A study of the need for technician training in agriculture and welding at Yuba College.

By: Orum, Earl
Yuba Coll., Marysville, Calif.

PUB DATE 31 Aug 65

EDRS PRICE MF-$0.50 HC-$2.68 65P.

OBJECTIVES OF THE STUDY INCLUDED INVESTIGATION OF THE INTEREST OF LOCAL HIGH SCHOOL STUDENTS IN THESE OCCUPATIONS, ESTABLISHING THE NEEDS FOR PERSONS SO TRAINED, DETERMINING THE TYPE OF TRAINING NECESSARY, DEVELOPING THE CURRICULA, AND OBTAINING INFORMATION USEFUL FOR PLANNING FACILITIES AND NECESSARY EQUIPMENT. THE FOUR AREAS SPECIFICALLY CHOSEN FOR STUDY WERE AGRICULTURAL ENGINEERING TECHNOLOGY, AGRICULTURAL SCIENCE TECHNOLOGY, NURSERY AND LANDSCAPING TECHNOLOGY, AND WELDING TECHNOLOGY. JOB TITLES UNDER EACH OF THESE CATEGORIES ARE LISTED AND THE PROCEDURES USED (APPOINTING THE ADVISORY COMMITTEE, DEVELOPING SURVEY FORMS, ETC.) ARE DESCRIBED. THE STUDY LED TO THE RECOMMENDATIONS THAT PROGRAMS OF (1) NURSERY AND LANDSCAPING, (2) AGRICULTURAL ENGINEERING AND WELDING, AND (3) AGRICULTURAL SCIENCE BE DEVELOPED TO TRAIN STUDENTS AS TECHNICIANS AND THAT THEY BE DEVELOPED IN THAT ORDER WITH APPROPRIATE GUIDANCE AND COUNSELING AND FOLLOWUP PROGRAMS. SURVEY FORMS, COMMENTS, AND DESCRIPTIONS OF PROPOSED CURRICULA ARE INCLUDED. (JP)
A STUDY OF THE NEED FOR

TECHNICIAN TRAINING

IN

AGRICULTURE AND WELDING

AT

YUBA COLLEGE

By

EARL ORUM

Study Supervisor

Agriculture Department
A STUDY OF THE NEED FOR

TECHNICIAN TRAINING

IN

AGRICULTURE AND WELDING

AT

YUBA COLLEGE

Earl Orum, Study Supervisor

Yuba College
Marysville, California

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE
PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION
POSITION OR POLICY.

This study was cooperatively sponsored by Yuba College and the Vocational
Education Act of 1963

August 31, 1965
The importance of agriculture and the related agricultural industry to California, and specifically to Northern California, is a well accepted fact. The advancement in agriculture technology in the past decade has been made evident by the increase of agricultural products at the same time that there has been a decrease in both the land and the labor supply. These advances have prompted those in agriculture education to re-evaluate their programs and to provide training for those technician programs in agriculture as well as those in production agriculture. As advancement is made in agriculture technology, there is an ever increasing need for a better trained work force with more skills and technical knowledge than was previously required. The job opportunities and job requirements in the agriculture and welding technology fields in California - specifically in Northern California - prompted this study.

Appreciation is extended to the many businesses, farmers, and other individuals who cooperated in carrying out this study.

The Yuba College Agriculture Advisory Committee furnished valuable assistance in the preparation, interpretation, analysis, and recommendations of the study. For this assistance, appreciation is extended to these persons:

Louis Kurtz, Chairman
Sandy Beck
Buck Beeler
Lewis Clift
Russell Freemyers
Roy Landerman
Abel Leal
Carroll Moore
William Pattison
Leland Ruth

Appreciation is also extended to the following: Earl Orum, Study Supervisor, Yuba College Agriculture Department; Dr. Orville E. Thompson, Study Consultant, University of California, Davis; and to Jerry Shinkle, who conducted the personal interviews.

Appreciation is further expressed to the Board of Trustees and to the Yuba College Administration for the leadership and interest in developing and conducting this study.

George W. Vaught, Chairman
Applied Arts and Science Division
Yuba College
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>i</td>
</tr>
<tr>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Objectives and Justification</td>
<td>1</td>
</tr>
<tr>
<td>Scope and Limitations</td>
<td>3</td>
</tr>
<tr>
<td>Definition of a Technician</td>
<td>4</td>
</tr>
<tr>
<td>Review of Literature and Research</td>
<td>7</td>
</tr>
<tr>
<td>Procedures Used</td>
<td>9</td>
</tr>
<tr>
<td>II. Results of the High School Survey</td>
<td>12</td>
</tr>
<tr>
<td>III. Results of the Business Community Survey</td>
<td>18</td>
</tr>
<tr>
<td>The Firm and Its Employees</td>
<td>18</td>
</tr>
<tr>
<td>Areas of Specialized Training Necessary</td>
<td>25</td>
</tr>
<tr>
<td>General Education Requirements</td>
<td>27</td>
</tr>
<tr>
<td>IV. Analysis</td>
<td>30</td>
</tr>
<tr>
<td>Discussion</td>
<td>30</td>
</tr>
<tr>
<td>Summary and Implications</td>
<td>31</td>
</tr>
<tr>
<td>Recommendations</td>
<td>31</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>I. Survey Form</td>
<td>36</td>
</tr>
<tr>
<td>II. Comments</td>
<td>47</td>
</tr>
<tr>
<td>III. Proposed Curriculums</td>
<td>56</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table	Page
I. Number and Types of Firms Interviewed | 18
II. Employees | 19
III. Percentage of Technicians, Craftsmen and Professional People in Work Force | 20
IV. New Employees | 21
V. Amount and Type of Education Desired for Technicians | 22
VI. Types of Technical Training and Sources of Information | 23
VII. Need for Technician Programs | 24
VIII. Willingness to Cooperate | 24
CHAPTER I
INTRODUCTION

PURPOSE OF THE STUDY
To determine the need for technician training in agriculture and welding at Yuba College.

OBJECTIVES
1. To investigate the interest of local high school students in occupations in agriculture and welding.
2. To establish the need for persons trained in these occupations.
3. To determine the type of training necessary to prepare persons for careers as technicians in agriculture and welding.
4. To develop curriculums to perform the training.
5. To obtain information useful in planning facilities and equipment necessary for implementation of training.

JUSTIFICATION FOR STUDY
Many factors must be considered by the junior college administrator who contemplates the establishment of a technical education program in his school. He must have extensive and dependable information upon which to base his decisions.

In 1963 concern for technical education was expressed by the Yuba College Accreditation Team. In its report the following statements appeared:

The vocational-occupational function of the junior college appears to be the function most neglected at Yuba College. Little or no use is made of special advisory committees and it appears that the only true occupational programs offered are the business programs and vocational nursing. The previous committee suggested that occupational data via surveys or other suitable means be acquired and that an appropriate plan to coordinate all phases of vocational education be developed. The status of occupational education or training appears to be at the same point as the previous visit.
On October 22, 1964, an ad hoc "Subcommittee on Technology Curriculum" was appointed by the ad hoc Joint Committee to study the feasibility of initiating the following technology programs:

Agricultural Technology
Automotive Technology (probably including diesel)
Data Processing (probably programming phase)
Drafting Technology
Electronics Technology (general)
Engineering Aide
Machine Shop and Metals Technology
Real Estate and Certificate Program
Vocational Nursing
Welding Technology

The specific charge to the subcommittee included reporting to the Joint Committee the following information on each technology:

What is encompassed within this technology?
What are the present needs of society, especially that of California, for individuals trained in this technology?
Is this technology really appropriate for development at this college? Why or why not?
Which courses do we now have in the curriculum which lend themselves either as direct or service courses in this curriculum?
Which courses would need to be initiated to bring the program to minimum requirements for training students in each technology?
Which facilities does the college now have which lend themselves to use in these technologies?
Which additional facilities would have to be provided to bring the program to minimum requirements for training students in each technology?
What are the estimated costs in each case?
What order of PRIORITY does the Subcommittee recommend that the Joint Committee establish for development of the various technologies?
Subsequently the Administration approved the plan for the Agriculturally Department to undertake this study. Matching funds from the Vocational Education Act of 1963 made this study possible.

The general need for occupational education today is illustrated by Norman C. Harris in the following statement:

The national need for semi-professional and technician manpower is critical. The National Science Foundation in a 1961 study concluded that by 1970 the national need for technicians in industry alone would exceed 1,262,000. This figure, contrasted with the 630,000 employed in 1960, indicates that the supply must be doubled in the decade. Allowing for deaths and retirements, as well as for new demands, almost 68,000 new technicians would have to be educated and trained each year to meet the 1970 estimated demand. It is doubtful that the current annual rate of production of technicians from all sources [junior colleges, technical institutes, industry training programs, and armed services schools] exceeds 35,000. Further, other sectors of the economy, such as government, education, health fields, employed another 240,000 technicians in 1960, and this figure will probably be doubled in 1970 also. Most certainly there is a challenge here for the junior colleges.

SCOPE OF THE STUDY

Since the field of agriculture is so broad and inclusive, it was decided that it would not be feasible to study all of the technical job opportunities in agriculture. Instead, it was concluded that the study be confined to three areas which show definite need in the community, are adaptable to present facilities and equipment, and are related to the curriculum presently being offered by the department.

The present welding courses are occupational in intent and are taught by the staff of the Agriculture Department. Hence, it was decided to include welding technicians in the study.

The four areas specifically chosen for this study then were these:

Agricultural Engineering Technician
Agricultural Science Technician
Nursery and Landscaping Technician
Welding Technician

LIMITATIONS OF THE STUDY

The primary service area of Yuba College which was surveyed included the counties of Butte, Colusa, Glenn, Sutter, and Yuba.

A secondary area included the metropolitan districts surrounding Sacramento, San Francisco Bay area, and the San Joaquin Valley. Firms from the following counties were included in the survey: Alameda, Contra Costa, Napa, Placer, Sacramento, San Francisco, San Joaquin, Santa Clara, Solano, and Yolo.

These areas were studied because of:

1. the mobility of today's population.
2. the centralization of managerial offices of many cooperatives and corporations in or near large metropolitan areas. (Many of these have branch offices for either purchasing or selling in the primary areas.)
3. the employment opportunities in the metropolitan areas for persons interested in sales of goods and services, and for ultimate placement of technicians. (See Figure 1.)

WHAT IS A TECHNICIAN?

