locations would also require more practice teaching supervision and, therefore, more cost per student.

The student practice teaching program could be conducted off campus primarily in systems outside the city of Oshkosh.

(4) Clerical Salaries — The clerical help in the campus school is most generally related to the college education program. Most of the routine clerical needs in the campus school operations are taken care of by college students in connection with their instructional and teaching assignments.

(5 & 6) Material and Expense and Capital Outlay — It may be assumed that continuing all of the teaching experiences off-campus would more than offset current expenditures in these areas. Additional transportation money would have to be provided to efficiently transport from 1,000 to 2,000 students to off-campus schools for observation and demonstration.

Additional Information Relating to the Oshkosh Campus School
The college reports the campus school is used as follows:

(A) Building Serves Dual Role — The college campus school is used extensively by college students. The following summary of space utilizations was taken from a study completed in September of 1962:

- Total floor area of building 53,366 sq. ft.
- Unassignable areas (corridors, stairs, toilets, mech. equip.) 15,368 sq. ft.
- Prorated areas for general college use 12,225 sq. ft.
- Prorated areas for Campus School use 25,773 sq. ft.
The following rooms show extensive use for general college classes:

- Room 10 17 class hours per week
- Room 11 14 " " " "
- Theatre 205 21 " " " "
- Room 210 10 " " " "
- Room 309 11 " " " "
- Room 310 19 " " " "

The total for these rooms, together with the total for rooms used to less extent, gives usage on the basis of the standard of 30 hours per week equivalent to five classrooms.

It should be noted that even in prorated areas for campus school use, college classes are frequently present for observations and demonstrations.

The reason that the campus school can be utilized for college classroom purposes is due to the fact that the campus school is in operations six hours a day and the college schedule runs 11 periods daily. Night classes and Saturday classes make heavy use of the campus school building. The lunchroom, little theatre, demonstration room, art, music, and physical education rooms are used for more college classes than for campus school classes.

It can be expected that the use of the campus school for college classroom purposes will increase as the daily and weekly schedule of college classes is extended into the evenings and weekends. Furniture limits some of the rooms for college class occupancy.

The college reports that remodeling the campus school for college classroom use would increase the number of classrooms from 12 to 15. That would be an increase in usable time of six hours per day for most of these rooms.

Before expending a substantial amount of money remodeling this facility, consideration should be given to the amount of space that could be provided if this same money was expended for new construction. This, of course, is after taking into consideration the amount of use currently made of the college campus school for college classroom purposes.
Research Function — This is a function which is receiving increasing attention by the Board of Regents, the administration of the college, and other State agencies. The Oshkosh college reports some of the results of research that took place in the college campus school:

(a) Publications in the areas of arithmetic, spelling, language usage, and handwriting, prompted through the research findings of the campus school staff members. A number of these publications have been used throughout the nation.

(b) Some of the groundwork leading to general acceptance by area schools of manuscript instruction rather than cursive writing instructions in the early primary grades was done in the campus school.

(c) The readiness concept in education.

(d) The compiling of phonetics and work in the word-recognition approach in reading.

(e) The translation of the theory of individual differences to practical implementation in the school.

(f) Developing the self-discipline concept.

(g) Original and distributed research in modern mathematics.

(h) Foreign language in the elementary school.

(i) New and more sophisticated content in elementary school science and social science.

(j) Individual reading instruction.

(k) Team teaching.

The Fox River Valley school study council is looking to the college at Oshkosh, and in particular its campus laboratory school, as a center for needed research throughout the area and as a stimulus for improved practices in all area schools. Most school systems are reluctant to use new teaching methods and techniques until they have proven relatively sound. The college campus school can best serve this function.
The Board of Regents and the administrative staff recognize that the college campus school provides a facility in which college personnel can keep close contact with an active elementary educational program. It may also be expected that the campus school will actively participate in the graduate instruction program.

Other Cost to the State

The city of Oshkosh has reported that school aids would increase by approximately $20,000 to the city of Oshkosh if campus school children were transferred to the city school system.
CAMPUS LABORATORY SCHOOLS

One of the more predictable features of Wisconsin higher education has been the frequent dialogue concerning the justification for the laboratory schools on the university campuses. As far back as the turn of the century, educational leaders were questioning the function of college-controlled laboratory schools. An indication of the perennial interest in this issue in other states is noted in the appointment of a permanent faculty standing committee at the University of Chicago named, "What should be done about the laboratory school?" On several occasions in recent years, educators, legislators, governors, and the press in Wisconsin have raised questions relative to the contribution of these elementary and junior high schools. In the Provisional Long Range Plan, the CCHE staff identified some of the facilities and budget implications and raised some policy questions related to the role of the campus laboratory school in higher education. The staff questioned "whether the considerable facilities, faculties and resources committed to lab schools could not be more profitably utilized in expanding the observation, practice teaching, and research activities in the public schools ... an early re-evaluation by the systems involved and the CCHE of the total contribution of the campus school to higher education in Wisconsin is recommended."

This is not the first time that the Coordinating Committee has reviewed campus school operations as several questions concerning their appropriate role were posed by Governor Nelson in 1959. Joint staff papers #2, 1959 and #27, 1960 indicated the position of the then State Colleges, the University of Wisconsin and the Coordinating Committee at that time. The conclusion of these papers was that "...the facilities of a laboratory school are essential for a well-rounded program of teaching, research, and experimentation." Further, it was cited that on-campus university-operated laboratory schools served for basic purposes:

1. Demonstration of superior pedagogical methods.
2. Observation and participation by student trainees.
3. Professional and lay leadership in the field.
4. Basic research and experimentation.
The CCHE staff does not propose any immediate change in laboratory school operation. This preliminary informational report will seek to provide a brief historical review of Wisconsin's campus schools, including a current fiscal, facilities, faculty, and student profile, a compilation of some of the pro's and con's, and some possible alternate approaches to university-operated campus schools.

Historically, the state's campus schools have been known as training schools, model schools or demonstration schools as their title sought to identify their central function or mission. For many years, these schools provided the major if not the only classroom experiences for senior students engaged in the terminal stage of their professional "training" for teaching positions. A combination of strong staffs in comparison to the area public schools and their willingness to try innovations in education caused the schools to assume the expanded role of so-called "model" schools wherein the best in modern educational theory and practices were made available. From this function evolved "demonstrations" designed to give the aspiring teacher an example of how to use specific techniques in the classroom. More recently the schools have participated in cooperative projects involving the use of the schools as "pilot" classrooms for the testing of new curricular patterns in such fields as mathematics, science, and reading. As each of these new functions has been assumed, a continued but lesser emphasis on earlier activities has continued. Thus while a number of senior students still do a part of their practice teaching on campus, cooperating public schools provide the major classroom outlet for teacher trainees. The large, well-supported public schools with strong faculties have also narrowed the gap between themselves and the campus schools and may have diminished the need for "model" schools. The rapidly expanding numbers of students enrolled in teacher preparation has made it difficult to continue extensive "in person" visitations to the campus school classrooms for observational purposes.

Among the most significant and continuing functions of the campus schools are their use as "pilot" schools where curricular innovations are introduced on a trial basis and as centers for research and experimentation. Usually these functions involve both the campus schools and area public schools where the larger numbers of more "typical" students required for research projects are available.
One of the more significant recent developments in public elementary and secondary schools has been a growing appreciation for and involvement in their own pilot and research activities. The University of Wisconsin and the State Universities are cooperating fully in pertinent research projects emanating from local school districts, consortiums, curriculum study councils, CESA (Cooperative Educational Service Agencies), the State Department of Public Instruction, and federally-supported centers designed to promote research in education such as UMREL (Upper Midwest Regional Educational Laboratory), and the University of Wisconsin's Research and Development Center for the Study of Cognitive Learning. These regional educational laboratories funded under Title IV of the Elementary and Secondary Education Act provide the technical and financial assistance necessary for productive research. Undoubtedly there is an expanding need for research in teaching and one of the goals of the staff study will be to identify what definitive role the campus schools play in significant educational research.

One of the factors prompting continued interest in the campus schools is the considerable state financial commitment required for their support. Some of the pertinent statistical data are summarized in Table I where facilities, faculties and selected operational costs associated with the operation of these elementary and junior high school classrooms are identified. No effort is made to isolate indirect costs such as utilities and maintenance nor indirect savings in such items as state aids, local school operation, and costs associated with the expansion of off-campus cooperative ventures to replace available campus school classrooms. The nine campus school buildings, most in excellent condition, represent over a quarter of a million net assignable square feet with an estimated replacement value of approximately ten million dollars. 134 full-time equivalent faculty and 12 classified secretarial staff at an academic year cost of $1,208,082 were assigned to the campus lab schools last year. In addition, all of the nine schools operate summer school programs adding approximately 20% to the operating costs.
The minimal tuition or fees charged by the schools and the lower student-teacher ratio result in a per-pupil cost considerably higher than comparable costs in the public schools in Wisconsin. Such overall costs, however, must be evaluated in relation to the contributions of these schools to both public education and the educational missions of the universities. A continuing high level of teacher education programs in the state must be maintained and further study must seek to identify qualitative factors related to the existence of an on-campus laboratory school. The strong and important teacher education programs on these campuses must not be weakened.

Campus Laboratory Schools - Selected Pro's and Con's

Pro's

1. The campus laboratory schools are to teacher education what research and teaching laboratories are to the sciences and engineering.

2. Campus laboratory schools are an unique resource essential for continued fundamental research on school problems. Significant research is being conducted.

3. Campus laboratory schools serve as models for upgrading the curriculum and methods of public schools.

4. Campus laboratory schools provide the facility for controlled observation and demonstration opportunities essential to teacher preparation.

5. Campus laboratory schools provide a small but crucial number of selective practice teaching stations.

6. Campus laboratory schools with their master teachers are able to inspire the highest qualities in beginning teachers.

7. Campus laboratory schools provide summer school opportunities for experienced teachers to enable them to meet student teacher requirements for completing a degree.
8. Campus laboratory schools with controlled admissions policies can more easily fulfill the "guinea pig" role.

9. The closing of campus laboratory schools would have disruptive financial and educational impact on communities where such schools are located, and would merely transfer some of the costs to another agency.

10. The campus laboratory schools are attracting considerable federal grant support for both research and pilot activities.

Con's

1. The campus laboratory schools, because of class size and admissions policies, are typical and unsuited to the practice teaching, demonstration, model or research function.

2. Campus laboratory schools faculties, while excellent, are not research-oriented, and in most cases are comparable in degree level and salaries to the better public schools staffs in the state.

3. Campus laboratory schools attract very little interdisciplinary use particularly from subject matter specialists in other academic areas. Their professional use is by a relatively small number of School of Education faculty.

4. The campus laboratory schools are low tuition subsidized private schools utilizing scarce state resources and centrally-located facilities needed for the higher education function of the campuses.

5. Campus laboratory schools, where justified, should not duplicate the general classroom situation, but should seek to provide unique leadership through special schools for the disadvantaged, gifted, physically or speech handicapped, etc.

6. The role of the campus laboratory schools is not clearly defined and varies widely in the various state institutions.
The recent contributions of the campus laboratory schools to educational research have not been significant.

The expanding research function of other educational and governmental agencies replaces the campus laboratory schools' contribution to needed research.

Closed circuit TV and other technologies will minimize the role of campus laboratory schools in providing live demonstrations for students.

There is no function carried on by on-campus laboratory schools that could not be done as well in selected cooperating public schools.

Undoubtedly, most if not all of the functions carried on by the campus laboratory schools have merit and must be continued.

The projected needs and enrollments in teacher education programs require that all Wisconsin public universities engaged in the preparation of teachers expand their cooperative agreements whereby teacher trainees are placed in the public schools. The successful expansion of this program would require close cooperation both among Wisconsin's higher educational institutions and between the separate universities and the cooperating public schools. Most of the state's public schools are developing strong staffs and as they are critically aware of the expanding qualitative as well as quantitative demands for strong teachers, they are willing to make their classrooms available to the universities on a cooperative basis for practice teaching, research and experimentation.

Along with the expanded cooperative arrangement with a large number of schools, several universities either with or without their own campus schools have initiated a formal merger or contractual agreement with one or more public schools in close physical proximity to the campus. The school continues to operate as a public school in all respects, but agrees in return for varying educational and financial considerations to make its classrooms available for some of the selected functions usually associated with a university-operated campus school. The University of Wisconsin has such a relationship with Washington Elementary School and Central
High School. These agreements are scheduled for termination in 1968 and 1970 respectively. The University of Wisconsin anticipates that similar agreements will need to be made with other area schools. This joint school arrangement, recommended by various educational leaders, has been considered in other Wisconsin cities. Such a joint school has the advantage of providing mutual advantages to both parties. The "typical" nature of the school and its multi-section enrollment at each grade level offers certain features not available in the smaller university-operated campus laboratory schools.

A new and promising cooperative research agency is found in the form of regional curriculum study councils involving the elementary and secondary schools and the teacher education institutions in a particular area. Each public or private school contributes to the financial support of the council while the universities provide part of the support for the research director, his staff and his offices. The council undertakes research projects in cooperating schools and seeks federal and other grant support where possible. Such an arrangement provides a large enough financial and enrollment base to conduct meaningful research in elementary and secondary education.

At least part of the reservations concerning campus schools is based upon the substantial and escalating costs to the state. One of the possible approaches to this objection is to establish a tuition level more nearly commensurate with per-pupil costs. The fees charged in Wisconsin, particularly by the State Universities, are minimal in comparison to tuition and other charges in most university-operated campus schools.

Historical perspective and current trends suggest the need for a re-evaluation of the state's public campus lab schools and the diverse functions in which they have become involved. The Coordinating Committee staff participated in a recent three-day workshop held at Wingspread, financed through UMREL and organized by Wisconsin Deans of Education and Lab School Directors. The purpose of the conference was to re-define the roles and functions of these schools. Several statements and reports emanating from this meeting will be presented to the Coordinating
Committee in later progress reports. A brief summary of some of the functions identified at the conference are appended to this report. Also attached is a recent letter received from Mr. Eugene McPhee, Director of the Board of Regents of State Colleges, reflecting the current position of the Board office concerning the continued operation of the campus lab schools.

