This programed mathematics textbook is for student use in vocational education courses. It was developed as part of a programed series covering 21 mathematical competencies which were identified by university researchers through task analysis of several occupational clusters. The development of a sequential content structure was also based on these mathematics competencies. After completion of this program the student should know that "quotient" indicates division and be able to: (1) divide a fraction of the form a/b, where 0 is less than (ab) and these are less than 100, by a positive integer less than 100, (2) divide a fraction of the form a/b by a fraction of the form c/d, where 0 is less than (ab,c,d) and these are less than 100, (3) divide mixed numbers by mixed numbers of the form Xa/b, where 0 is less than (X,ab) and these are less than 100, (4) divide literal fractions, and (5) divide any combination of the letters, fractions, integers, and mixed numbers listed above. The material is to be used by individual students under teacher supervision. Twenty-six other programed texts and an introductory volume are available as VT 006 882-VT 006 909, and VT 006 975. (EM)
FINAL REPORT
Project No. OE7-0031
Contract No. OEG-4-7-070031-1626
Report No. 16-H

Occupational Mathematics
DIVISION OF FRACTIONS

June 1968

U.S. DEPARTMENT OF
HEALTH, EDUCATION AND WELFARE
Office of Education
Bureau of Research

ED022937
The research reported herein was performed pursuant to a contract with the Office of Education, U.S. Department of Health, Education, and Welfare. Contractors undertaking such projects under Government sponsorship are encouraged to express freely their professional judgment in the conduct of the project. Points of view or opinions stated do not, therefore, necessarily represent official Office of Education position or policy.
OBJECTIVES

1. The student should know that the word "quotient" indicates the operation of division.

2. The student should be able to divide a fraction of the form a/b, where $0 < (a, b) < 100$, by a positive integer less than 100.

3. The student should be able to divide a fraction of the form a/b by a fraction of the form c/d, where $0 < (a, b, c, d) < 100$.

4. The student should be able to divide mixed numbers by mixed numbers where the mixed numbers are of the form $x a/b$ and $0 < (x, a, b) < 100$.

5. The student should be able to divide literal fractions.

6. The student should be able to divide any combination of the letters, fractions, integers, and mixed numbers listed above.
Greetings! You are about to begin improving your knowledge of basic mathematics. There are many important uses for the mathematics you are learning.

This booklet is not like your ordinary books. It is designed to help you learn as an individual. On the following pages you will find some information about mathematics. After the information is presented, you will be asked a question. Your answers to these questions will determine how you proceed through this booklet. When you have selected your answer to the question, turn to the page you are told to.

Do not write in this booklet. You may wish to have a pencil and some paper handy so you can write when you want to.

Remember this is not an ordinary book.

1. Study the material on the page.
2. Read the question on the page (you may want to restudy the material on the page).
3. Select the answer you believe is correct.
4. Turn to the page indicated by your answer.

Are you ready to begin?

(a) Yes Turn to page 1
(b) No Turn to page C
(c) HELP Go see your teacher
Your answer was (b) No.

Well, this booklet is a little different.

Go back and read page B again. After you have read it, you will probably be ready to begin.
Hello. Do you have trouble finding the quotient of two fractions? This unit on division of fractions is for you.

Let's begin by asking a few simple questions concerning the division of fractions.

What is the quotient when we divide 12 by 4?

(a) 12
(b) 4
(c) 3

Turn to page 5
Turn to page 2
Turn to page 3
In the problem of 12 divided by 4, the answer is 3. Now 12 is called the dividend, the 4 is called the divisor, and the answer is called the quotient.

Example: $10 \div 5 = 2$, and 2 is the quotient.

Another: $12/3 = 4$; and, in this case, the 4 is the quotient.

What is the quotient of 14 divided by 7?

(a) 7
(b) 2

Turn to page 4
Turn to page 3
That's correct!

Now continue.

What is the quotient of $\frac{2}{3} \div \frac{5}{7}$?

(a) $\frac{14}{15}$
(b) $\frac{10}{21}$
(c) Help

Turn to page 18
Turn to page 11
Turn to page 15
No.

7 is the divisor and 14 is the dividend.