There is a wide range of technical occupations. Many technicians work at highly sophisticated levels in research, design, and prototype production. Theoretical knowledge approaching that of the professions, combined with some practical "know-how" about instruments, tools, and laboratory equipment is required for such work. Men and women in these jobs are coming to be called "semi-professional technicians" and college level educational programs are required for their education. At the other end of the technical job spectrum are those occupations which demand a high degree of manual skill and ingenuity but require only a modest background in science, mathematics, and technical theory. Persons who hold these jobs are commonly called "highly skilled technicians". Many persons reach this level through on-the-job or armed services training programs, and a few via technical high schools and vocational schools, but the main avenue of the future will probably be through junior colleges and technical institutes since college study will be increasingly required in the future.

It is important to remember that there are many degrees and kinds of technicians between these two extremes. The gap between the professions and the skilled worker cannot be filled by one kind or level of technician - a great variety of talents and specialized abilities is needed.2 (See Figure 2.)

2. Harris, p. 35.
MAP OF THE AREA SURVEYED

Primary Area Counties
• Butte
• Colusa
• Glenn
• Sutter
• Yuba

Secondary Area (shaded)
Includes counties of:
• Alameda
• Contra Costa
• Napa
• Placer
• Sacramento
• San Francisco
• San Joaquin
• Santa Clara
• Solano
• Yolo

Figure 1.
Figure 2.

OCCUPATIONAL TRENDS AND EDUCATIONAL REQUIREMENTS
(U.S. Labor Force—1930 and 1970)

Grade School or Less	High Sch. and/or Voc. Sch.	College
58 | 32 | 10

<table>
<thead>
<tr>
<th>Percents</th>
<th>Unskilled</th>
<th>Semiskilled and Service</th>
<th>Skilled</th>
<th>Clerical and Sales</th>
<th>Semi-Prof. and Managerial</th>
<th>Professional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32</td>
<td>25</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

No Collar	Blue Collar	White Collar
5 | 21 | 12

Shift is indicative of increased job complexity in all categories

1970 Occupational Spectrum (B.L.S. Estimates)

1970 Required Educational Spectrum (Estimates from Center for the Study of Higher Education, University of Michigan)

3. Harris, p. 27

Education for the Vast Middle Group of High School Graduates

Associate Degree Programs in:
- Community Junior Colleges
- Technical Institutes
- University Extension Centers
- Business Colleges

Baccalaureate Degree and Graduate Study Programs

No Col.	Blue Collar	Clerical and Sales	Semiprofessional and Technical	Managerial	Professional
5 | 21 | 12 | 20 | 20 | 10 | 12

Education for the Vast Middle Group of High School Graduates
REVIEW OF LITERATURE AND RESEARCH

Agricultural Engineering Technician

Job titles and positions typical of this group include the following:

Draftsman
Conservation Technician
Engineering Technician
Equipment Specialist
Construction Superintendent

This group includes those workers trained and qualified for work requiring the understanding and use of mechanical, chemical, physical, and engineering concepts in agricultural applications.4

Knowledge and skill in the mechanical field is the primary requirement for agricultural engineering technicians. This includes a knowledge of basic shop techniques, farm power, machinery, irrigation equipment, and electricity. Of special interest in this employment area is the need for a sound foundation in mathematics - an important skill bearing on the proficiency of the engineering technician. Because much of the agricultural equipment is directly involved in farm operations, adequate knowledge of crops, soils, and irrigation is an essential recommendation.5

Agricultural Science Technician

Job titles and positions typical of this group include the following:

Fieldman
Farm Supervisor
Ranch Foreman
Field Representative
Herdsman
Range Conservationist

Workers in this group should possess technical competence in and be involved primarily with the actual production of agricultural commodities at the farm and ranch level.\(^6\)

These technicians must be versatile. Farm experience is of extreme importance. Nearly all need training in agricultural engineering to some extent. In addition to an understanding of production agriculture, these people need training in agricultural business management and economics. Anyone intending to be a fieldman needs also to understand the fundamentals of disease and pest control and soil management. For ranch foreman or supervisors, skill in handling labor is a job requirement. Certain forestry technicians are included in this group.\(^7\)

Nursery and Landscaping Technician

Job titles and positions typical of this group include the following:

- Landscape Design Technician
- Park Leadman
- Landscape Foreman
- Nurseryman
- Plant Specialist

Included in this group are those trained and qualified in the technical aspects of producing nursery and landscaping materials, of using plants and other landscaping material in designing, and of planting and supervising the construction activities associated with landscaping.\(^8\)

Individuals qualifying for this occupation need, first of all, an understanding of plant materials and adaptation characteristics for the area in which these plants are grown. Secondly, they require a sound understanding of moisture and fertility requirements as well as of disease and pest control problems associated with these plant materials. Finally, they need some training in the field of landscape arts. All of this is required because the ability to give frequent, sound advice is quite evident as one of the prime requisites for success in the field. Further recommendations include basic sales and business training. Some shop skills can be added as being very desirable.\(^9\)

Welding Technicians

Job titles and positions typical of this group include the following:

- Welder
- Specialist Welder
- Welding Supervisor
- Welding Foreman
- Welding Inspector
- Welding Analyst

Due to the interest shown in the welding program presently being conducted by the college, the intent was to investigate the possibility of developing technician programs to meet the occupational needs of those interested in a career in this field. Present enrollment in welding courses included 60-70 day students and 120-130 adults in evening classes. Many of these, particularly the adults, had indicated an interest in becoming certified welders. Yuba College wishes to develop a program to meet the needs of such students and to make it possible for them to gain employment in the welding field.

The ultimate aim of the college is to develop a curriculum which will enable students to attain a level of training between the craftsman and the engineer. Persons trained in this manner would be welding technicians. They would have both the competency to perform with the skill of the craftsman and the understanding and knowledge necessary to assist the engineer in planning a job - namely, selecting materials, planning the layout and design, and, ultimately, employing the principles of construction.

PROCEDURES USED

1. **Appointing an Advisory Committee**

 The Advisory Committee members for the study were selected so as to include the following:

 a. individuals well acquainted with the problems confronting those desiring to employ technicians in agriculture and welding.
 b. persons who were knowledgeable in each special area of the study.
 c. persons who understood the broad spectrum of opportunities available and the type of training required.
The following persons meeting the above criteria were named to the committee:

Louis Kurtz, Chairman, State Department of Employment, Marysville, California

Sandy Beck, Director of Vocational Agriculture, Yuba City Union High School, Yuba City, California

Buck Beeler, Owner - Ford Tractor Agency, Marysville, California

Lewis Cliff, Victor Welding Equipment, Yuba City, California

Russell Freemyers, Chairman, Subcommittee on Technology Curriculum, Yuba College - Drafting Instructor

Roy Landerman, California Canning Peach Ass'n., Yuba City, California

Abel Leal, Manager, Farm Labor Office, State Department of Employment, Marysville, California

Carroll Moore, Moore's Welding Supply, Chico and Sacramento, California

William Pattison, Owner, Yuba Sutter Landscaping, Yuba City, California

Leland Ruth, Director of Information, Agricultural Council of California, Sacramento, California

Specifically, the main purposes of the Advisory Committee were to give guidance to the staff of the Agriculture Department and to

a. help formulate a plan for this study.
b. provide names and addresses of firms to be contacted.
c. help evaluate data obtained and help plan methods to be used.
d. provide advice in areas of specialization.
e. help prepare the list of recommendations from the study and evaluate the implications of the study.
f. disseminate information to interested persons and organizations interested in the development of technical educational programs in these areas.
2. Assembling Lists of Firms to be Contacted

The first major task of the Advisory Committee was for each member to compile a list of prospective candidates to interview, primarily from his own area of specialization. Agricultural commissioners, farm advisors, and teachers of vocational agriculture in the five-county area were also requested to provide names and addresses of firms.

3. Developing the Survey Forms

The purpose of the first form developed was to attempt to determine the interests of high school students in the area of technical education. (See Chapter II.)

A second form, composed of three parts, was developed to obtain information from the firms to be interviewed. (See Chapter III.)

a. Part I of the survey form included questions of a general nature about the firm and its employees. (See Appendix I.)

b. Part II was designed to obtain information on the type of training necessary for each area of specialization. (See Appendix I.)

c. Part III concerned general educational requirements. (See Appendix I.)

4. Selecting an Interviewer

From the beginning, it was felt that the most valid responses would be obtained by using a full-time interviewer rather than mailing questionnaires to the firms. Yuba College was fortunate in being able to hire a former Yuba College student and Fresno State College graduate to conduct the interviews.

5. Conducting a Pilot Study

After developing the survey forms, the interviewer and study supervisor prepared a procedure sheet for conducting the surveys. They then surveyed several firms and reported the results to the Advisory Committee. The forms were further refined, and then again reviewed by the Committee. The Committee determined that the responses received during the pilot study were valid.

6. Conducting the Survey

An advance letter was sent to each firm explaining the purpose of the survey and expressing the desire to interview a representative or representatives of the firm. The letter was followed by a telephone call to establish the time and place of the interview. The results of the interviews were tabulated at the end of each day, whenever possible.
CHAPTER II

RESULTS OF THE HIGH SCHOOL SURVEY

Six hundred seventeen vocational agriculture students from high schools in the primary five-county area were surveyed to determine their opinions and interests concerning occupational and technical education. The survey was administered by the vocational agriculture instructors in these schools.

Before they filled out the survey form, the differences between academic, technical, and occupational types of training were fully explained to the students by the instructor.