It is the intention of the CCHE staff to undertake, in cooperation with the systems and institutions, the State Department of Public Instruction, and school administrators, a comprehensive study designed to identify the missions and goals of the campus schools as related to the goals of higher education in Wisconsin, and bring to the Coordinating Committee recommendations appropriate to the findings of such a study.
<table>
<thead>
<tr>
<th>University</th>
<th>Date of Constr. & Condition of Bldg.</th>
<th>Net Sq. Ft.</th>
<th>No. of Faculty Assign. & Function</th>
<th>Salary of Faculty</th>
<th>No. of Secretarial Staff Assigned</th>
<th>Salary of Secretarial Staff Assigned Function</th>
<th>Total Salaries of Faculty and Secretarial Staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eau Claire</td>
<td>1952 Excellent</td>
<td>20,588</td>
<td>12 1/4</td>
<td>110,645</td>
<td>.5</td>
<td>2,808</td>
<td>113,453</td>
</tr>
<tr>
<td>La Crosse</td>
<td>1939 Excellent</td>
<td>25,552</td>
<td>15 3/4</td>
<td>137,293</td>
<td>1</td>
<td>4,116</td>
<td>141,409</td>
</tr>
<tr>
<td>Oshkosh</td>
<td>1927 Good</td>
<td>25,726</td>
<td>17 1/4</td>
<td>149,601</td>
<td>2</td>
<td>9,672</td>
<td>159,273</td>
</tr>
<tr>
<td>Platteville</td>
<td>1953 Excellent</td>
<td>25,380</td>
<td>12 1/4</td>
<td>82,200</td>
<td>1</td>
<td>4,296</td>
<td>86,496</td>
</tr>
<tr>
<td>River Falls</td>
<td>1962 Excellent</td>
<td>31,654</td>
<td>14 1/2</td>
<td>128,975</td>
<td>1</td>
<td>1,698</td>
<td>130,673</td>
</tr>
<tr>
<td>Stevens Point</td>
<td>1929 Good</td>
<td>26,877</td>
<td>15 1/4</td>
<td>141,634</td>
<td>1</td>
<td>4,776</td>
<td>146,410</td>
</tr>
<tr>
<td>Stout</td>
<td>No building</td>
<td>2,181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superior</td>
<td>1959 Excellent</td>
<td>33,834</td>
<td>14 3/4</td>
<td>123,475</td>
<td>1</td>
<td>3,996</td>
<td>127,471</td>
</tr>
<tr>
<td>Whitewater</td>
<td>1960 Excellent</td>
<td>30,963</td>
<td>14 3/4</td>
<td>137,440</td>
<td>3</td>
<td>10,464</td>
<td>147,904</td>
</tr>
<tr>
<td>UW-M</td>
<td>1952 Excellent</td>
<td>34,975</td>
<td>18</td>
<td>147,799</td>
<td>1.5</td>
<td>7,194</td>
<td>154,993</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>257,730</td>
<td>134 3/4</td>
<td>$1,159,062</td>
<td>12</td>
<td>$49,020</td>
<td>$1,208,082</td>
</tr>
</tbody>
</table>
TABLE II

ENROLLMENTS BY GRADE LEVEL IN WISCONSIN'S CAMPUS SCHOOLS

1966-67

<table>
<thead>
<tr>
<th>Grade</th>
<th>UW-M</th>
<th>Eau Claire*</th>
<th>La Crosse</th>
<th>Oshkosh</th>
<th>Platte</th>
<th>River Falls</th>
<th>Stevens Point</th>
<th>Stout</th>
<th>Superior</th>
<th>Whitewater</th>
<th>TOTAL of GRADERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nursery</td>
<td>26</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>15</td>
<td>13</td>
<td>48</td>
<td>26</td>
<td>---</td>
<td>---</td>
<td>128</td>
</tr>
<tr>
<td>Kindergarten</td>
<td>---</td>
<td>40</td>
<td>25</td>
<td>19</td>
<td>23</td>
<td>25</td>
<td>24</td>
<td>---</td>
<td>24</td>
<td>25</td>
<td>205</td>
</tr>
<tr>
<td>Grade 1</td>
<td>21</td>
<td>25</td>
<td>26</td>
<td>25</td>
<td>26</td>
<td>23</td>
<td>20</td>
<td>---</td>
<td>24</td>
<td>25</td>
<td>215</td>
</tr>
<tr>
<td>Grade 2</td>
<td>23</td>
<td>25</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>27</td>
<td>25</td>
<td>---</td>
<td>25</td>
<td>25</td>
<td>222</td>
</tr>
<tr>
<td>Grade 3</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>25</td>
<td>25</td>
<td>21</td>
<td>24</td>
<td>---</td>
<td>23</td>
<td>26</td>
<td>219</td>
</tr>
<tr>
<td>Grade 4</td>
<td>26</td>
<td>24</td>
<td>27</td>
<td>25</td>
<td>26</td>
<td>28</td>
<td>23</td>
<td>---</td>
<td>22</td>
<td>24</td>
<td>225</td>
</tr>
<tr>
<td>Grade 5</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>29</td>
<td>26</td>
<td>19</td>
<td>25</td>
<td>---</td>
<td>25</td>
<td>25</td>
<td>224</td>
</tr>
<tr>
<td>Grade 6</td>
<td>22</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>23</td>
<td>25</td>
<td>---</td>
<td>23</td>
<td>25</td>
<td>222</td>
</tr>
<tr>
<td>Grade 7</td>
<td>22</td>
<td>---</td>
<td>26</td>
<td>29</td>
<td>25</td>
<td>26</td>
<td>26</td>
<td>---</td>
<td>26</td>
<td>25</td>
<td>205</td>
</tr>
<tr>
<td>Grade 8</td>
<td>18</td>
<td>7</td>
<td>28</td>
<td>26</td>
<td>22</td>
<td>27</td>
<td>24</td>
<td>---</td>
<td>19</td>
<td>24</td>
<td>195</td>
</tr>
<tr>
<td>Grade 9</td>
<td>---</td>
<td>11</td>
<td>29</td>
<td>27</td>
<td>---</td>
<td>17</td>
<td>---</td>
<td>---</td>
<td>25</td>
<td>---</td>
<td>109</td>
</tr>
<tr>
<td>TOTALS OF SCHOOLS</td>
<td>206</td>
<td>208</td>
<td>265</td>
<td>255</td>
<td>236</td>
<td>249</td>
<td>216</td>
<td>48</td>
<td>262</td>
<td>224</td>
<td>2,169</td>
</tr>
</tbody>
</table>

Eau Claire is currently phasing out its junior high school operation.
Emerging roles and functions of laboratory schools:

1. **Experimentation** - The testing of new ideas, either of campus design origin or research initiating elsewhere.

2. **Dissemination** - The growing responsibility for effectively serving local school districts by providing staff and program assistance with some emphasis on vanguard-type programs.

3. **Innovation** - The development and initiation of new methods, patterns, techniques of instructional practices in a controlled environment.

4. **Demonstration** - The presentation of broad concepts and programs as well as specific methods, procedures and practices, not only for pre-service teaching personnel, but also for the experienced teachers in the field.

5. **New Designs for Teacher Education** - The development of new designs in longitudinal experimentation for interesting and innovative teacher education programs.

6. **Change** - Being an agent for change by taking a leadership responsibility in instituting new ideas and demonstrating the processes of change.

7. **New Media Development** - The improvement of instruction as related to the selective employment of new media, the utilization of curricular resource materials, and providing operational guidelines for media course planning.

8. **Service** - The rendering of services to local school districts in the service community of the university by providing consultant assistance for in-service programs with special emphasis on improvement in the areas of supervision of student teachers and the development of a corps of cooperating teachers.

9. **Observation and Participation** - Providing for significant teacher education practices, for both pre-service and in-service teachers.
LABORATORY SCHOOLS AT TEACHER TRAINING INSTITUTIONS

The Coordinating Committee for Higher Education endorses the positions taken by the University and the State Colleges relating to laboratory schools and elementary education. (Appendix A and B)

1. The Role of the State-Built Campus Laboratory Schools

The Coordinating Committee believes that the laboratory school is essential to first-class program of teacher education. The laboratory school serves four basic purposes:

1. Demonstration of superior pedagogical methods and procedures.
2. Observation and participation by student trainees.
3. Professional and lay leadership.
4. Basic research and experimentation.

2. Admissions

The purpose of the laboratory school is to serve the needs of the collegiate teacher education programs in attainment of their specific objectives. At both the University and the State Colleges admission is, under normal circumstances, open to a cross section of citizenry. However, where research work is being carried on it may become necessary at times to control admissions and select a particular type of student. For example, in the investigation of the education of the gifted or the handicapped students admissions would have to be carefully selected. (Appendix A)

3. Financing

To fulfill the objectives of the University and State College teacher education programs the laboratory schools must be under control of the collegiate institution. This means the laboratory school must be a part of the University or State College budget and involves funds provided by the legislature.
A. Capital Facilities. Each of the state colleges and the University has laboratory school facilities operated as a part of their teacher training program.

The cost of constructing laboratory school facilities has long been accepted as a responsibility of the state.

1) University of Wisconsin. On the Madison Campus the pre-school laboratory (ages 2½ to 5) was built with state funds in 1957 and is in excellent condition. This should take care of the University needs in this area for years to come.

Wisconsin High School (grades 7-12) was state financed and built in 1914. Unfortunately, the present physical facilities are definitely inadequate and prevent the University from carrying out a fully satisfactory program.

The Campus Elementary School at Milwaukee was built with state funds only a few years prior to the creation of the University of Wisconsin—Milw. This is an excellent facility and requires no addition or replacement at present.

The Milwaukee Campus has no laboratory school facilities on the secondary level. With the acute need for well-prepared high school teacher, research and leadership activities, this will pose a problem in the future. (Appendix C)

2) State Colleges. All the state college laboratory schools, with the exception of Stout, operate at the elementary level. Stout has a nursery school and uses certain rooms of their buildings for the instruction of high school students. In 1946, most of the campus school buildings of the state colleges were more than 25 years old. Because of this fact the Regents, in formulating their building proposals, concluded that in the interest of improved teacher training programs new campus schools should be built and the older structures remodeled for college classrooms. This phase of the program has been completed or is under construction at Eau Claire, Superior, Platteville and Whitewater.
B. Operating Funds. Traditionally and properly in Wisconsin the cost of operating this phase of the teacher education program at the University and state colleges has been the responsibility of the state.

Part of the cost to the state in operating the laboratory schools of the state colleges and the University is compensated for by the fact that state aid is not given to the local community for those elementary and secondary school children who are enrolled in the laboratory schools of the collegiate institutions.

Abandonment of the laboratory schools operated by the collegiate institutions would bring about little savings in operating cost. It would be necessary to employ and pay the traveling expenses for additional supervising teachers to work with the collegiate students as they receive their practice teacher training in the public schools.

1) University of Wisconsin. The students enrolled in the University laboratory school pay fees or tuition. Further, at both Milwaukee and Madison, many gifts and grants from the U.S. Office of Education, other federal agencies and private foundations help to defray the operating costs. This enables the University to provide an additional service to the state at a minimum cost.

2) State Colleges. In most of the state college communities to charge tuition would reduce the enrollments below desirable levels. Unlike the University, the state colleges are located in towns and cities of much smaller populations. Many parents in state college communities feel that they are already paying taxes to the local schools and also the state, and would oppose any additional charges. At two of the colleges, contracts are in force with rural districts, but the income is very small. No doubt some savings could be made if the communities in which colleges are located could be induced to make some contribution to the state from local revenues. However, it is doubtful if cooperative arrangements could be made.
APPENDIX D

DEANS' REPORT ON LABORATORY SCHOOL
PAPER #4

May, 1967
CURRENT USES AND FUNCTIONS OF LABORATORY SCHOOLS

Prepared by: A.I. Winther - Whitewater

The questionnaire was sent to all of the Deans of Education in the State University System, and replies were received from seven of the nine State Universities. I have tried to summarize the information which was reported, but it was clearly evident in each report that the Laboratory School was an essential and indispensable part of an effective teacher education program. Following is a copy of the questionnaire:

* * * * *

1. What do you consider to be the main functions of your laboratory school?
2. To what extent is your school used for direct teaching?
3. To what extent is your laboratory school used for pre-directed teaching experiences? Do you use closed-circuit television or video-taped experiences based on laboratory school teaching situations for pre-directed teaching experiences?
4. On the average, how many students visit your laboratory school grade rooms to observe per week?
5. Do teachers from your service area visit your campus school grades to observe new programs, etc.?
6. To what extent do your laboratory school faculty work with schools and/or teachers in your service area?
7. As you think of your laboratory school functions and services, both past and present, what are the most important changes?

* * * * *

My job was to investigate the "current uses and functions of the Laboratory Schools" in our State Universities. I shall report my findings in the order in which the information was requested in the questionnaire.
1. All Deans were generally agreed on what they considered to be the main functions of the Laboratory Schools, including the following: pre-student teaching observation and demonstration, innovation and experimentation, and a source of consultative help for area teachers. It was also generally agreed that students at the freshman and sophomore levels use the Laboratory Schools extensively in deciding whether or not to become a teacher. It was agreed that actually seeing good teaching provided a more effective recruitment instrument than "talking about teaching." This quote from E. M. Tanruther, "Role of the Campus Laboratory School in the Education of Teachers", summarizes effectively the thought of the Deans: "A campus laboratory school is of such great value in teacher education that the institution which does not operate one denies the prospective teacher many of the opportunities essential to effective preparation."

2. In reply to the second question, there was general agreement that the Laboratory School is no longer extensively used for student teaching except as the need arises for trying out innovative and experimental techniques in teaching. Two of the Universities did indicate rather extensive use of the Campus Laboratory School for student teaching while two do not assign any student teaching to the campus Laboratory School.

3. All of the Deans reported extensive use of the Laboratory School for pre-directed teaching experiences, including planned observations of demonstrations of teaching techniques, as well as by the psychology classes in the study of child behavior through case studies. Because these observations must be included in the daily class load, it is important that the facilities for observation be located on campus because of the limited time available to the students.

Some Deans reported that, in some instances, there was a limited opportunity to actually participate in class activities while observing the children. Because the Laboratory School is on the campus and controlled by the University, much more flexibility is possible in adjusting to the needs of the student observer, according to the Deans who reported.
In order to make observations available to larger groups, most of the Universities have, or are planning to install, closed-circuit television with cameras in each of the classrooms. Several of the Universities are planning for the purchase of video-taping equipment to make possible actual pictures illustrating techniques in teaching. Thus the Laboratory School will be equipped to supply both actual and vicarious experiences for the student in teacher education. Also, another advantage of the Laboratory School on campus is the opportunity for the faculty in the Department of Education staff and the Laboratory School staff to think about, plan, and develop a team approach in order to develop the proper articulation to demonstrate the techniques desired.

4 & 5. The number of observers to visit the campus varied from 40 to 50 students to over 200 per week. Many students visited as individuals, but class groups accompanied by the instructor also came to the Laboratory Schools.

In addition to students in teacher education, many area teachers from public and private schools also visited the campus Laboratory Schools. Often these area teachers visited the Laboratory Schools as part of their in-service improvement program. Demonstrations in reading, mathematics, work with the slow learner, etc., were in particular demand, according to the Deans.

6. All of the Deans reported that the campus laboratory faculty worked with area schools and teachers in in-service teacher improvement programs. The extent to which the faculty did the in-service work depended on the campus load of the staff. The work generally included help in the improvement of instruction in remedial reading, modern mathematics, kindergarten-primary techniques, library science, etc. The Deans also reported that area schools have come to depend on the help they receive from the Laboratory School faculty.