Go back to page 2 and try again by reading the preceding information carefully before answering the question.
Incorrect.

In the problem of 12 divided by 4, the answer is 3. Now 12 is called the dividend, the 4 is called the divisor, and the answer is called the quotient.

Example: $10 \div 5 = 2$, and 2 is the quotient
Another: $12/3 = 4$; and, in this case, the 4 is the quotient.

What is the quotient of 14 divided by 7?

(a) 7
(b) 2

Turn to page 4
Turn to page 3
So far so good! Now...

The only thing you can multiply a fraction by and not change its value is 1 (one).

Therefore,

\[
\frac{2/3}{1/2} = \frac{2/3}{1/2} \times 1 = \frac{2/3}{1/2} \times \frac{2/1}{2/1}.
\]

What number goes in the \(\bigcirc\)?

(a) 1/2
Turn to page 15

(b) 2/3
Turn to page 7

(c) 2
Turn to page 10
Wrong!

\(\frac{2/3}{1/2}\) doesn't equal one (1).

Go back to page 6 and try again.
4/5 is the correct answer.

\[\frac{5}{8} \div \frac{5}{2} = ? \]

(a) 4 \hspace{1cm} \text{Turn to page 75}
(b) 1/4 \hspace{1cm} \text{Turn to page 18}
(c) Help \hspace{1cm} \text{Turn to page 15}
(d) 25/16 \hspace{1cm} \text{Turn to page 9}
You multiplied instead of dividing:

Go back to page 8 and try again.
Correct again!

Now, since \(\frac{2/3}{1/2} \times \frac{2}{2} = \frac{2/3}{1/2} \), we get

\[
\frac{2/3}{1/2} = \frac{2/3}{1/2} \times \frac{2}{2} = \frac{2/3 \times 2}{1/2 \times 2} = ?
\]

(a) \(\frac{4/3}{1} \) \hspace{1cm} \text{Turn to page 22}

(b) \(\frac{4/3}{1/4} \) \hspace{1cm} \text{Turn to page 28}

(c) \(1/3 \) \hspace{1cm} \text{Turn to page 19}
Incorrect.

Let's see how the problem was worked.

\[
\frac{2}{3} \div \frac{5}{7} = \frac{\frac{2}{3}}{\frac{5}{7}} = \frac{\frac{2}{3} \times \frac{7}{5}}{\frac{5}{7} \times \frac{7}{5}} = \frac{\frac{2}{3} \times \frac{7}{5}}{1} =
\]

\[
\frac{2}{3} \times \frac{7}{5} = \frac{14}{15}.
\]

Notice that division of fractions is just reducing a complex fraction.

Let's see if you can work one now.

\[
\frac{3}{5} \div \frac{2}{3} = ?
\]

(a) 10/9
(b) 9/10
(c) Help

Turn to page 16
Turn to page 13
Turn to page 15
Good, $\frac{2}{3} \times \frac{1}{5}$ is correct!

So, $\frac{2}{3} \div 5 = \frac{2}{3} \times \frac{1}{5} = ?$

(a) 10/3
(b) 2/15
(c) 2/8

Turn to page 24
Turn to page 50
Turn to page 34
That is correct!

Let's do another problem.

\[\frac{2}{3} + \frac{5}{6} = ? \]

(a) \(\frac{4}{5} \)
(b) \(\frac{5}{4} \)
(c) \(\frac{5}{9} \)

Turn to page 8
Turn to page 16
Turn to page 15
Incorrect.

Dividing by 2 is the same as dividing by the fraction 2/1. Hence,

\[\frac{4}{7} \div 2 = \frac{4}{7} \div \frac{2}{1} = \frac{4}{7} \times \frac{1}{2} = \frac{4}{14} = \frac{2}{7}. \]

Find \(\frac{2}{3} \div 3\).

(a) 2
(b) \(\frac{2}{9}\)

Turn to page 15
Turn to page 50
A Procedure for Division of Fractions

As a link to the unit on multiplication, let us consider the model for how many objects there would be in 1/4 of a set of 12 objects. This could be done by taking the 12 objects and dividing the set into 4 equal parts. (See figure at the right.)