Following is a summary of student responses with the results expressed in percentages:

A. WHAT ARE YOUR ULTIMATE EDUCATIONAL PLANS?

<table>
<thead>
<tr>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quit school at 16</td>
<td>0.6</td>
</tr>
<tr>
<td>Finish high school</td>
<td>22.8</td>
</tr>
<tr>
<td>Attend junior college</td>
<td>40.4</td>
</tr>
<tr>
<td>Attend state college</td>
<td>21.6</td>
</tr>
<tr>
<td>Attend University of California</td>
<td>6.8</td>
</tr>
<tr>
<td>Join Service or get a job</td>
<td>7.8</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

B. WHAT IS YOUR OPINION OF SCHOOL IN GENERAL?

<table>
<thead>
<tr>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>I do not like it</td>
<td>9.5</td>
</tr>
<tr>
<td>Not interested in subjects</td>
<td>8.3</td>
</tr>
<tr>
<td>Not able to learn what I would like to</td>
<td>11.4</td>
</tr>
<tr>
<td>Most subjects are interesting</td>
<td>44.0</td>
</tr>
<tr>
<td>I like school</td>
<td>26.8</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>
C. WHICH SUBJECTS DO YOU LIKE THE BEST?
(Students were asked to choose 3)

<table>
<thead>
<tr>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>12.6</td>
</tr>
<tr>
<td>Mathematics</td>
<td>14.7</td>
</tr>
<tr>
<td>Social Science</td>
<td>10.3</td>
</tr>
<tr>
<td>Natural & Physical Sciences</td>
<td>12.1</td>
</tr>
<tr>
<td>Industrial Arts</td>
<td>18.8</td>
</tr>
<tr>
<td>Languages</td>
<td>0.3</td>
</tr>
<tr>
<td>Agriculture</td>
<td>31.2</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

D. WHICH SUBJECTS DO YOU LIKE THE LEAST?
(Students were asked to choose 3)

<table>
<thead>
<tr>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>21.6</td>
</tr>
<tr>
<td>Mathematics</td>
<td>17.3</td>
</tr>
<tr>
<td>Social Science</td>
<td>14.4</td>
</tr>
<tr>
<td>Natural & Physical Sciences</td>
<td>12.5</td>
</tr>
<tr>
<td>Industrial Arts</td>
<td>7.6</td>
</tr>
<tr>
<td>Languages</td>
<td>22.2</td>
</tr>
<tr>
<td>Agriculture</td>
<td>4.4</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

E. HOW DIFFICULT IS SCHOOL FOR YOU?

<table>
<thead>
<tr>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very easy</td>
<td>2.5</td>
</tr>
<tr>
<td>Fairly easy</td>
<td>25.1</td>
</tr>
<tr>
<td>Just average</td>
<td>49.7</td>
</tr>
<tr>
<td>Fairly hard</td>
<td>20.5</td>
</tr>
<tr>
<td>Very hard</td>
<td>2.2</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>
The students were asked how they rated their ability to solve problems and work with their hands. They were also asked what types of work they wished to do for the rest of their lives.

The following is a summary of their responses:

F. WHAT IS YOUR OVER-ALL GRADE POINT AVERAGE?

<table>
<thead>
<tr>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.4</td>
</tr>
<tr>
<td>B</td>
<td>26.7</td>
</tr>
<tr>
<td>C</td>
<td>60.7</td>
</tr>
<tr>
<td>D or less</td>
<td>11.2</td>
</tr>
</tbody>
</table>

100.0

G. WHAT IS YOUR ABILITY TO WORK WITH YOUR HANDS?

<table>
<thead>
<tr>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>50.3</td>
</tr>
<tr>
<td>Average</td>
<td>48.2</td>
</tr>
<tr>
<td>Poor</td>
<td>1.5</td>
</tr>
</tbody>
</table>

100.0

H. WHAT IS YOUR ABILITY TO SOLVE PROBLEMS?

<table>
<thead>
<tr>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>22.1</td>
</tr>
<tr>
<td>Average</td>
<td>68.8</td>
</tr>
<tr>
<td>Poor</td>
<td>9.1</td>
</tr>
</tbody>
</table>

100.0

I. WHAT WOULD YOU LIKE TO DO FOR YOUR LIFE'S WORK?

<table>
<thead>
<tr>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve problems</td>
<td>10.4</td>
</tr>
<tr>
<td>Work with hands</td>
<td>49.4</td>
</tr>
<tr>
<td>Some of both</td>
<td>40.2</td>
</tr>
</tbody>
</table>

100.0
The next two questions were used to illustrate (1) the student's judgment of his ability to work with abstract ideas or to conceive new methods and (2) his ability to manipulate materials in the actual process of construction.

J. CREATIVE ABILITY?

<table>
<thead>
<tr>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>23.6</td>
</tr>
<tr>
<td>Average</td>
<td>66.4</td>
</tr>
<tr>
<td>Poor</td>
<td>10.0</td>
</tr>
</tbody>
</table>

K. MANIPULATIVE ABILITY?

<table>
<thead>
<tr>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>35.3</td>
</tr>
<tr>
<td>Average</td>
<td>56.5</td>
</tr>
<tr>
<td>Poor</td>
<td>8.2</td>
</tr>
</tbody>
</table>

The definitions of scientist, engineer, technician and craftsman were carefully explained to the students by the instructor. In addition, they were told the type of training necessary, the length and extent of this training, and the job positions available in each category. They were then asked to make responses to the following questions:

L. WHAT IS YOUR INTEREST IN EACH OF THE FOLLOWING AREAS?

<table>
<thead>
<tr>
<th>Responses</th>
<th>Scientist or Engineer</th>
<th>Technician</th>
<th>Craftsman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not have the ability</td>
<td>22.3</td>
<td>15.4</td>
<td>8.7</td>
</tr>
<tr>
<td>Am not interested</td>
<td>33.8</td>
<td>30.9</td>
<td>32.1</td>
</tr>
<tr>
<td>Am interested</td>
<td>25.7</td>
<td>27.9</td>
<td>25.6</td>
</tr>
<tr>
<td>Do have the ability</td>
<td>18.2</td>
<td>25.8</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
SUMMARY AND CONCLUSION

The survey forms were filled out by the students. Their choices of the responses offered being shown by check (V) marks. A representative sampling was taken consisting of freshman through the seniors.

It is recognized that a survey of this type has limitations: the clarity of the questions and lack of understanding on the part of the student must be taken into consideration. By and large, however, it is felt that the majority of those responding made an honest effort to select the responses they felt expressed their ideas. The fact that many remarks, although unsolicited, were written in the comments column shows the earnestness of the students to give the proper response.

An analysis of the percentages reveal some interesting points:

1. nearly 70% of the students who were enrolled in courses that once were considered to be vocational in nature, or training for a job, are now planning to go on to college. Forty percent of the total planned to attend a junior college. This quite clearly indicated that those students were concerned about having the proper amount and type of training in order to attain the level of achievement they considered desirable for proper job placement.

2. over 70% indicated that most subjects were interesting and that they liked school.

3. when asked to select three courses they liked best, 31% of the checks were for agriculture. (Note: 31% indicates that 574 of 1,851 checks were for agriculture.)

4. ninety-five percent indicated that schoolwork ranged from fairly easy to fairly hard. Nearly one-half of the total said that schoolwork was just average in difficulty. This correlates with the fact that 61% indicated a grade point average of "C", 75% marked "B" or better, and 11% marked "D" or less.

5. although the students seemed to rate themselves high (91% average or above) in ability to solve problems, only 10% indicated a desire to do this for their life's work.

6. when asked about their creative and manipulative ability, 90% felt they were average or above in those areas. Yet, when asked if they were interested, or if they had the ability to become scientists or engineers, about 45% said yes, whereas in the areas concerning their having the ability or desire to become technicians or craftsmen, 54% (technicians) and 59% (craftsmen) said yes.
The primary purpose of this questionnaire was an attempt to learn what judgments students in vocational high school courses would make concerning their educational aims and preparation for the world of work. Secondarily, it was hoped that the students' exposure to the different ability and achievement levels of vocations included in the questionnaire gave them a better understanding of the opportunities available through higher education.
CHAPTER III
RESULTS OF THE BUSINESS COMMUNITY SURVEY

PART I. THE FIRM AND ITS EMPLOYEES

One hundred thirteen business firms were interviewed. Following is a breakdown of the persons interviewed and the location of the firms.

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>MANAGERS</th>
<th>EMPLOYEES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>42</td>
<td>26</td>
<td>108</td>
</tr>
<tr>
<td>1. Butte</td>
<td>5</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>2. Colusa</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3. Glenn</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4. Sutter</td>
<td>15</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>5. Yuba</td>
<td>3</td>
<td>4</td>
<td>14</td>
</tr>
</tbody>
</table>

The person interviewed in most cases was the manager or a person in a managerial position. It was felt this level of representative could more readily supply the type of information sought. An attempt was made to interview representatives of the majority of the firms in the primary area, and at the same time, obtain a sampling of similar firms in the secondary area. The purpose was to determine whether or not the needs were similar. (See Table I.)
It was found that the majority of firms included in the study employed fewer than twenty people on a permanent basis. About one third of the agricultural science firms and one fourth of the agricultural engineering, nursery, and welding firms employed more than twenty people permanently. This indicated that most of them were fairly small businesses.

Most of the represented firms employed a relatively small number of seasonal workers, with the exception of the agricultural science firms where about one half employed twenty-one or more people during seasonal peaks of business. Approximately 83% of all firms hired five or less new permanent employees each year. The larger firms employed proportionately more. Nearly 70% employed five or fewer new seasonal employees each year. The exception was those firms, such as canners, which required a larger seasonal work forces. (See Table II.)

Table II

<table>
<thead>
<tr>
<th>Types of Firms</th>
<th>Ag. Science</th>
<th>Ag. Engineer</th>
<th>Nursery</th>
<th>Welding</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Employees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>6-10</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>11-20</td>
<td>12</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>21 & over</td>
<td>15</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>Seasonal Employees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>17</td>
<td>22</td>
<td>12</td>
<td>15</td>
<td>66</td>
</tr>
<tr>
<td>6-10</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>11-20</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>21 & over</td>
<td>20</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>New Permanent People Employed Each Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>34</td>
<td>20</td>
<td>16</td>
<td>18</td>
<td>94</td>
</tr>
<tr>
<td>6-10</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>11 & over</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>New Seasonal People Employed Each Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>22</td>
<td>24</td>
<td>15</td>
<td>16</td>
<td>77</td>
</tr>
<tr>
<td>6-10</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>11 & over</td>
<td>18</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>26</td>
</tr>
</tbody>
</table>
Over one half of the firms reported that 26% or more of their permanent employees were technicians while 102 firms said that 10% or less of their seasonal work force was composed of technicians. This indicated technician-type jobs provided more stable employment.