7. There was general agreement among the Deans that some of the most important changes in the functions of the Laboratory School functions and services were the following:
a) A de-emphasis in the student teaching function and a very marked increase in the use of the Laboratory Schools by college students for pre-student teaching experiences including observation, psychological case studies of the children, and study of the use of new media and techniques as used by Laboratory School faculty.

b) Greater use is made of the Laboratory School and its staff by the area schools, especially in studying new media and innovative techniques.

c) The Laboratory School has changed from "another public school" to a center for some experimentation, innovation in techniques, media and curriculum development, and has become a demonstration center for both college students and area school faculty members.

d) Curriculum development and try-out of curriculum innovations, including such areas as foreign language in the elementary grades, social studies with new media, mathematics, reading development program, team teaching, etc., has become an increasingly more important function of the campus Laboratory Schoo

e) Media innovation including all types of projectors, closed circuit television video tape, electronic learning centers, etc., has been developed and tried out in the campus Laboratory Schools. As more funds become available, the Laboratory Schools will extend their activity in this field of learning innovation, thus providing a demonstration center for these activities.

In conclusion, the Deans are agreed that the Laboratory School is moving into its full stature as a laboratory for demonstrations, observation, innovation, and some experimentation. Because the Laboratory Schools are on campus, they are accessible to the student who is carrying a regular academic load of studies on campus. It was generally agreed that maximum benefit to the student would prevail only if the laboratory facilities were on campus, thus making it possible to relate theory to practice in the teacher education program.
APPENDIX E

THE WISCONSIN CONFERENCE

ROLES AND FUNCTIONING LABORATORY SCHOOLS IN THE STATE SYSTEM

June, 1967
THE WISCONSIN CONFERENCE

ROLES AND FUNCTIONS OF THE LABORATORY SCHOOLS
IN THE STATE UNIVERSITY SYSTEM
BLUEPRINT FOR THE FUTURE

Sponsored by
The Upper Midwest Regional Educational Laboratory
in cooperation with
The Johnson Foundation

June 28-30, 1967
STATEMENT OF PURPOSE

The primary purpose of this conference is to consider objectively, emerging roles and functions of laboratory schools. From the interchange of thoughts of this conference should come a bold restatement of purpose. Such essential outcome is certain if the combined creative potential of invited participants fully focuses on these objectives:

1. To ascertain current status.
2. To refine definitions of roles and functions.
3. To develop operational phases for implementation of emerging roles.
4. To design guidelines for evaluating new roles and functions.
PROGRAM

Wednesday, June 28:

3:00 p.m. Welcome: LESLIE PAFFRATH, President The Johnson Foundation

The Deans' Report on Laboratory Schools
LESTER EMANS, Chairman Dean, School of Education, Wisconsin State University- Eau Claire

Status in Other States
GORDON STONE, Dean College of Education Wisconsin State University- River Falls

Statement of Cost
HAROLD HUTCHESON, Dean School of Education Wisconsin State University- Platteville

Research Activities
ROBERT TRAUBA, Dean College of Education Wisconsin State University- Superior

Current Uses and Functions
ADE WINTHER, Dean School of Education Wisconsin State University- Whitewater

Distribution of Reports

4:15 p.m. Conference Overview — Identification of Tasks and Goals
B.J. YOUNG, Dean School of Education Wisconsin State University- La Crosse

5:00 p.m. Free Time

5:30 p.m. Hospitality (Pool Terrace)

6:00 p.m. Dinner will be served (Upper Living Room)
Wednesday

Session Two
7:15 p.m.
Introduction of speaker:
LESTER EMANS, Chairman
(Terrace Room)

Address: "A Laboratory School"
ALMON G. HOYE, Principal
Marshall High School
Minneapolis, Minnesota

Session Three
7:45 p.m.
THINK GROUP SESSIONS
I Theatre Conference Room
II Library
III Writing Room
IV Cypress Room

During Session Three, all four "Think Groups" will have
the task of re-defining roles and functions of laboratory
schools.

9:00 p.m.
End of Formal Sessions. Optional Viewing of Film:
"Make a Mighty Reach"

Product Group Meeting - The "Product Group" includes
chairmen and recorders of each "T" Group. Their final
responsibility will be to prepare a written summary of
the conference. Their specific function during this
evening session will be the distillation and summari-
zation of Session Three.

Basic By Product Group Meeting - The "Basic By-Product
Group" throughout this "work" conference will be responsi-
ble for completing a concise, comprehensive "status"
report of the Wisconsin Laboratory Schools.

10:00 p.m.
Adjournment

Thursday, June 29:
7:30 a.m. on
Breakfast at the Red Carpet Inn. This meal will be
served buffet style in the Embassy Room.

Session Four
9:00 a.m.
"T" GROUP MEETINGS — Define Tasks for the Day

During Sessions Four and Five all "T" Groups, with
reference to the newly-defined "roles and functions," a
duplicated summary of which they will have, will during
the next two work sessions have concern for implementation,
development, and evaluation of emerging roles and functions
of the laboratory school. In doing this, each of the four
"T" Groups will be asked to think through to this end in
terms of one of these four topics to be assigned at the
conference:

1) Roles and Functions: Philosophical Foundation for Change
2) Roles and Functions: Some Specific Goals and Objectives
3) Roles and Functions: Some Specific Procedures for
 Developing the Operation Phases
10:30 a.m. Coffee and Tea will be served

10:45 a.m. "T" GROUP MEETINGS continued

12:00 noon Hospitality

12:15 p.m. Luncheon will be served - Product Group will meet during this meal

Session Five

1:30 p.m. THINK GROUP SESSIONS - Continuation of morning group discussions

3:15 p.m. Refreshments will be served

3:30 p.m. THINK GROUP SESSIONS will continue

5:00 p.m. Free Time

6:00 p.m. Hospitality

6:30 p.m. Dinner will be served

Session Six

7:30 p.m. Actions and Reactions - A Panel Presentation (Terrace Room)

Willard Congreve
University Lab School Administrator
University of Chicago

Eugene Howard, Director
Institute for the Development of Educational Activities
Kettering Foundation, Dayton, Ohio

Almon G. Hoye, Principal
Marshall High School, Minneapolis, Minnesota

John Marvel, President
Adams College, Alamosa, Colorado

8:15 p.m. End of Formal Sessions. Video tape made during conference may be viewed in the Theatre Conference Room.

Product Group Meeting (Library)

Basic By-Product Group Meeting (Writing Room)

10:00 p.m. Adjournment
Friday, June 22:

7:30 a.m. on

Breakfast at the Red Carpet Inn (Embassy Room)

Session Seven

9:00 a.m.

THINK GROUP MEETINGS - Refining of the Organization and content of the Conference Report by Respective Groups

Basic By-Product Group Meeting (Location to be decided)

10:00 a.m.

Coffee and Tea will be served (Pool Terrace)

10:15 a.m.

"T" Groups will have opportunity to react to product of other "T" Groups.

11:45 a.m.

Hospitality

12:00 noon

Luncheon will be served (Garden Terrace)

1:00 p.m.

Concluding Remarks of conference participants (Terrace Room)

Chairman: LESTER EMANS

William White, Assistant Secretary
Coordinating Committee for Higher Education, Madison

Roy Heath, Research and Development Director
Office of the Board of Regents
Wisconsin State University System

A. Buchmiller, First Assistant Superintendent
Department of Public Instruction

Roger Guiles, President
Wisconsin State University - Oshkosh

Calvin Eland
Upper Midwest Regional Educational Laboratory

1:30 p.m.

Adjournment
SMALL GROUP ASSIGNMENTS

T-Group I
Roles and Functions: Philosophical Foundation for Change

Everett White, Chairman
John Bernd, Recorder
Dan Brown
Charles Bruning
Fred Glassburner
Karl Meyer
Hardean Peterson
Ray Schmetter
Walker Wyman
Bernard Young

T-Group II
Roles and Functions: Some Specific Goals and Objectives

Harold Hutcheson, Chairman
Keith Woods, Recorder
Burton Altman
Richard Delorit
Lloyd Joyal
Edward Moore
Gordon Stone
Robert Van Raalte
William White
Edward Weisse

T-Group III
Roles and Functions: Some Specific Procedures for Developing the Operation Phases

John Cummings, Chairman
Norman Frenzel, Recorder
Roger Guiles
George Keem
Robert Krueger
Sister Florence Metz
Paul Nagel
Mildred Nasgowitz
Viggo Rasmussen
Terrence Snowden
James Stewart
Ade Winther

T-Group IV
Roles and Functions: Ways and Means of Evaluation

Russell Way, Chairman
Robert Trauba, Recorder
George Brehman
Archie Buckmiller
Donald Burk
Thomas Grotlutschen
Gordon Haferbecker
Earl Hutchinson
Rowland Klink
Erick Oetting
Harry Pierce

Product Group

Bernard Young, Chairman
Gordon Stone, Recorder
John Cummings
Harold Hutcheson
Patrick Monahan
Russell Way
Everett White
Member from the Basic By-Product Group

Theater Conference Room
Library
Writing Room
Cypress Room
Little Sitting Room (upstairs)
Basic By-Product Group - Status Report

Lester Emans, Chairman
David Bowman
Calvin Eland
Kenneth Fish, Recorder
Roy Heath

James Kerfoot
Arthur McGraw
John Pearson
Richard Rasmussen

GROUP ASSIGNMENTS FOR RESOURCE PERSONNEL

T-Group I - Roles and Functions: Philosophical Foundation for Change

John Marvel

T-Group II - Roles and Functions: Some Specific Goals and Objectives

Willard J. Congreve

T-Group III - Roles and Functions: Some Specific Procedures for Developing the Operation Phases

Eugene Howard

T-Group IV - Roles and Functions: Ways and Means of Evaluation

Almon G. Hoye
Roles and Functions of the Laboratory Schools in the State University System
Blueprint for the Future
June 28-30, 1967

LIST OF PARTICIPANTS

Burton E. Altman
Professor of Elementary Education
Wisconsin State University
La Crosse, Wisconsin

John M. Bernd, Acting Dean
College of Education
Wisconsin State University
Stevens Point, Wisconsin

David L. Bowman, Dean
College of Education
Wisconsin State University
Oshkosh, Wisconsin

George Brehman
Conductor of Research
Wisconsin State University
Oshkosh, Wisconsin

Daniel Brown, Chairman
Department of Education
Wisconsin State University
River Falls, Wisconsin

Charles R. Bruning
Upper Midwest Regional Educational Laboratory
2698 University Avenue
St. Paul, Minnesota

Archie Buchmiller
Deputy Superintendent
State Department of Public Instruction
Madison, Wisconsin

Donald Burk
Director of Research
Wisconsin State University
Eau Claire, Wisconsin

Willard J. Congreve
University Lab School Administrator
University of Chicago
5835 Kimbark Avenue
Chicago, Illinois

Roger Guiles, President
Wisconsin State University
Oshkosh, Wisconsin

John Cummings
Campus School Administrator
Wisconsin State University
Superior, Wisconsin

R.J. Delorit, Vice President
Wisconsin State University
River Falls, Wisconsin

Calvin Eland
Upper Midwest Regional Educational Laboratory
2698 University Avenue
St. Paul, Minnesota

Lester Emans, Dean
School of Education
Wisconsin State University
Eau Claire, Wisconsin

K. R. Fish, Chairman
Department of Elementary Education
Wisconsin State University
La Crosse, Wisconsin

John Fleming
Director of Campus School
University of Wisconsin-Milwaukee
Milwaukee, Wisconsin

Norman Frenzel, Director
Elementary Student Teaching
Wisconsin State University
Oshkosh, Wisconsin

Fred Glassburner, WLSMAP Program Director of Institutional Research
Wisconsin State University
Platteville, Wisconsin

Max Goodson
Executive Council
Upper Midwest Regional Educational Laboratory
St. Paul, Minnesota

George Keem, Chairman
Department of Elementary Education
Wisconsin State University
Eau Claire, Wisconsin
Gordon Haferbecker, President
Wisconsin State University
Stevens Point, Wisconsin

Roy Heath
Research and Development Director
Office of the Board of Regents
Wisconsin State University System
Madison, Wisconsin

Vern Herdendorf
Associate Professor of Education
Coordinator, Programs and Innovations,
Campus School and School of Education
Wisconsin State University
Whitewater, Wisconsin

Eugene Howard, Director
Institute for the Development of
Educational Activities
Kettering Foundation
Dayton, Ohio

Almon G. Hoye, Principal
Marshall High School
1313 SE 5th Street
Minneapolis, Minnesota

Harold Hutcheson, Dean
School of Education
Wisconsin State University
Platteville, Wisconsin

Earl Hutchinson
Director of Secondary Student Teaching
Wisconsin State University
Oshkosh, Wisconsin

Lloyd Joyal, WLSMAP Program
Wisconsin State University
Eau Claire, Wisconsin

William Kahl
State Superintendent
State Department of Public Instruction
Madison, Wisconsin

Edwin E. Moore
Campus School Administrator
Wisconsin State University
Platteville, Wisconsin

Paul Nagel
Campus School Administrator
Wisconsin State University
Eau Claire, Wisconsin

E. H. Kelly
Superintendent of Schools
Fox Lake, Illinois

James Kerfoot
Director of Research and Innovation
Wisconsin State University
River Falls, Wisconsin

Rowland Klink
Coordinator of Elementary Education
Wisconsin State University
River Falls, Wisconsin

Robert Krueger, WLSMAP Program
Wisconsin State University
River Falls, Wisconsin

John Marvel, President
Adams State College
Alamosa, Colorado

Wesley J. Matson, Assistant Dean
College of Education
University of Wisconsin-Milwaukee
Milwaukee, Wisconsin

Arthur G. McGraw, Jr., Chairman
Department of Elementary Education
Wisconsin State University
Whitewater, Wisconsin

Eugene McPhee, Secretary and Director
Wisconsin State Universities
142 East Gilman Street
Madison, Wisconsin

Sister Florence Metz
Fourth Grade Teacher
Alverno College Elementary School
Milwaukee, Wisconsin

Patricia Monahan
Director of Field Services
Wisconsin State University
Whitewater, Wisconsin

James Stewart
Campus School Administrator
Wisconsin State University
River Falls, Wisconsin

Gordon Stone, Dean
College of Education
Wisconsin State University
River Falls, Wisconsin
Mildred Nasgowitz
WLSMAP Program
Wisconsin State University
Oshkosh, Wisconsin

H. O. Pearce, Chairman
Department of Education
Wisconsin State University
Platteville, Wisconsin

John C. Pearse, Director
University Laboratory School
Wisconsin State University
Stevens Point, Wisconsin

Hardean I. Peterson
State Department of Public Instruction
Madison, Wisconsin

Richard Rasmussen
Campus School Administrator
Wisconsin State University
La Crosse, Wisconsin

Angus Rothwell, Executive Director
Coordinating Committee for Higher Education
2 E. Gilman Street
Madison, Wisconsin

Ray Schmelter
Campus School Administrator
Wisconsin State University
Oshkosh, Wisconsin

Terence J. Snowden, WLSMAP Program
Wisconsin State University
Stevens Point, Wisconsin

Ade Winther, Dean
School of Education
Wisconsin State University
Whitewater, Wisconsin

K. R. Woods, Chairman
Department of Elementary Education
Wisconsin State University
Platteville, Wisconsin

Robert Trauba, Dean
College of Education
Wisconsin State University
Superior, Wisconsin

Bjarne Ullsvik, President
Wisconsin State University
Platteville, Wisconsin

Robert VanRaalte, Assistant Superintendent
Division of Instructional Services
State Department of Public Instruction
Madison, Wisconsin

Dale Vertein, Professor of Education
Wisconsin State University
Platteville, Wisconsin

Russell S. Way, Director
Educational Innovations
State Department of Public Instruction
49 North State Street
Madison, Wisconsin

Edward Weisse, Chairman
Department of Secondary Education
Wisconsin State University
Oshkosh, Wisconsin

Everett M. White, Associate Dean
School of Education
Wisconsin State University
Whitewater, Wisconsin

William White, Associate Director
Coordinating Committee for Higher Education
2 East Gilman Street
Madison, Wisconsin

Walker Wyman, President
Wisconsin State University
Whitewater, Wisconsin

B. J. Young, Dean
College of Education
Wisconsin State University
La Crosse, Wisconsin

Other Participants

Motion Picture:
Jackson Tiffany, Film Producer, Department of Photography and Cinema, University Extension, University of Wisconsin
Tom Hoffer, University of Wisconsin
Don Sorenson, University of Wisconsin
Other Participants continued...