From this, it is plain to see that 1/4 of 12 is 3.

However, we should also note that this model illustrates 12 ÷ 4 as well.

Continued on next page
Question:

Which model shows 1/5 of 10?

(a)
(b)

(c)
(d)

Answers:

(a) Turn to page 25
(b) Turn to page 30
(c) Turn to page 21
(d) Turn to page 30
Hope. Wrong one.

Let's take a closer look at division.

\[
\frac{2/3}{1/2} = \text{the fraction:}
\]

(a) \(\frac{2/3}{1/2} \) Turn to page 17

(b) \(\frac{1/2}{2/3} \) Turn to page 15
Good! $2/3 \div 1/2$ equals the fraction $\frac{2/3}{1/2}$.

Now, how can we make the denominator become one (1)?

(a) Help
(b) Just change the 2 to 1
(c) Multiply by its reciprocal
(d) I don't know what a reciprocal is
That's correct. You're doing very well!

Now, what is $\frac{9}{10} \div \frac{3}{5}$?

(a) $\frac{2}{3}$
(b) $\frac{3}{2}$
(c) $\frac{45}{30}$

Turn to page 27
Turn to page 40
Turn to page 38
You didn't multiply correctly.

What happened?

(a) I made a careless mistake
(b) I need a little help with multiplication of fractions

Turn to page 10 and try again
Go to Unit 6 and review multiplication of fractions
Wrong.

Division of any number by one leaves it unchanged.

Examples:

\[5 \div 1 = 5\]

\[21 \frac{1}{2} \div 1 = 21 \frac{1}{2}\]

\[2/5 \div 1 = 2/5\]

So what is \(4/3\) divided by one?

Go back to page 22 and do the problem again.
I'm afraid you don't understand.

You should:

(a) Go ask your teacher for help and then come back to page 15

OR

(b) Go back and reread page 15 and make another choice.
Very good!

Now, what is $\frac{4}{3}$ equal to as a simple fraction?

(a) $\frac{4}{3}$
(b) $\frac{3}{4}$

Turn to page 13
Turn to page 20
This model shows 5 equal sets of 5, which has a total of 25 objects. Therefore, this model illustrates 25 divided by 5.

Go back to page 25 and make another selection.
Incorrect.

Surely you remember that to multiply fractions, we take numerator times numerator, and denominator times denominator.

Example:

\[
\frac{2}{3} \times \frac{4}{7} = \frac{2 \times 4}{3 \times 7} = \frac{8}{21}.
\]

Go back to page 12 and try again.
You made the correct choice.

Now, which model shows $10 \div 5$?

(a) Turn to page 41
(b) Turn to page 23
(c) Turn to page 55
(d) Turn to page 60
Does \(\frac{1}{2} \times 10 = 10 \times 2 \), and \(\frac{1}{7} \times 14 = 14 \times 7 \)?

(a) Yes
(b) No
Incorrect.

$$9/10 \div 3/5 = \frac{9/10 \times 5/3}{1} = 45/30 = 3/2.$$
You didn't multiply correctly.

What happened?

(a) I made a careless mistake. Go to page 10 and try again.

(b) I need a little help with multiplication of fractions. Go to Unit 6 and review multiplication of fractions.
O.K. You realized that

5 was not equal to 20

and 2 was not equal to 98.

Now, multiplying by \(\frac{1}{4} \) is the same as _________

by 4.

(a) dividing \hspace{1cm} \text{Turn to page 60}

(b) multiplying \hspace{1cm} \text{Turn to page 68}
Incorrect.

The model you chose shows \(\frac{1}{2} \) of 10. How we know that \(\frac{1}{2} \) of 10 is not equal to \(\frac{1}{5} \) of 10, don't we?

Go back to page 15 and make another choice.
Incorrect.

You didn't read page 90 very well. When we divide, we multiply by the reciprocal.

The reciprocal of $\frac{5}{7}$ is:

(a) $\frac{7}{5}$
(b) $\frac{5}{7}$
(c) I don't know
Incorrect.

What is the reciprocal of $1 \frac{3}{8}$?

