THE PURPOSE OF THIS CURRICULUM GUIDE IS TO ASSIST THE ADMINISTRATOR AND INSTRUCTOR IN PLANNING AND DEVELOPING MANPOWER DEVELOPMENT AND TRAINING PROGRAMS TO PREPARE MACHINE TOOL OPERATORS FOR ENTRY-LEVEL POSITIONS. THE COURSE OUTLINE PROVIDES UNITS IN -- (1) ORIENTATION, (2) BENCH WORK, (3) SHOP MATHEMATICS, (4) BLUEPRINT READING AND SKETCHING, (5) POWER SAWs, (6) DRILL PRESS, (7) ENGINE LATHE, (8) MILLING MACHINE, (9) SURFACE AND CYLINDRICAL GRINDERS, (10) SHAFER, AND (11) MASS PRODUCTION METHODS. EACH UNIT CONTAINS A TIME ALLOCATION, OBJECTIVES, UNIT OUTLINE, SUGGESTED ACTIVITIES, AND A LIST OF REFERENCES. INSTRUCTION IN RELATED THEORY IS TO BE CONCURRENT WITH THE DEVELOPMENT OF SKILLS IN THE SHOP. SUGGESTIONS FOR PLANNING THE LESSONS AND EVALUATING THE STUDENTS ARE INCLUDED. THE TRAINING SCHEDULE IS DEVELOPED FOR 1,080 HOURS OF TRAINING IN A PERIOD OF 27 WEEKS. THE INSTRUCTOR SHOULD HAVE BROAD EXPERIENCE AS A SKILLED MACHINE TOOL OPERATOR AND, PREFERABLY, EXPERIENCE AS A SUPERVISOR OF MACHINE TOOL OPERATORS. THE TRAINEE SHOULD HAVE A HIGH SCHOOL EDUCATION OR EQUIVALENT WITH A BACKGROUND IN MATHEMATICS AND SHOULD BE OF AVERAGE PHYSICAL CONDITION AND HEALTH WITH GOOD VISION. SUPPLEMENTARY MATERIALS INCLUDE A LAYOUT OF A TRAINING FACILITY AND SUGGESTED MACHINES, TOOLS, EQUIPMENT, AND EXPENDABLE SUPPLIES FOR A CLASS OF 20 PERSONS. SUGGESTED TEXTBOOKS, REFERENCES, AND FILMS ARE LISTED.
A Suggested Guide
for a Training
Course

MACHINE TOOL OPERATOR

General, Entry

U.S. Department of Health, Education, and Welfare
Office of Education
MACHINE TOOL OPERATOR

General, Entry

(D.O.T. Occupational Code 6-78.905)

Suggested Guide for a Training Course
CONTENTS

FOREWORD.. iii

TRAINING COURSE FOR MACHINE TOOL OPERATOR--GENERAL, ENTRY

<table>
<thead>
<tr>
<th>Purpose of the Guide</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Description</td>
<td>1</td>
</tr>
<tr>
<td>Qualifications of Trainees</td>
<td>2</td>
</tr>
<tr>
<td>Teacher Qualifications</td>
<td>2</td>
</tr>
<tr>
<td>Suggestions for the Organization of Instruction</td>
<td>2</td>
</tr>
<tr>
<td>Length of Course and Course Units</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE UNITS

I. Orientation 5
II. Bench Work 6
III. Shop Mathematics 7
IV. Blueprint Reading and Sketching 8
V. Power Saws 9
VI. Drill Press 10
VII. Engine Lathe 11
VIII. Milling Machine 12
IX. Surface and Cylindrical Grinders 13
X. Shaper 14
XI. Mass Production Methods 15

TEACHING THE COURSE

Planning the Lesson	17
Training Facility Considerations	17
Criteria for Evaluating Trainee Readiness for Employment	18

SUGGESTED LIST OF TEXTBOOKS AND REFERENCES 19

SUGGESTED LIST OF FILMS ... 22

APPENDIXES

A. Suggested List of Machines	25
B. Suggested List of Tools	26
C. Suggested List of Equipment	27
D. Suggested List of Expendable Supplies	28
E. Suggested Training Facilities	30
FOREWORD

Throughout American industry almost every product contains metal parts or is processed by machines made of metal. Many of these metal parts are made by machine operators. The largest group of workers in the metal-working trades is made up of machine operators and totals 570,000 persons.

Employment of machine tool operators is expected to rise moderately during the remainder of the 1960's and beyond. Most job opportunities, however, will arise from the need to replace experienced workers who transfer to other jobs, retire or die. Retirements and death (alone) may result in about 12,000 job openings each year.

Technological developments will affect both the number and skill requirements of machine tool operators. The continued development and use of faster and more versatile automatic machine tools will result in greater output per operator. Workers with thorough backgrounds in machine operations, mathematics, blueprint reading, and a good working knowledge of the properties of metals will be better able to adjust to future technological changes and to transfer to new jobs in the machining field.

The purpose of this guide is to assist administrators and teachers in organizing courses and developing course content for programs designed to prepare persons for employment in this occupation.

The guide was prepared for the Division of Vocational and Technical Education under contractual arrangements with Oklahoma State University. Recognition is given to Maurice W. Roney, Professor of Industrial Education, Oklahoma State University, for supervising the guide; to L. Carl Love, Oregon State University, for his assistance as consultant; and to Ollie B. Stone, Machine Shop Instructor, Oklahoma City Public Schools, for gathering the technical content.

This guide contains eleven major units covering 1080 hours of instruction in the classroom and shop. The sequence of instructional units and the hours assigned to each unit are flexible; therefore, both time and content may be adjusted to better meet local needs.