Video Taping:
- Viggo Rasmussen, Director, Audio-Visual Center, Wisconsin State University, La Crosse
- Jerry Chase, Wisconsin State University, La Crosse
- Bob Wood, Wisconsin State University, La Crosse

Audio Taping:
- John Eattram, Director, Audio-Visual Center, Wisconsin State University, Whitewater
- Philip O'Leary, Wisconsin State University, Whitewater

Administrative Staff, Wisconsin State University, Whitewater
- Peter Pawlowski
- Phyllis Calkins
- Carolyn Stewart

Johnson Foundation Staff:
- Leslie Paffrath, President
- Kenneth Kautzer, Administrative Assistant
- Lilian May, Program Assistant
APPENDIX F

JUSTIFICATION FOR LABORATORY SCHOOLS
IN WISCONSIN STATE COLLEGES

July, 1959
JUSTIFICATION FOR LABORATORY SCHOOLS IN WISCONSIN STATE COLLEGES

June, 1959

The following justifications for Laboratory Schools on the campuses of the Wisconsin State Colleges have been selected from reports from the college presidents. The complete file of justifications by the college presidents is available in the offices of the Joint Staff Study Committee of the Coordinating Committee for Higher Education.

INTRODUCTION

The principal function of the campus school is that of providing the best type of teaching possible for state college students to observe, and it is not primarily organized to reduce the load on the local community for providing educational opportunities for the children of that community. The policy of the state college Board of Regents that enrollments in the campus schools be limited to about 25 pupils per grade substantiates the idea the campus school has other functions to perform in addition to educating children.

Laboratories are not justified solely by production, but rather in terms of development and testing of theories and serving as miniature examples of procedures which can be used when production is a primary objective. Just as research laboratories are necessary for the scientist, the medical hospitals, and a legion of groups of organized scholars and technicians, a laboratory school serves to improve the greatest of all professions; namely, teaching.

Laboratory schools are appropriately associated with colleges preparing teachers because of necessary articulation between the academic and the professional aspects of teacher education. In such capacity a laboratory school provides for learning effective teaching procedures under direction of a master teacher; provides demonstrations for inservice teachers and administrators; and serves as a laboratory testing innovations suggested to or created by the master teachers.
Although a few "top-notch" teachers are born, the great numbers of teachers perenially needed are those who must master, must acquire the knowledge, appreciations, attitudes, and skills essential for effective teaching. If not the best, college controlled laboratory schools should be one of the best environmental means consciously planned for giving selected teacher candidates the kinds of insights, skills, and attitudes requisite to the creative art of teaching youth.

It must be realized that as increasing numbers of college students enter the teacher preparation program, the campus laboratory school will find itself incapable of providing for everyone's laboratory teaching experiences. The facilities of public schools will be necessarily pressed into service. However, this will not relieve the campus laboratory school of its responsibilities. The need for dynamic leadership will be increased so that the beginning teacher may become the best prepared professional person possible. This can only be done if the laboratory school redoubles its efforts to be a "model" demonstration school, a place for increased intensified long-range study of children by scholars and students of education, and as a place where newer practices in education are examined and tested under controlled conditions to determine their practicability for use in public schools.

TWELVE FUNCTIONS OF THE CAMPUS LABORATORY SCHOOL

The following functions of the campus laboratory schools on the state college campuses have been selected from those submitted by the college presidents. There is some duplication, but in each of the 12 there is a unique reason for the inclusion of these laboratory schools as part of the teacher education program of the colleges.

1. The campus laboratory school provides an opportunity for student teaching in the fourth year. Almost all of the four-year elementary students as well as a few two-year rural teacher trainees use the laboratory school to gain experience in teaching. For off-campus supervision of practice teachers the laboratory school sets the pattern and standard for the quality of cadet teaching to be done.
The college can give close direction and supervision to student teachers under such a plan. This would not be easy if all student teaching were to be done in a public school system somewhat removed from the college.

2. The campus laboratory school provides an opportunity for observation and some participation for students in the third or junior year. Every student in the four-year program observes and participates in the campus school daily during the third year, an impossibility were this program attempted without a training school on the college campus.

At La Crosse, for instance, all second semester secondary juniors are assigned to the campus laboratory school Junior High School to observe "master teachers" introduce, teach, and conclude a unit of work. Secondary students aspiring to be social studies teachers or English teachers are assigned to supervising teachers in these subject areas. This program is closely correlated with the general methods course being taught by the director of the Secondary Division. These junior students make case history studies and have assigned conferences with their campus laboratory school supervising teachers. This procedure has proven effective in readying these students for their senior year of student teaching.

Lower class students are often assigned to regular "observation-supervision" duties on the campus laboratory school play area. This "getting acquainted" with children either strengthens or weakens their interest in teaching smaller children. It is possible to guide poorly-qualified teachers away from the profession under this method, just as it is possible to attract qualified teachers into the profession.

3. The campus laboratory school provides a place in which can be gathered the master teachers who will be able to inspire and develop the highest qualities of the profession in beginning teachers. The state college can determine what the qualifications of the supervising teacher shall be, not only as to teaching experience, but also as to educational background. This is an important matter
because student teachers should not be put under the supervision of teachers who have not proved themselves in the profession, or of teachers who have no great enthusiasm for their job. Perhaps not all of the supervisors in the campus laboratory schools are the master teachers, but the average is far better than would be found in some very good public elementary schools.

4. The campus laboratory school is used to accord theory and practice with the college methods classes. Professors in methods and psychology, in rural, four-year elementary and four-year secondary are given the opportunity to have demonstrated principles of education, child growth and development, case studies, techniques and procedures of teachers, by visiting carefully planned demonstrations illustrating more modern practices in teaching discussed in their classes, prohibitive without a campus laboratory school. Professors of music, art, athletics, utilize the campus laboratory school for this demonstration purpose.

5. The campus laboratory school provides a teaching community center for the college's service area. Public and private schools look toward the campus laboratory school as a leading teacher center. This is illustrated by the frequent visitations the campus school has from teachers connected with the schools of the community. Frequently teachers from the campus laboratory school have classes composed of teachers in the area where more recent and up-to-date practices, growing out of the school are discussed and evaluated.

6. A unique aspect of the campus laboratory school is its role in research and leadership. Through the staff of the laboratory school and the Education Department working in the laboratory school of the college and experimenting with techniques in teaching, new and superior methods become possible. Through seminars, clinics and institutes, using the facilities of the laboratory school, the college disseminates this information to the teachers of the area. Thus within the sphere of the college's influence, education is improved.
At times students from psychology courses request permission to "experiment" or to run a test or survey. Whenever such requests can be worked out satisfactorily with the campus laboratory school supervising teachers and the pupils, they are honored.

In the sense of strictly controlled, longitudinal type experimentation, the campus laboratory schools do very little. Such formal experimentation in laboratory schools is reserved for institutions deliberately designed, pupilled, and staffed for that important but specialized service. Large universities with great numbers of graduate and advanced graduate students are usually better fitted for such professional responsibilities. However, informal experimenting with method and curriculum change is continuously encouraged and goes on at all times.

For example, at Eau Claire a recent experiment was designed and carried out to test the capabilities of advanced pupils to master mathematical concepts beyond their grade level. At present an effort is being made in one grade to discover better methods for teaching long division.

7. Another unique service rendered by the campus laboratory school is that of providing opportunities for experienced teachers to meet the student teaching requirements in completing their degrees. Specific curricula are planned for these experienced people, such as the directing of an enriched program designed to stimulate interests as well as demonstrating how the more advanced pupils may be taken care of.

Summer student teaching is available only in the laboratory schools. Since summer is the time that most permit teachers upgrade their credentials, the laboratory school is most important in fulfilling the college's mission of providing teachers and thus relieving the shortage of top-flight teachers in Wisconsin. The summer session laboratory school provides opportunities for those who have graduated in the area of liberal arts to do student teaching and reach certification standards thus further increasing the supply of available teachers.
8. The presence of a campus laboratory school in a community presents a real savings in tax money, inasmuch as children enrolled in it will not be counted for state aid in the public schools. In addition, there could be no real saving realized from a reduction of college staff since college personnel would be needed to supervise the activities in which the student teacher would be engaged; mileage would need to be paid the traveling supervisors, and it is common practice to pay cooperating schools a stipend.

9. The state colleges can control, to some extent, the type of pupil they enroll in the laboratory schools because they are not public schools. This does not mean that the laboratory school should accept only superior pupils or pupils from the more favored homes, but it cannot be used as a "dumping ground" for the less desirable pupils in the public schools.

10. Without a campus laboratory school, an institution preparing teachers might experience a great deal of difficulty in obtaining adequate student teaching facilities in a public school. In order to supervise student teaching experiences adequately, a supervisor would need to take over the classroom in an elementary school and plan a large portion of the school program in order to provide experiences for a student teacher to obtain essential teaching competencies. The ordinary classroom teacher does not have the interest nor the preparation to provide the essential experiences for effective student teaching.

The campus laboratory school gives opportunities to observe and work with students from all economic and social groups. The laboratory school, since it cuts across all school zones, draws from all groups. This is not true in most other schools.

It should be pointed out that off-campus teacher education opportunities are not easy to find. Many parents of public and private school children are not in sympathy with the idea of having their children "practiced on." The student teachers will make many mistakes as they gradually attain confidence in their
developing teaching competencies. In the campus laboratory school a highly trained and unusually competent supervisor is able to correct these difficulties readily and add sufficient strength to the school program to make up for these interruptions. This is not the case with an ordinary classroom teacher.

11. It is possible only in the campus laboratory school to integrate theory with application in methodology classes. Such classes can be scheduled only when a laboratory school is in close proximity to the college and under college administration, permitting a uniform schedule of classes.

12. The campus laboratory school provides an opportunity to screen out those college students who do not seem qualified to teach because of personality, intelligence, or inability to organize their work.

"Who shall finance the operation, construction, and staffing of campus laboratory school buildings (at our state colleges)?

What share of the costs should the state bear?"

All the State Colleges, with the exception of Stout, operate campus laboratory schools at the elementary level. About 13 percent of the assignable area in the state college system is used for this specialized purpose. In 1946, most of the campus school buildings were more than 25 years old. Because of this fact the Regents in formulating their building proposals concluded that in the interest of improved teacher training programs new campus schools should be built and the older structures remodeled for college classrooms. This phase of the program has been completed at Eau Claire, Superior, Platteville and Whitewater.

Traditionally in Wisconsin, the costs of operating this phase of the teacher education program has been the responsibility of the state. At two of the colleges, contracts are in force with rural districts, but the income from this source is very small.
No doubt some savings could be made if the communities in which the colleges are located could be induced to make some contribution to the state from local tax revenues. However, it is doubtful if cooperative arrangements could be made. Local school boards point out that the children enrolled in campus schools are not counted for state aid, and that the campus school enrollment in most communities could be easily absorbed without additional cost to them. It is also conceivable that local authorities, if such a program were adopted, would demand controls over staff, operations and curricula of the colleges.

The abolition of the laboratory schools would provide no real saving in personnel. If a quality job is to be done, the same number of supervisors would have to be employed, mileage allowed them and some kind of stipend paid to cooperating schools.

Should tuition be charged by campus schools? In most of the state college communities the effect would be to reduce enrollments below desirable levels. Many parents feel that they are already paying taxes to the local schools and also the state, and would oppose any additional charges.

The independent campus school is necessary for the development of high quality programs in teacher education. The cost to the state is the price it must pay to maintain the freedom of these institutions to experiment and research in school problems and to demonstrate superior educational practices.
APPENDIX H

STATEMENT IN SUPPORT OF RETENTION
OF THE CAMPUS SCHOOL AT OSHKOSH

September, 1962
STATEMENT IN SUPPORT OF THE RETENTION
OF THE CAMPUS SCHOOL AT OSHKOSH

Prefatory Statement

The anticipated demands for well-trained teachers and the accompanying expansion of the teacher education program at Oshkosh to meet this need will require a fuller utilization of both off-campus schools and campus school. The loss of the on-campus laboratory school with its many functions would:

A. Impair the quality of the teachers produced in a well coordinated program.

B. Limit the future growth of the program during a time of increasing demand for well-trained teachers.

C. Raise possible problems in the tenuous relationship involved in finding acceptable classrooms off campus.

D. Require additional state and local effort to provide educational facilities for the 275 students from grades kindergarten — nine enrolled in the Campus School at Oshkosh.

E. Provide a relatively small gain of about 12 classrooms which even for unspecialized classroom space would require expensive remodeling.

The availability of a proximate and controlled campus laboratory school is essential to the accomplishment of the goals of our teacher education program. Important functions accomplished through our campus school facilities now include the following:

A. Observation — The observation of a professionally-trained master teacher in the classroom is an integral part of the training of student teachers.
B. **Demonstrations** - Controlled demonstrations for college students enrolled in our methods classes need to be carried on in equipped classrooms by specialist teachers. Such teacher preparation is seldom available in public schools.

C. **Research** - The promotion of the research functions of campus schools is important not only to the progress of public education, but also is essential to the training of effective student teachers.

