Reported is an initial attempt to define a minimal college mathematics library. Included is a list of some 300 books, from which approximately 170 are to be chosen to form a basic library in undergraduate mathematics. The areas provided for in this list include Algebra, Analysis, Applied Mathematics, Geometry, Topology, Logic, Foundations and Set Theory, Probability-Statistics, and Number Theory. The intended goals of this basic collection are to (1) provide the student with introductory materials in various fields of mathematics which he may not have previously encountered, (2) provide the interested students with reading material collateral to his course work, (3) provide the student with reading at a level beyond that ordinarily encountered in the undergraduate curriculum, (4) provide the faculty with reference material, and (5) provide the general reader with elementary material in the field of mathematics. (RP)
COMMITTEE ON THE UNDERGRADUATE PROGRAM IN MATHEMATICS

BASIC LIBRARY LIST

JANUARY, 1965

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE
PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION
POSITION OR POLICY.
The Committee on the Undergraduate Program in Mathematics of the Mathematical Association of America is charged with making recommendations for the overall improvement of college and university mathematics curricula at all levels and in all educational areas. The Committee, through its parent association, has received a grant from the National Science Foundation to support its work. To carry on the activities under this grant, the Committee has organized the Commission on the Undergraduate Program in Mathematics consisting of the Committee, an Executive Director, and an Associate Director.

Membership of the Commission on the Undergraduate Program in Mathematics at the time this list was prepared:

WILLIAM L. DUREN, JR.
University of Virginia
Chairman

RALPH P. BOAS
Department of Mathematics
Northwestern University

R. CREIGHTON BUCK
Department of Mathematics
University of Wisconsin

DAN E. CHRISTIE
Department of Mathematics
Bowdoin College

ROY DUBISCH
Department of Mathematics
University of Washington

SAMUEL EILENBERG
Department of Mathematics
Columbia University

DAVID GALE
Department of Mathematics
Brown University

SAMUEL GOLDBERG
Department of Mathematics
Oberlin College

LEON A. HENKIN
Department of Mathematics
University of California
Berkeley

EDWIN E. MOISE
Graduate School of Education
Harvard University

JOHN C. MOORE
Department of Mathematics
Princeton University

HENRY O. POLLAK
Mathematics and Statistics
Research Center
Bell Telephone Laboratories, Inc.

I. M. SINGER
Department of Mathematics
Massachusetts Institute of Technology

A. W. TUCKER
Department of Mathematics
Princeton University
One of the many channels by which the Mathematical Association of America offers advice and guidance to colleges is the Committee on the Undergraduate Program in Mathematics. A project of this Committee has been an attempt to define a minimal college mathematics library. Preliminary versions of the accompanying list have been used to improve mathematics libraries.

This list of some 300 books, from which approximately 170 are to be chosen to form a basic library in undergraduate mathematics, is intended to do the following:

1. Provide the student with introductory material in various fields of mathematics which he may not previously have encountered.

2. Provide the student, whose interest has been aroused by his teachers, with reading material collateral to his course work.

3. Provide the student with reading at a level beyond that ordinarily encountered in his undergraduate curriculum.

4. Provide the faculty with reference material.

5. Provide the general reader with elementary material in the field of mathematics.

The list is minimal, and is not intended to provide anyone with the grounds of an argument that a particular library is complete, and hence cannot be improved. On the contrary, the list is basic in that it provides a nucleus for a library whose further acquisitions should be dictated by student and faculty interests. There has been a concerted effort to keep the list small, in the exercise of which many books of merit have had to be excluded, and several equally attractive areas sometimes have been combined into one group from which one book is to be selected. In many cases similar books are suggested as alternate choices so that a library may exploit its present holdings. The new federal program in education will, we hope, enable colleges to finance purchases from this basic list.

It is expected that separate library lists will be published by CUPM dealing with special areas including teacher training and the biological, management and social sciences.

The Advisory Group on Communications of the Committee on the Undergraduate Program in Mathematics has prepared this list over a period ending in 1964; hence, recently published books do not appear on the list. The list will be revised from time to time. Any
suggestions which will aid in such revision or which are aimed at
the improvement of the list will be welcomed and should be sent to
CUPM, P. O. Box 1024, Berkeley, California 94701.

Membership of CUPM's Advisory Group on Communications at
the time this list was prepared:

A. W. TUCKER
Department of Mathematics
Princeton University
Chairman

JOHN D. BAUM
Department of Mathematics
Oberlin College

DAN E. CHRISTIE
Department of Mathematics
Bowdoin College

CHARLES R. DE PRIMA
Department of Mathematics
California Institute of Technology

* MARION K. FORT
 Department of Mathematics
 University of Georgia

ROTHWELL STEPHENS
Department of Mathematics
Knox College

ROBERT M. THRALL
Department of Mathematics
University of Michigan

* Deceased
TABLE OF CONTENTS

Introduction .. 1

Basic Library List

I. Background and Orientation 6
II. Algebra ... 7
III. Analysis .. 11
IV. Applied Mathematics 19
V. Geometry-Topology .. 25
VI. Logic, Foundations and Set Theory 29
VII. Probability-Statistics 31
VIII. Number Theory .. 33
IX. Miscellaneous ... 34

Further Mathematical Materials 38

Author Index .. 41
I. BACKGROUND AND ORIENTATION

The volumes listed here offer a variety of topics which must have representation in any basic library. Of the three books on the history of mathematics, Men of Mathematics can be read with enjoyment by students at any level. Equally readable are What is Mathematics?, Number, the Language of Science, and The Enjoyment of Mathematics. Symmetry, An Introduction to Mathematics, and Mathematical Snapshots are well known classics, while the books on finite mathematics (1.10) bring numerous modern topics to the freshman level.

