By-Rahmlow, Harold F; And Others
OCCUPATIONAL MATHEMATICS; CONCEPTS OF AUNOER UASES. REPORT NO 16-U. FINAL REPORT.
Washington State Coordinating Council for Occupational Education, Olympia;; Washington State Uhiv., Pullman.
Dept. of Education.
Spons Agency-Office of Education (DHEW), Washington, D.C.
Bureau No-BR-7-0031
Grant-OEG-4-7-070031-1626
Note-129p.
EDRS Price MF-S0.75 HC-\$524
Descriptors**ARITINETIC, *NMBERS, *NMMBER SYSTEMS, *PROGRAMED TEXTS, *VOCATIONAL EDUCATION
This programed mathematics textbook is for student use in vocational education courses. It was developed as part of a programed series covering 21 mathematical competencies which were identified by university researchers through task analysis of several occupational ciusters. The development of a sequential content structure was also based on these mathematics competencies. After completion of this program the student should be able to: (1) change from exponential form to expanded form and vice versa, (2) write a number in the base 10 system in expanded exponential form, (3) write a number in the base two system in expanded exponeritial form, and (4) convert numbers from base two and base five to base 10 . The material is to be used by individual students under teacher supervision. Twenty-six other programed texts and an introductory volume are available as VT 006 882-VT 006 909, and VT 006 975. (EM)

FINAL REPORT
Project No. 0E7-0031
Contract No. OEG-4-7-07003i-i 626
Report No. $16-\mathrm{U}$

Occupational Mathematics
CONCEPTS OF NUMBER BASES

June 1968

ED022953
VTC06909
U.S. DEPARTMENT OF

HEALTH, EDUCATION AND WELFARE
Office of Education
Bureau of Research

IHIS DOCUMENT HAS BEEN REPRODU:ED EXACILY AS RECEIVED fROM The PERSOH OR ORGANIZATION ORIGINGTIISG IT. POINTS OF VIEW OR OPIHONS stated do not mecessarliy represent offlial offic of edlcaiton POSIIION OR POIICY.

Occupational marnemarics
CONCEPTS OF NUMing Ber bases,

Project No. 0E7-0031
Contract No. OEG-4-7-070031-1626
Report No. 16-U

by
Harold F. Rahmlow
Kar: Ostheiler Clarence Potratz
Leonard T. Winchell
Arthur Snoey

June 1968

The research reported herein was performed pursuant to a contract with the Office of Education, U.S. Department of Health, Education, and Welfare. Contractors undertaking such projects under Government sponsorship are encouraged to express freely their professional judgment in the conduct of the project. Points of view or opinions stated do not, therefore, necessarily represent official Office of Education position or policy.

Washington State University, Department of Education, Pullman, Washington State Coordinating Council for Occupational Education, Olympia, Washingion

Page A

OBJECTIVES

1. The student should be able to change from exponential form to expanded form and vice versa.
2. The student should be able to write a number in the base 10 system in expanded exponential form.
3. The student should be able to write a number in the base 2 system in expanded exponential form.
4. The student should be able to convert numbers from base 2 and base 5 to base 10.

Pag̣e B

Greetings! You are about to begin improving your knowledge of basic mathematics. There are many important uses for the mathematics you are learning.

This booklet is not like your ordinary books. It is designed to help you learn as an individual. On the following pages you will find some information about mathematics. After the information is presented, you will be asked a question. Your answers to these questions will determine how you proceed through this booklet. When you have selected your answer to the question, turn to the page you are told to.

Do not write in this booklet. You may wish to have a pencil and some paper handy so you can write when you want to.

Remember this is not an ordinary book.

1. Study the material on the page.
2. Read the question on the page (you may want to restudy the material on the page).
3. Select the answer you believe is correct.
4. Turn to the page indicated by your answer.

Are you ready to begin?
(a) Yes Turn to page 1
(b) No Turn to page C
(c) HELP Go see your teacher

Page C

Your answer was (b) No.

Well, this booklet is a little different:

Go back and read page B again. After you have read tt, you will probably be ready to begin.

Page 1

In order to understand the main ideas aiout numbers of aifferent bases, we must know a little about exporients.

How, an exponent is merely a method for showing repeated multiplications. For example, instead of writing $2 \times 2 \times 2 \times 2$, we just write $2^{4}\left(2^{4}\right.$ is read as 2 to the fourth power).

What does 5^{3} mean?
(a) 3×5
Turn to page 5
(b) $5 \times 5 \times 5$
Turn to page 3

Page 2

No: Urong answer!

Return to page 1 and begin this Unit again. Read the material carefully before choosing an answer.

Page 3

$5 \times 5 \times 5$ is correct!

Now, how would you write a x a \times a \times a in exponential form?
(a) a_{4}
(b) Aa

Turn to page 6
(c) $a^{\text {? }}$

Turn to page 10
Turn to page 8

Page 4

Incorrect. $4 \times 7 \neq 7 \times 7 \times 7 \times 7$.

Go to page 7 and work the problem again.

Page 5

Incorrect.

Five to the third power means that we are going to multiply $\underline{3}$ five's together. This is written as $5 \times 5 \times 5$.

How would you write 10^{5} ?
(a) $10 \times 10 \times 10 \times 10 \times 10$
(b) 5×10
Turn to page 7
Turn to page 2

Page 6

Whoops! Any number written in the lower right hand correr is called a subscript, not an exponent.