D. **Student Teaching** - As an increasing number of students are graduated from our teacher education program it becomes critical for us to maintain all existing student teaching stations as well as extending our cooperation with area public schools.

The elimination of the Campus School and its observation, controlled demonstration, research, and student teaching functions, will seriously impair the quality of teacher education at this college.

A. **Observation Function**

To maintain a high quality teacher education program, students must be able to see a superior school in operation at frequent intervals and to learn what makes it work.

It cannot be assumed that any public school in the proximity of the Oshkosh Campus will be the equivalent of a college controlled, financed and staffed campus laboratory school. Even if superior rooms were selected from several public schools for this purpose they would not be accessible for the scheduling of frequent observations within short periods of the school day, between regularly scheduled college classes.

B. **Controlled-Demonstration Function**

The professional sequence of courses for teacher preparation, prior to student teaching, includes courses requiring controlled demonstrations.
Not to include these is to ignore our professional convictions and the strong recommendations of professional literature and accrediting agencies in teacher education. Such controlled demonstrations are planned by laboratory school teachers for groups of 30-40 college students and their professors primarily in the areas of educational psychology and the methods of teaching specific subjects. Over 1000 college students might be visiting campus school classes each week during the semester in connection with approximately 38 planned demonstrations — or an average of four demonstrations per grade level per week.

To carry out this demonstration function adequately, campus school teachers need the masters degree as a minimum and must be willing and able to perform the specific, desired, demonstration at the desired time. Such teachers are extremely difficult to find.

Most public schools as presently staffed and controlled would not have the physical facilities nor academic staff to carry out this function adequately.

C. Research Function

Much research has been done in the Rose C. Swart Campus School throughout its long history. Publications in the areas of arithmetic, spelling, language usage and handwriting were prompted through the research findings of the campus school staff members. (A number of these publications have been used throughout a large portion of the nation.) Some of the ground work leading to general acceptance by area schools of manuscript instruction rather than cursive writing instruction in the early primary grades, was done in the campus school. Such also was the case with the important advent of the readiness concept in education, the combined phonetic and word-recognition approach in reading, the
translation of the theory of individual differences to practical implementation in the school, developing the self-discipline concept, to mention just a few.

Present original and distributive research in modern mathematics, foreign language in the elementary school, new and more sophisticated content in elementary school science and social science, individualized reading instruction, team teaching, and programmed instruction illustrate a growing attention to the research function of the campus school. Our rapidly growing academic departments are becoming increasingly interested in the campus school as a vehicle for carrying on research in a particular field as it relates to education. Research projects are underway that involve many of our campus school teachers and have tangible implications for public schools and teachers throughout the Fox River Valley. A newly-organized Fox River Valley School Study Council is looking to the college at Oshkosh, and in particular, its campus laboratory school as a center for needed research throughout the area and as the stimulus for improved practices in all area schools.

The research function not only serves the teaching profession in general and public schools of this area specifically, but it is essential in developing the experimental attitude in teachers.

To carry out the research function adequately, the campus school teacher needs considerable graduate work and an interest in this area. Our present staff is committed to this function. Public school teachers are not necessarily so committed nor do they usually have the advanced training needed. Off-campus schools can be used in certain phases of some research projects but the initiative must rest with the college and its campus school.
D. **Student Teaching Function**

Wisconsin State College, Oshkosh, continues to be among the leaders in the state in the preparation of teachers. In 1961, 265 elementary school teachers were produced at Oshkosh. The average for the rest of the State College System was 134. At the secondary school level, exclusive of special areas, Oshkosh produced 97 teachers while the average for the rest of the System was 75. A program of such scope requires the utilization of the qualified teachers and available classrooms of our area public schools plus the total capacity of a campus school. To reduce the availability of classrooms for student teachers could necessitate the curtailment of our teacher education program. Of the 514 student teaching stations provided in 1961, 150 of them were entirely accommodated within the campus school. In addition the student teachers assigned in the public schools were required to utilize some of the functions of the campus school.

II In closing the Campus School and locating "second-best" substitutions to carry out its functions the State will have gained little in building space and save little in money.

A. **Summary of Space Utilization Study** (data as of September, 1962).

<table>
<thead>
<tr>
<th>Description</th>
<th>Area (sq. ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total floor area of building</td>
<td>53,366</td>
</tr>
<tr>
<td>Unassignable areas (corridors, stairs, toilets, mech. equip.)</td>
<td>15,368</td>
</tr>
<tr>
<td>Prorated areas for general college use</td>
<td>12,225</td>
</tr>
<tr>
<td>Prorated areas for Campus School use</td>
<td>25,773</td>
</tr>
</tbody>
</table>

The following rooms show extensive use for general college classes:

- Room 10 17 class hours per week
- Room 11 14
- Theatre 205 21
- Room 210 10
- Room 309 11
- Room 310 19

The total for these rooms together with the total for rooms used to less extent gives usage on the basis of the standard of 30 hours per week equivalent to five classrooms.
It should be noted that even in prorated areas for campus school use, college classes are frequently present for observations and demonstrations.

II. Costs Incurred in Closing School

The removal of the Campus School would necessitate the payment of additional State Aids to the City of Oshkosh. On the basis of 275 children, the estimated per pupil cost in Oshkosh, and the 1962 18.4% State Aids figure, the cost to the State would be approximately $20,000 per year for each year the Campus School was not in operation. The provision of adequate facilities for observations, demonstrations and research within close proximity to the campus would involve considerable expense in controlling, staffing, equipping, and remodeling a neighborhood elementary school and secondary school (even if done on a shared basis with the city) should such an arrangement be agreeable to the city of Oshkosh. The provision of college supervisory services and public school critic teachers for over 150 student teaching stations per year (presently provided in the Campus School) would involve an additional $20,000 per year for each year the Campus School was not in operation.

III. Miscellaneous Considerations and Problems in the Elimination of the Campus School.

A. Reached Saturation Point in Oshkosh

The school officials of the City of Oshkosh feel that the saturation point has been reached in terms of public school teachers and facilities made available to the college teacher education program. About 60 elementary school teachers and 100 junior and senior high school teachers have been made available for use in connection with our student teaching program. In addition, some 600 freshmen in teacher education visit local classrooms for observation purposes on a regularly scheduled basis in connection with a required course in the curriculum. The superintendent of schools has indicated that any additional requests for the use of
facilities and teachers to meet the needs of the teacher education pro-
gram would jeopardize our fine working relation and might even result in
a curtailment of present facilities and teachers being used.
The campus school is handling over 150 student teacher assignments each
year and 200 each summer, including special cases better handled in the
campus school than in a public school and large numbers of students per
week in controlled demonstration situations held in connection with re-
quired courses in the curriculum. It also serves the entire teacher
education student body of nearly 2,000 students as well as all area public
school teachers in the areas of observation, research and accompanying
demonstrations, reporting, and consultant activities. It is hardly
practical to expect the public schools of the City of Oshkosh to pick up
these additional responsibilities for which their staffs have neither
been employed nor trained.

B. Building Serves Dual Role
At present every campus school classroom is being used for some college
classes. The lunchroom, little theatre, demonstration room, art music,
and physical education facilities are used for more college classes than
campus school classes. Since the campus school is in operation but six
hours a day and the college schedule includes 11 periods daily, plus
some evening and Saturday classes, heavy use is presently made of the
campus school building for college classes. Such use could not be made of
a public school carrying on the functions of a campus school.

If the campus school is remodeled into a college classroom building,
the resulting increase in college classrooms would be from 12 to 15.
There would be an increase in usable time of only six hours per day.
Since other rooms in the building are already in use and since the 12 to
15 classrooms are already used for other classes or purposes during
other hours of the week, the remodeling would make but a small contribution to the classroom needs of the rapidly expanding student body at Oshkosh.

C. Has Distinguished Record in the Production of Teachers

Wisconsin State College at Oshkosh serves one of the most heavily populated areas of the state. Its campus school has been in operation since the institution's inception in 1871. It contains the first kindergarten established in a normal school in the United States.

It would seem inappropriate to close that campus school which serves the largest school and teacher population area in the state college system and which shares in the production of the largest group of elementary and secondary school teachers in the state college system. (98% more elementary school teachers and 30% more secondary school teachers, exclusive of the special areas, than the average for the rest of the system, and more elementary school teachers than those produced together by the two campuses of the University of Wisconsin).

D. Serves Area Schools in Many Ways

A college controlled campus school with a staff comprised of college faculty members renders valuable services to the schools and teachers throughout the area in which it exists. As a result of the presence of a campus school, many conferences are conducted, demonstrations for area teachers provided, visitations from other schools encouraged, research projects stimulated, and consultant services rendered. It should be noted that the great demand for consultant services of campus school staff members is due in large measure to the fact that these persons are not only college professors but teachers of children and therefore bring a high degree of reality to the services rendered.
E. **Summer Program Largest in System**

Each summer 1000 to 1500 public school teachers in the field are on campus working toward a degree. These persons make direct or indirect use of the campus school services. In the summer of 1962 some 200 were actively involved as the major portion of their summer session program in the special laboratories set up to demonstrate the "cutting edge" developments in elementary education. In the kindergarten laboratory, for example, some 300 other persons were served through visits to the laboratory and conferences concerning the latest developments in kindergarten education being demonstrated in the laboratory. In the summer of 1962 there were 22 such specialized laboratories in operation.

F. **Costs to the State**

In the elimination of the Campus School at Oshkosh, consideration should also be given to costs incurred by the State.

First, there would be the cost of staffing, equipping, maintaining, and possibly remodeling any public school used to carry on those research and demonstration functions essential to the teacher education program and formerly conducted in the campus school.

Second, there would be the cost in state aids for 275 children from grades kindergarten through grade 9 who would be moving from the campus school to the city schools. On the basis of the Oshkosh school figures for 1962, the amount for one year would be $20,000.

Third, would be the cost of handling the 150 student teaching assignments presently made in the campus school. At $50.00 per assignment for the public school teacher and an average salary of $8,000 for each of one and a half college off-campus supervisors, the additional cost would amount to about $20,000 per year each year the campus school is not in operation.
A fourth consideration is the increased bonded indebtedness and increased property tax that would be necessitated by the building of another city school to house 275 more pupils. Although this cost would not be born by the state, it would represent an area of expense in which many legislators are concerned and interested.

G. **Statutory Mandate**

Section 37.09 of the state statutes clearly indicates that the prime function of the Wisconsin State College is to train teachers. Section 37.10 (1) clearly indicates that the Board of Regents of State Colleges shall establish and maintain a campus school at each campus with the exception of Stout.

"37.10 (1) The board shall also establish a model school for practice in connection with each state college, except Stout State College, and the institute of technology, and shall make all the regulations necessary to govern and support the same; and they may in their discretion admit pupils to such model schools free of charge of tuition. . .."

The administrative office of the Board interprets this section of the statutes to require each college, except Stout, to maintain a Campus School.

H. **Specialized Training of Staff**

The campus school faculty at Wisconsin State College, Oshkosh includes eight teachers who have the earned doctorate or its equivalent with the remaining staff members possessing on an average ten hours beyond the master's degree. A master's is the minimum academic training required for an appointment as an instructor in the campus school.
The typical campus school teacher: (1) is a superior classroom teacher, (2) has considerable graduate work beyond the master's degree, (3) has experience as a supervisory teacher, (4) has the ability and willingness to demonstrate for children and observers, (5) is committed to participation in research.

I. Supporters of Campus Schools

It should be recognized that many agencies and groups are strong supporters of campus schools. Organized agencies would include: our professional accrediting agencies - the National Council for the Accreditation of Teacher Education and the Department of Public Instruction of Wisconsin; the Board of Regents of the Wisconsin State Colleges; the Council of Wisconsin State College Presidents, the Wisconsin State College Directors of Teacher Education, and the Association of Wisconsin State College Faculties; all national and state professional associations concerned with the quality of education in public schools. Other groups strongly supporting campus schools would include: the hiring officials in whose communities we place our teachers; the graduates of teacher education programs where campus schools existed; the parents of children who have attended campus schools; and the alumni of campus schools.

In Summary

The Rose C. Swart Campus School has in the past served as the main facility for student teaching. It provides over 150 student teaching stations per year and serves critical needs for off-campus teachers as well.

By controlling the staff and enrollment of a public school we could set up a similar — but considerably less effective — situation to that in our campus school. However, costs of operation and maintenance could be as high, or higher, than present costs. The public schools, as presently constructed would not lend
themselves to demonstration and research functions as well as would our Campus School. Public school staffs are not presently trained or willing to assume the specialized tasks of the laboratory school teacher. In addition, we would have no guarantee that every school board would honor such an arrangement should the present Board of Education be so inclined. (The Superintendent of Schools indicates that he and the present Board of Education are unable to give any assurance that such an arrangement would ever be agreeable).

The action of eliminating the Rose C. Swart Campus School at Wisconsin State College, Oshkosh, would gain the State of Wisconsin little in temporary space utilization and cost its teacher education programs an impairment in quality.
APPENDIX I

ANSWERS TO GOVERNOR NELSON'S QUESTION
CONCERNING LABORATORY SCHOOLS AND ELEMENTARY EDUCATION

July, 1959
I. What shall be the role of state-built laboratory schools in teacher training, and how shall they be financed and operated? (Governor’s message to Legislature, on state building program, April 2, 1959).

It is our firm conviction that good laboratory school facilities are absolutely essential for an effective teacher training program operated in a University context.

Laboratory school facilities in a University are to teacher education what research and teaching laboratories are to chemistry and engineering, or what an experimental farm is to agriculture. Thus, laboratory school facilities are necessary at both elementary and secondary levels if a University is to perform adequately its fundamental tasks of educational research and experimentation, and demonstration of successful practices.

In order of priority, the proper functions of University of Wisconsin laboratory schools in Madison and Milwaukee are:

1) Basic Research and Experimentation: Laboratory schools are essential to provide professors with the facilities for continued fundamental research on school problems. This research, as we know, is in the interest of the state and nation, and may yield results that will be helpful in securing the maximum possible use of our human resources at the lowest possible cost. This research involves faculty members in the field of professional education, and in such subject matter fields as psychology, mathematics and language. Certain excellent research projects can be undertaken in the public schools. Other projects require longer commitments, or more control of curriculum and school facilities than public officials can normally guarantee.

2) Demonstration of Superior Educational Programs and Procedures: When University laboratory schools serve as models, they can by demonstration assist school systems in making improvements in curriculum, methods and facilities. To
perform this function well, the University laboratory schools should represent the best in instructional staff, program, educational plant, equipment and supplies.

3) **Observation and Participation:** Quality programs of teacher education require adequate opportunities for prospective teachers to observe and work in laboratory schools where superior practices exist. Good laboratory schools make possible group and closed-circuit television observation of demonstration teaching as examples for the future teacher.