(a) $\frac{8}{11}$
(b) $\frac{11}{8}$

Turn to page 90
Turn to page 78
Incorrect.

Surely you remember that to multiply fractions, we take numerator times numerator, and denominator times denominator.

Example:

\[\frac{2}{3} \times \frac{4}{7} = \frac{2 \times 4}{3 \times 7} = \frac{8}{21}. \]

Go back to page 12 and try again.
Correct. So now we have $4 \div 2/3 = 6$. But you should notice that $4 \times 3/2$ also gives 6. Therefore, the procedure we are going to use for division is multiplication by the reciprocal of the divisor.

Example:

$$3 \div 1/6 = 3 \times 6/1$$

and $6 \div 3/2 = 6 \times 2/3$

17 $\ ?/5 = 17 \times \ ?$.

(a) 2/5
(b) 5/2
(c) I need help with reciprocals
Your answer was "divide by 2." Good, that is correct!

Dividing a number by 7 is the same as:

(a) multiplying by 7
(b) multiplying by 1/7
(c) dividing by 1/7

Turn to page 66
Turn to page 42
Turn to page 26
Incorrect.

Notice that if you multiply the two numbers you picked together you will not get 1.

REMEMBER: The product of two reciprocals is always 1.

Are 3 and 1/3 reciprocals of each other?

(a) Yes Turn to page 47
(b) No Turn to page 53
Well, you're almost correct.

But you must reduce all answers to lowest form before you can consider yourself finished.

45/30 reduces to 3/2 because

$$\frac{45}{30} = \frac{\frac{15}{2} \times 3}{\frac{15}{2} \times 2} = \frac{3}{2}.$$
Incorrect.

You need some help reducing fractions. Go to page 20 of Unit 3 for some more work on reducing fractions.

Then return to page 18 of this Unit.
Correct!

Let's continue.

What is $\frac{4/7}{2}$?

(a) $8/7$ Turn to page 14
(b) $2/7$ Turn to page 50
(c) $7/2$ Turn to page 54
Incorrect.

The model shows 5/10 or
5 divided by 10. You almost had it.

Go back to page 25 and try again.
Very good so far. But can you carry this reasoning one step farther? Let's see.

Multiplying a number by 2 is the same as:

(a) dividing by 2 Turn to page 63
(b) dividing by 1/2 Turn to page 70
(c) multiplying by 1/2 Turn to page 46
What is the reciprocal of \(2 \frac{1}{3}\)?

(a) \(\frac{7}{3}\)
(b) \(\frac{3}{7}\)
(c) I don't know

5/2 is correct!
Incorrect.

The symbol \div is read "divided by." The "divided by" number is always the divisor.

Example: $\frac{2}{3} \div \frac{6}{7}$ is read $\frac{2}{3}$ divided by $\frac{6}{7}$.
Therefore, $\frac{6}{7}$ is the divisor.

The divisor of $\frac{5}{8} \div \frac{7}{4}$ is:

(a) $\frac{7}{4}$ Turn to page 73
(b) $\frac{5}{8}$ Turn to page 83
Your answer was 2 and 1/2. Correct!

Consider the number 1. Is it a reciprocal of itself?

(a) Yes Turn to page 47
(b) No Turn to page 61
You didn't read page 60 very well.

Go back and reread the material paying special attention to the underlined words. You should do Okay on your next selection.

Go back to page 60.
"Yes" is the correct answer.

Which of the following are reciprocals of each other?

(a) $\frac{2}{5}$ and 5
(b) $\frac{2}{5}$ and 2
(c) $\frac{2}{5}$ and $\frac{5}{2}$
You are having trouble with the basic operations of multiplication and division as applied to integers.

Go see your teacher and tell him your problem.
Then return to page 15 of this Unit.
Good!

Now this one:

The reciprocal of $1 \frac{5}{8}$ is:

(a) $\frac{8}{13}$
(b) $\frac{8}{5}$

Turn to page 86
Turn to page 52
Your last answer was correct!

You are doing fine. Now get Booklet II of this Unit and continue with page 101.
You didn't read page 70 carefully enough.

Go back and reread page 70.
Incorrect.