TABLE III

Percentage of Technicians, Craftsmen and Professional People in Work Force

<table>
<thead>
<tr>
<th>Types of Firms</th>
<th>Ag. Scien.</th>
<th>Ag. Engine.</th>
<th>Nursery</th>
<th>Welding</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Technicians in Permanent Work Force</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10% of total force</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>11-25% of total force</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>26% of total force & over</td>
<td>24</td>
<td>16</td>
<td>10</td>
<td>8</td>
<td>58</td>
</tr>
<tr>
<td>Percent of Technicians in Seasonal Work Force</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10% of total force</td>
<td>37</td>
<td>25</td>
<td>18</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>11-25% of total force</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26% of total force & over</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Percent of Craftsmen in Permanent Work Force</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10% of total force</td>
<td>32</td>
<td>11</td>
<td>14</td>
<td>7</td>
<td>64</td>
</tr>
<tr>
<td>11-25% of total force</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>26% of total force & over</td>
<td>4</td>
<td>14</td>
<td>1</td>
<td>12</td>
<td>31</td>
</tr>
<tr>
<td>Percent of Craftsmen in Seasonal Work Force</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10% of total force</td>
<td>36</td>
<td>27</td>
<td>17</td>
<td>11</td>
<td>91</td>
</tr>
<tr>
<td>11-25% of total force</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>26% of total force & over</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Percent of Professional People in Permanent Work Force</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10% of total force</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>11-25% of total force</td>
<td>13</td>
<td>14</td>
<td>7</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>26% of total force & over</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>47</td>
</tr>
<tr>
<td>Percent of Professional People in Seasonal Work Force</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10% of total force</td>
<td>37</td>
<td>27</td>
<td>20</td>
<td>19</td>
<td>103</td>
</tr>
<tr>
<td>11-25% of total force</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>26% of total force & over</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The majority of the agricultural science and nursery firms reported that 10% or less of their employees were craftsmen while more than one half of those interviewed in agricultural engineering and welding indicated 26% or more of their employees were craftsmen.

As a general rule, if the firm was quite large, the percentage of professional people or managerial-type positions was smaller than was the case for firms employing fewer than twenty people. In these smaller firms, on the other hand, 26% or more of the total work force was composed of professional people. (See Table III.)

When asked what the employment prospects for the future were, 60% of the firms felt the prospects were rising. About 33% felt that employment prospects were remaining constant. Only seven of 113 firms felt employment prospects were falling.

A large majority of firms indicated that most of their new employees were persons that came to their business seeking a job on their own. (See Table IV.)

<table>
<thead>
<tr>
<th>TABLE IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types of Firms</td>
</tr>
<tr>
<td>NEW EMPLOYEES</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Employment Prospects</td>
</tr>
<tr>
<td>Rising</td>
</tr>
<tr>
<td>Remaining Constant</td>
</tr>
<tr>
<td>Falling</td>
</tr>
<tr>
<td>Methods of Obtaining New Employees</td>
</tr>
<tr>
<td>(Checked more than one)</td>
</tr>
<tr>
<td>State Employment Service</td>
</tr>
<tr>
<td>Private Agency</td>
</tr>
<tr>
<td>Advertising</td>
</tr>
<tr>
<td>Persons Seeking Jobs on Own</td>
</tr>
<tr>
<td>Other Sources</td>
</tr>
</tbody>
</table>
Persons directly concerned with the educational development of technicians were asked what amount and type of training was needed by technicians. They were also asked whether they felt training of technicians should be specifically for the job or for a degree. Table V shows the results of the responses to these questions.

Seventy-five percent felt technicians should have some college training. About 45% of those interviewed felt a junior college two-year program would provide the desired type of training. Only four firms felt that emphasis should be placed on obtaining a degree as compared to specific job training. (See Comments- Appendix II.)

TABLE V

<table>
<thead>
<tr>
<th>AMOUNT AND TYPE OF EDUCATION DESIRED FOR TECHNICIANS</th>
<th>Types of Firms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age. Science</td>
</tr>
<tr>
<td>Amount of Education Desired for Technicians</td>
<td></td>
</tr>
<tr>
<td>College Graduate</td>
<td>17</td>
</tr>
<tr>
<td>Junior College Graduate</td>
<td>18</td>
</tr>
<tr>
<td>Some College</td>
<td>5</td>
</tr>
<tr>
<td>High School</td>
<td>1</td>
</tr>
<tr>
<td>No High School</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
</tr>
<tr>
<td>Should Emphasis Be Placed On Obtaining a Degree?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>39</td>
</tr>
</tbody>
</table>
The majority of representatives of firms were of the opinion that they presently supply on-the-job training for their new technicians, mainly because there is no other type of training available. The exception was agricultural engineering, where most firms sent their employees to company training schools. Their criticism concerning company training schools was that most employees are able to learn how something is done because the emphasis is put on performing a specific skill rather than attempting to give the employee a broader understanding of why it is done that way.

A variety of sources of technical information was available to employees, but the majority of the managers seemed to feel the employees gained the most from their immediate boss or their fellow workers. (See Table VI.)

<table>
<thead>
<tr>
<th>TABLE VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types of Firms</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Types of Technical Training and Sources of Information</td>
</tr>
<tr>
<td>Kinds of Training Provided by Companies</td>
</tr>
<tr>
<td>On-the-Job Training</td>
</tr>
<tr>
<td>Company School</td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Sources of Technical Information</td>
</tr>
<tr>
<td>Agricultural Colleges</td>
</tr>
<tr>
<td>Agricultural Agencies</td>
</tr>
<tr>
<td>Company Publications</td>
</tr>
<tr>
<td>Trade Publications</td>
</tr>
<tr>
<td>Night School</td>
</tr>
<tr>
<td>Immediate Boss</td>
</tr>
<tr>
<td>Self or Fellow Workers</td>
</tr>
<tr>
<td>Other Sources</td>
</tr>
</tbody>
</table>
The majority of the firms felt there was a definite need for a technician-training program as is indicated in Table VII.

TABLE VII

<table>
<thead>
<tr>
<th>Types of Firms</th>
<th>Ag. Science</th>
<th>Ag. Engineer</th>
<th>Nursery</th>
<th>Welding</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is There a Need for a Technician Program?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>31</td>
<td>24</td>
<td>19</td>
<td>19</td>
<td>93</td>
</tr>
<tr>
<td>No</td>
<td>11</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>

Nearly all of those interviewed indicated a willingness on the part of the firms they represented to cooperate in a training program by making available their facilities, equipment, and specialists to help the college. (See Table VIII.)

TABLE VIII

<table>
<thead>
<tr>
<th>Types of Firms</th>
<th>Ag. Science</th>
<th>Ag. Engineer</th>
<th>Nursery</th>
<th>Welding</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will your Firm Cooperate in This Program? (Field Trips, Work Experience, Provide Instructional Aids)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>39</td>
<td>28</td>
<td>20</td>
<td>18</td>
<td>105</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
PART II. AREAS OF SPECIALIZED TRAINING NECESSARY

Part II of the survey form was designed so that each area of specialization had a separate page. All of the possible types of courses that could be offered, with a brief description of each, were listed on this part of the survey form.

The persons interviewed were to number the five most important courses, 1, 2, 3, 4, 5, in order of importance. The respondents were asked to check (V) any other courses they felt would be valuable. When tabulating the results, a weighted value was given to the numbers, as indicated:

<table>
<thead>
<tr>
<th>Numbers Assigned or Check (V)</th>
<th>Weighted Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>(V)</td>
<td>1</td>
</tr>
</tbody>
</table>

The courses having the highest weighted numerical value, after tabulating all of the results, would be the course most desirable to include in the curriculum.

Following are lists of those courses, and their weighted numerical values, as selected by the respondents:

AGRICULTURAL SCIENCE

Courses Listed in Order of Importance and Weighted Numerical Value for Each

<table>
<thead>
<tr>
<th>Course</th>
<th>Score</th>
<th>Course</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fertilizers & Sprays</td>
<td>139</td>
<td>8. Livestock Diseases & Parasites</td>
<td>48</td>
</tr>
<tr>
<td>7. Agricultural Projects</td>
<td>72</td>
<td>14. Other</td>
<td>84</td>
</tr>
</tbody>
</table>
AGRICULTURAL ENGINEERING

<table>
<thead>
<tr>
<th>Course</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Agricultural Mechanical Skills</td>
<td>114</td>
</tr>
<tr>
<td>2. Agricultural Machinery</td>
<td>95</td>
</tr>
<tr>
<td>3. Hydraulics</td>
<td>86</td>
</tr>
<tr>
<td>4. Agricultural Tractors</td>
<td>82</td>
</tr>
<tr>
<td>5. Agricultural Welding</td>
<td>62</td>
</tr>
<tr>
<td>6. Agricultural Power & Plumbing & Electricity</td>
<td>55</td>
</tr>
<tr>
<td>7. Irrigation & Drainage</td>
<td>49</td>
</tr>
<tr>
<td>8. Agricutural Plumbing</td>
<td>39</td>
</tr>
<tr>
<td>9. Drafting</td>
<td>39</td>
</tr>
<tr>
<td>10. Agricultural Surveying</td>
<td>34</td>
</tr>
<tr>
<td>11. Agricultural Processing & Equipment</td>
<td>24</td>
</tr>
<tr>
<td>12. Agricultural Buildings & Equipment</td>
<td>14</td>
</tr>
<tr>
<td>13. Drafting II</td>
<td>10</td>
</tr>
<tr>
<td>14. Other</td>
<td>20</td>
</tr>
</tbody>
</table>

NURSERY AND LANDSCAPING

<table>
<thead>
<tr>
<th>Course</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Plant Science</td>
<td>71</td>
</tr>
<tr>
<td>2. Fertilizers & Sprays</td>
<td>71</td>
</tr>
<tr>
<td>3. Nursery Plant Identification & Uses</td>
<td>68</td>
</tr>
<tr>
<td>4. Plant Diseases & Pests</td>
<td>66</td>
</tr>
<tr>
<td>5. Landscape Management</td>
<td>42</td>
</tr>
<tr>
<td>6. Landscape Design</td>
<td>41</td>
</tr>
<tr>
<td>7. Soil Science</td>
<td>41</td>
</tr>
<tr>
<td>8. Nursery Practices & Management & Electricity</td>
<td>37</td>
</tr>
<tr>
<td>9. Landscape Contracting</td>
<td>29</td>
</tr>
<tr>
<td>10. Farm Mechanics</td>
<td>21</td>
</tr>
<tr>
<td>11. Agricultural Projects</td>
<td>18</td>
</tr>
<tr>
<td>12. Farm Accounting</td>
<td>16</td>
</tr>
<tr>
<td>13. Drafting</td>
<td>13</td>
</tr>
<tr>
<td>14. Farm Management</td>
<td>13</td>
</tr>
<tr>
<td>15. Greenhouse Management</td>
<td>12</td>
</tr>
<tr>
<td>16. Farm Tractors</td>
<td>12</td>
</tr>
<tr>
<td>17. Nursery, Plumbing</td>
<td>11</td>
</tr>
<tr>
<td>18. Other</td>
<td>19</td>
</tr>
</tbody>
</table>