4) **Practice Teaching.** As a matter of general policy, the major part of the practice teaching in the University teacher training program should be carried on in the regular public schools. There are real values, however, in giving certain students at least some of their practice teaching in laboratory school situations.

To assure effective operation along these lines, the University must control staff, curriculum and facilities in the laboratory school. In most cases, but not all, this will mean construction of facilities as a regular part of the University building program; and financing and operation of the laboratory school as an integral part of the University budget.

In the case of the University of Wisconsin, this will normally involve construction and operation out of funds provided by the Legislature. But part of the cost is recaptured or offset in various ways, notably:

(a) The parents of students who attend University laboratory schools pay fees which cover a part (up to 25%) of the cost of teaching these students.

(b) The State does not pay state aid to local school districts for students who are enrolled in University laboratory schools.

(c) University students in teacher training programs do part of their work in the University laboratory schools; and these students of course pay the regular fees and tuition.
(d) Substantial parts of the research and some of the demonstrations conducted in connection with the University laboratory schools are paid for by special gifts and grants from federal government agencies, private foundations and other non-legislative sources.

(e) In certain special cases it may be possible to develop cooperative arrangements with school authorities which will make available to the University some of the laboratory-school-type facilities for research experimentation and demonstration. Such an arrangement, where possible, may result in mutual benefit and the sharing of costs. Partly because of a Ford Foundation grant, the University has been able to work out a very satisfactory cooperative arrangement with the Madison Public Schools, involving the Washington Elementary School.

II. If these school buildings are necessary, shall they be a part of our college campuses? If so, shall the state alone construct and maintain them and pay all costs? Whose children shall be enrolled in these schools?

Laboratory school facilities are of value to the University in connection with the regular research and teaching programs. It is clear, therefore, that laboratory school buildings, when possible, should have a campus location. The three laboratory schools maintained by the University — the Elementary Campus School at the UW-Milwaukee, and the Wisconsin High School and the University Nursery School in Madison — all have campus locations. The Washington Elementary School, mentioned at the end of the answer to Question I, is within easy walking distance of the Madison campus.

The question of cost has been discussed in the answer to Question I. Obviously every effort should be made to hold down the cost of building and maintaining the laboratory school facilities which are necessary for the University system. In addition, the University should attempt to raise as much of the cost as is feasible from non-legislative sources. At the same time, it must be remembered that the essential value of a University laboratory school depends
on its excellence and its special features. It would not do to stress economy at the expense of the fundamental values of the facility.

Under normal circumstances a University laboratory school should be open to the children of many different groups of citizens. This has been standard practice within the University; and scholarships have been made available to reduce the burden of fees in actual cases of need. One should not, however, forget the basic goals of the University laboratory schools. If University research in teacher education is being concentrated on the gifted child, or the handicapped child, the University must have the right to adjust selection and admissions policies in its laboratory school facilities accordingly. But, needless to say, University policy would not be developed along lines of special favor.
APPENDIX J

THE NEW LABORATORY SCHOOL
LABORATORY SCHOOL ADMINISTRATORS' NEWSLETTER
pp. 28-29
ELDON DURAN, PRESIDENT
MOREHEAD STATE COLLEGE
MOREHEAD, KENTUCKY

February, 1966
THE NEW LABORATORY SCHOOL —
AN EMERGING DESIGN FOR LEADERSHIP

Adron Doran, President
Morehead State College
Morehead, Kentucky

OUTLINE

A FOUR-POINT PROGRAM DESIGN FOR EMERGING LABORATORY SCHOOL LEADERSHIP

LEADERSHIP DESIGN FOR:

1. Public Academic Community
 a. Public Schools — Teachers
 b. Leadership Programs — administration, supervision, guidance and librarians.
 c. Two year Community and Junior College

2. Community Leadership Development
 a. Social Community Leadership Development
 b. Business Leadership Development

3. College Academic Community
 a. University Approach to Student Teaching
 b. Pre-professional Laboratory Experience

4. State and Federal Relations
 a. Cooperative Leadership Responsibilities
 b. Be on par with public schools and serve as the catalyst for innovation.

5. Summary and recommendation — Status of Laboratory School

* * * * *

When I accepted this responsibility, I did not realize the similarity among the topics to be discussed and the difficulty I would have in planning a presentation that would not repeat what was already said or not say what is anticipated by the succeeding speakers. However, in noting the address which is to follow, I thought it might be appropriate to present a pattern for emerging laboratory leadership and let Dean Marvel labor with the task of putting people in the model and working out the details of how to make the people operate if he desires.
I am not indicating what we are currently doing with our own laboratory school at Morehead State College, however, it might be said I am proposing the type of model for laboratory school leadership we hope to achieve in the future to meet the needs of our service region as we see our responsibility.

I cannot make the claim that this is entirely my design, never heard of by mortal man prior to this date. Rather, you will note some close resemblance in some parts of my proposal to Dr. Conant's recommendations he made at the Conference on "Innovation in Teacher Education" at Northwestern University in November, 1964. Also, Dr. Cartwright of Duke University has previously written on the concept of the total University approach to student teaching.

However, I shall take many of these concepts from wherever they may be found and develop a model based upon the Core Community Concept of education and place the Laboratory School at the hub of the wheel, letting the four points be the tangential things or the spokes and rim of the wheel.

Let us direct our attention to these points with emphasis first on the Public Academic Community.

We find that the Laboratory School is thrown into a new and rather peculiar role with the passage of the Elementary and Secondary Education Act of 1965. We are forced to assume the role of the fledging child. Since we do not qualify by definition as a "local educational agency," the public schools must approach the Laboratory School and include it in their plans for projects proposed under Titles I and II of the Act. This situation changes the directional force of leadership. To fulfill our function, we must be in position to assume a joint leadership role with reasonable communications between the Laboratory School and the public school.

This complete communication may be accomplished in the following manner. The Laboratory School as the autonomy which should facilitate the development of innovative and exemplary programs. In planning projects under Title I between the laboratory and public school personnel, aspects of desirable projects which may be slightly controversial in public schools may be proposed as exemplary projects in
the Laboratory School. During an experimental period, the public school teachers and administrators should be given ample opportunity to visit the Laboratory School for conferences, observations, and evaluation sessions. When the project is introduced in the public schools, the Laboratory School Teacher then becomes the consultant to help transfer the innovations with a minimum of difficulty.

During the developmental stages of such programs, college supervisors of student teachers, personnel in College Extended Services and college academicians of the various disciplines in which the exemplary program is represented should be involved to the extent that these people may continually follow up the operational phase of the project once it is accepted and adopted by the public school.

To make the Laboratory School a design for emerging leadership, I am convinced that we must accept the "experiential" or child development concept as our major premise for curriculum development. By doing this we may answer the age-old charge by those who say that the campus school isn't coping with the typical public school problems. To build the experimental concept we must permit the communications concept to serve as a melting pot for ideas presented by public school teachers and analyzed by the Laboratory School Teacher. We find ourselves sometimes in a position which the Agricultural Experiment Stations have discovered they occupy. Some observant farmer directs an inquiry as to why a certain phenomenon has taken place in his tobacco patch. The experiment station not knowing the answer, may hide behind a cloak of high sounding terminology not within the comprehension of the farmer. However, a research project is started. At the termination of the project, the experiment station may announce that through the careful observation of their very skilled scientists they have noticed an unusual phenomenon existing in certain tobacco fields. In order to better serve the farmer they have done extensive research and would recommend that the method of preparing the seedbed be changed.
Through joint committee efforts of Laboratory School and Public School personnel a basis is established for the cooperative planning and communication to be activated; therefore, a leadership design emerges involving the public school teacher.

The second facet of the emerging leadership role in the public academic community is devoted to "Leadership Programs."

Within this area, I would put all nonteaching personnel—administrators, supervisors, counselors, librarians, etc. Even though these are listed as nonteaching personnel, they exert a tremendous influence on the teaching-learning process. They hold positions which can facilitate innovative and exemplary type programs. At the same time they can be a deterrent to such programs.

For instance, when an individual student selects an imaginative program on which he wishes to do advanced study, the Laboratory School should be in a position to help demonstrate the child centered or experiential concepts of education. Here is where the director takes on an expanded role over the principal of a traditional school. Not only must the director administer the Laboratory School program, he must be capable of guiding the development of democratic concept and practices in education which influence the thinking of the future administrator.

The third facet of the public academic community could be listed as the Community College.

Laboratory School Teachers could well play a role as consultants or demonstration teachers for special sessions with students in the community campuses, help bridge the gap in time and encourage those interested in pursuing a teaching career by assisting the junior college students in selecting appropriate teaching areas according to abilities and interests.

This responsibility has been brought into sharper focus by the Higher Education Act of 1965 under Title III. This Title provides the avenue for four-year institutions to aid developing institutions of higher learning with two-year programs through exchange of faculty.
May I now turn to the second major spoke of the model for emerging leadership. I have entitled this spoke the Social and Business Community.

The language of Title I of the Higher Education Act of 1965 has opened a new area for our institutions of higher education to direct attention to community service. This attention is primarily directed at the social community but has an impact upon the business community because of the increased leadership and cohesiveness within a community as it attacks common problems.

The Laboratory School should set the pace in developing newer ways of working with and helping its social and business community provide exemplary programs for the public schools. This responsibility becomes more important, as the cost of financing education increases with comparable increase in public concern over the increased demand for more money to support public elementary, secondary and higher education.

The third spoke of the model for emerging leadership is the College Academic Community.

Herein, lies the concept of the total College and University approach to student teaching and pre-professional laboratory experiences.

Because of the increased number in student teaching and pre-professional courses in which contact with children is essential, the responsibilities of the Laboratory School have enlarged. At one time we could provide professional laboratory experiences for all our student teachers and still have students observing the classroom teacher in action with children. This is no longer the case. Therefore, to make the theory courses in Human Growth and Development meaningful, more emphasis must be placed upon and opportunity given for observations in the pre-professional experience of our future teachers. It is my belief that exposure to correct procedures and acceptable attitudes over a period of time is necessary to internalize desirable patterns of behavior for a teacher.

Centers for student teaching must be provided off campus to insure the opportunity for an acceptable type of pre-professional training for other classes.
on campus. There is inherent danger if a sophomore student observes a student teacher in a Laboratory School making mistakes when he doesn't know they are mistakes or the mistake isn't pointed out to him. The sophomore may have to unlearn what he has observed when he enters his professional teaching experience. Therefore, it is much better for him to have the opportunity to observe the master teachers in the Laboratory School free from the student teachers.

As we move off campus with our student teaching, the job becomes more mammoth. More people must be involved and more coordination is required. When the total university approach is taken to supervision of student teaching, the opportunity presents itself to transmit technique and competence to the student teacher and supervising teacher through the contacts made with personnel from the campus.

The Laboratory School could well serve as a training ground for academic supervisors of student teachers who are preparing to work with teachers in the public schools.

I shall hastily turn to the last spoke of the model for leadership.

That of Governmental Relationships

The laboratory school can well serve as a mediator between the public schools and the institutions of higher education, on matters of educational controversy and assist in developing and recommending standards for state policies and programs. The Laboratory School should keep itself in a position to take the practical aspects of educational procedures as advocated by the public schools and balance them with the theoretical approach supported by college professors to provide a basis for a united front to educational progress within a state.

However, the Laboratory School is at a distinct disadvantage in this area. Many of you have learned this in working with the Head Start Pre-School Programs, and in preparing proposals under Title I or Titles II of the Elementary and Secondary School Act of 1965. For our Laboratory Schools to set the pace in educational leadership we must be defined under the provisions of the Federal law as a local educational agency. This would put the Laboratory School in a better position to participate in and lend direction to the various aspects of P.L. 89-10.
APPENDIX K.

CURRENT RESEARCH AND INNOVATED PROJECTS
UNDERWAY IN STATE UNIVERSITY LABORATORY SCHOOLS

June, 1967
June, 1967

CURRENT RESEARCH AND INNOVATED PROJECTS UNDERWAY
IN STATE UNIVERSITY LABORATORY SCHOOLS

The following list identifies the research activities underway at the present time. A brief description on each of these programs is available, but not included in this summary sheet.

Eau Claire

Comparison of three approaches to the teaching of spelling.

Development of social studies resource units to complement the scope and sequence conceptual framework of the Wisconsin State Department of Public Instruction.

Programmed reading instruction in Grade Two.

Initial teaching alphabet in early reading instruction.

Special treatment of the "observation deck" in classroom.

A controlled study by a University Sociology class.

The effect of discontinuing grading reports on pupil learning.

A study to determine the effect of poor handwriting on the learning and retention of spelling words in Grades Five and Six.

"Grading" via standard scores (T-scores) in Grades Four through Six.

The effect of controlled isolation on creativity in art at the Fourth Grade level.

Electronics laboratory by individualized instruction.

Multi-aging in Grades Four through Six.

Oshkosh

A third year of research utilizing the science program developed by AAS.

Experimental units in ESS science programs.

Aerospace study (a publication in WEA Journal followed).

The Senesch Economics Program in Grade Three.

University of Chicago's Economic Program in Grades Five and Six.
Area studies in junior high social studies.

Suppes Mathematics Program for Grades One and Two.

SMSG Mathematics Program in Junior-High.

An extensive humanity study covering many disciplines on a team basis by several instructors in the laboratory school entitled "Who in the World Am I?"

TV work in PE and Art.

Radio program on programmed learning.

Computerized work in cataloging library materials in lab school.

A student exchange program with area public schools.

A testing center for psychology students using University Laboratory School facilities and students.

The development of an independent automated learning center as recently established in the Lab School.

Superior

An observational attitude study with the Department of Education.

Mini-teaching study with Department of Mathematics.

Programmed instruction in reading.

An earth science curriculum study instructional program.

Conceptual process approach in social studies, including the development of resource units.

Value system and junior high children.

A computer based math instructional program.

Student response system project study.

Projector Mirror - closed circuit TV study of Student Teaching.

Pre school Education Program testing readiness theories.

Elementary School typing study.

Whitewater

Human values.

The effectiveness of student teaching in the Kindergarten-Primary grades.
Special minor in Math for elementary teachers.
Creative writing.
A child centered science curriculum.
Foreign language education center.
Highly integrated teaching program.
Reading experiment with the Overhead Projector.
Remedial Reading Improvement Program.

River Falls
Development of school health policy guidelines.
Speed up of teaching library processes and techniques to library science students using Lab School.
A study on the improvement of writing by writing.
The establishment of a curriculum approach for the teaching of art history at the elementary level.
A new approach to grammar based on the concept of sentence patterns.
The development of pupil team patterns on growth in writing skills.
Taping stories as a part of an approach to First Grade reading.
A study of the feasibility of presenting a duplicate curriculum to Eighth and Ninth Grade students in science.
A study on the identification of spelling difficulties of Fifth graders.