1.3 Courant, R. and Robbins, H. What is Mathematics? New York, Oxford University Press, 1941, $9.00, text ed. $7.00.

1.10 At least one of the following: (a-c)

II. ALGEBRA

For reference and for systematic study, a basic library should contain general treatments of abstract algebra at successive levels (2.15, 2.7, 2.2, 2.4, 2.9). Because of the tremendous importance of the basic structures, models, and tools of linear algebra, there should be introductions emphasizing linear transformations (2.11) and also emphasizing matrices (2.10). For the casual reader there should be attractive elementary approaches to modern algebra via special topics such as groups (2.16), rings (2.6), and other subjects (2.5). For the serious student there should be more advanced works in a few key special fields, e.g., group theory (2.17), linear algebra (2.12, 2.13), fields and galois theory (2.1). The uniquely useful book 2.3 provides for a transition from linear algebra towards the theory of Hilbert space. Connections between linear algebra and geometry deserve attention (2.14).

2.9 At least one of the following: (a-b)

2.10 At least one of the following: (a-e)

2.11 At least one of the following: (a-e)

2.12 At least one of the following: (a-d)

2.13 At least one of the following: (a-c)

2.14 At least one of the following: (a-c)

2.15 At least one of the following: (a-c)

2.15 b McCoy, Neal H. Introduction to Modern Algebra. Boston, Massachusetts, Allyn and Bacon, Inc., 1960, $10.60, text ed. $7.95.

2.16 At least one of the following: (a–b)

2.17 At least one of the following: (a–c)

III. ANALYSIS

Analysis covers a broad spectrum of mathematical disciplines. This section contains a selection of books which may serve to introduce the mathematics undergraduate to many of these disciplines.

In those areas in which undergraduate courses are usually offered, books of mathematical depth and sophistication are recommended. Thus, for advanced calculus, or what is rapidly being renamed real analysis, we list 3.25, 3.26 and 3.27; the last all contain elements of Lebesgue integration. In addition, we recommend the now classic 3.4, 3.6. Interesting and unusual presentations of material in this general area occur in 3.11 and 3.15a.

The elements of ordinary differential equations appear in 3.20. More advanced treatments are contained in 3.21 and 3.22; the former have excellent material on boundary value problems while the latter stress the geometrical and qualitative aspects of differential equations. An excellent problem source is 3.3.
Presentations of the theory of functions of a complex variable are to be found in 3.13, 3.23, and in 3.24. Introductions to topics in the theory of linear spaces and functional analysis are contained in 3.10, 3.15b, 3.16, among others. In 3.17 two distinct elementary treatments of generalized functions are listed. Finally, attention is called to the note on calculus books which is at the end of this section.

3.15 At least one of the following: (a-b)

3.16 At least one of the following: (a-b)

3.17 At least one of the following: (a-b)

3.18 At least one of the following: (a-b)

3.19 At least one of the following: (a-c)

3.20 At least one of the following: (a-f)

3.21 At least one of the following: (a-b)

3.22 At least one of the following: (a-c)

3.23 At least one of the following: (a-c)

3.24 At least one of the following: (a-d)

3.25 At least one of the following: (a-f)

3.26 At least one of the following: (a-d)

3.27 At least one of the following: (a-e)

3.28 At least one of the following: (a-d)

3.29 At least one of the following: (a-b)

3.29 b Garabedian, P. R. *Partial Differential Equations*. New York, J. Wiley and Sons, 1964, $14.00

3.30 At least one of the following: (a-b)

Two books on mathematical tables: one numerical, such as 3.31, and one functional, such as 3.32.

3.32 At least one of the following: (a-b)

The Library should also contain a selection of several calculus books to which students may refer for supplementary reading. These books should be chosen so as to describe a variety of approaches and motivations. It is felt that there should be at least one careful, detailed development such as is contained in any of the following (or similar works):

Begle, Edward G. *Introductory Calculus with Analytic Geometry.*

IV. APPLIED MATHEMATICS

Because of the increasing interaction between mathematics and the natural and social sciences, it is virtually impossible to list a definitive collection of library books in this area. We urge the student and the teacher, intent on following this interaction, to make use of materials already available in libraries under the science, social science and engineering listings. Nevertheless, we do recommend that the libraries contain certain books on the mathematical aspects of physical science and engineering. These are 4.5, 4.6, 4.7, 4.12, 4.15 and 4.18. Recent developments in applied mathematics which bear a close relationship to the developments in social sciences are 4.9, 4.23, 4.24, 4.27, 4.28 and 4.29.

Since mathematical methods form part of applied mathematics, we recommend a few of the many compilations of mathematical analysis methods such as those listed in 4.20 and 4.21. We note that 4.1 consists of a definitive study of problems of partial differential equations occurring in many applications of mathematics. Introductions to functional analytical methods useful in applied mathematics are listed in 4.14.

In the past decade or so, with the advent of high-speed computing machines, numerical analysis and some branches of algebra and logic have become an important area of applied mathematics. Numerical analysis books are listed in 4.2, 4.26, 4.18. The last (4.18) stresses algebraic aspects. Incidentally, the books on linear algebra contained in the algebra section of this report furnish material indispensable in the area of numerical analysis. Selection 4.17 contains introductions to computing machines—their modes of operation, programming techniques, computer logic and the use of algorithms.

4.14 At least one of the following: (a-b)

4.15 At least one of the following: (a-b)

4.15 b Synge, John L. and Schild, A. Tensor Calculus. Toronto, University of Toronto Press, 1949, $6.50.

4.16 At least one of the following: (a-c)

4.17 At least one of the following: (a-c)

4.18 At least one of the following: (a-d)

4.19 At least one of the following: (a-b)

4.20 At least one of the following: (a-c)

4.21 At least one of the following: (a-c)

4.22 At least one of the following: (a–b)

4.23 At least one of the following: (a–c)

4.24 At least one of the following: (a–d)

4.25 At least one of the following: (a–b)

4.26 At least one of the following: (a–c)

4.27 At least one of the following: (a–c)

4.28 At least one of the following: (a–b)

4.29 At least one of the following: (a–c)

V. GEOMETRY-TOPOLOGY

The following thirty-eight books, of which a minimum of fifteen are to be selected, are intended to cover topics in geometry and topology. Besides general reading and introductory material on geometry as found in 5.3 and 5.5, various other topics such as projective geometry (5.4, 5.8), algebraic geometry (5.7), non-Euclidean geometry (5.10) and differential geometry (5.11) are represented. In addition to general and introductory material on topology (5.1, 5.3) increasing levels of sophistication in general topology (5.12, 5.13, 5.14) are mentioned as is algebraic topology (5.9).