REMEMBER: The product of two reciprocals is 1.

Let's look at this problem:

Is the product of $\frac{3}{2}$ and $\frac{2}{3}$ equal to 1?

(a) Yes, and they're reciprocals
(b) No, and they're not reciprocals
(c) I don't know what the word "product" means
You seem to be having trouble.

Ask your teacher for help and then return to page 100 of this Unit.
Incorrect!

He never invert the dividend. He always multiply by the reciprocal of the divisor.

$$\frac{4}{7} \div 2 = \frac{4}{7} \times \frac{1}{2} = \frac{4}{14} = \frac{2}{7}.$$
Incorrect.

The model you chose shows $10 \div 2$. Now we know that

$10 \div 2$ does NOT equal $10 \div 5$, don't we?

(a) Yes
Then turn to page 25 and
make another selection

(b) No
Go see your teacher and then
return to page 15 of this Unit
Incorrect.

How many units of 2/3's? Well, let's count them.

\[1 + 1 + 1 + 1 + 1 + 1 = ? \]

(a) There are 6
(b) There are 4

Turn to page 89
Turn to page 58
Very good! \(\frac{1}{1} \) is a reciprocal of itself.

Are 2 and \(\frac{1}{2} \) reciprocals of each other?

(a) Yes
(b) No

Turn to page 47
Turn to page 100
Come now. I know you can count!

Let's try to get the right answer. Go to page 80 and try again.
O.K., you're on the right track now.

Multiplying a number by 2 is not equal to dividing the number by 2...

Then multiplying by 2 is equal to:

(a) dividing by 1/2 Turn to page 70
(b) multiplying by 1/2 Turn to page 46
Correct!

You should have observed that the same model that illustrates $\frac{1}{5}$ of 10 also illustrates $10 \div 5$.

IMPORTANT

Therefore, any model that shows division by 5 and multiplication by $\frac{1}{5}$ gives the same result.

Multiplying a number by $\frac{1}{2}$ gives the same result as:

(a) multiplying by 2 Turn to page 26
(b) dividing by 2 Turn to page 36
(c) dividing by $\frac{1}{2}$ Turn to page 46
Okay. That's better!

Does \(\frac{2}{3} + \frac{5}{7} = \frac{5}{7} + \frac{2}{3} \)?

(a) Yes Turn to page 81

(b) No Turn to page 76
You are moving along nicely now.

Now do this one.

What is the reciprocal of $3\frac{1}{2}$?

(a) 7
(b) $\frac{2}{7}$
(c) $\frac{7}{2}$

Turn to page 37
Turn to page 86
Turn to page 67
Incorrect.

Does dividing a number by two give you the same answer as multiplying by two?

In other words, does 12×2 give you the same answer as $12 \div 2$?

(a) Yes
(b) No

Turn to page 48
Turn to page 59
A product is the result of multiplying two or more numbers together.

Example: The product of 3 x 2 is 6.

Go back to page 52 and make another selection.
Good! We are doing very well now.

Here's another.

Does $\frac{3}{8} \div \frac{1}{2} = \frac{1}{2} \div \frac{3}{8}$?

(a) Yes
(b) No

Turn to page 96
Turn to page 77
Incorrect.

Let's see how it should be worked.

\[
\frac{7}{8} + \frac{3}{4} = \frac{7}{8} \times \frac{4}{3} = \frac{7 \times 4}{8 \times 2 \times 3} = \frac{7}{6}.
\]

Try this one.

\[\frac{2}{7} \div \frac{1}{3} = ?\]

(a) 6/7 \hspace{1cm} \text{Turn to page 95}
(b) 7/6 \hspace{1cm} \text{Turn to page 71}
(c) 2/21 \hspace{1cm} \text{Turn to page 90}
Incorrect.

First, you write $3 \frac{1}{2}$ as a fraction and you get $\frac{7}{2}$.

Second, you invert to find its reciprocal.

What is the reciprocal of $6 \frac{3}{4}$?

(a) $\frac{4}{13}$ Turn to page 52
(b) $\frac{27}{4}$ Turn to page 69
(c) $\frac{4}{27}$ Turn to page 49
You seem to be having trouble with equivalent relationships.