La Crosse
Flexibility junior high scheduling - non-grade placement, independent study, student selection of courses.
WISMAP teachers perception of her role in the teaching process.
Remedial Reading - Orton-Gillingham approach toward the treatment of dyslexic students.

Stevens Point
Utilization of Technological Equipment for Individualizing Instruction. Teacher in grades five and six are using belt recorders to provide individualized instruction in reading, spelling, math and general programming.
Creative Writing Project.
Purpose: To study the effect of varying types of grouping in non-graded settings in instruction for creative writing.

Language arts-Typing program.
Purpose: To determine the effect of the acquisition of the skill of typing on various aspects of the language arts program.

French in the Elementary School.
Purpose: To determine the effectiveness of the oral-aural-visual approach to teaching French in grades 4-8.

Independent Study.
Purpose: To investigate independent study programming as performed by seventh and eighth grade students.

Program in outdoor education (for lack of a better title)
Purpose: To develop a program in which the out-of-doors becomes an integral part of the total curriculum.

Utilization of a science laboratory designed for children in grades 1-8.

Development of a learning laboratory for primary grades which provides for small-large group study utilization of A.V. learning aids for individuals or groups of students.

Platteville

Pre-Kindergarten Education.
A pre-classroom effort has been organized in the Campus School for pre-school children. A comparative study of the effects of early childhood education on children who qualify for Head Start programs.

Spelling-As-Writing.
Second grade children having studied the consonant blends and long and short vowels, enter a creative writing program, including dictated sentences.

Reading.
Use of Bell and Howell Language Master to aid slow readers and children with brain damage, which has affected verbal-visual abilities in reading, spelling, and speech.

Fundamental Experimental Physical Science.
An experimental physical science program designed for junior high school students and planned jointly by the head of the physics department at Platteville and the science teacher in the Campus School.

Language Arts.
Language development is taught and is evaluated in the junior high school with the assistance of various mechanical devices.
APPENDIX L

NOLAN ESTES LETTER
ASSOCIATE COMMISSIONER FOR
ELEMENTARY AND SECONDARY EDUCATION

May, 1967
Dear Congressman Steiger:

This letter confirms the oral advice recently given to you and to Dr. Snowden, President of the National Laboratory School Administrators Association, in my office concerning the eligibility of the planned laboratory school at Wisconsin State University at Stevens Point, Wisconsin, to participate in the programs under the Elementary and Secondary Education Act of 1965, particularly Title III.

As you know, Title III of the ESEA provides for a program for making grants for supplementary educational centers and services to local educational agencies, as that term is defined in the Act. Section 701 (f) of the Act (20 U.S.C. 881 (f)) defines a local educational agency as including any "public institution or agency having administrative control and direction of a public elementary or secondary school." Assuming that Wisconsin State University is a public institution or agency and that the planned laboratory school will provide elementary or secondary education, as determined by Wisconsin law, but not including any education beyond grade 12, the planned laboratory school will be eligible to apply to the Commissioner of Education for a grant under Title III of the ESEA. Likewise, it will be eligible to participate in the Wisconsin State plan under Title II of the ESEA. The extent of such a participation will depend upon the terms of the Wisconsin State plan.

Finally, the planned laboratory school will be eligible to participate in the program under Title I of the ESEA. This is true because of the amendment by P.L. 89-750 of the term "local educational agency", as applicable to Title I of the ESEA. The revised definition appears 20 U.S.C. 244 (6) (B) and includes the phrase quoted above with respect to the definition applicable to Titles II and III. However, inasmuch as the planned laboratory school will presumably not serve a defined school district, the allocation to it will be the amount determined for that purpose by the Wisconsin State Educational Agency pursuant to section 203 (a) (3) (B) of P.L. 81 874 (20 U.S.C. 241c (a) (3) (B)), which reads, in part, as follows:

in the case of a local educational agency which provides free public education for a substantial number of children who reside in the school district of another local educational agency, the State educational agency may allocate the amount of the maximum grants for those agencies among them in such manner as it determines will best carry out the purposes of this title.
In any event, the planned laboratory school could, as a local educational agency, carry out a program or project jointly operated, pursuant to section 205 (a) (1) (20 U.S.C. 241e (a) (1)), with another local educational agency such as the Stevens Point school district.

It is hoped that this letter will remove any doubts concerning the qualification of the planned laboratory school at Wisconsin State University as a local educational agency under Titles I, II, and III of the Elementary and Secondary Education Act of 1965 and will clarify the manner in which it may participate in the programs under those Titles.

Sincerely yours,

Nolan Estes
Associate Commissioner for
Elementary and Secondary Education

Honorable William A. Steiger
House of Representatives
Washington, D.C. 20515
APPENDIX M

STATEMENT OF LABORATORY SCHOOL DIRECTORS
K-6 MATHEMATICS PROJECT WITH
STATE DEPARTMENT OF PUBLIC INSTRUCTION

September, 1967
At its meeting held at WSU-Stevens Point, on September 28 and 29, The Council of Laboratory School Administrators voted unanimously to cooperate with the Department of Public Instruction in the work required to co-sponsor and to develop contextual framework materials and accompanying evaluative instruments for the, "Guidelines Mathematics Program, K-6."

Mr. George Henderson, Mathematics Supervisor for the Department of Public Instruction, told the Council that the cost for this experimentation would come from sources such as the Department, Board of Regents, or Government Funding.

Dr. Roy Heath will strive to secure Raytheon Corporation's Large Group Response System to facilitate the Laboratory School's development of the materials and instruments mentioned above.

The plan ultimately calls for each Laboratory School to serve as a workshop for Service Area teachers to provide demonstration and participation experiences in the use of the, "Guidelines" materials. These teachers will then feel adequate to the task of initiating the use of these materials in their respective school systems. Mr. Russell C. Mosely of the Department of Public Instruction has said that the expenses for such workshops could be supported by his Department.

As other, "Guideline" materials in other curricular areas become completed by the printer, the Laboratory Schools will plan to continue the pattern of cooperation with the Wisconsin State Department of Public Instruction in developing materials and evaluative instruments for use in our public schools.

Respectfully,

John C. Pearson, President
Wisconsin State University Council
Laboratory School Directors

JCP:vl
APPENDIX N

THE PROGRAMATIC THRUST OF THE
UPPER MIDWEST REGIONAL EDUCATIONAL LABORATORY

Page 7 & 8, Item 3

March, 1967
3. The Wisconsin State University system, composed of institutions formerly identified as teacher training schools, is interested in making significant changes in the role expectations of their campus Laboratory Schools. It is the intent that these schools be changed to become the centers of experimentation and innovation which they were originally established to be. UMREL is a participant in the state-wide committee currently planning the long-term attack on this problem. Essentially the plan is emerging under a coordinated series of activities in which each institution expects to assume leadership in one facet of media use. There appears to be a significant relationship between this activity and the UMREL established center for media design at the University of Iowa. There also exists in this planning the opportunity for developing models of closer relationships between inservice and preservice teacher preparation programs.

4. The opportunity to pursue assessment and inquiry in a new context exists with Title III developments in South Dakota. The State is divided into four geographic areas, each with a Title III planning grant and receptive to coordinative involvement of UMREL in the development of their program. The opportunity to create a state-wide system of in-service training for teachers and to build upon some of the work now being done in North Dakota gives this involvement pertinence to UMREL's program. Similar opportunities exist to formulate new R and D units of school districts and CESSA agencies in Wisconsin.

The broadly based task force assessments made in the planning period will undoubtedly need to be repeated from time to time and can be routinely organized through the state council structure. There is now a need for a number of more definitive, systematic, data gathering operations to provide inputs of information for program planning. The list of such status studies could be lengthy, but the following are illustrative of several highly appropriate to the task of increasing teacher competence:
1. The type, number, and quality of teacher inservice programs in the region.

2. A survey of field experiences required or possible in the pre-service training of teachers.

4. A study of the time lag factors in preservice programs as related to curriculum change adoptions.

5. A catalog of the ways in which teacher preparation institutions and school districts are now cooperatively involved.
APPENDIX 0

LETTER
EUGENE R. PHEE, DIRECTOR
BOARD OF REGENTS OF
STATE COLLEGES
MADISON

July, 1967
July 7, 1967

Dr. William E. White, Assistant Director
The Coordinating Committee for Higher Education
2 East Gilman Street, Room 406
Madison, Wisconsin 53703

Dear Dr. White:

We are pleased to know that the CCHE is again evaluating the role of the campus schools as it relates to higher education in Wisconsin. Since you attended the Wingspread Conference, June 28, 29 and 30, you are able, I am sure, to determine the attitudes and philosophies of our deans of education, campus school directors, and some of our presidents.

The 1959 CCHE joint staff working paper #2, "Laboratory Schools at Teacher Training Institutions" stated that "the laboratory school serves four basic purposes":

1. Demonstration of superior pedagogical methods and procedures.
2. Observation and participation by student trainees.
3. Professional and lay leadership.
4. Basic research and experimentation.

We believe that the laboratory schools have provided consistent and satisfactory demonstration functions for undergraduate students, graduate students, and public school teachers. The schools have maintained a staff considered to be master teachers. The enclosed tabulation indicates that during 1966-67 the schools averaged in excess of 4,000 registered observations, trained in excess of 1,000 students in practice teaching, and provided education for 1,900 elementary and secondary students.

The cost of operating the schools appears to be $1,440,000, this includes salaries and fringe benefits. Janitorial services are included in the estimated cost of maintenance of the buildings, as of our 1967-68 budget.

The research productivity of the systems schools, although not as much as we would hope for, seems to be showing some progress. The increased pressure of enrollment and the limited number of dollars spent on supplies and equipment probably have prevented greater development in the area of research.

It is our belief that the principal contribution these schools can make in the next few years is as demonstration centers. There is a need to demonstrate new programs and techniques to teachers in training, public school teachers, school boards, and the general public. Title III of the Elementary and Secondary Educational Act provides significant funds for centers of this type and we have suggested that we use our existing facilities and capabilities to introduce the innovations coming from various research and development programs.
The fact that the enrollment of the schools is small and that the pupils may come from medium income level families does not seriously affect the abilities of the school to operate as demonstration centers. It is questionable if there is such a thing as a "typical school".

We are in contact with the Department of Public Instruction and hope to be able to have a definitive program of evaluation and instruction for the new K-6 mathematics program recently recommended by the Department. Such a cooperative arrangement can lead to careful evaluation of new programs, which in turn can lead to basic educational research which can be carried on by the departments of education or the disciplinary departments of the universities.

We plead that if the present review results in a recommendation that the campus schools be continued, that realistic finances necessary for support be recommended so they may become leaders in the field of educational innovation.

You have received some letters direct from the presidents of the various institutions regarding their recommendations. Attached you will find President Meyer's comments.

If we can be of further assistance we will make available anything in our files for your use.

Sincerely,

/s/ Eugene R. McPhee
Eugene R. McPhee
Director

ERM/sg
Enclosures
APPENDIX P

A

STATEMENT

DEANS OF SCHOOLS OF EDUCATION
WISCONSIN STATE UNIVERSITIES

NEED FOR PRE-PROFESSIONAL LABORATORY EXPERIENCES

May, 1967
NEED FOR PRE-PROFESSIONAL LABORATORY EXPERIENCES

This statement reflects opinions of the Deans of Education of the Wisconsin State University System.

We continue to be much concerned about maintenance and improvement of quality teacher education programs. Along with the Campus School directors, we are unanimous in our thinking that campus laboratory schools must, with strong Board of Regents' support, improve and expand their essential teacher education contributions as roles and functions simultaneously are both strengthened and modified to meet changing needs.

A unique function of campus laboratory schools, one we believe essential for quality teacher preparation, emphasizes a strong program of carefully planned observation-participation and mainly junior year laboratory experience. This can best be done in a university-controlled and accessible laboratory.

Empirical evidence and experiences of each Dean indicate quite conclusively that while public school administrators rather easily and well-meaningly state that they are interested in having their schools be used for observation, this opportunity is not the case when large numbers of student observers almost daily need assignment in specific classrooms at certain hours to observe specially-planned and taught lessons consciously structured to correlate with the university methods, psychology, or curriculum class.

Essentialness or uniqueness is really a function of a philosophy, a point of view. All Deans presently believe that the observation-participation emphasis in the undergraduate teacher preparation programs is a vital part of their education curriculum. All of this is not to infer that different approaches are impossible. It is believed that present emphasis is best. Concern is to provide the best possible teacher preparation.

In addition to the many other important roles and functions of campus laboratory schools, this one of planned observation-demonstration is genuinely believed to be essential and unique for the undergraduate teacher education curriculum.
APPENDIX Q

SUMMARY
ROLES AND FUNCTIONS OF LABORATORY SCHOOLS

June, 1967
SUMMARY

ROLES AND FUNCTIONS OF LABORATORY SCHOOLS

Cited in broad terms and detailed here in no rank order are some emerging roles and functions of laboratory schools as commonly perceived and reported by the T-Groups during Session 3. It is assumed that roles and functions of a laboratory school on or off campus are reflections of the philosophy and objectives of the school of education and of the educational institution of which it is a part. In a real sense, roles and functions of laboratory schools relate to all community agencies accepting mutual responsibilities for preparing teachers.

The nature of functions of a particular laboratory school is unique to the philosophy, the professional leadership, and the community support of the parent institution. As time permits, a refined categorization and carefully defined explanation of emerging roles and functions will be completed. This task, which is essential to the continuation of this conference, will be completed during the next two days. In order for T-Groups to refer to a simple listing of common roles and functions presently agreed upon, and in order that conferees have a common point of departure for continued thinking, the following listing is presented. Ideally, this list, along with other roles and functions which might be identified during the conference, could well be placed in the following broad categories:

1) Teacher Education
2) Experimentation
3) Leadership
4) University Service

Emerging roles and functions of laboratory schools should provide opportunities for the following:

1. Innovation
 The testing of new ideas, either of campus school origin or research initially elsewhere.
2. **Dissemination**
 The growing responsibility for effectively serving local school districts by providing staff and program assistance with some emphasis on vanguard-type programs.

3. **Experimentation**
 The development and initiation of new methods, patterns, techniques of instructional practices in a controlled environment.

4. **Demonstration**
 The presentation of broad concepts and programs as well as specific methods, procedures and practices, not only for pre-service teaching personnel, but also for the experienced teachers in the field.

5. **New Designs for Teacher Education**
 The development of new designs in longitudinal experimentation for interesting and innovative teacher education programs.

6. **Change**
 Being an agent for change by taking a leadership responsibility in instituting new ideas and demonstrating the processes of change.

7. **New Media Development**
 The improvement of instruction as related to the selective employment of new media, the utilization of curricular resource materials, and providing operational guidelines for media course planning.

8. **Service**
 The rendering of services to local school districts in the service community of the university by providing consultant assistance for in-service programs with special emphasis on improvement in the areas of supervision of student teachers and the development of a corps of cooperating teachers.