5.5 At least one of the following: (a-b)

5.5 a Coxeter, H. S. M. Introduction to Geometry. New York, J. Wiley and Sons, 1961, $8.75.

5.6 At least one of the following: (a-c)

5.7 At least one of the following: (a-b)

5.8 At least one of the following: (a-c)

5.9 At least one of the following: (a-d)

5.10 At least one of the following: (a-b)

5.11 At least one of the following: (a-d)

5.12 At least one of the following: (a-f)

5.13 At least one of the following: (a-b)

5.14 At least one of the following: (a-b)

5.15 At least one of the following: (a-d)

VI. LOGIC, FOUNDATIONS AND SET THEORY.

Of the following twenty-three books on logic, foundations, and set theory, at least thirteen are to be selected. Besides historical and introductory material on set theory (6.1, 6.4, 6.8) this field is covered in increasingly sophisticated fashion in 6.8, 6.2 and 6.11. Foundational material is to be found in 6.5, 6.9 and 6.10, while logic is covered in increasing levels of sophistication in 6.6, 6.8, 6.7, 6.3, 6.12 and 6.13.

6.10 At least one of the following: (a-e)

29

6.10 e Landin, Joseph and Hamilton, N. T. *Set Theory; The Structure of Arithmetic*. Boston, Massachusetts, Allyn and Bacon, Inc., 1961, $10.35, text ed. $7.75.

6.11 At least one of the following: (a-b)

6.12 At least one of the following: (a-e)

6.13 At least one of the following: (a-b)

VII. PROBABILITY-STATISTICS

The first five books listed are authoritative reference books in this rapidly growing field. The remainder of the list consists of pairings of books, one book from each pair being sufficient in a minimum library. Probability is treated in increasing levels of sophistication in 7.6, 7.7, 7.2, 7.4, and 7.3, and statistics in the order 7.8, 7.9, 7.10, 7.5 and 7.1. Items 7.6 and 7.8 do not assume a knowledge of the calculus.

7.6 At least one of the following: (a-b)

7.6 b Goldberg, Samuel. *Probability: An Introduction*

7.7 At least one of the following: (a-b)

7.8 At least one of the following: (a-d)

7.8 b Mosteller, Frederick; Rourke, R.E.K. and Thomas, G. B. *Probability with Statistical Applications.* Reading, Massachusetts, Addison-Wesley Publishing Co., Inc., 1961, $8.75.

7.9 At least one of the following: (a-b)

7.10 At least one of the following: (a-b)

8.6 At least one of the following: (a-d)

8.7 At least two of the following: (a–g)

IX MISCELLANEOUS

Inevitably there are some books which a library needs, not because they neatly fit a category, but because they themselves have unique appeal or utility. The titles under Miscellaneous resist omission for miscellaneous reasons. A mathematics library is made more useful by the inclusion of collections of problems, more diverting because of the less technical or even whimsical insights of capable mathematicians and better suited for browsing if it is stocked with collections of mathematical fragments or synopses. The following two dozen volumes are an especially good investment because they are likely to wear out first!
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Author(s)</th>
<th>Publisher/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6</td>
<td>Higher Algebra</td>
<td>Hall, Henry S. and Knight, S. R.</td>
<td>New York, St. Martin's Press, 1932, $2.75; key $2.75.</td>
</tr>
</tbody>
</table>

9.22 At least one of the following: (a-c)

9.23 At least one of the following: (a-b)

FURTHER MATHEMATICAL MATERIALS

The value of a mathematical library is considerably enhanced by the inclusion of materials beyond those in the preceding basic list. Much of mathematical value can be found in general reference works, such as encyclopedias. In addition, it is recommended that the basic library be supplemented by items under the following headings.

JOURNALS

The American Mathematical Monthly. Buffalo, New York: The Mathematical Association of America, Inc., SUNY at Buffalo, ten issues per year; $6.00 per year for members of MAA; $10.00 for non-members.

Mathematical Gazette. London, England: G. Bell and Sons, Ltd., Mathematical Association, 21 shillings (about $2.95) per year; five issues per year.

Mathematics Magazine. Buffalo, New York: The Mathematical Association of America, Inc., SUNY at Buffalo, published bi-monthly except July and August, 2 years for $5.00 for members of MAA, $3.00 per year for nonmembers.

Scripta Mathematica. New York: Yeshiva University, $4.00 per year, published quarterly.

The Mathematics Teacher. Washington 36, D. C.: National Council of Teachers of Mathematics, 1201 Sixteenth Street, N. W., eight issues per year; $5.00 per year for members of NCTM; $7.00 per year for institutions.

SERIES

Series of excellent inexpensive books exist, whose inclusion in a library for undergraduates is suggested. Individual volumes in some of the following series are included in the basic list. In general, the following series are recommended, although, of course, individual volumes vary in quality and no endorsement of future volumes in any series is implied.
The Athena Series (Selected Topics in Mathematics), New York: Holt, Rinehart and Winston, Inc. This is a series of small books that forms excellent supplements to standard junior and senior level courses. Ten volumes have been issued, priced between $1.50 and $4.00.

Blaisdell Scientific Paperbacks, New York: Blaisdell Publishing Company. This is a series of six small pamphlets that are translations of the Russian series, "Popular Lectures in Mathematics," selling at $0.95 each.

The Carus Mathematical Monographs, Buffalo, New York: The Mathematical Association of America, Inc., SUNY at Buffalo. There are now fourteen volumes in this series selling at $4.00 each.

Library of Mathematics, London: Routledge and Kegan Paul. Available from the Free Press, New York. These are small paperback books covering a wide variety of topics at quite elementary levels. Some thirteen books have been published at a price of $1.25 each.