Go to Unit 3 and upon completion come back to page 15.
To invert means to turn upside down.

Examples:
- When we invert $1/2$, we get $2/1$.
- When we invert $3/13$, we get $13/3$.
- When we invert x/y, we get y/x.

Now go to page 97 and make a selection.
Correct! Your answer was "divide by 1/2."

You should have discovered that dividing by 2 is the same as multiplying by 1/2.

Because 2 is the reciprocal of 1/2, dividing any number by 2 is the same as multiplying by the reciprocal of 2.

24 ÷ 6 = 24 times the _________ of 6.

(a) divisor (b) reciprocal (c) I don't know what a reciprocal is

Turn to page 51 Turn to page 75 Turn to page 100
Sorry, but you missed it.

Let's look at the steps and see where you went wrong.

First, we have the question $\frac{2}{7} \div \frac{1}{3} = ?$.
Second, division is the same as multiplication by the reciprocal $\frac{2}{7} \times \frac{3}{1} = ?$.
Third, we multiply the two fractions and reduce if necessary $\frac{2 \times 3}{7 \times 1} = \frac{6}{7}$.

Now you try it.

$\frac{3}{5} \div \frac{2}{3} = ?$

(a) $\frac{10}{9}$ Turn to page 90
(b) $\frac{15}{6}$ Turn to page 82
(c) $\frac{9}{10}$ Turn to page 95
Okay, so far!

Since integers can be written as fractions, (example: 3 can be written as $3/1$), we find the reciprocal of an integer by writing it as a fraction and then inverting it.

The reciprocal of 5 is:

(a) $1/5$
(b) $5/1$
(c) Help!

Turn to page 62
Turn to page 37
Turn to page 100
Correct!

\[\frac{5}{7} \div \frac{3}{2} = ? \]

(a) \(\frac{5}{7} \times \frac{2}{3} \)
(b) \(\frac{7}{5} \times \frac{3}{2} \)
(c) \(\frac{5}{7} \times \frac{3}{2} \)

Turn to page 65
Turn to page 44
Turn to page 32
Incorrect.

Isn't 1×1 equal to 1? Then 1 is a reciprocal of itself.

Turn to page 47.
Let's discuss division of fractions in detail now.
Consider the problem \(4 \div \frac{1}{3} \). This can be stated as "How many \(\frac{1}{3} \)'s are there in 4?" We can illustrate this by means of a model. Look at the figure to your right.

![Diagram showing division of fractions]

We can see 3 such units of "1/3" in each circle. Four circles times 3 gives us 12 such units in all. Hence, \(4 \div \frac{1}{3} = 12 \).

Consider \(4 \div \frac{2}{3} \). Stating it in the form of "How many \(\frac{2}{3} \)'s are there in 4?", we can count _____ units of "\(\frac{2}{3} \)'s."

(a) 6
(b) 4
(c) 12
No is the correct answer!

Here is another problem.

Does $\frac{2}{3} \div \frac{3}{5} = \frac{3}{5} \div \frac{3}{2}$?

(a) Yes
(b) No

Turn to page 90
Turn to page 84
"No" is the correct answer.

Now let's work the problems completely.

\[\frac{7}{8} + \frac{3}{4} = ? \]

(a) \(\frac{6}{7} \)
(b) \(\frac{7}{6} \)
(c) Neither answer is correct

Turn to page 66
Turn to page 88
Turn to page 92
You need more work with reciprocals.

Go to page 100.
Incorrect.

Remember: The product of two reciprocals is 1.

Let's look at this problem:

Is the product of \(\frac{3}{2}\) and \(\frac{2}{3}\) equal to 1?

(a) Yes, and they're reciprocals Turn to page 97
(b) No, and they're not reciprocals Turn to page 53
(c) I don't know what the word "product" means Turn to page 64
Incorrect.

How many units of "2/3's"? Hell, let's count them.

(a) There are 6
(b) There are 4

Turn to page 89
Turn to page 58
Ooops! You made a mistake.