Go to page 3 and choose a different answer.

Page 7

$10 \times 10 \times 10 \times 10 \times 10$ is the correct answer!

Now, how would you write $7 \times 7 \times 7 \times 7$ in exponent form?
(a) $4 \times 7 \quad$ Turn to page 4
(b) $4^{7} \quad$ Turn to page 2
(c) $7^{4} \quad$ Turn to page 3
(d) 47

Turn to page 13

Page 8

Very good!

Try this problem.

In exponential form, $1 / 10 \times 1 / 10 \times 1 / 10=$ \qquad $?$ -
(a) $1 / 1000$

Turn to page 9
(b) $\left(\frac{1}{10}\right)^{3}$

Turn to page 11
(c) $\frac{1}{10^{3}}$

Turn to page 17
(d) $3 / 10$

Turn to page 21

Page 9

While $1 / 1000$ is the correct product of $1 / 10 \times 1 / 10 \times$ $1 / 10$, it is NOT the exponential form of $1 / 10 \times 1 / 10 \times$ 1/10.

What is $1 / 5 \times 1 / 5 \times 1 / 5 \times 1 / 5$ in exponential form?
(a) $(1 / 5)^{4}$
Turn to page 20
(b) $4 \times 1 / 5$

Turn to page 21

Page 10

Your answer is incorrect.

4a means $A \times a$, not $a \times a \times 3 \times a$.

Let's coasider an example to show you why your answer was not correct. Let $a=3$, then $4 a=4 \times 3=12$, while $a \times a \times a \times a=3 \times 3 \times 3 \times 3=81$. Quite a difference, isn't there?

Try this problem now,
$10 \times 10 \times 10$ in exponential form is:
(a) Turn to page 15
(b) $10^{3} \quad$ Turn to page 18
(c) 3×10

Turn to page 21

Page 11

$(1 / 10)^{3}$ is correct!

Now for a very important question.

Does $(1 / 10)^{3}=\frac{1}{10} 3$?
(a) Yes
Turn to page 1
12
(b) ivo
Turn to page 14

Page 12

Okay, let's continue with this question.

$$
\begin{aligned}
\frac{1}{6}: \frac{?}{=} \cdot & \\
& \text { (a) } 1 / 24 \\
& \text { Turn to page } 25 \\
& \text { (b) } 1 / 1296
\end{aligned} \quad \text { Turn to page } 22
$$

Page 13

Come now! $7 \times 7 \times 7 \times 7 \neq 47$. In fact, 7×7 is 49 and that is larger than 47 without multiplying by the other seven's.

Go to page 7 and make a better choice this next time.

Page 14

```
Uhoops!
(1/10)}\mp@subsup{)}{}{3}=1/10\times1/10\times1/10=1/1000
\frac{1}{10}=3}\frac{1}{10\times10\times10}=1/7000
Thus: (1/10)}\mp@subsup{}{}{3}\mathrm{ does equal }\frac{1}{10}3\mathrm{ ,
```

Turn to page 12 and continue.

Page 15

While 1000 is equal to $10 \times 10 \times 10$, it is not the exponential form of $10 \times 10 \times 10$.

Return to page 10 and make a more appropriate selection.

Page 16

You seem to be having trouble multiplying fractions.

Go to Unit 6 and review the concepts presented there. Then, upon completion, return to page 1 of this Unit.

Page 17

 $\frac{1}{10} 3$ is correct.Now for a very important question.

Does $\frac{1}{10} 3=(1 / 10)^{3}$?
(a) Yes

Turn to page 12
(b) No

Turn to page 14

Page 18

Correct!

Continue with this problem.

Write x^{4} in expanded form.
(a) $4 x \quad$ Turn to page 21
(b) $(x)(x)(x)(x)$ Turn to page 8

Page 19

Ooops! You forgot the definition of an exponent.

Return to page 1 and begin again.

Page 20

$(1 / 5)^{4}$ is correct.

Now go to page 8 and continue.

Page 21

No! Wrong answer!

Return to page 1 and begin this Unit again. Read the material carefully before choosing an answer.

Page 22

You are doing fine! Let's continue.

In some problems we will see a negative exponent, i.e., 3^{-2}. The minus sign in front of the exponent indicates that we want the reciprocal of the given number. For example, 3^{-2} means the RECIPROCAL of 3^{2}.

What is the reciprocal of 3^{2} ? It is $\frac{1}{3}$. (Note: If this idea gives you trouble, you should go work Unit 17 on Reciprocals before continuing.)

Now answer this question.

Which of the following answers is correct for x^{-3} ?
(a) x^{3}
Turn to page 28
(b) $\frac{1}{3 x}$
Turn to page 31
(c) $\frac{1}{(x)(x)(x)}$
Turn to page 26

Page 23

Okay! 1/9 is correct!

Work this problem.
$(1 / x)(1 / x)(1 / x)=?$
$\begin{array}{ll}\text { (a) } 1 / 3 x & \text { Turn to page } 21 \\ \text { (b) } 3(1 / x) & \text { Turn to page } 19 \\ \text { (c) } \frac{1}{x} 3 & \text { Turn to page } 22\end{array}$

Page 24

Incorrect.

10^{-4} means you want the RECIPROCAL of 10^{4} which is $\frac{1}{10} 4$.