The MAA Studies in Mathematics, Buffalo, New York: The Mathematical Association of America, SUNY at Buffalo. These books sell for $4.00 each through Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

School Mathematics Study Group New Mathematical Library, New York: Random House, Inc. This is a series of monographs selling at $1.95 each.

University Mathematical Texts, New York: Interscience. This is a series of small books at the advanced undergraduate level.

Topics in Mathematics, D. C. Heath and Company, Boston, Massachusetts. This is a series of booklets translated and adapted from the Russian series, "Popular Lectures in Mathematics." These American editions have been prepared by the Survey of Recent East European Mathematical Literature at the University of Chicago under a grant from the National Science Foundation. These booklets provide students of mathematics at various levels, as well as other interested readers, with valuable supplementary material to further their mathematical knowledge and development.
The Slaught Memorial Papers. The Herbert Ellsworth Slaught Memorial Papers are a series of brief expository pamphlets published as supplements to the MONTHLY. When they are issued, copies are sent free of charge to all members of the Association and subscribers to the MONTHLY. Additional copies may be purchased from the Buffalo office at $1.25 each.

BOOKS IN FOREIGN LANGUAGES

We recommend that some books in foreign languages—especially French, German, and Russian—be included in the collection. The principal purpose of these books would be to provide an opportunity for the student to learn to read mathematics in the language rather than to provide additions to the mathematical content of the list. Thus, in some cases it is suggested that, where available, both the English translation and the foreign language original be provided (good examples are van der Waerden's Modern Algebra, and the Heath Series, Topics in Mathematics, in the preceding list).

There also should be included some books which do not exist in translation, such as Pólya and Szegö, Aufgaben und Lehrsätze aus der Analysis, or de la Vallée Poussin, Cours d'Analyse.
AUTHOR INDEX

ACKERMAN, W. - See Hilbert 6.3
AGNEW, Ralph Palmer. Differential Equations 3.20a
AHLFORS, Lars V. Complex Analysis 3.23a
AITKEN, Alexander C. Determinants and Matrices 2.10a
AKHIEZER, Naum I. Calculus of Variations 3.18a
ALEXANDROFF, P.S. An Introduction to the Theory of Groups 2.16a
BUSSENFELD, Preissler. Combinatorial Topology 5.9a
APOSTOL, Tom M. Mathematical Analysis 3.26a
ARDEH, B. W. An Introduction to Digital Computers 4.17a
ARIS, Rutherford. Discrete Dynamic Programming 4.23a
ARNOLD, Bradford Henry. Intuitive Concepts in Elementary Topology 5.1
ARTIN, Emil. Galois Theory 2.1
BAER, Reinhold. Linear Algebra and Projective Geometry 5.8a
BALL, Walter W. R. Mathematical Recreations and Essays 9.22a
BARTLE, Robert G. The Elements of Real Analysis 3.25a
BAUM, John D. Elements of Point Set Topology 5.12a
BEAUMONT, Ross A. and PIERCE, Richard S. Algebraic Foundations of Mathematics 9.1
BECKENBACH, E. E. and BELLMAN, R. Introduction to Inequalities 3.19a
BELL, Eric T. Development of Mathematics 1.1
BELLMAN, Richard E. - See Beckenbach 3.19a
BELLMAN, Richard E. and DREYFUS, Stuart E. Applied Dynamic Programming 4.23b
BERGE, Claude. The Theory of Graphs and Its Applications 4.29a
BIOT, M. A. - See von Karman 4.21c
BIRKHOF, Garrett and MAC LANE, Saunders. A Survey of Modern Algebra 2.2
BIRKHOF, Garrett and ROTA, Gian-Carlo. Ordinary Differential Equations 3.21a
BLISS, Gilbert A. Calculus of Variations 3.1
BLUMENTHAL, Leonard M. A Modern View of Geometry 9.2
BOAS, Ralph P. Jr. A Primer of Real Functions 3.2
BOLTYANSKII, V. B. - See Yaglom 5.6c
BOYD, Truman. - See McShane 3.27c
BRENNER, Joel Lee. Problems in Differential Equations 3.3
BRUN, Hugh Daniel. Introduction to Mathematical Statistics 7.10a
BUCK, R. C. Advanced Calculus 3.26b
BURKOFF, J. C. and CUNDY, H. M. Mathematical Scholarship Problems 9.3
BUSEMANN, Herbert and KELLY, Paul J. Projective Geometry and Projective Metrics 5.8b
BUSHAW, Donald Wayne. *Elements of General Topology* 5.12b

CANTOR, George. *Contributions to the Founding of the Theory of Transfinite Numbers* 6.1

CARATHÉODORY, C. *Theory of Functions of a Complex Variable* 3.24a

CHENTZOV, N. N. - See Shklarsky 9.24

CHURCH, Alonzo. *Introduction to Mathematical Logic* 6.13a

CODDINGTON, Earl A. *An Introduction to Ordinary Differential Equations* 3.20b

COGAN, Edward J. and NORMAN, R. Z. *Handbook of Calculus, Difference and Differential Equations* 3.31

COHEN, Leon W. and EHRlich, G. *The Structure of the Real Number System* 6.10a

COHN-VOSSEN, S. - See Hilbert 5.3

COLLAR, A. R. - See Frazer 4.18c

COPI, Irving Marmer. *Symbolic Logic* 6.12a

COURANT, R. *Differential and Integral Calculus* 3.4

COURANT, R. and HILBERT, D. *Methods of Mathematical Physics* 4.1

COURANT, R. and ROBBINS, H. *What is Mathematics?* 1.3

COX, D. R. and SMITH, W. L. *Queues* 4.27a

COXETER, H. S. M. *Introduction to Geometry* 5.5a

———. *Non-Euclidean Geometry* 5.10a

CRAIG, A. T. - See Hogg 7.9a

———. *The Elements of Probability Theory and Some of Its Applications* 7.7a

CROWELL, Richard Henry and FOX, Ralph H. *Introduction to Knot Theory* 5.15a

CUNDY, H. M. - See Burkill 9.3

CURTIS, C. *Linear Algebra: An Introductory Approach* 2.11a

DANTZIG, George B. *Linear Programming and Extensions* 4.24a

DANTZIG, Tobias. *Number, The Language of Science* 1.4

DEBRUNNER, Hans - See Hadwiger 5.6b

DICKSON, Leonard E. *History of the Theory of Numbers* 8.1

DIEUDONNÉ, Jean. *Foundations of Modern Analysis* 3.15a

DORFMAN, Robert; SAMUELSON, Paul A; SOLOW, Robert M. *Linear Programming and Economic Analysis* 4.28b