How you know that:

\[\frac{2}{3} \div \frac{5}{7} = \frac{2}{3} \times \frac{7}{5} \]

and

\[\frac{5}{7} \div \frac{2}{3} = \frac{5}{7} \times \frac{3}{2}. \]

Now, does \(\frac{2}{3} \times \frac{7}{5} = \frac{5}{7} \times \frac{3}{2} \)?

(a) Yes Turn to page 68

(b) No Turn to page 76
Incorrect.

When we divide, we find ONLY the reciprocal of the divisor.

In the problem $3/2 \div 4/7$, the reciprocal of the divisor is:

(a) $7/4$
Turn to page 73

(b) $4/7$
Turn to page 100

(c) $2/3$
Turn to page 44
Come now. You're not trying.

Go back and reread page 44 and try again.
"No" is correct.

Let's work a few out completely.

\[
\frac{4}{5} \div \frac{3}{10} = ?
\]

(a) \ \frac{25}{6} \quad \text{Turn to page 82}
(b) \ \frac{3}{8} \quad \text{Turn to page 91}
(c) \ \frac{8}{3} \quad \text{Turn to page 87}
Your answer was 3/7. Very good! You seem to be getting it.

Let's continue.

14 ÷ 2 1/3 is equal to 14 times the reciprocal of 2 1/3. Writing this, we should have:

14 ÷ 2 1/3 = 14 x 3/7, as 3/7 is the reciprocal of 2 1/3.

Now you try one.

8 ÷ 1 3/8 = 8 x ?

(a) 1 3/8 Turn to page 51
(b) 11/8 Turn to page 33
(c) 8/11 Turn to page 90
Very good! Here is the last thing you need to know.

That is--The number 0 (zero) has no reciprocal.

In other words, what number times zero gives "1"? There isn't any, is there?

Now go to page 90 and continue your Unit on division of fractions.
8/3 was the correct answer.

Now do this one.

\[
7/8 \div 3/4 = ?
\]

(a) 6/7
(b) 7/6
(c) 32/21

Turn to page 91
Turn to page 18
Turn to page 82
Okay, so far. 7/6 is correct!

Let's try again.

4/5 \div 3/10 = ?

(a) 8/3
(b) 3/8
(c) 25/6

Turn to page 18
Turn to page 90
Turn to page 82
Good!

Now go back to page 75 and reread the material carefully. Then rework the problem on that page.
How let's look at division of fractions through the use of a general rule.

The method or rule that we will use to explain division of fractions is:

Division of a number is equal to the number multiplied by the **reciprocal** of the divisor.

Example: \(\frac{2}{3} \div \frac{1}{4} = \frac{2}{3} \times \frac{4}{1} = \frac{8}{3} \).

\[\frac{2}{3} \div \frac{5}{7} = ? \]

(a) \(\frac{2}{3} \times \frac{5}{7} \) Turn to page 32

(b) \(\frac{2}{3} \times \frac{7}{5} \) Turn to page 65

(c) \(\frac{3}{2} \times \frac{5}{7} \) Turn to page 82

(d) \(\frac{3}{2} \times \frac{7}{5} \) Turn to page 82
Incorrect.

Let's look at an example to see how it's done.

Example: \(\frac{2}{3} \div \frac{4}{5} = ? \)

First, we change the division problem to a multiplication problem by multiplying \(\frac{2}{3} \) by \(\frac{5}{4} \) which is the reciprocal of the divisor.

Hence, \(\frac{2}{3} \div \frac{4}{5} = \frac{2}{3} \times \frac{5}{4} \).

Now multiply and reduce. \(\frac{2}{3} \times \frac{5}{4} = \frac{2 \times 5}{3 \times 2 \times 2} = \frac{5}{6} \).

Try this one.

\(\frac{5}{6} \div \frac{1}{3} = ? \)

(a) \(\frac{5}{2} \) Turn to page 99
(b) \(\frac{18}{5} \) Turn to page 82
(c) \(\frac{2}{5} \) Turn to page 94
Incorrect.