Which answer below is equal to 5^{-1} ?
(a) $1 / 5$
Turn to page 36
(b) 5
Turn to page 35
(c) -5
Turn to page 33

Päge 25

No! $\frac{1}{6}=(1 / 6)^{4}=1 / 6 \times 1 / 6 \times 1 / 6 \times 1 / 6=1 / 1236$.

What does $\frac{1}{3} 2$ equal?
(a) Turn to page 23
(b) $1 / 6 \quad$ Turn to page 27
(c) $2 / 3 \quad$ Turn to page 19

Page 26

Very good!

Continue with this question.

Which answer below is equal to 10^{-4} ?
(a) $\frac{1}{10} 4$
Turn to page 29
(b) $1 / 40$
Turn to page 24
(c) $10 \times 10 \times 10 \times 10$

Page 27

Wait a minute!

$\frac{1}{3}{ }_{2}$ means $(1 / 3)^{2}$ or $1 / 3 \times 1 / 3$.

Now, what is $1 / 3 \times 1 / 3$?
(a) $1 / 6$

Turn to page 16
(b) $1 / 9$
(c) $2 / 3$

Turn to page 23
Turn to page 21

Page 28

No!
x^{-3} is the reciprocal of x^{3}.

What answer below is correct for 10^{-3} ?
(a) $1 / 30 \quad$ Turn to page 33
(b) $\frac{1}{10} 3$

Turn to page 37
(c) 10^{3}

Turn to page 35

Exceitent! Keep up the good viork.

There is one more type of exponent that needs to be explained. This is when the exponent is zero. ANYTHING to the zero power is 1. For example, $a^{0}=1,10^{0}=1,(25 \times 13 \times b c)^{0}=1$, etc.

Niaybe the entire sequence of exponents will fall into place if we look at the numbers from 10^{3} to 10^{-3}.

Thus, $100^{3}, \underset{\downarrow}{10^{2}}, \underset{\downarrow}{\downarrow}, 10^{7}, 10^{0}, 10^{-1}, 10^{-2}, 100^{-3}$ written without exponents are $1000,100,10,1,1 / 10,1 / 100,1 / 1000$.

Now, what does 3^{0} equal?
(a) 0
Turn to page 43
(b) 1
Turn to page 41
(c) 3
Turn to page 39

Page 30

That's correct :

Which answer below is equivalent to x^{-1} ?
(a) x
Turn to page 35
(b) $-7 x$
Turn to page 33
(c) $1 / x$
Turn to page 26

Page 31

No!
x^{-3} is the reciprocal of x^{3}.

What answer below is correct for $10^{\infty 3}$?
(a) $1 / 30 \quad$ Turn to page 33
(b) $\frac{1}{10} 3$

Turn to page 30
(c) 10^{3}

Turn to page 35

Page 32

Incorrect.

10^{-4} means you want the RECIPROCAL of 10^{4} which is $\frac{1}{104}$

Which answer below is equal to 5^{-1} ?
(a) $1 / 5$
Turn to page 36
(b) 5
Turn to page 35
(c) -5
Turn to page 33

Page 33

Your answer is incorrect.

Are you having trouble with reciprocals?

What is the reciprocal of 5^{3} ?
(a) 125

Turn to page 34
(b) $1 / 125$

Turn to page 30

Page 34

Incorrect.

In order to give you a better understanding of reciprocals, go to Unit 17 and work through that unit. Then return to page 22 of this unit.

Page 35

Your answer is incorrect.

Are you having trouble with reciprocals?

What is the reciprocal of 5^{3} ?
(a) 125
Turn to page 34
(b) $1 / 125$
Turn to page 30

Page 36

Your answer is correct.

Try this problem.
$1 / 8$ is equal to which of the following? (Be careful now.)
(a) $\frac{1}{2}-3$
Turn to page 38
(b) 4^{-2}
furn to pace 37
(c) 2^{-3}
Turn to page 29

Page 37

Oops: $4^{2}=16$, not 8 .

Return to page 36 and make a better choice next time.

Page 38

Your answer is incorrect.

Just keep in mind that the minus sign in front of the exponent denotes a RECIPROCAL. Hence $\frac{1}{2} 3$ equals the RECIPROCAL of $(1 / 2)^{3}$ or 8 .
iNow, $1 / 2$ is equal to which answer below?
(a) $2^{-1} \quad$ Turn to page 36
(b) 2^{1}

Turn to page 33

Page 39

Nio:
finy number raised to the ZERO power is 1.

What does a ${ }^{0}$ equal?
(a) a Turn to page 42
(b) 1

Turn to page 45

Page 40

No!

Anything to the ZERO power is 1.

Return to page 44 and try again.

Page 41

Very good! Any number of quantity to the zero power is 1.

Work this one now.
$10 x^{0}$ equals:
(a) $10 \quad$ Turn to page 48
(b) $10 \mathrm{x} \quad$ Turn to page 46
(c) 1 Turn to page 44

Page 42

That zero exponent is giving $\cdot \mathrm{m}$ trouble. It isn't that hard.

Return to page 29 and begin this section again.
Take your lime and read the material carefuliy before selecting your answers.

Page 43

No!

Any number raised to the ZERO power is 1 .

What does a ${ }^{0}$ equal?
(a) a Turn to page 42
(b) 1

Turn to page 45

Page 44

Oops!

$10 x^{0}$ means 10 times x^{0}. How $x^{0}=i$, so $10 x^{0}=$ $10\left(x^{0}\right)=10(1)=10$.