DREYFUS, Stuart E. - See Bellman 4.23b

DUNCAN, W. J. - See Frazer 4.18c

EGGLESTON, Harold G. *Problems of Euclidean Space: Applications of Convexity* 5.6a
EHRLICH, G. - See Cohen 6.10a
EMDE, F. - See Jahnke 3.32a
EPSTEIN, Bernard. Partial Differential Equations, An Introduction 3.29a
ERDELYI, Arthur. Operational Calculus and Generalized Functions 3.17a
EVES, Howard. A Survey of Geometry 5.5b
——— and NEWSOM, C.V. Introduction to the Foundations and Fundamental Concepts of Mathematics 9.4

FADDEEV, D. K. and FADDEEVA, V. N. Computational Methods in Linear Algebra 4.18a
FANO, Robert M. Transmission of Information 4.16a
FEFERMAN, Solomon. The Number Systems: Foundations of Algebra and Analysis 6.10b
FELLER, William. An Introduction to Probability Theory and Its Applications 7.2
FESHBACK, H. - Morse 4.20b
FINKBEINER, Daniel T. Introduction to Matrices and Linear Transformations 2.11b
FLANDERS, Harley. Differential Forms, With Applications to the Physical Sciences 3.5
FOMIN, S. V. - See Gelfand 3.18b
———. - See Kolmogorov 3.16a
FORD, L. R., Jr. and FULKERSON, D. R. Flows in Networks 4.29b
FORD, Lester R. Differential Equations 3.20c
FOX, Leslie. An Introduction to Numerical Linear Algebra 4.18b
FOX, Ralph H. - See Crowell 5.15a
FRANKLIN, Philip. Treatise on Advanced Calculus 3.25b
FRAZER, Robert A.; DUNCAN, W. J.; COLLAR, A. R. Elementary Matrices 4.18c
FRIEDMAN, Bernard. Principles and Techniques of Applied Mathematics 4.14a
FUCHS, B.A. and SHABAT, B.V. Functions of a Complex Variable and Some of Their Applications 3.24b
FULKERSON, D. R. - See Ford 4.29b

GALE, David. The Theory of Linear Economic Models 4.28a
GALLER, Bernard A. The Language of Computers 4.17b
GANTMAKER, Feliks R. Theory of Matrices 2.13a
GARABEDIAN, P. R. Partial Differential Equations 3.29b
GARDNER, Martin. Scientific American Book of Mathematical Puzzles and Diversions 9.22b
GASS, Saul I. Linear Programming 4.24b
GELFAND, I. M. and FOMIN, S. V. Calculus of Variations 3.18b
GNEDENKO, Boris V. Theory of Probability 7.7b
——— and KHINCHIN, A. I. An Elementary Introduction to the Theory of Probability 7.6a

43
GOFFMAN, Casper. *Real Functions* 3.27a
GOLDBERG, Samuel. *Probability: An Introduction* 7.6b
GOLDSTEIN, Herbert. *Classical Mechanics* 4.19a
GOLOMB, Michael and SHANKS, Merrill. *Elements of Ordinary Differential Equations* 3.20d
GRAVES, Lawrence M. *Theory of Functions of Real Variables* 3.27b
GRAYBILL, F. A. - See Mood 7.10b
GREEN, J. A. *Sequences and Series* 3.28a
GRIFFITH, B. A. - See Synge 4.19b
GUGGENHEIM, Heinrich W. *Differential Geometry* 5.11a

HADAMARD, Jacques. *Psychology of Invention in the Mathematical Field* 9.5
HADLEY, George. *Linear Programming* 4.24c
HADWIGER, Hugo and DEBRUNNER, Hans. *Combinatorial Geometry in the Plane* 5.6b
HALL, Dick W. and SPENCER, G. L. *Elementary Topology* 5.13a
HALL, Henry S. and KNIGHT, S. R. *Higher Algebra* 9.6
HALL, Marshall, Jr. *The Theory of Groups* 2.17a
HALMOS, Paul R. *Finite-dimensional Vector Spaces* 2.3
———. *Measure Theory* 3.30a
———. *Naive Set Theory* 6.2
HAMILTON, N. T. - See Landin 6.10e
HARDY, Godfrey Harold. *A Mathematician's Apology* 9.7
———. *Pure Mathematics* 3.6
——— and WRIGHT, E. M. *An Introduction to the Theory of Numbers* 8.2
HEASLET, M. A. - See Uspensky 8.7f
HENKIN, Leon A.; SMITH, Norman; VARINEAU, V.J.; WALSH, Michael J. *Retracing Elementary Mathematics* 6.10c
HENRICI, Peter. *Discrete Variable Methods in Ordinary Differential Equations* 4.2
HERSTEIN, I. N. *Topics in Algebra* 2.4
HILBERT, David. - See Courant 4.1
——— and ACKERMAN, W. *Principles of Mathematical Logic* 6.3
——— and COHN-VOSEN, S. *Geometry and the Imagination* 5.3
HILDEBRAND, Francis B. *Introduction to Numerical Analysis* 4.26a
HILLE, Einar. *Analytic Function Theory* 3.24c
HIRSCHMAN, Isidore I., Jr. *Infinite Series* 3.28b
HOCKING, John and YOUNG, Gail. *Topology* 5.14a
HODGES, J. L. and LEHMANN, E. L. *Basic Concepts of Probability and Statistics* 7.8a
HOFFMAN, Kenneth and KUNZE, Ray. *Linear Algebra* 2.12a
HOGG, Robert V. and CRAIG, A. T. *Introduction to Mathematical Statistics* 7.9a
HOHN, Franz E. *Applied Boolean Algebra* 4.25a
HOHN, Franz E. Elementary Matrix Algebra 2.10b
HOFF, L. Introduction to the Differential Equations of Physics 4.3
HOUSEHOLDER, Alston Scott. Principles of Numerical Analysis 4.26b
——. The Theory of Matrices in Linear Algebra 4.18d
HOWARD, Ronald A. Dynamic Programming and Markov Processes 4.23c
HU, Sze-Tsen. Elements of General Topology 5.12c
HUREWICZ, Witold. Lectures on Ordinary Differential Equations 3.22a
—— and WALLMAN, Henry. Dimension Theory 5.15b
HYSLOP, James Morton. Infinite Series 3.28c