Let's look at the solution to this problem.

\[
\frac{7}{8} \times \frac{3}{4} = \frac{7}{8} \times \frac{4}{3} = \frac{28}{24}.
\]

However, \(\frac{28}{24}\) will reduce to:

(a) \(\frac{6}{7}\)
(b) \(\frac{7}{6}\)
(c) \(\frac{14}{12}\)

Turn to page 39
Turn to page 86
Turn to page 33
Very good! That's correct.

Work this problem.

\[\frac{5}{6} \div \frac{2}{3} = ? \]

(a) \(\frac{9}{5} \)
(b) \(\frac{5}{4} \)
(c) \(\frac{4}{5} \)

Turn to page 82
Turn to page 18
Turn to page 98
Wrong again. Let's look at how it is worked.

\[\frac{5}{6} \div \frac{1}{3} = \frac{5}{6} \times \frac{3}{1}. \]

Now, \(\frac{5}{6} \times \frac{3}{1} = \frac{5 \times 3}{2 \times 1} = \frac{5}{2}. \)

Try this one.

\[\frac{1}{4} \div \frac{2}{5} = ? \]

(a) 8/5
No. You multiplied by the reciprocal of the dividend.
Turn to page 75 for more work.

(b) 10
Incorrect. Turn to page 15 and study division in detail.

(c) Neither of the above
Correct. Now that you have the idea, let's go page 90 and work a little more carefully.
Good! Your answer was correct.

Do this problem:

\[\frac{3}{4} + \frac{1}{2} = ? \]

(a) 3/8
(b) 2/3
(c) 3/2

Turn to page 15
Turn to page 91
Turn to page 93
Doggone it! I thought you had it there for a minute.

I'm sure you remember that $\frac{3}{8} \div \frac{1}{2} = \frac{3}{8} \times \frac{2}{1}$
and that $\frac{1}{2} \div \frac{3}{8} = \frac{1}{2} \times \frac{8}{3}$.

How I ask you, "Does $\frac{3}{8} \times \frac{2}{1} = \frac{1}{2} \times \frac{8}{3}$?"

(a) Yes
(b) No

Turn to page 68
Turn to page 61
Correct! Let's continue.

You have probably noticed that to find a reciprocal of a fraction, you just invert it.

The reciprocal of $\frac{3}{8}$ is:

(a) $\frac{3}{8}$ Turn to page 52
(b) $\frac{8}{3}$ Turn to page 72
(c) 8 Turn to page 37
(d) I don't know what the word "invert" means Turn to page 69
Shucks! You were almost through.

You're supposed to multiply by the reciprocal of the divisor, not the reciprocal of the dividend.

In other words, you should have

\[
\frac{5}{6} \div \frac{2}{3} = \frac{5}{6} \times \frac{3}{2} \quad \text{and not} \quad \frac{5}{6} \div \frac{2}{3} = \frac{6}{5} \times \frac{2}{3}.
\]

Go to page 91 and go from there.
Your answer was 5/2. Good, that's correct!

Try this one.

\[\frac{5}{12} + \frac{1}{4} = ? \]

(a) \(\frac{5}{3} \)
(b) \(\frac{3}{5} \)
(c) \(\frac{5}{48} \)

Turn to page 93
Turn to page 75
Turn to page 15
So you're having trouble with reciprocals. Well, let's look at the definition and a few examples. Then I think you'll be okay.

Reciprocals Defined

When two numbers have a product of 1, each of the numbers is called the "reciprocal" of the other.

Examples: \((\frac{1}{4})(4) = 1\) \((\frac{2}{3})(\frac{3}{2}) = 1\) \((\frac{5}{2})(\frac{2}{5}) = 1\)

Now, \(\frac{1}{4}\) and 4, \(\frac{2}{3}\) and \(\frac{3}{2}\), and \(\frac{5}{2}\) and \(\frac{2}{5}\) are reciprocals of each other.

Which of the following numbers are reciprocals of each other?

- (a) \(\frac{6}{5}\) and \(\frac{1}{6}\) Turn to page 37
- (b) \(1\) and \(1\) Turn to page 57
- (c) \(\frac{1}{4}\) and \(\frac{1}{4}\) Turn to page 37
- (d) \(2\) and \(\frac{1}{2}\) Turn to page 45