What does $(5 x)^{0}$ equal?
(a) 5
(b) $5 x$
(c) 1

Turn to page 49
Turn to page 40
Turn to page 47

Page 45

1 is correct!

What does (3a) ${ }^{0}$ equal?
(a) $3 \quad$ Turn to page 42
(b) $3 a$

Turn to page 39
(c) 1

Turn to page 41

Page 46

0ops!

$10 x^{0}$ means 10 times x^{0}. How, $x^{0}=1$, so $10 x^{0}=$ $10\left(x^{0}\right)=10(7)=10$.

What does $(5 x)^{0}$ equal?
(a) 5

Turn to page 49
(b) $5 x$

Turn to page 40
(c) 1

Turn to page 47

Page 47

Fine! 1 is correct.
lihat does $5 x^{0}$ equal?
(a) 5

Turn to page 48
(b) 1

Turn to rage 50

Page 48

Very good! Your answer is correct.

What does 2^{4} equal?
(a) 16

Turn to page 53
(b) 8

Turn to page 55

Page 49

Your answer is incorrect.

$(5 x)^{0}$ means that the quantity $5 x$ is raised to the zero power.

What does $\left(10 x^{2}\right)^{0}$ equal?
(a) 10
(b) 1
(c) $10 x^{2}$

Turn to page 42
Turn to page 47
Turn to page 39

Page 50

Whoops!
$5 x^{0}$ means 5 times x^{0}.

Now, what is 5 times x^{0} ?
(a) $5 x \quad$ Turn to page 43
(b) 0

Turn to page 39
(c) 1

Turn to page 42
(d) 5

Turn to page 48

Page 51

Right! $3^{4}=81$.

Which of the following is equal to 16 ?
(a) 2^{8}
Turn to page 54
(b) 4^{2}
Turn to page 53
(c) 8^{2}
Turn to page 56

Page 52

Your answer is wrong.

The minus sign in front of the expenent indicates a RECIPROCAL. Kemember? Therefore, 3^{-3} is the reciprocal of 3^{3}.

The reciprocal of 3^{3} is:
(a) $1 / 27 \quad$ Turn to page 57
(b) $1 / 9 \quad$ Turn to page 59

Page 53

What does 3^{-3} equal?
(a) 27 Turn to page 52
(b) $1 / 9$

Turn to page 58
(c) $1 / 27$

Turn to page 60

Page 54

Oops! You forgot the definition of an exponent.

Return to page 1 and begin again.

Page 55

Incorrect!
$2^{4}=2 \times 2 \times 2 \times 2$, which is 16.

What does 3^{4} equal?
(a) 81 Turn to page 51
(b) $12 \quad$ Turn to page 54
(c) 64

Turn to page 56

Page 56

No! No! Ho!

An exponent indicates repeated multiplication. Ex mples: 4^{3} means $4 \times 4 \times 4,2^{4}=2 \times 2 \times 2 \times 2$, etc.

Now return to page 55 and work the problem on tha: page.

Page 57

Okay!

Now, what does 3^{-3} equal?
(a) $1 / 9$
(b) $1 / 27$
(c) 27

Turn to page 59
Turn to page 60
Turn to page 33

Page 58

Your answer is wrong.

The minus sign in front of the exponent indicates a RECIPROCAL. Remeniber? Therefore, 3^{-3} is the reciprocal of 3^{3}.

The reciprocal of 3^{3} is:
(a) $1 / 27$
Turn to page 57
(b) $1 / 9$
Turn to page 59

Page 59

Hait a minute!

The reciprocal of 3^{3} is $\frac{1}{3} 3$ which is equal to $\frac{1}{3 \times 3 \times 3}$ or $1 / 27$.

What is the reciprocal of 5^{3} ?
(a) 125

Turn to page 34
(b) $1 / 15$

Turn to page 56
(c) $1 / 125$

Turn to page 57

In order to understand how numbers can be written in different bases, we must know how the numbers we use can be expressed in terms of exponents and what these numbers realiy mean.

Consider the number 314. It is really the sum of $300+10+4$. We write it as 314 to save time, paper, and work. We could and sometimes should write 314 in tabular form like:

hundreds	tens	units
3	1	4

which shows us that we have 3 hundreds, one ten, and 4 units. In order to show this relationship, we sometimes write in EXPANDED EXPONENTIAL FORRi as follows:

$$
\begin{aligned}
314 & =300+10+4 \\
& =3 \times 100+1 \times 10+4 \times 1 \\
& =3 \times 10^{2}+1 \times 10^{1}+4 \times 10^{0}
\end{aligned}
$$

$3 \times 10^{2}+1 \times 10^{1}+4 \times 10^{0}$ is 314 in expanded exponential form.

Page 61

Write 1523 in expanded exponential form:
(a) $1000+500+20+3$

Turn to page 65
(b) $1 \times 1000+5 \times 100+2 \times 10+3 \times 1$ Turn to page 68
(c) $1 \times 10^{3}+5 \times 10^{2}+2 \times 10^{1}+3 \times 10^{0}$ Turn to page 70

Page 62

Incorrect!

Expanded exponential form requires that our expanded form be equal to the number from which it came.
For example, $4 \times 10^{4}+5 \times 10^{3}+7 \times 10^{2}+2 \times 10^{1}+$ $8 \times 10^{0}=40000+5000+70+20+8=45,728$.