JACOBSON, Nathan. Lectures in Abstract Algebra 2.9a
JAEGER, Arno. Introduction to Analytic Geometry and Linear Algebra 2.14a
JAHNKE, E. and EMDE, F. Tables of Functions with Formulas and Curves 3.32a
JAMES, Glenn and Robert C., editors. Mathematical Dictionary 1.11a
JEFFREYS, Sir Harold and JEFFREYS, Bertha Swirles. Methods of Mathematical Physics 4.20a
JENNEN, William E. Rudiments of Algebraic Geometry 5.7a
JOHNSON, Richard Edward. First Course in Abstract Algebra 2.15a
JONES, Burton W. Elementary Concepts of Mathematics 9.8
——. The Theory of Numbers 8.6a

KAC, Mark. Statistical Independence in Probability, Analysis and Number Theory 9.9
KALISH, Donald and MONTAGUE, Richard. Logic, Techniques of Formal Reasoning 6.12b
KAMKE, Erich. Theory of Sets 6.4
KAPLAN, Wilfred. Advanced Calculus 3.25c
KARUSH, William. The Crescent Dictionary of Mathematics 1.11b
KAZARINOFF, N. D. Geometric Inequalities 3.19b
KELLEY, John L. General Topology 5.14b
KELLY, Paul J. — See Busemann 5.8b
KEMENY, John G.; MIRKIL, H.; SNELL, J. Laurie; THOMPSON, Gerald L. Finite Mathematical Structures 1.10b
KEMENY, John G.; SNELL, J. Laurie; THOMPSON, Gerald L.; SCHLEIFER, Arthur. Finite Mathematics with Business Applications 1.10c
KEMENY, John G.; SNELL, J. Laurie; THOMPSON, G. L. Introduction to Finite Mathematics 1.10a
KEMENY, John G. and SNELL, J. Laurie. Mathematical Models in the Social Sciences 4.4
KERSHNER, Richard B. and WILCOX, L. R. Anatomy of Mathematics 6.10d
KHINCHIN, A. I. Mathematical Foundations of Statistical Mechanics 4.5
 - See Gnedenko 7.6a
KLEENE, Stephen C. Introduction to Metamathematics 6.13b
KLEIN, Felix. Elementary Mathematics from an Advanced Standpoint 9.10
KLEIN, Felix. Elementary Mathematics from an Advanced Standpoint 9.10
KNIGHT, S. R. - See Hall 9.6
 - Infinite Sequences and Series 3.28d
 - Problem Book in the Theory of Functions 3.8
 - Theory and Application of Infinite Series 3.9
 - Theory of Functions 3.23b
KOLMOGOROV, Andree N. and FOMIN, S. V. Elements of the Theory of Functions and Functional Analysis 3.16a
KOROVKIN, Pavel P. Inequalities 3.19c
KRATCHIK, Maurice. Mathematical Recreations 9.22c
KREYSZIG, Erwin. Advanced Engineering Mathematics 4.21a
 - Differential Geometry 5.11b
KUIPER, N. H. Linear Algebra and Geometry 2.14b
KUNZE, Ray. - See Hoffman 2.12a
KURATOWSKI, Kazimierz. Introduction to Set Theory and Topology 5.12d
KUROSH, A. G. The Theory of Groups 2.17b
LAMB, Sir Horace. Hydrodynamics 4.6
LANCZOS, Cornelius. Applied Analysis 4.26c
LANDAU, Edmund G. H. Elementary Number Theory 8.7a
 - The Foundations of Analysis 6.5
LANDIN, Joseph and HAMILTON, N. T. Set Theory: The Structure of Arithmetic 6.10e
LEDERMANN, Walter. Introduction to the Theory of Finite Groups 2.16b
LEEDS, Herbert D. and WEINBERG, Gerald M. Computer Programming Fundamentals 4.17c
LEFSCHETZ, Solomon. Differential Equations: Geometric Theory 3.22b
 - Introduction to Topology 5.9b
LEHMANN, E. L. - See Hodges 7.8a
LEVEQUE, William Judson. Elementary Theory of Numbers 8.6b
 - Topics in Number Theory 8.7b
LEVINSON, Norman - See Coddington 3.21b
LICHNEROWICZ, André. Elements of Tensor Calculus 4.15a
LIFSHITZ, E. M. - See Landau 4.7
LIGHTHILL, Michael James. Introduction to Fourier Analysis and Generalized Functions 3.17b
LINDGREN, Bernard William. Statistical Theory 7.9b
LOEVE, Michel Moise. Probability Theory 7.3
LORCH, Edgar Raymond. Spectral Theory 3.16b
LOVE, A. E. H. Treatise on the Mathematical Theory of Elasticity 4.8
LUCE, Robert Duncan and RAFFA, Howard. Games and Decisions 4.9