WELDING

<table>
<thead>
<tr>
<th>Course</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Arc Welding II</td>
<td>120</td>
</tr>
<tr>
<td>2. Arc Welding I</td>
<td>116</td>
</tr>
<tr>
<td>3. Welding Processes</td>
<td>112</td>
</tr>
<tr>
<td>4. Acetylene Welding I</td>
<td>110</td>
</tr>
<tr>
<td>5. Acetylene Welding II</td>
<td>109</td>
</tr>
<tr>
<td>6. Advanced Arc Welding</td>
<td>94</td>
</tr>
<tr>
<td>7. Fabrication</td>
<td>75</td>
</tr>
<tr>
<td>8. Practical Experience</td>
<td>71</td>
</tr>
<tr>
<td>9. Properties of Materials</td>
<td>64</td>
</tr>
<tr>
<td>10. Automatic & Semi-Automatic Processes</td>
<td>51</td>
</tr>
<tr>
<td>11. Metallurgy & Heat Treating</td>
<td>50</td>
</tr>
<tr>
<td>12. Drafting I</td>
<td>45</td>
</tr>
<tr>
<td>13. Drafting II</td>
<td>37</td>
</tr>
<tr>
<td>14. Destructive & Non-Destructive Testing</td>
<td>31</td>
</tr>
<tr>
<td>15. Advanced Acetylene Welding</td>
<td>30</td>
</tr>
<tr>
<td>16. Other</td>
<td>15</td>
</tr>
</tbody>
</table>

-26-
Most respondents also commented relative to the type of training that was needed, and their comments are in Appendix II.

PART III. GENERAL EDUCATION REQUIREMENTS

All firms were asked to make a judgment on what types of courses should be used to further the full educational development of the prospective technician. The same method of numerically weighting their responses as was used in Part II produced the following results:

<table>
<thead>
<tr>
<th>AGRICULTURAL SCIENCE</th>
<th>Score</th>
<th>SCIENTES</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHEMATICS</td>
<td></td>
<td>SCIENCES</td>
<td></td>
</tr>
<tr>
<td>1. Mathematics, general</td>
<td>222</td>
<td>1. Biology</td>
<td>179</td>
</tr>
<tr>
<td>2. Elementary Algebra</td>
<td>123</td>
<td>2. Botany</td>
<td>122</td>
</tr>
<tr>
<td>3. Plane Geometry</td>
<td>87</td>
<td>3. Inorganic Chemistry</td>
<td>118</td>
</tr>
<tr>
<td>5. Analytic Geometry or Calculus</td>
<td>18</td>
<td>5. Physics</td>
<td>72</td>
</tr>
<tr>
<td>7. Descriptive Geometry</td>
<td>6</td>
<td>7. Zoology</td>
<td>20</td>
</tr>
<tr>
<td>8. Other</td>
<td>7</td>
<td>9. Other</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GENERAL SCORE</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. English & Writing</td>
<td>173</td>
</tr>
<tr>
<td>2. Basic Economics</td>
<td>170</td>
</tr>
<tr>
<td>3. Speech</td>
<td>129</td>
</tr>
<tr>
<td>4. Psychology</td>
<td>78</td>
</tr>
<tr>
<td>5. Political Science</td>
<td>49</td>
</tr>
<tr>
<td>6. Typing</td>
<td>35</td>
</tr>
<tr>
<td>7. Sociology</td>
<td>8</td>
</tr>
<tr>
<td>8. Other</td>
<td>58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AGRICULTURAL ENGINEERING</th>
<th>Score</th>
<th>SCIENTES</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHEMATICS</td>
<td></td>
<td>SCIENCES</td>
<td></td>
</tr>
<tr>
<td>1. Mathematics, general</td>
<td>168</td>
<td>1. Physics</td>
<td>111</td>
</tr>
<tr>
<td>2. Elementary Algebra</td>
<td>85</td>
<td>2. Botany</td>
<td>46</td>
</tr>
<tr>
<td>4. Descriptive Geometry</td>
<td>22</td>
<td>4. Biology</td>
<td>34</td>
</tr>
<tr>
<td>5. Advanced Algebra</td>
<td>20</td>
<td>5. Physical Science</td>
<td>36</td>
</tr>
<tr>
<td>6. Analytic Geometry or Calculus</td>
<td>10</td>
<td>6. Inorganic Chemistry</td>
<td>28</td>
</tr>
<tr>
<td>7. Plane Trigonometry</td>
<td>9</td>
<td>7. Zoology</td>
<td>8</td>
</tr>
<tr>
<td>8. Other</td>
<td>10</td>
<td>8. Advanced Sciences</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Other</td>
<td>0</td>
</tr>
</tbody>
</table>
General

<table>
<thead>
<tr>
<th>Course</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>English & Writing</td>
<td>120</td>
</tr>
<tr>
<td>Speech</td>
<td>114</td>
</tr>
<tr>
<td>Basic Economics</td>
<td>112</td>
</tr>
<tr>
<td>Psychology</td>
<td>39</td>
</tr>
<tr>
<td>Political Science</td>
<td>21</td>
</tr>
<tr>
<td>Typing</td>
<td>21</td>
</tr>
<tr>
<td>Sociology</td>
<td>9</td>
</tr>
<tr>
<td>Other</td>
<td>11</td>
</tr>
</tbody>
</table>

Mathematics

<table>
<thead>
<tr>
<th>Course</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics, general</td>
<td>118</td>
</tr>
<tr>
<td>Plane Geometry</td>
<td>49</td>
</tr>
<tr>
<td>Elementary Algebra</td>
<td>46</td>
</tr>
<tr>
<td>Descriptive Geometry</td>
<td>25</td>
</tr>
<tr>
<td>Advanced Algebra</td>
<td>16</td>
</tr>
<tr>
<td>Plane Trigonometry or Calculus</td>
<td>11</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
</tr>
</tbody>
</table>

Sciences

<table>
<thead>
<tr>
<th>Course</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany</td>
<td>90</td>
</tr>
<tr>
<td>Biology</td>
<td>73</td>
</tr>
<tr>
<td>Inorganic Chemistry</td>
<td>52</td>
</tr>
<tr>
<td>Organic Chemistry</td>
<td>45</td>
</tr>
<tr>
<td>Physics</td>
<td>27</td>
</tr>
<tr>
<td>Physical Science</td>
<td>19</td>
</tr>
<tr>
<td>Advanced Sciences</td>
<td>8</td>
</tr>
<tr>
<td>Zoology</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
</tr>
</tbody>
</table>

Nursery and Landscaping

<table>
<thead>
<tr>
<th>Course</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics, general</td>
<td>118</td>
</tr>
<tr>
<td>Plane Geometry</td>
<td>49</td>
</tr>
<tr>
<td>Elementary Algebra</td>
<td>46</td>
</tr>
<tr>
<td>Descriptive Geometry</td>
<td>25</td>
</tr>
<tr>
<td>Advanced Algebra</td>
<td>16</td>
</tr>
<tr>
<td>Plane Trigonometry or Calculus</td>
<td>11</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
</tr>
</tbody>
</table>

Welding

<table>
<thead>
<tr>
<th>Course</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics, general</td>
<td>84</td>
</tr>
<tr>
<td>Elementary Algebra</td>
<td>40</td>
</tr>
<tr>
<td>Plane Geometry</td>
<td>38</td>
</tr>
<tr>
<td>Plane Trigonometry</td>
<td>13</td>
</tr>
<tr>
<td>Advanced Algebra</td>
<td>13</td>
</tr>
<tr>
<td>Descriptive Geometry</td>
<td>9</td>
</tr>
<tr>
<td>Analytic Geometry or Calculus</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
</tr>
</tbody>
</table>

Sciences

<table>
<thead>
<tr>
<th>Course</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>48</td>
</tr>
<tr>
<td>Inorganic Chemistry</td>
<td>29</td>
</tr>
<tr>
<td>Organic Chemistry</td>
<td>20</td>
</tr>
<tr>
<td>Physical Science</td>
<td>14</td>
</tr>
<tr>
<td>Advanced Sciences</td>
<td>6</td>
</tr>
<tr>
<td>Biology</td>
<td>3</td>
</tr>
<tr>
<td>Botany</td>
<td>0</td>
</tr>
<tr>
<td>Zoology</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
</tr>
<tr>
<td>Subject</td>
<td>Score</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>English & Writing</td>
<td>62</td>
</tr>
<tr>
<td>Basic Economics</td>
<td>48</td>
</tr>
<tr>
<td>Speech</td>
<td>23</td>
</tr>
<tr>
<td>Psychology</td>
<td>23</td>
</tr>
<tr>
<td>Typing</td>
<td>14</td>
</tr>
<tr>
<td>Sociology</td>
<td>9</td>
</tr>
<tr>
<td>Political Science</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
</tr>
</tbody>
</table>
point here is that most firms wanted emphasis on job training, yet they would prefer a person with some type of degree.

6. Many of those interviewed did not seem to have a clear understanding of what a curriculum is or the difficulties involved in trying to make a training program satisfy their needs yet fit into the overall college program. They were not as concerned about meeting the state or local college standards as they were about the amount and type of training necessary for their areas of specialization.

SUMMARY AND IMPLICATIONS

Some facts appear quite clearly as a result of this survey.

1. The 113 firms employed 6,845 persons and 969 of these are considered technicians. Those same firms interviewed employed 278 new technicians each year. Smaller firms tend to hire more new people and train them. Larger firms tend to hire these people away from the smaller firms because the large ones are able to offer better positions, more pay, and better opportunity for advancement.

2. Few technical positions are seasonal in nature. Most persons having the training to qualify for a technical position are almost assured of a permanent position.

3. Employment prospects are rising, in most cases with a tendency toward more diversified training needed.

4. Most firms would prefer to hire a person with some college training, with possession of a degree given highest priority.

5. Present types of training given in both company schools or high school are lacking from a practical standpoint, in the opinion of the respondents. Most employers expressed the need for work experience as an integral part of the training.

6. There is a definite need for technician training, with nearly all firms represented in the study expressing a desire to help with that training.