9. **Observation and Participation**
 Providing for significant teacher education, practices, for both pre-service and in-service teachers.
APPENDIX R

GROUP I
WINGSPREAD CONFERENCE
PHILOSOPICAL FOUNDATION FOR CHANGE

June, 1967
GROUP I - PHILOSOPHICAL FOUNDATION FOR CHANGE

Definitions: The term "Laboratory School" as used in this report is defined in its generic sense and refers to any type of Laboratory School except where specifically stated otherwise as in Section F.

1. Basic Position Statement

The Laboratory School of the future is committed to a greater fulfillment of the basic tenets of a free society through a dynamic educative process, by developing self-directed, self-enlightened, morally responsible individuals.

To keep that educative process dynamic, the Laboratory School must serve as an AGENT FOR CHANGE. To guide the change process, it must maintain a critical attitude toward all aspects of education, and utilize to the utmost the ever-unfolding knowledge of the nature of man and society, in a never-ending revision of educational procedures.

A. As an agent for change, the Laboratory School should have its base of control broadened beyond the University. Both the control and responsibility should be shared by a regional entity representing the institution of higher learning, the State Department of Public Instruction, intermediate educational agencies and the public schools. Thus each Laboratory School might be somewhat unique in its activities and staff as it serves the needs in its geographical region.

B. To effect change, the Laboratory School should assume those roles and functions necessary to the achievement of its goals and objectives, as determined by its control body. Among these roles are:

1) Innovation - The Laboratory School should be an idea factory, engaged primarily in feasibility and desirability studies. When a program reaches the pilot stage it should be initiated into a few schools and the Laboratory School staff should assist with consultative aid.
2) **Experimentation** - As an agent for change, the Laboratory School should engage in extensive experimentation to test ideas in a controlled pilot situation.

3) **Dissemination** - To achieve its role as a change agent, the Laboratory School must effectively disseminate the results of its activities to public schools and other agencies.

4) **Evaluation** - The Laboratory School ought to have a continuing role in evaluating the process of education and intimate part in the decision-making process.

C. To serve as an agent for change, the Laboratory School will need to be appropriately staffed for its specific regional purposes and new and flexible patterns of staff utilization should emerge.

D. The Laboratory School has an obligation to initiate and test new designs of teacher education.

E. Laboratory School is an inseparable and integral part of the entire teacher education process.

F. Campus Laboratory Schools have the potential for uniqueness in the following ways:

1) Facilities for observation and participation are conveniently available and accessible.

2) The Campus Laboratory School exists in a community of scholars.

3) As a creature of an agency which trains teachers, the Laboratory School can include new ideas, techniques and curriculum patterns in its pre-service program which should result in faster implementation.

4) A Campus Laboratory School potentially has greater freedom to act and greater innovated freedom. It is not subject to the pressures of the School Boards, etc.
5) Being under the control of a single governing board, it is possible for several campus laboratory schools to establish consortia for a broad front attack upon innovative ideas.

6) A campus Laboratory School may be in a better position to establish relationships between the pre-service and in-service training.

7) With its pupil population readily accessible, the campus Laboratory School can help the teacher-preparation student to understand the maturation process of the child.
APPENDIX S

GROUP II
SOME GOALS AND OBJECTIVES OF LABORATORY SCHOOLS

June, 1967
SOME GOALS AND OBJECTIVES OF LABORATORY SCHOOLS

We recommended that the goals of the Laboratory Schools be expanded from concerns largely limited to services for undergraduate teacher education to a larger roll of providing educational services to all the schools of the areas. The larger role would encompass services for teacher development, research dissemination and improvement of curricula, teaching methods, and learning materials.

1. To develop collaborative relationships between laboratory schools, area schools, educational service organizations, in internal departments of the University and the State Department of Public Instruction to improve educational practices in the University service areas.

Illustrations
a. Establishment of a committee representing the above groups.
b. Establish media by which area school personnel may identify problems within administrative and geographic areas.
c. Establish instruments and means for the periodic dissemination of pertinent information to area schools and to all laboratory schools of the state.

2. To provide pre-teaching experiences to teachers in preparation

Illustrations
a. Bridge the gap between theory and practice.
b. Provide teaching-learning experiences with individuals, small groups and large groups of pupils.

3. To facilitate articulation among the departments within the University and between the University and the public and private schools.

Illustrations
a. Develop performance criteria as measures of the sequential development of understandings and competencies within each of the academic disciplines.
b. Heighten the sensitivity of the academicians toward the problems and goals in elementary and secondary education.
4. To create new options for pre-service teacher education which will provide opportunities to test existing convictions about the role of the laboratory school and to seek to identify new roles.

Illustrations

a. Use of area school for teacher education purposes.

b. Use of area school teachers to teach educational methods.

5. To test ways of working on educational problems which will result in improved practices.

Illustrations

a. Seek strategies which may result in effective collaboration between various educational agencies.

b. Seek the superior alternative as to whether research should be first studies for its applicability to a problem or whether the problem should first be identified and the solution sought through research.

c. To consider some of the research methods used in such areas as biology, medicine and industry to test their applicability to the study of educational problems.

d. To develop working models for applied research.

e. To develop means of effectively utilizing new media.

f. To seek ways of involving college and university personnel in curriculum development at the local level.

6. To identify teaching-learning problems which can be alleviated through the application of research findings and to create innovative processes to make these findings operable. (example: to bring the findings of different areas of research to bear on the tuned-out child.)

7. To provide on-going and active instructional experiences for teachers of college methods courses.

8. To analyze the teaching-learning processes with the aim of conceiving implementing and evaluating teaching techniques, materials, and organizational patterns, in order to insure that the components of those teaching-learning processes are most effectively and efficiently carried on.
a. Appropriate use of teaching machines.

b. Studies of suitable subject matter content, goals and situations appropriate for small group instruction or inductive and deductive approaches to teaching.

9. To provide laboratory school facilities and experiences for the implementation of improved graduate programs.

10. To seek ways of using the technological resources of the Universities in the search for effective learning and teaching.

Examples:

a. Optimum use of computers for scheduling and programming learning.

b. A search for effective methods of utilizing T.V.

11. To provide the media by which studies could be developed leading to a cost-benefit analysis of quality situations: That is, to demonstrate what quality education is, and to provide the data essential to help the public understand the amount of support which must be given to provide quality education.

Examples:

a. Attempt to demonstrate the extent that increased dollars spent wisely, result in improved quality of education.

b. Attempt to demonstrate the extent to which facilities and equipment result in increased quality of education.

12. To develop and strengthen pre-service and in-service demonstration centers to encompass the entire range of teaching education programs for which the University has accepted responsibility.

13. To develop a system of coordinated laboratory school research and development programs; so that each laboratory school may be identified with one or two areas of special expertise, with the result that the total impact of the State Laboratory Schools and University Departments of Education may be enhanced.

Examples:

a. Specific emphasis on one kind of teaching-learning method also could be worked in one school. Another school could concentrate on another emphasis, but all schools should be knowledgeable about all aspects of teaching and learning.
14. To serve as pilot and demonstration agents for the dissemination and implementations of State Department of Public Instruction curricular materials.

15. To develop models for the continuous self-appraisal of curriculum and instruction of the laboratory schools in terms of changing social, economic and political factors.

16. To maintain a continuous flow of information for public consumption concerning the activities of laboratory schools.
APPENDIX T

GROUP III

SPECIFIC PROCEDURES FOR DEVELOPING THE OPERATION PHASES

June, 1967
T-GROUP III REPORTING ON SESSIONS 4 AND 5

SOME SPECIFIC PROCEDURES FOR DEVELOPING THE OPERATION PHASES:

1. Experimentation, Research and Innovation
 a. Inviting research initiated elsewhere and providing a setting for applied research.
 b. Having the campus school as a focal point for regional, state and national programs.
 c. Using the CESA Agency for new ideas in cooperation with laboratory schools.
 d. Creating a department of educational development as a framework for the Laboratory School.
 e. Changing the population of the Laboratory School should be consistent with its purposes.
 f. Specialists in various departments of the University might teach or carry on research in the laboratory school.
 g. Specialization for each institution which has significant competency in a particular area.
 h. Serving as a focal point for a cluster of public schools with a regional study council.
 i. Employing a director of research for the Laboratory School.
 j. Developing in cooperation with public schools, an organizational structure for research and development.
 k. Establishing R and D centers in Laboratory Schools.
 l. Submitting proposals for grants — institutional and Regents.
 m. Securing foundation assistance in developing ideas for funding purposes.
 n. Translating basic research into programs to establish feasibility.
 o. Making the laboratory school a model of self-renewal.

2. Dissemination
 a. Preparing articles on research accomplished.
 b. In-service work by teachers, directors, or teams.
 c. Interaction with public school staffs and administration.
 d. Participation in professional organizations.
 e. Presenting papers at research meetings.
f. Establishing newsletters for dissemination of innovation.

g. Implementing the "short course" approach in in-service training to area school personnel.

h. Production of films and tapes interpreting the role, functions, and production of laboratory schools.

i. Hosting various types of conferences.

3. Demonstration

a. Providing for observation of classes in the laboratory schools.

b. Providing many kinds of laboratory experience.

c. Implementing the relationship between theory and practice.

d. The in-service function of bringing the teachers from other schools for demonstrations.

e. Media capabilities for demonstrations. Availability and accessibility are significant factors.

f. Providing opportunities for teaching-learning experiences for interns and student teachers.

In the session dealing with the specific procedures for developing operation phases, we desire to indicate a possible framework that would be of assistance in determining what procedures might be used in laboratory schools and the techniques for developing these procedures in the program.

Four possible points of departure are suggested:

1. Statement of Philosophy would be followed by statement justifying the completion of basic research and then building an appropriate program and implementing it.

2. Concerns of the teachers followed by research, implementation of projects in the concerns of the teachers. From this the philosophy is built inductively.

3. End product is the prospective teacher and should shape the pattern.

It was suggested by the committee that a state-wide planning group composed of individuals from all appropriate level and agencies be formed to implement the role of the Laboratory School.

4. Important end products are promising educational practices which can be utilized by cooperating public schools.
GROUP IV
WINGSpread CONFERENCE
WAYS AND MEANS OF EVALUATION

June, 1967
GROUP IV REPORT
WAYS AND MEANS OF EVALUATION

The committee, T Group IV, found itself in the untenable position of evaluating roles and functions of the laboratory school that had not as yet been defined by the committee so charged. Thus, we have been forced to make some assumptions upon which to develop our assignment of ways and means of evaluation.

The first has been that the campus laboratory school does have a unique function to serve and secondly, the emerging roles of the laboratory schools are defined to be 1) Change Agent, 2) Diffusion, 3) Leadership. The elements of each function are:

I FUNCTION

A. CHANGE AGENT
 1. Action research
 2. Program translation
 3. Dissemination of information

B. DIFFUSION
 1. Pre-service education
 a. Observation
 b. Participation
 2. Inservice Education, with and for experienced teachers
 a. Observation
 b. Participation
 c. Demonstration

C. LEADERSHIP
 1. Development of Learning Environments
 2. Resource Center for the Educational Community
 3. In-service Education as mentioned above

II Evaluation of these roles will be carried out using the following criteria:

1. The establishment of a rationale for the roles or functions of the laboratory school.

2. A description of the unique capabilities of the laboratory school in this role.

3. Assessment of the achievements of the laboratory school in this role.
4. Evaluation of this role in terms of hypothesis testing, e.g. "How can this be described as carrying out the role or function uniquely better than any other form of institution."

5. Observation

6. Testing of Hypothesis

7. Summarization

III Activities in Evaluation by Role

A. LEADERSHIP
 1. Frequency of request for consultant service
 3. Committee evaluation
 a. State-wide committee of about 20-25 members
 b. Membership from state universities, State Department of Public Instruction, local school district administrators, teachers, and interested citizens.
 4. Sub-committees from state-wide committee membership for specific appraisal purpose.

B. DIFFUSION
 1. Above activities suggested will fit this category in addition to self-evaluation made by local committee.
 2. Self-evaluation, including, among others, the use of video tape and film.

C. CHANGE AGENT
 (same to apply in this role)
APPENDIX V

CAMPUSS LABORATORY SCHOOL DIRECTORS' REPORT ON RESULTS OF WINGSPREAD CONFERENCE COUNCIL OF PRESIDENTS MEETING

July, 1967
1. The Conference in terms of the Laboratory School Directors did the following:

 a. Brought into sharp definition the best possible roles, functions, and ways of utilizing the Laboratory School.

 whereas before each school had a multiplicity of purpose without being sure of a few major goals. Many of these roles were undesirable in the light of current trends.

 b. Gave the Laboratory Schools a common direction with individuality still being preserved.

 whereas before there was not a unanimity of purpose in terms of the State University system.

 c. Developed a consensus of thought on the Laboratory Schools by individuals at all levels of Education in the State of Wisconsin.

 whereas before there was a diversity of opinion, hearsay, evidence, etc., clouding issues and facts.

 d. Promoted a broad base of support for the Laboratory Schools.

 whereas before the support was fragmented, and not coordinated in any definite manner.

 e. Provided for an arena of objective discussion of the pros and cons of the Laboratory School.

 whereas before there was conflict without reason. The disadvantages and advantages were often stated without basis in fact.

 f. Restored the confidence and morale of the Laboratory School personnel.

 whereas before there was doubt and uncertainty that forces which could not be controlled or determined would act without careful study, analysis, and consultation with those affected.

 g. Made public the fact that the University System would evaluate reasonably and objectively the Laboratory School.

 whereas before, parents and alumni of the schools were confused and seeking avenues to turn aside a closing of the schools. Public School administrators were concerned that they would be forced to provide for the school children in these schools.
h. Defined in some detail specific procedures and patterns for the Laboratory Schools to follow.

—whereas before, each laboratory school had to work through a pattern and design that was already available in many cases.

i. Provided the basis for joint meetings and planning by the Laboratory Schools and their Directors.

—whereas before there had been no University wide identification of a common organization of Laboratory Schools.

j. Served to promote communication between the various levels of the university system in regard to Laboratory Schools.

—whereas before, the channels of communication had not been in sharp focus and had not been utilized by the Laboratory Schools.

k. Demonstrated that an objective analysis of the Laboratory Schools was needed for sometime prior to the Conference.

—whereas before, there had been a tendency to avoid an objective self-analysis of the advantages and disadvantages on the part of the Laboratory Schools.

l. Gave Laboratory School Directors and personnel a scale against which to match their programs.

—whereas before, each school was evaluating its program in terms of a variety of scales and objectives.

m. Postponed the necessity for an immediate decision on the retention or alteration of the Laboratory Schools until all the evidence is "in."

—whereas before, it appeared that the Laboratory Schools were to be changed in status within a short period of time.

o. Provided guidelines for future action that will promote continuous assessment of the Laboratory Schools and their functions.

—whereas before, planning was relatively unorganized and disjointed.