M.A.A. Studies in Mathematics. Studies in Algebra 2.5
M.A.A. Studies in Mathematics. Studies in Modern Analysis 3.10
MAAK, Wilhelm. An Introduction to Modern Calculus 3.26c
MAC DUFFEE, Cyrus C. Vectors and Matrices 2.10c
MAC LANE, Saunders. See Birkhoff 2.2
MAL'CEV, A. I. Foundations of Linear Algebra 2.13b
MC COY, Neal H. Introduction to Modern Algebra 2.15b
MC SHANE, Edward J. and BOTT, Truman. Real Analysis 3.27c
MENDELSON, Bert. Introduction to Topology 5.12e
MEYER, J. P. - See Mostow 2.7
MIRKIL, H. - See Kemeny 1.10b
MONTAGUE, Richard - See Kalish 6.12b
MOOD, Alexander M. and GRAYBILL, F. A. Introduction to the Theory of Statistics 7.10b
MORSE, Philip M. and FESHBACH, H. Methods of Theoretical Physics 4.20b
MOSTELLER, Frederick; ROURKE, R. E. K.; THOMAS, G. B. Probability with Statistical Applications 7.8b
MOSTOW, George D.; SAMPSON, J. H.; MEYER, J. P. Fundamental Structures of Algebra 2.7
MUNROE, Marshall Evans. Introduction to Measure and Integration 3.30b
MURDOCH, D. C. Linear Algebra for Undergraduates 2.10d
NAGEL, Ernest and NEWMAN, James R. Gödel's Proof 5.6
NAGELL, Trygve. Introduction to Number Theory 8.7c
National Council of Teachers of Mathematics. Insights into Modern Mathematics 9.11
National Physical Laboratory, Teddington, England. Modern Computing Methods 4.10
NEHARI, Zeev. Introduction to Complex Analysis 3.23c
NERING, Evar Dave. Linear Algebra and Matrix Theory 2.12b
NEWMAN, James R. The World of Mathematics 9.12
—— — See Nagel 5.6
NEWMAN, M. H. A. Topology of Plane Sets of Points 5.13b
NEWSOM, C. V. - See Eves 9.4
NEYMAN, Jerzy. *First Course in Probability and Statistics* 7.8c
NICKERSON, H. K.; SPENCER, D. C.; STEENROD, N. E. *Advanced Calculus* 3.11
NIVEN, Ivan. *Irrational Numbers* 8.3
----- and ZUCKERMAN, H. S. *An Introduction to the Theory of Numbers* 8.7d
NORMAN, R. Z. - See Cogan 3.31
OLMSTED, J. M. H. *Advanced Calculus* 3.25d
ORE, Oystein. *Number Theory and Its History* 8.4
-----. *Theory of Graphs* 4.29c
PAIGE, Lowell J. and SWIFT, J. Dean. *Elements of Linear Algebra* 2.11d
PARZEN, Emanuel. *Modern Probability Theory and Its Applications* 7.4
-----. *Stochastic Processes with Applications to Science and Engineering* 4.11
PERLS, Sam. *Theory of Matrices* 2.10e
PERVIN, William J. *Foundations of General Topology* 5.12f
PIERCE, Richard S. - See Beaumont 9.1
POLLARD, Harry S. *The Theory of Algebraic Numbers* 8.5
-----. - See Tenenbaum 3.20e
POLYA, George. *How to Solve It* 9.13
-----. *Mathematics and Plausible Reasoning* 9.23a
-----. *Mathematical Discovery* 9.23b
PONTRYAGIN, Lev S. *Foundations of Combinatorial Topology* 5.9c
-----. *Ordinary Differential Equations* 3.20f
-----. *Topological Groups* 5.15c
QUINE, Willard von Orman. *Set Theory and Its Logic* 6.11a
-----. *Mathematical Logic* 6.12c
RADEMACHER, Hans A. *Lectures on Elementary Number Theory* 8.7e
----- and TOEPLITZ, Otto. *The Enjoyment of Mathematics* 1.5
RAIFFA, Howard. - See Luce 4.9
RAYLEIGH, John W. S. *Theory of Sound* 4.12
REZA, F. M. *An Introduction to Information Theory* 4.16b
RIORDAN, John. *An Introduction to Combinatorial Analysis* 4.22a
-----. *Stochastic Service Systems* 4.27b
ROBBINS, H. - See Courant 1.3
ROGOSINSKI, Werner. *Fourier Series* 3.12
ROSENBAUM, R. A. *Introduction to Projective Geometry and Modern Algebra* 2.14c
ROSENBLOOM, Paul Charles. *The Elements of Mathematical Logic* 6.7
ROTA, Gian-Carlo. - See Birkhoff 3.21a
ROURKE, R. E. K. - See Mosteller 7.8b
ROYDEN, H. L. *Real Analysis* 3.27d
RUDIN, Walter. *Principles of Mathematical Analysis* 3.26d
RYER, Herbert John. *Combinatorial Mathematics* 4.22b

SAATY, Thomas L. *Lectures on Modern Mathematics* 9.14
SAKS, S. and ZYGMUND, A. *Analytic Functions* 3.24d
SAMARSKI, A. A. - See Tychonov 4.21b
SAMPSON, J. H. - See Mostow 2.7
SAMUELSON, Paul A. - See Dorfman 4.28b
SCHILD, A. - See Synge 4.15b
SCHLEINER, Arthur. - See Kemeny 1.10c
SEIDENBERG, A. *Lectures in Projective Geometry* 5.8c
SHABAT, B. V. - See Fuchs 3.24b
SHANKS, Merrill - See Golomb 3.20d
SHANNON, Claude E. and WEAVER, W. *The Mathematical Theory of Communication* 4.16c
SHIELDS, Paul C. *Linear Algebra* 2.11c
SHKLARSKY, D. O.; CHENTZOV, N. N.; YAGLOM, I. M. *The USSR Olympiad Problem Book* 9.24
SIMMONS, George F. *Introduction to Topology and Modern Analysis* 3.15b
SMITH, Norman. - See Henkin 6.10c
SMITH, W. L. - See Cox 4.27a
SNELL, J. Laurie. - See Kemeny 1.10a, b, c
SPEOW, Robert M. - See Dorfman 4.28b
SPENCER, D. C. - See Nickerson 3.11
SPENCER, G. L. - See Hall 5.13a
SPRUNGER, George. *Introduction to Riemann Surfaces* 5.15d
STEENROD, N. E. - See Nickerson 3.11
STEIN, Sherman K. *Mathematics: The Man-Made Universe* 9.15
STEINHAUS, H. *Mathematical Snapshots* 1.6
STEINHAUS, H. *One Hundred Problems in Elementary Mathematics* 9.16
STEWART, Bonnie Madison. *Theory of Numbers* 8.6c
STEWART, Frank Moore. *Introduction to Linear Algebra* 2.11e
STIEFEL, E. L. *An Introduction to Numerical Mathematics* 4.13
STOLL, Robert Roth. *Linear Algebra and Matrix Theory* 2.12c
STOLL, Robert Roth. *Sets, Logic and Axiomatic Theories* 6.8
STRUIK, Dirk Jan. *Differential Geometry* 5.11c
SUPPES, Patrick C. *Axiomatic Set Theory* 5.11b
SUPPES, Patrick C. *Introduction to Logic* 6.12d
SWIFT, J. Dean - See Paige 2.11d
SYNGE, John L. and GRIFFITH, B. A. Principles of Mechanics 4.19b
SYNGE, John L. and SCHILD, A. Tensor Calculus 4.15b