RECOMMENDATIONS

On reviewing the results of the survey, the Agriculture Department, its Advisory Committee, and the Study Consultant make the following recommendations:
I. That technical programs in Agricultural Engineering, Agricultural Science, Nursery and Landscaping, and Welding be established at Yuba College.

It is felt that these programs should be in operation not later than 1970.

II. That the programs be developed in the following order of priority:

A. Nursery and Landscaping Technician
B. Agricultural Engineering Technician and Welding Technician
C. Agricultural Science Technician

Prior to the commencement of this study, members of the applied Arts Division and the ad hoc Joint Committee decided to recommend to the administration the initiation of that program which apparently would meet the greatest need. As that program developed and enrollment assured success, others would be initiated.

In conjunction with work being done by the ad hoc Joint Committee and the Sub-Committee on Technology Curriculum undertaken during the Spring Semester 1965, results of the survey material received at that time indicated that the area showing the most prominent need was that of Nursery and Landscaping Technician. Completion of the survey reinforced the decision to give highest priority to this curriculum, for the following reasons:

1. courses developed for this technician area can be used to round out the present curriculum.
2. with modification present courses will satisfy a portion of the training requirements in this area.
3. use of present facilities and equipment will increase their utilization.
4. there are areas on the new campus which are adaptable to practical landscaping design and management practices from which both the college and the student will benefit from this natural advantage.
5. there are many employment prospects for students in the nursery and landscaping area.
6. the development of the Agricultural Engineering and Welding technician programs depends largely upon more costly facilities and equipment. Multi-use facilities in the proposed Science Technology Center such as a Metallurgy and Heat Treatment Lab, Materials Testing Lab, Hydraulic Lab, and Automatic and Semi-Automatic Welding Machines Lab are necessary for technician training programs in these areas.
7. the technician program in Agricultural Science will be able to utilize part of the facilities and equipment of the Nursery and Landscaping program as it develops. In addition, facilities for work with livestock will be needed to complete the training requirements in this area.

III. That Yuba College adopt the following proposed technician curriculums:

A. Agricultural Technician Curriculum
 Option 1 - Nursery and Landscaping
 Option 2 - Agricultural Science
 Option 3 - Agricultural Engineering

B. Welding Technician Curriculum
 (See Appendix III for proposed curriculums)

IV. That adequate classrooms, laboratories, and equipment as listed below be provided for each of the following technician areas:

A. Nursery and Landscaping Technician
 1. Greenhouse
 2. Lath house
 3. Student work area
 4. Storage facilities
 5. Growing areas
 6. Tools and equipment to train students adequately as Nursery and Landscaping Technicians

B. Agricultural Science Technician
 1. Livestock laboratory
 2. Crops laboratory
 3. Tools and equipment to train students adequately as Agricultural Science Technicians

C. Agricultural Engineering Technician
 1. Agricultural tractors and machinery laboratory
 2. Hydraulics laboratory
 3. Tools and equipment to train students adequately as Agricultural Engineering Technicians
D. Welding Technician

1. Arc and acetylene welding laboratory
2. Automatic and semi-automatic welding machines laboratory
3. Materials testing laboratory
4. Metallurgy and heat-treating laboratory
5. Tools and equipment to train students adequately as Welding Technicians

Most of the laboratories recommended for the technician programs are multi-use facilities used by other curriculums in the Agriculture and Welding Departments and in combination with other programs within the school.

V. Develop counseling and guidance materials for distribution to high schools to better prepare and select students for these programs.

V. Plan a follow-up program on placement of graduates and their subsequent success.

VII. Institute an evaluation program to make any changes necessary in training as the programs proceed.

VIII. Maintain a permanent advisory committee with members rotated to represent all segments of agriculture.

*Laboratories that are proposed by other departments within the school and which will be used cooperatively.
NOTES and COMMENTS
APPENDIX I

YUBA COLLEGE SURVEY FORM

Agriculture and Welding Departments

PART I

Type of Business Firm:
- Ag. Science
- Ag. Engineering
- Nursery
- Welding

Respondent (name) Title
- Managerial Staff
- Employee

City in which business is located County

Number of employees: (approximate)
- Permanent
- Seasonal (in addition to permanent)

Employment prospects in future:
- Rising Attributed to what?
- Remaining Constant
- Falling

How many new people do you employ each year? (approximate)
- Permanent Comment:
- Seasonal (additional to permanent)

Where do you find new employees?
- State Employment Service
- Private Agency
- Advertisement
- Persons Seeking Jobs on Their Own
- Other

How many of your employees would fall into the category of technician?
- Permanent (approximate)
- Seasonal

How many of your employees would fall into the category of craftsman?
- Permanent
- Seasonal

-36-
How many of your employees would you consider being professional? (e.g., managers, clerical, engineers, scientists, etc.)

- Permanent
- Seasonal

Can we return for more information?

What do you need specifically?

What are your main employee problems?

Does your company provide any kind of training for employees?

- On-the-job training
- Company School
- None
- Other

What do you consider the educational background of your technicians should be:

- College Graduate
- Jr. College Graduate
- Some College
- High School
- Other

What do you consider the educational background of your technicians should be:

- Why?

Do you feel some of your technicians have more formal schooling than is justified for their work?

- Yes
- No

Why?

Where do your technicians obtain technical information relating to their field?

- Agriculture Colleges
- Agriculture Agencies e.g. (Extension, Ag. Commissioner, etc.)
- Company Publications
- Trade Publications
- Night School Classes
- Immediate Boss
- Self or Fellow Workers
- Other

-37-
Do you feel there is a need for technician training programs where the emphasis is put on training for the job rather than schooling for the sake of a degree only?

Yes
No

If Yuba College initiates a program to train technicians in your field would you cooperate in this program?

Yes
No

Provide Facilities for Training
Field Trips
Use of Company Resources
Personnel
Possible Positions for Graduates
Other

Are there any comments you wish to make concerning areas of instruction or types of training that are needed in this field?
DIRECTIONS: Indicate in order of preference five (5) courses you think should be offered. Number the most important courses (in your opinion) No. 1, 2, 3, 4, 5. Number only 5. Check (V) any others you think may be beneficial.

Agricultural Technical Skills-
Using tools and equipment

Agricultural Machinery -
Operation, maintenance, repair

Agricultural Tractors -
Operation, maintenance, repair

Agricultural Power -
Principles of applying power to machines

Agricultural Building and Equipment -
Planning, selection, principles of construction

Agricultural Processing Equipment -
Operation, maintenance, development and design

Agricultural Surveying -
Land measurement, leveling

Irrigation and Drainage -
Methods of applying and measuring water
Agricultural Plumbing and Electrification -
 With emphasis on planning and installing simplified systems

Agricultural Welding -
 Arc and acetylene processes necessary for construction and repair of equipment

Hydraulics -
 Application of the uses of fluids, cylinders, and pumps as a motive force

Drafting I -
 Fundamentals of mechanical drawing

Drafting II
 Detail drawings and assembly drawings

Agricultural Projects -
 Supervised planning, design, and construction of projects

Work Experience -
 On-the-job training

Other
PART II

AGRICULTURAL SCIENCE TECHNICIAN

(Courses that could be included in this curriculum)

DIRECTIONS: Indicate in order of preference five (5) courses you think should be offered. Number the most important courses (in your opinion) No. 1, 2, 3, 4, 5. Number only 5. Check (V) any others you think may be beneficial.

Plant Science -
Basic course in plant structure and growth, plant physiology, plant nutrition, and plant breeding

Animal Science -
Basic course in animal physiology, animal nutrition, and animal breeding

Livestock Production -
Basic course in the principles and practices of livestock production (beef, sheep, swine, and dairy)

Crop Production -
Basic course in the principles and practices of crop production, field crops, forage crops

Fertilizers and Sprays -
A basic course in types and composition of fertilizers and chemical spray materials and their uses

Livestock Diseases and Parasites -
A basic course in the common livestock diseases and parasites and their controls
Plant Diseases and Pests -
 A basic course in plant diseases and pests and their controls

Agricultural Mechanical Skills -
 Using tools and equipment

Soil Science -
 Origin and chemical properties of soils, soil classification
 management, and soil conservation

Agricultural Projects -
 Supervised field laboratory designed to give the student prac-
 tical experience in his major field

Dairy Production -
 Basic principles of milk production and dairy cattle management

Poultry Production -
 Basic principles and practices of egg-fryer and turkey production

Livestock Feeds -
 Livestock feeds, their analysis and uses, computation of rations
 for various classes of livestock
PART II

NURSERY AND LANDSCAPE TECHNICIAN

(Courses that could be included in this curriculum)

DIRECTIONS: Indicate in order of preference five (5) courses you think should be offered. Number the most important courses (in your opinion) No. 1, 2, 3, 4, 5. Number only 5. Check (V) any others you think may be beneficial.

Plant Science -
Basic course in plant structure and growth, plant physiology, plant nutrition and plant breeding

Fertilizers and Sprays -
A basic course in types and composition of fertilizers and chemical spray materials and their uses

Agricultural Mechanical Skills -
Using tools and equipment

Plant Diseases and Pests -
A basic course in plant diseases and pests and their controls

Soil Science -
Origin and chemical properties of soils, soil classification, management, and soil conservation

Agricultural Projects -
Supervised field laboratory designed to give the student practical experience in his major field

Agricultural Plumbing and Electrification -
For nursery layout and sprinkler irrigation system

-43-
Drafting -
Freehand lettering, sketching, and geometric construction

Nursery Practices and Management -
Commercial nursery operation, propagation, transplanting, potting, fertilizing, and pest control

Landscape Design -
Basic principles of landscape design theory, layouts, space, color, and materials, and their relationship

Nursery Plant Identification and Their Uses -
Identification of California nursery and landscaping shrubs, trees, plants, vines, and their uses

Greenhouse Management -
Production of major commercial potted plants under glass and lath

Landscape Contracting -
Practices in supervising men and applying approved techniques in landscape construction, estimating cost, and contract writing

Landscape Management -
Planting, care and maintenance of lawns, flower beds, and shrubs

Agricultural Tractors -
Operation, maintenance, and repair

Farm Management -
Agricultural marketing, credit, financing, and the use of resources

Farm Accounting -
A basic course in production, inventory, depreciation, single entry financial records, and income tax records

Other

-44-
PART II

WELDING TECHNICIAN

(Courses that could be included in this curriculum)

DIRECTIONS: Indicate in order of preference five (5) courses you think should be offered. Number the most important courses (in your opinion) No. 1, 2, 3, 4, 5. Number only 5. Check (V) any others you think may be beneficial.