Keeping this exampie in mind, which of the following is true?
(a) $4020=5 \times 10^{3}+0 \times 10^{2}+2 \times 10^{0}$
(b) $1030=1 \times 10^{3}+0 \times 10^{2}+3 \times 10^{1}+0 \times 10^{0}$
(c) $2003=2 \times 10^{1}+3 \times 10^{0}$
(d) $305=3 \times 10^{2}+5 \times 10^{0} \quad$ Turn to page 70

Page 63

That's correct!

Now write 2003 in expanded exponential form.
(a) $2 \times 10^{1}+3 \times 10^{0} \quad$ Turn to page 80
(b) $2 \times 10^{3}+0 \times 10^{2}+0 \times 10^{1}+3 \times 10^{0}$
(c) $2000+3$

Turn to page 65

Page 64

Correct!

If $10,010=1 \times 2^{4}+1 \times 2^{1}$, then 10,010 is written in base:
(a) 2
Turn to page 73
(b) 10
Turn to page 85

Page 65

Incorrect.

While expanded exponential form is writing our number as a sum of multiples of 10 , it is still not in its correct form until we have the multiples of 10 written in EXPONENTIAL form. For example,

$$
100=1 \times 10^{2}
$$

$$
3000=3 \times 1000=3 \times 10^{3}
$$

$$
2=2 \times 1=2 \times 10^{0}
$$

$$
25=20+5=2 \times 10+5 \times 1=2 \times 10^{7}+5 \times 10^{0}
$$

Now, which is in expanded exponential form?
(a) $300+50+2$ Turn to page 71
(b) $3 \times 100+5 \times 10+2 \times 1 \quad$ Turn to page 72
(c) $3 \times 10^{2}+5 \times 10^{1}+2 \times 10^{0} \quad$ Turn to page 63

Page 66

No, no, no!
5×10^{7} means 5 times 10 to the seventh power.

Therefore, the EXFONENT is 7 and shows us that the base number is:
(a) 10
Turn to page 64
(b) 5
Turn to page 78

Page 67

Correct!

2,003 written in expanderl exponential form is:
(a) $2 \times 10^{3}+3 \times 10^{0} \quad$ Turn to page 75
(b) $2 \times 10^{3}+0 \times 10^{2}+1 \times 10^{1}+3 \times 10^{0}$ Turn to page 62
(c) $2,000+3$ Turn to page 65

Page 68

While it is correct to write 1523 as $1 \times 1000+$ $5 \times 100+2 \times 10+3 \times 1$, it still is not in expanded exponential form. You should know this since there are no exporients on any of the numbers.

Which of the following is in expanded exponential form?
(a) $3 \times 100+4 \times 10+6 \times 1 \quad$ Turn to page 72
(b) $3 \times 10^{2}+4 \times 10^{1}+6 \times 10^{0}$ Turn to page 63

Page 69

Incorrect.

The subscript tells you what base you are using.

Return to page 82 and make a different selection.

Page 70

That's correct!

Now write 2003 in expanded exponential form.
(a) $2 \times 10^{1}+3 \times 10^{0} \quad$ Turn to page 80
(b) $2 \times 10^{3}+0 \times 10^{2}+0 \times 10^{1}+3 \times 10^{0}$ Turn to page 75
(c) $2000+3$ Turn to page 65

Page 71

Incorrect.

Return to page 60 and continue from there.

Page 72

Wrong choice.

A number like $3 \times 1000+2 \times 100+4 \times 10+3 \times 1$ is NOT in exponential form. The reason is obvious. 1000, 100, 10, and 1 are not written as 10 to some exponent.

Be more careful and try this problem.

Which of the following is written in expanded exponential form?
(a) $4 \times 10^{3}+3 \times 10^{1} \quad$ Turn to page 63
(b) $4000+30 \quad$ Turn to page 71
(c) $4 \times 1000+0 \times 100+3 \times 10+0 \times 1$ Turn to page 65

Page 73

Correct!

Let's continue.

The number $1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$ is written in Base:
(a) 10
Turn to page 85
(b) 5
Turn to page 77
(c) 2
Turn to page 82

Page 74

Incorrect.

The problem is in Base 10 if NO subscript is written.
This is because we use base 10 the most, and it is too much trouble to write the subscript every time.

Return to page 79 and make another choice.

Very good! $2 \times 10^{3}+0 \times 10^{2}+n \times 10^{1}+3 \times 10^{0}$ is correct.

We hope you have noticed that the number which has the exponent determines the place or the column in winich the number belongs. Thus $2 \times 10^{5}+0 \times 10^{2}+$ $0 \times 10^{1}+3 \times 10^{0}$ is

10^{3}	10^{2}	10^{1}	10^{0}
2	0	0	3

or as we usually write it, 2003.

This number with the exponent is called the Base of the number. So far, the numbers we have been using have been to the Base 10.

Page 76

If we had a number written in the expanded exponential form of $4 \times 5^{2}+3 \times 5^{1}+1 \times 5^{0}$, it would be written in Base:
(a) $5 \quad$ Turn to page 73
(b) 10

Turn to page 78
(c) 2

Turn to page 81
(d) 4

Turn to pag̣e 85

Page 77

What???????

Where did the 5 come from?

Return to page 73 and make a different selection.

Incorrect.

The number with the exponent is the base number.
$3 \times 4^{3}+2 \times 4^{1}=3020$ in Base:
(a) 2
Turn to page 85
(b) 3
Turn to page 81
(c) 4
Turn to page 64

Page 79

That's correct!