TAKACS, Lajos. Introduction to the Theory of Queues 4.27c
TARSKI, Alfred. Introduction to Logic and to the Methodology of Deductive Sciences 6.12e
TAYLOR, Angus Ellis. Advanced Calculus 3.25e
TENENBAUM, Morris and POLLARD, Harry. Ordinary Differential Equations 3.20e
THIELMAN, Henry P. Theory of Functions of Real Variables 3.27e
THOMAS, G. B. - See Mosteller 7.8b
THOMPSON, Gerald L. - See Kemeny 1.10a, b, c
THRALL, Robert McDowell and TORNHEIM, L. Vector Spaces and Matrices 2.12d
TITCHMARSH, Edward C. Theory of Functions 3.13

THORNHEIM, L. - See Thrall 2.12d
TRICOMI, F. G. Differential Equations 3.22c
TYCHONOV, A. N. and SAMARSKI, A. A. Partial Differential Equations in Mathematical Physics 4.21b

UIAM, Stanislaw. A Collection of Mathematical Problems 9.18
USPENSKY, J. V. Theory of Equations 2.8

VAJDA, S. Theory of Games and Linear Programming 4.24d
van der WAERDEN, Bartel L. Modern Algebra 2.9b

VARIANOVA, V. J. - See Henkin 6.10c
VINOCRADOV, Ivan M. Elements of Number Theory 8.7g
von KARMAN, Theodore and BIOT, M. A. Mathematical Methods in Engineering 4.21c
VULIKH, Boris Z. Introduction to Functional Analysis for Scientists and Technologists 4.14b

WALKER, Robert John. Algebraic Curves 5.7b
WALLACE, Andrew Hugh. Introduction to Algebraic Topology 5.9d
WALLMAN, Henry - See Hurewicz 5.15b
WALSH, Michael J. - See Henkin 6.10c
WATSON, G. N. - See Whittaker 4.20c
WEAVER, W. - See Shannon 4.16c
WEINBERG, Gerald M. - See Leeds 4.17c
WEISS, Marie J. Higher Algebra for the Undergraduate 2.15c
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weyl, Hermann</td>
<td>Philosophy of Mathematics and Natural Science</td>
</tr>
<tr>
<td></td>
<td>9.20</td>
</tr>
<tr>
<td>Weyl</td>
<td>Symmetry 1.8</td>
</tr>
<tr>
<td>Whitehead, Alfred North</td>
<td>An Introduction to Mathematics</td>
</tr>
<tr>
<td>Whitesitt, John Elden</td>
<td>Boolean Algebra and Its Applications</td>
</tr>
<tr>
<td>Whittaker, Edmund T.</td>
<td>A Course of Modern Analysis</td>
</tr>
<tr>
<td>Watson, G. N.</td>
<td>4.20c</td>
</tr>
<tr>
<td>Widder, David Vernon</td>
<td>Advanced Calculus</td>
</tr>
<tr>
<td>Wilcox, L. R.</td>
<td>6.10d</td>
</tr>
<tr>
<td>Wilder, Raymond L.</td>
<td>Introduction to the Foundations of Mathematics</td>
</tr>
<tr>
<td>Wille, John Davis</td>
<td>The Compleat Strategyst</td>
</tr>
<tr>
<td>Williamson, John Hunter</td>
<td>Lebesgue Integration</td>
</tr>
<tr>
<td>Williams, Thomas James</td>
<td>Introduction to Differential Geometry</td>
</tr>
<tr>
<td>Williamson, John Hunter</td>
<td>5.11d</td>
</tr>
<tr>
<td>Wolf, Frank Louis</td>
<td>Elements of Probability and Statistics</td>
</tr>
<tr>
<td>Wolfe, Harold E.</td>
<td>Introduction to Non-Euclidean Geometry</td>
</tr>
<tr>
<td>Wright, E. M.</td>
<td>8.2</td>
</tr>
<tr>
<td>Wright, Harry Nable</td>
<td>First Course in the Theory of Numbers</td>
</tr>
<tr>
<td>Yaglom, Isaak M.</td>
<td>9.24</td>
</tr>
<tr>
<td>Yaglom, Isaak M.</td>
<td>and Boltyanski, B. G. Convex Figures</td>
</tr>
<tr>
<td>Young, J. W.</td>
<td>Projective Geometry</td>
</tr>
<tr>
<td>Zassenhaus, Hans J.</td>
<td>The Theory of Groups</td>
</tr>
<tr>
<td>Zuckerman, H. S.</td>
<td>8.7d</td>
</tr>
<tr>
<td>Zygmund, A.</td>
<td>3.24d</td>
</tr>
<tr>
<td>Zylstra, J.</td>
<td>2.17c</td>
</tr>
<tr>
<td>Zuckerman, H. S.</td>
<td>See Niven 8.7d</td>
</tr>
<tr>
<td>Zygmond, A.</td>
<td>3.24d</td>
</tr>
</tbody>
</table>

51