Welding Processes -
 Introduction to welding - fundamentals of machines and equipment - elementary techniques of arc and acetylene

Arc Welding I -
 Development of techniques and procedures in flat position

Arc Welding II -
 Development of techniques and procedures in horizontal, vertical, and overhead position

Acetylene Welding I -
 Development of techniques and procedures in flat position

Acetylene Welding II -
 Development of techniques and procedures in horizontal, vertical, and overhead positions

Advanced Arc Welding -
 Layout of materials, design of joints, and fabrication of metals - use of specialized welding materials and techniques

Advanced Acetylene Welding -
 Layout of materials, design of joints, and fabrication of metals - use of specialized welding materials and techniques - especially pipe
Drafting I -
Fundamentals of mechanical drawing

Drafting II -
Detail drawings and assembly drawings

Properties of Materials -
Weldability of metals - mechanical properties

Fabrication Methods and Design -
Blueprint reading, methods of layout, joint design, techniques, procedures of machinery design

Metallurgy and Heat Treatment -
Composition, structures, properties of metals - physical effects of shaping and heat-treating before, during, and after welding

Automatic and Semi-Automatic Processes -
Techniques and procedures, joint fabrication, use of specialized materials, new methods, and machines

Destructive and Non-Destructive Testing -
Analysis of strengths and weaknesses of welds, why they fail

Practical Experience -
Project construction or on-the-job training

Other
PART III

GENERAL EDUCATION COURSES

Courses That Could Be Included In The Technician Curriculum

DIRECTIONS: Under each category below indicate in order of preference five (5) courses you think should be offered. Number the most important courses (in your opinion) No. 1, 2, 3, 4, 5. Number no more than 5 in each category. Check (V) others you feel may be beneficial.

Mathematics
- Mathematics - general
- Algebra - elementary
- Algebra - advanced
- Geometry - plane
- Geometry - descriptive
- Trigonometry - plane
- Analytic Geometry or Calculus
- Other

Natural and Physical Sciences (Basic Science)
- Biology - general understanding of plants and animals
- Botany - basic scientific principles relating to plants
- Zoology - basic scientific principles relating to animals
- Physical Science - geology, mineralogy, meteorology, hydrology
- Physics - physical principles relating to structural materials, thermodynamics, hydraulics, electricity
- Chemistry - basic inorganic
- Chemistry - organic
- Advanced Sciences
- Other

General
- Basic Economics
- Psychology - general
- Political Science - government agencies, procedures
- English and Writing - reports, letters, studies
- Speech - public speaking, leading discussion
- Sociology - general
- Typing
- Other

-47-
APPENDIX II

COMMENTS

QUESTION: What are the Employment Prospects in the Future?

RISING

"Expansion of size of farm and diversity of operation will increase employment." — large ranch operation

"Additional services to farmers, as well as new markets will increase expansion in the future." — crop duster

"Increased markets, such as sprinkler irrigation, will increase size of company." — pump shop

"Service is becoming more and more important. Farmers are less able to work on their own equipment as time goes on. This along with increased sales will improve our position considerably." — implement dealer

"We turn out specialized farm equipment. Increased farm mechanization will increase the size of our business." — small engineering firm

"This is a growth area. More new homes are being built and increased population points to expansion of our business. Also, there are fields of nursery and landscaping which haven't even been touched yet." — retail nursery

"Would hire a good landscape man today if I could find him. This business could be twice as big if we had more qualified help. Programs like yours should insure that help coming in the future." — retail landscape nursery

"Increased uses of welding will expand the market and thus increase employment." — welding engineer

"Increased industrial activity in this area along with more building, both government and private, will increase the need for good men in the field of welding." — steel products manufacturer

QUESTION: What are the Employment Prospects in the Future?

REMAINING CONSTANT

"More orchards are coming into production, but more mechanization will offset this in the way of employment." — farmer

"Size of firm will stay about the same unless business picks up. Only so many farmers buy equipment in any given year." — implement dealer

-48-
"Increased efficiency will keep personnel numbers down in the face of expanded business." — implement dealer

"We are in a location where the land is very high priced. We have a limited space in which to operate. We will have to move farther out before we can expand." — retail nursery

"We have reached the plateau in our business at which you don't make any more money by expanding further unless you really go all out. We plan on staying where we are for at least two or three years." — grower, wholesaler

"We have stayed approximately the same size for the last twenty-eight years. More business, no more automation." — welding shop

QUESTION: What are the Employment Prospects in the Future?

FALLING

"There will be few and larger growers in the future; also dealing with associations of growers requires fewer men in the field." — canner

"Increased mechanization of harvesting processes will reduce the need for manpower." — farmer

QUESTION: What do You Consider the Educational Background of Your Technicians Should Be?

"In order to get one of the top jobs on our ranch, a man should have some training in college. A two-year junior college course would do nicely." — grower

"We like a man with some college training in agriculture. We don't care about a degree, however, if the man fits into our program." — farmer

"People with some college training have an easier time expressing themselves. They can command more respect because they have a better understanding of problems and solutions." — cooperative

"The person should have enough schooling to be able to understand technical information. Sales people should definitely have some college training, as well as the mechanics." — implement dealer
"A college trained person is more desirable because he knows why he is doing something as well as how to do it." — implement dealer

"We would like someone with college training and the ability to use the knowledge he has obtained. He should know something about electricity. He should be willing to learn and study." — pump shop

"Junior college would be sufficient in most cases in this field. If you go much beyond that the wage scale in the nursery business will not attract good men." — nursery

"We like college trained men because it is possible to get a better grade of person whether he uses all his knowledge or not. Also, we would like to see some more practical training in college." — retail nursery

"Some college is helpful because the people get some of the basic things they need to know, as well as a more rounded personality. Trade schools or similar training in college is a must." — machine shop

"Should be at least a junior college graduate. The more education a man has, the better suited he will be to progress in any business." — steel products company.

QUESTION: Do You Feel There is a Need for Technician Training Programs Where the Emphasis is Put on Training for the Job Rather Than Schooling for the Sake of a Degree Only? Why?

"Training for the job is more useful in this field than training for a degree. When a person gets a degree, he usually must be partially re-trained by the company before he is of much use to us." — teed mill

"What a person knows is more important than what degree he has. Therefore, we would consider two-year men for employment in our organization." — canner

"A person should learn the general things and theories in college. When he comes to work for us, we will teach him the specific points of our business." — tractor dealer

"Practical knowledge is the most important thing in this business. College men don't usually stay too long. Job training is more important in our opinion." — implement dealer
"Specific knowledge is more important than general knowledge. A person should be able to absorb and understand technical information. Salesmen should have some college." — implement dealer

"Good trained people are scarce in this business. A two-year course for technicians would be a wise idea." — implement dealer.

"A job-trained man is fitted for the job whereas a man trained in generalities is still wondering what he is fitted for." — implement dealer

"If a person is well versed in the field and has accumulated specific knowledge, he does not need a degree for this work." — nursery

"Specific knowledge is much more important than a degree in this business. If a man can do the work, he will be hired whether he has a degree or not." — service nursery

"We can't afford to pay a degree man what he expects to make as a starting salary." — nursery

"Specific knowledge and skills are what count in this business." — engineer

"The person should have some training in the humanities, in addition to his technical training, but the specific training should be foremost." — engineering manager, welding equipment manufacturer

"In a technician training program you should learn some practical things as well as from out of a book. Some time spent in shops would be very helpful in this respect." — machine shop

"A degree means very little in this field; either you can do the job or you cannot. Either you know or you don't know. That is what is important." — welding supplier

"We want specialized training, not general training." — steel products company.

QUESTION: Does Your Company Provide any Kind of Training for Employees?

"Our employees learn on the job with some supervision from superiors until they catch on." — cooperative
"Our employees learn by doing on the job. They have a six-month probationary period." — growers' association

"All our training is on the job." — farmer

"We have weekly meetings for key employees in addition to on-the-job training programs." — canner

"We send our key employees to schools put on by the equipment manufacturers. We pay them a full salary plus subsistence while they attend these schools. We also provide on-the-job training." — all implement dealers interviewed

"We try to hire experienced men; we can't afford to send anyone to school. We can't spend too much time training our employees ourselves as this is a small organization." — local engineering firm

"Our company has monthly sales meetings in addition to on-the-job training." — nursery

"All the learning and training is done on the job at the present time." — nursery

"Our people are trained on the job, but there is a need for specialized college training along practical lines." — landscaper

"Our men are trained on the job but some of them take extension courses on their own." — City Park Department

"Learning on the job, by doing, is the best way to train new employees." — most companies made this remark

"We try to hire experienced help though we will try to train helpers." — machine shop

"Our company pays the tuition and other costs for evening college and special industrial courses." — welding company

"In a small shop like this one we can't afford to carry more than one apprentice." — welding shop

QUESTION: Are There any Comments You Wish to Make Concerning Areas of Instruction or Types of Training that are Needed in This Field?

"Put together a course that covers agricultural chemistry and physics hitting the basics of each. Do the same with biology and botany as they apply to agriculture." — canner and grower
"What we really need is a program combining actual work experience with classroom experience. The practical side should be stressed." — seed company

"A course in farm machinery retailing would be desirable." — implement dealer

"Let's teach the students how things are done in this area and forget about the mid-west." — implement dealer

"A greater knowledge of sprinkler irrigation will be needed in the future." — pump dealer

"Colleges should teach a more wholesome attitude to students about goals, etc." — irrigation company

"Sales people are always in demand. They should be versed in biology, botany, and business." — nursery

"The retail field is the big thing in the nursery business. A small retail nursery can buy stock cheaper than it can be grown. Technicians are really needed in the retail end." — nursery

"Don't try to make a journeyman welder out of the person. Teach him things that he can't learn outside of the classroom." — welding equipment manufacturer

"A person should learn more than just welding in school. There should be emphasis on speed and production as well as actual techniques in the various practical courses." — welding shop

QUESTION: What do You Need Specifically?