What base is 532 written in?
(a) $5 \quad$ Turn to page 74
(b) 2
(c) 10

Turn to page 88

ERIC

Page 80

Oops!

$2 \times 10^{1}+3 \times 10^{0}=20+3=23$. You were supposed to write 2003 in exponential form, not 23.

What number is $4 \times 10^{4}+9 \times 10^{2}+5 \times 10^{1}+2 \times 10^{0}$ equal to?
(a) 4952
Turn tc page 62
(b) 40,952
Turn to page 67
(c) $4,090,502$
Turn to page 83

Page 81

Wrong choice.

The base number is the number with the exponent on it, when written in expanded exponential form.

The number $5 \times 10^{7}+3 \times 10^{5}+2 \times 10^{1}$ is written in base:
(a) 5
Turn to page 66
(b) 10
Turn to page 64

Page 82

Very good! Your answer was correct.

To show that numbers are written to different cases, a number (called a subscript) is written in the lower right hand corner by the number. For example, $3201{ }_{5}$ means that 3201 is written to the base 5 and is designated by the subscript 5. (Note: If no subscript is shown, then the number is written in base 10.)
$10,101_{2}$ means that 10,101 is written in base:
(a) 1
Turn to page 69
(b) 2
Turn to page 79
(c) 10
Turn to page 84

Page 83

Oops!

Much too big a number.

Return to page 80 and make a better choice.

Page 84

Incorrect.

The subscript tells you what base you are using. Return to page 82 and make a different selection.

Page 85

Wrong choice.

The base number is the number with the exponent on it, when written in expanded exponential form.

The number $5 \times 10^{7}+3 \times 10^{5}+2 \times 10^{1}$ is written in base:
(a) 5
Turn to page 66
(b) 10
Turn to page 64

Page 86

That's correct!

Write 4032_{5} in expanded exponential form.
(a) $4 \times 10^{3}+0 \times 10^{2}+3 \times 10^{1}+2 \times 10^{0}$ Turn to page 89
(b) $4 \times 2^{3}+0 \times 2^{2}+3 \times 2^{1}+2 \times 2^{0}$
(c) $4 \times 5^{2}+3 \times 5^{1}+2 \times 5^{0} \quad \begin{array}{r} \\ \text { Turn to page } 94\end{array}$
(d) $4 \times 5^{3}+0 \times 5^{2}+3 \times 5^{1}+2 \times 5^{0}$

Page 87

No!

Our problem is ' 7 base 2. Let's be more careful when we read and work these.

Return to page 94 and work the problem there.

Page 88

Incorrect.

The problem is in Base 10 if NO subscript is written. This is because we use base 10 the most, and it is too much trouble to write the subscript every time.

Return to page 79 and make another choice.

Page 89

Incorrect.

The subscript of 5 indicates that we are working in base 5. Therefore, the number with the exponent on it should be a 5 .

Return to page 86 and work that probiem again.

Page 90

Your answer is corract!

Now write $1,101_{2}$ in expanded exponential form.
(a) $1 \times 10^{3}+1 \times 10^{2}+1 \times 10^{0} \quad$ Turn to page 95
(b) $1000+100+1$

Turn to page 92
(c) $1 \times 2^{3}+1 \times 2^{2}+1 \div 2^{0}$

Turn to page 86

Page 91

Incorrect.

The subscript of 5 indicates that we are working in base 5 . Therefore, the number with the exponent on it should be a 5.

Return to page 86 and work that problem again.

Page 92

No!
$1,101_{2}$ is in base 2, not base 10.

Return to page 90 and try again.

Page 93

Hrong choice.
$10,101_{2}$ is written in expanded exponential form as
$1 \times 2^{4}+0+1 \times 2^{2}+0+1 \times 2^{0}$
or
$16+0+4+0+1$ or 21 .

Try this one.
$20,120_{3}$ is the number \qquad in base 10.
(a) 22

Turn to page 106
(b) 1,285

Turn to page 109
(c) 96

Turn to page 112

Page 94

Your answer is incorrect.

The exponent on the 5 tells you what column the coefficient belongs. Thus, $4,032_{5}$ is written in tabular form like this:

5^{3}	5^{2}	5^{1}	5^{0}
4	0	3	2

or like this: $4 \times 5^{3}+0 \times 5^{2}+3 \times 5^{1}+2 \times 5^{0}$.

Now write $10,101_{2}$ in expanded exponential form.
(a) $1 \times 10^{4}+0 \times 10^{3}+1 \times 10^{2}+0 \times 10^{1}+1 \times 10^{0}$ Turn to page 87
(b) $1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$
(c) $1 \times 5^{4}+0 \times 5^{3}+1 \times 5^{2}+0 \times 5^{1}+1 \times 5^{0}$ Turn to page 98
(d) $1 \times 2^{3}+0+1 \times 2^{2}+0+1 \times 2$ Turn to page 100

Page 95

No!
$1,101_{2}$ is in base 2, not base 10.

Return to page 90 and try again.

Page 96

That is correct! Let's continue.