"We need a fully qualified technologist who is willing to work." — canner

"We need people who like what they are doing. People who work for us should be able to make their own jobs. They should be creative." — farm supply

"We need someone with a basic knowledge of chemistry, entomology, and pathology. Also, he should have ability to meet growers and pass along the information necessary to carry out a successful spray and fertilizer program." — chemical company
"Our organization needs men with an ability and willingness to learn, ambition, agricultural background, and, preferably, a degree. This person should be able to get along with other people. Mechanical knowledge is also helpful in our field due to necessary mechanization of agriculture." — cooperative

"We need someone who can learn fast, is willing to learn, knows mathematics, and some electricity. He needs an agricultural background so that he can deal with and meet people." — cooperative

"Men are needed who are mechanically inclined, can drive a tractor, know pruning, are able to think for themselves. Should have a handyman's knowledge and some welding." — farmer

"We need someone who is interested in his work, who is able to apply the knowledge he obtains in school. Someone who can understand technical information." — irrigation company

"We need someone who knows electricity in relation to pumps and motors, understands the operation of pumps and motors, shop knowledge. Also, this man should be able to trouble-shoot and meet people." — pump shop

"We need someone who is resourceful and knows why he is doing something. Sales ability is needed most in this business. The person must be sincere. Knowledge of hydraulics and electricity is also helpful." — equipment dealer

"We want a person with an agricultural background, young, physically fit, steady, with specialized training, if possible." — golf course

"We need someone with sufficient knowledge to supervise workers, with a knowledge of fertilizers, sprays, grasses, trees, etc. This might be from a junior college." — City Park Department

"We need someone who has a good personality, can meet people, with a basic background in nursery fields." — nursery

"Sales people who can identify plants, should be of managerial caliber, good landscape designer. Person should be teachable and willing to learn and train himself." — nursery

-54-
"We need a person who can weld, understand layout work and fabrication, and is willing to work hard and learn. This person should have some practical experience in these things." — welding shop

"We need a person who in addition to welding can read blueprints and drawings, and is familiar with the machines in a machine shop." — welding shop

"At the present time, our biggest need is a man who can heliarc in addition to other welding skills." — machine shop

"We need a man with a background in welding, electricity, a reasonable command of the English language, and at least high school physics." — welding equipment manufacturer
APPENDIX III

PROPOSED CURRICULUMS

Recommended General Education Requirements for Agricultural and Welding Technicians Curriculums Associate in Arts Degree

<table>
<thead>
<tr>
<th>Requirement 2 (All students must complete these courses)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>*English, Technical</td>
<td>6</td>
</tr>
<tr>
<td>Hygiene 1</td>
<td>2</td>
</tr>
<tr>
<td>Psychology 50</td>
<td>½</td>
</tr>
<tr>
<td>Physical Education</td>
<td>2</td>
</tr>
<tr>
<td>Political Science I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group A Requirement (Fine Arts or Humanities, 5 to 6 units)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech</td>
<td>45</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group B Requirement (Social Science, 5 to 6 units)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business</td>
<td>50</td>
</tr>
<tr>
<td>Sociology</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group C Requirement (Natural Science, 6 to 10 units)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Mathematics, Technical</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 2</td>
<td>5</td>
</tr>
</tbody>
</table>

Sub-Total ... 33 ½

*New courses to be developed
AGRICULTURAL TECHNICIAN CURRICULUM

Associate in Arts Degree

OPTION I

<table>
<thead>
<tr>
<th>Units</th>
<th>General Education Requirements</th>
<th>33 1/2</th>
</tr>
</thead>
</table>

Nursery and Landscaping Requirement

<table>
<thead>
<tr>
<th>Courses</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revised t Ag. 71</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Horticulture</td>
<td>3</td>
</tr>
<tr>
<td>Ag. 73</td>
<td>3</td>
</tr>
<tr>
<td>Plant Propagation</td>
<td>3</td>
</tr>
<tr>
<td>Ag. 74</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Soils</td>
<td>3</td>
</tr>
<tr>
<td>*Ag. 75</td>
<td>3</td>
</tr>
<tr>
<td>Landscape Plant Identification</td>
<td>3</td>
</tr>
<tr>
<td>*Ag. 76</td>
<td>3</td>
</tr>
<tr>
<td>Nursery Practices</td>
<td>3</td>
</tr>
<tr>
<td>*Ag. 77</td>
<td>3</td>
</tr>
<tr>
<td>Nursery Management</td>
<td>3</td>
</tr>
<tr>
<td>*Ag. 78</td>
<td>3</td>
</tr>
<tr>
<td>Landscape Planning and Design</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revised t Ag. 81</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mechanics (Electricity, Plumbing, Construction)</td>
<td>3</td>
</tr>
<tr>
<td>Ag. 90</td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Projects</td>
<td>4</td>
</tr>
<tr>
<td>*Ag. 95</td>
<td>2</td>
</tr>
<tr>
<td>Work Experience (2nd year students only)</td>
<td>2</td>
</tr>
</tbody>
</table>

Sub-Total: 30

Recommended Elective

<table>
<thead>
<tr>
<th>Courses</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business 51A - Elementary Typing</td>
<td>2</td>
</tr>
<tr>
<td>Ag. 83</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Tractors</td>
<td>3</td>
</tr>
<tr>
<td>Art 4A</td>
<td>2</td>
</tr>
<tr>
<td>Art Structures</td>
<td>2</td>
</tr>
</tbody>
</table>

Sub-Total: 7

Total Units — 70 1/2

OPTION II

<table>
<thead>
<tr>
<th>Units</th>
<th>General Education Requirements</th>
<th>33 1/2</th>
</tr>
</thead>
</table>

Agricultural Science Requirements

<table>
<thead>
<tr>
<th>Courses</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revised t Ag. 50</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td>3</td>
</tr>
<tr>
<td>Ag. 60</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Animal Husbandry</td>
<td>3</td>
</tr>
</tbody>
</table>

Sub-Total: 30
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag. 61</td>
<td>Livestock Feeds and Feeding</td>
<td>3</td>
</tr>
<tr>
<td>Ag. 70</td>
<td>Introduction to Agronomy</td>
<td>3</td>
</tr>
<tr>
<td>Revised (\hat{\text{A}})g. 71</td>
<td>Introduction to Horticulture</td>
<td>3</td>
</tr>
<tr>
<td>Ag. 72</td>
<td>Fruit Production</td>
<td>3</td>
</tr>
<tr>
<td>Ag. 74</td>
<td>Introduction to Soils</td>
<td>3</td>
</tr>
<tr>
<td>Revised (\hat{\text{A}})g. 80</td>
<td>Agricultural Mechanics (Shop Skills)</td>
<td>4</td>
</tr>
<tr>
<td>Ag. 90</td>
<td>Agricultural Projects</td>
<td>2</td>
</tr>
<tr>
<td>*Ag. 95</td>
<td>Work Experience</td>
<td>3</td>
</tr>
</tbody>
</table>

Sub-Total 30

Recommend Elective

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business 51A</td>
<td>Elementary Typing</td>
<td>2</td>
</tr>
<tr>
<td>Ag. 83</td>
<td>Agricultural Tractors</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units — 68½

Sub-Total 5

OPTION III

General Education Requirements

Agricultural Engineering Requirement

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revised (\hat{\text{A}})g. 80</td>
<td>Agricultural Mechanics (Shop Skills)</td>
<td>3</td>
</tr>
<tr>
<td>Revised (\hat{\text{A}})g. 81</td>
<td>Agricultural Mechanics (Electricity, Plumbing, Construction)</td>
<td>3</td>
</tr>
<tr>
<td>Ag. 83</td>
<td>Agricultural Tractors</td>
<td>3</td>
</tr>
<tr>
<td>Ag. 84</td>
<td>Agricultural Machinery</td>
<td>3</td>
</tr>
<tr>
<td>*Ag. 85</td>
<td>Agricultural Power</td>
<td>3</td>
</tr>
<tr>
<td>*Ag. 82</td>
<td>Agricultural Surveying and Irrigation</td>
<td>3</td>
</tr>
<tr>
<td>tWeld. 81</td>
<td>Introduction to Welding Processes</td>
<td>2</td>
</tr>
<tr>
<td>tWeld. 81A</td>
<td>Arc Welding Lab. 1</td>
<td>1</td>
</tr>
<tr>
<td>tWeld. 81B</td>
<td>Acetylene Welding Lab. 1</td>
<td>1</td>
</tr>
<tr>
<td>tWeld. 82</td>
<td>Properties of Welding Materials</td>
<td>2</td>
</tr>
</tbody>
</table>

-58-
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Weld. 82A</td>
<td>Arc Welding II</td>
<td>1</td>
</tr>
<tr>
<td>Ag. 90</td>
<td>Agricultural Projects</td>
<td>4</td>
</tr>
<tr>
<td>*Ag. 95</td>
<td>Work Experience</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub-Total</td>
<td>31</td>
</tr>
</tbody>
</table>

Recommended Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft. 51</td>
<td>Mechanical Drawing</td>
<td>3</td>
</tr>
<tr>
<td>*Weld. 81</td>
<td>Introduction to Welding Processes</td>
<td>2</td>
</tr>
<tr>
<td>*Weld. 81A</td>
<td>Arc Welding Lab. I</td>
<td>1</td>
</tr>
<tr>
<td>*Weld. 81B</td>
<td>Acetylene Welding Lab. I</td>
<td>1</td>
</tr>
<tr>
<td>*Weld. 82</td>
<td>Properties of Welding Materials</td>
<td>2</td>
</tr>
<tr>
<td>*Weld. 82A</td>
<td>Arc Welding Lab. II</td>
<td>1</td>
</tr>
<tr>
<td>*Weld. 82B</td>
<td>Acetylene Welding Lab. II</td>
<td>1</td>
</tr>
<tr>
<td>*Weld. 83</td>
<td>Destructive & Non-Destructive Testing (Lec.-Lab.)</td>
<td>2</td>
</tr>
<tr>
<td>*Weld. 84</td>
<td>Automatic & Semi-Automatic Processes (Lec.-Lab.)</td>
<td>2</td>
</tr>
<tr>
<td>*Weld. 85</td>
<td>Fabrication Methods and Design</td>
<td>2</td>
</tr>
<tr>
<td>*Weld. 85A</td>
<td>Advanced Welding Lab.</td>
<td>1</td>
</tr>
</tbody>
</table>
Work Experience (Second year students only) 2
Welding Projects 4

Sub-Total27

Recommended Electives

Agricultural Mechanics (Shop Skills) 3
Agricultural Mechanics (Electricity, Plumbing, Construction) 3
General Machine Shop 3

Sub-Total9

Total Units — 69%