Since most of our work is done in base 10 , we often wish to convert from other bases to base 10. Let's iook at an example to see how it's done.
$10,111_{2}$ is a number written to base 2. Written in expanded exponential form, it is $1 \times 2^{4}+0 \times 2^{3}+$ $1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$. We now evaluate each term and add them up.

$$
\begin{aligned}
& 1 \times 2^{4}=1 \cdot 16=16 \\
& 0 \times 2^{3}=0 \quad 9=0 \\
& 1 \times 2^{3}=1 \cdot 4=4 \\
& 1 \times 2^{1}=1 \cdot 2: 2 \\
& 1 \times 2^{0}=1 \cdot 1=\frac{1}{23} \quad \text { Therefore, } 10,111_{2}=23 .
\end{aligned}
$$

Let's see if you can convert $10,101_{2}$ to base 10 ,
(a) 21
Turn to page 99
(b) 11
Turn to page 93
(c) 3
Turn to page 101

Page 97

That is correct! Let's continue.

Since most of our work is done in base 10, we often wish to convert from other bases to base 10. Let's look at an example to see how it's done.
$10,111_{2}$ is a number written to base 2. Written in expanded exponential form, it is $1 \times 2^{4}+0 \times 2^{3}+$ $1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$. We now evaluate each term and add them up.

$$
\begin{aligned}
& 1 \times 2^{4}=1 \cdot 16=16 \\
& 0 \times 2^{3}= 0 \cdot 8=0 \\
& 1 \times 2^{2}=1 \cdot 4=4 \\
& 1 \times 2^{1}=1 \cdot 2=2 \\
& 1 \times 2^{0}=1 \cdot 1=\frac{1}{23} \quad \text { Therefore, } 10,111_{2}=23 .
\end{aligned}
$$

Let's see if you can convert $10,101_{2}$ to base 10 .
(a) 21
Turn to page 99
(b) 11
Turn to page 93
(c) 3
Turn to page 101

Page 98

No!

Our problem is in base 2. Let's be more careful when we read and work these.

Return to page 94 and work the problem t'nere.

Page 99

0kay, 21 was correct!

Write $4,321_{5}$ in base 10 .
(a) 81 Turn to page 103
(b) 586

Turn to page 105
(c) 211

Turn to page 108

Page 100

Incorrect.

$10,101_{2}$ is written in tabular form as:

2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
1	0	1	0	1

exponential form we have $1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+$ $0 \times 2^{1}+1 \times 2^{0}$, or simply $1 \times 2^{4}+1 \times 2^{2}+1 \times 2^{0}$.

Now write $10,010_{2}$ in expanded exponential form.
(a) $1 \times 2^{4}+1 \times 2 \quad$ Turn to page 86
(b) $1 \times 2^{1}+0+0+1 \times 2^{0}+0 \quad$ Turn to page 104
(c) $1 \times 10^{4}+0+0+1 \times 10^{1}+0$ Turn to page 98

Page 101

Wrong choice.
$10,101_{2}$ is written in expanded exponential form as $1 \times 2^{4}+0+1 \times 2^{2}+0+1 \times 2^{0}$ or $16+0+4+0+1$ or 21 .

Try this one.
$20,120_{3}$ is the number \qquad in base 10.
(a) 22
Turn to page 106
(b) 1,285
Turn to page 109
(c) 96
Turn to page 112

Page 102

Your answer is incorrect.

The first thing we must do before we can convert to base 10 is to write our problem in expanded exponential form.
632_{7} written in this form is:
(a) $7 \times 6^{2}+7 \times 3^{1}+7 \times 2^{0} \quad$ Turn to page 118
(b) $6 \times 7^{2}+3 \times 7^{1}+2 \times 7^{0} \quad$ Turn to page 107

Page 103

Sorry, wrong answer.

$$
\begin{aligned}
& 4,321_{5}=\begin{array}{l|l|l|l}
5^{3} & 5^{2} & 5^{1} & 5^{0} \\
\hline 4 & 3 & 2 & 1 \\
=4 \times 5^{3} \text { or } 500 \\
3 \times 5^{2} \text { or } 75 \\
2 \times 5^{1} \text { or } 10 \\
1 \times 5^{0} \text { or } 1 \\
\text { total } 586
\end{array}
\end{aligned}
$$

Try this one: 6327
(a) 317
Turn to page 113
(b) 32
Turn to page 111
(c) 572
Turn to page 102

Page 104

That's incorrect.

Be careful of those exponents.

Rework the problem on page 100.

Page 105

Very good!

Work this one.

2,012 is the number \qquad in base 10.
(a) 21 Turn to page 114
(b) 59

Turn to page 115
(c) 23

Turn to page 117

Page 106

Incorrect.

We are working with base 3. You can tell by the subscript, remember?

Return to page 93 and try again.

Page 107

That's correct!

Now let's turn to page 108 and finish the problem by converting 632 to base 10 .

Page 108

Sorry, wrong answer.

$=4 \times 5^{3}$ or 500
3×5^{2} or 75
2×5^{1} or 10
1×5^{0} or 1 total 586

Try this one: 6327
(a) 317
Turn to page 113
(b) 32
Turn to page 111
(c) 572
Turn to page 102

Page 109

Incorrect.

We are working with base 3. You can tell by the subscript, remember?

Return to page 93 and try again.

Incorrect.

The subscript of 5 indicates that we are working in base 5. Therefore, the number with the exponent on it should be a 5 .

Return to page 86 and work that problem again.

Page 111

no!

We are in base 7. Return to page 103 and try again.

Page 112

96 is the correct answer!

Now write $4,321_{5}$ in base 10 .
(a) $81 \quad$ Turn to page 103
(b) 580

Turn to page 105
(c) 211

Turn to page 108

Page 113

317 is the correct answer!

How work this one.
$2,010_{5}$ is the number \qquad in base 10.
(a) 18

Turn to page 110
(b) 1275

Turn to page 116
(c) 255

Turn to page 105

Your answer is incorrect.

Return to page 97 and begin this last section again.

Page 115

Very good! You have completed this Unit. Let's reviel: what we have learned.

1. You have learned how to work with integral exponents.
2. You have learned how to write numbers to different cases in expanded exponential form.
3. You have learned hov: to convert numbers in different bases to tase 10.

You are now ready for a test over this Unit. Go tell your teacher you have finished.

Page 116

What??? How did you get that answer?

Nork the problem on page 173 again.

Page 117

Your anstier is incorrect.

Return to page 97 and begin this last section again.

Page 118

Incorrect.

The subscript tells you what base you are using. Return to page 102 and work the problem again.

NORTHWEST REGIONAL POCCATIONAL L MbORATORY 400 Lindsay Building - 710 S.w. Se:ond Avenue Portland, Oregon 97204

Cal mathematics

TEST QUESTRUMS

UNIT 20 - CONCEPTS OF ALMBER BASES

1. Write 723 in expanded exponential form
(a) $700+20+3$
(b) $7 \times 100+2 \times 10+3$
(c) $7 \times 10^{2}+2 \times 10^{1}+3 \times 10^{0}$
2. The number 1011_{2} equals \qquad in base 10 .
(a) 1011
(b) 11
(c) 6
3. Write 1101_{2} in expanded exponential form.
(a) $1 \times 10^{4}+1 \times 10^{3}+1 \times 10^{2}+0 \times 10^{1}+1 \times 10^{0}$
(b) 29
(c) $1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$
4. $10^{0}=$
(a) 1
(b) 10
(c) 0
5. Does $4020=5 \times 10^{3}+0 \times 10^{2}+2 \times 10^{0}$?
(a) 1 :
(b) No

(a)
(b) . $\mathrm{i}+1$
(c) $\quad: 10^{3}+1 \times 10^{0}$
6. $421_{5}=$ \qquad base 10
(a) 111
(b) 421
(c) 37
7. Which of the following is in expanded exponential form?
(a) $3000+400+20+5$
(b) $3 \times 1000+4 \times 100+2 \times 10+5$
(c) $3 \times 10^{3}+4 \times 10^{2}+2 \times 10^{1}+5 \times 10^{0}$
8. $100011_{2}=$ \qquad base 10
(a) 111
(b) 67
(c) 100011
9. Write 25 in expanded exponential form
(a) $2 \times 10^{1}+5 \times 10^{0}$
(b) $20+5$
(c) 11001_{2}
10. Write 101010_{2} in expanded exponential furm.
(a) $2^{5}+2^{3}+2^{1}$
(b) $1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$
(b) 42
11. $111_{5}=$ \qquad base 10
(a) 16
(b) 111
(c) 31
12. Is 10111_{2} in expanded exponential form?
(a) Yes
(b) No
13. $3 \times 5^{2}+2 \times 5^{1}+4 \times 5^{0}=$ \qquad
(a) 324
(b) 324 ,
(r) 324.2
14. The number $1 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$ is written in base \qquad .
(a) 10
(b) 4
(c) 2
15. Write 3061 in expanded exponential form.
(a) $3 \times 10^{3}+6 \times 10+1$
(b) $3 \times 10^{2}+6 \times 10^{1}+1 \times 10^{0}$
(c) $3000+60+1$
16. 10010_{2} written in expanded exponential form $=$
(a) $10000+10$
(b) $1 \times 10^{4}+0 \times 10^{3}+0 \times 10^{2}+1 \times 10^{1}+0 \times 10^{0}$
(c) $\quad 1 \times 2^{4}+1 \times 2^{1}$
17. $111_{2}=$ \qquad in base 10.
(a) $1: 1$
(b) 7
(c) 16
18. $3 \times 7^{3}+2 \times 7^{1}+1 \times 7^{0}=3021$ in base \qquad .
(a) 7
(b) 10
(c) 3
19. What base is 421 writhen in?
(1.) \therefore
(1) 10
(c) 2
20. $224_{5}=$ \qquad base 10
(a) 244
(b) 10
(c) 74
21. What number is $1 \times 2^{5}+1 \times 2^{3}+1 \times 2$ equal to
(a) 1011_{2}
(b) 101010
(c) $10101 O_{2}$
22. 111.01_{2} means that 11101 is written in base \qquad
(a) 5
(b) 2
(c) 10
23. $215=$ \qquad
(a) 11
(b) 7
(c) 21

(a) $1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}-1 \times 2^{0}$
(b) $1 \times 10^{5}+1 \times 10^{4}+0 \times 10^{3}+0 \times 10^{2}+1 \times 10^{1}+1 \times 10^{0}$
(c) $1 \times 2^{4}+3 \times 2^{3}+1 \times 2^{1}+1 \times 2^{0}$

Answer Sheet - Unit 20

Conceprs of Number Bases

1. c 2

-.
2. b4
3. c4. a5. b2
6. c 2
7. a 4
8. c 1
9. b 4
10. a 2
11. a 3
12. c 4
13. b 3
14. b 1
15. c 1
16. a 2
17. c 3
18. b 420. b21. c
19. a 11
4
22. c23. t24. •a25. a
1

\square

\qquad
1
1
1
1
3
3
\square

\qquad
 .
-
\qquad