A suggested list of machines, tools, equipment, textbooks, films, and a floor plan of the training facility have been included to assist administrators and teachers in organizing the course. The assistance of local advisory groups should be sought for guidance in selecting equipment and developing content of courses which will best serve the local conditions.

Walter M. Arnold
Assistant Commissioner for Vocational and Technical Education
Purpose of the Guide

This guide has been prepared to assist in planning and developing a training course for machine tool operators. It has been organized in a manner to be of maximum value to school administration personnel who are not themselves specialists in the occupation. Sufficient detail has been included, however, to provide a basic outline of instruction to assist the instructor who will be responsible for the operation of the training program.

The suggestions outlined in the training guide are not intended to delineate instruction in every detail. Supplemental material can be found in the suggested textbooks, references, and films. In addition, the suggested course outline may require modification to meet special needs. The sequence of presentation, as well as the final selection of topics for special emphasis, should be determined by instructional specialists, and may vary according to the needs and background of the trainee group.

Although this training guide has been developed primarily for use in the Manpower Development and Training program, it includes instructional material that goes beyond the development of manipulative exercises to impart simple skills. Some of the related material included in the course outline has been added to assist the trainee to progress beyond the entry level job.

Job Description

Machine tool operators shape metal to precise dimensions by the use of machine tools. Although some operators can operate several tools, most can operate only one or two machine tools. Many operators are essentially machine tenders who perform simple, repetitive operations which can be learned quickly. Other machine tool operators, however, are much more skilled and can perform complex and varied machining operations.

Lathes, drill presses, boring machines, grinding machines, milling machines, and automatic screw machines are among the machine tools used by machine operators. Both skilled and semiskilled operators have job titles based upon the kind of machine they operate, such as engine lathe operator, milling machine operator, and drill press operator.

A typical job of the semiskilled operator is to place rough metal stock in a machine tool on which the speeds, feeds, and operation sequence have already been set by a skilled worker. The operator watches the machine and calls his supervisor when anything unusual happens. Special, easy-to-use gages help him to measure work quickly and accurately. The operator with limited training may make minor adjustments to keep his machine tool operating, but he depends on skilled machining workers for major adjustments. The majority of machine tool operators fit this category and are less skilled than the skilled operators described in the following paragraph.
The work of skilled machine tool operators is similar to that of all-round machinists, except that often it is limited to a single type of machine and involves little or no hand fitting or assembly work. (By contrast, all-round machinists can operate almost every machine tool.) The skilled machine tool operator plans and sets up the correct sequence of machining operations in accordance with blueprints, layouts, or other instructions. He adjusts speed, feed, and other controls and selects the proper cutting tools for each operation. Adjustments may be necessary during machine operations, and changes in setup also may be required. Therefore, the skilled operator must be able to use all the special attachments of his machine. Upon completing his work, he checks measurements with micrometers, gages, and other precision-measuring instruments to see whether they meet specifications. The skilled machine tool operator also may select cutting and lubricating oils used to cool metal and tools during machining operations.

The work of the machine tool operator requires knowledge and skill in the use of several different machines for the production of devices which may consist of a variety of metals. The skilled machine tool operator produces parts and assemblies that conform to certain specified tolerances; at the same time, he must meet certain requirements for quantity output.

Qualifications of Trainees

High school graduation, or its equivalent, is desirable for those who plan to enter the machine tool operator trade. Machining operations require planning with the aid of mathematics; some mathematical computations involving trigonometry will be encountered and trainees should have a background of mathematics. The trainee should be of average physical condition and health; good vision is especially important and should be at least correctable to 20/20.

The United States Employment Service General Aptitude Test Battery B-397 for machine operator, general, would be helpful in the selection of trainees.

Teacher Qualifications

A teacher for this program must have broad experience as a skilled machine tool operator and, preferably, should have experience as a supervisor of machine tool operators.

If the person selected for this teaching assignment does not have teaching experience, he should be given the necessary teacher education fundamentals such as: lesson planning, teaching methods, and course construction.

Suggestions for the Organization of Instruction

The field of machine tool operation has changed quite rapidly during the last few years. A recent publication by the American Society of Tool and Manufacturing Engineers carried a statement that our metal cutting capacity has been doubled every ten years since 1930. Because of the vast changes being made in machine processes, it is suggested that trainees be given an overview of industry in addition to a sound foundation in the fundamentals of basic operations.
In accordance with the job description, it is suggested that the trainees develop skills on one or more of the machine tools included in the course. In other situations the training may include all of the content covered in this guide thereby meeting the specific needs of industries in the community who require their operators to have a degree of skill on all machines. The instructor should be aware of the course organizational and operational problems which will arise if either one or a combination of these plans are followed. Whatever plan is finalized will affect the number of specific machines and supplies needed, and the scheduling of both shop and related instruction in order to conduct an effective course.

As indicated in the course outline, emphasis on theory, related shop mathematics, and sketching and blueprint reading reflects the need to provide the trainee with as much related theory as possible. It is because of this understanding of "why" that he can transfer from job to job and remain employable. While related theory is important, it is expected that the instructor will maintain a direct correlation between theory and actual shop practice. Assignments in mathematics, sketching, and related theory should be carried on concurrently with the development of skills in the shop.

The allocation of hours to each unit of instruction serves to indicate the relative emphasis to be placed on these units. Changes in this distribution of time may be necessary, depending on the ability and background of the trainees and the needs of industry. The administrator or instructor must keep in mind that this training course is designed for job entry.

At some appropriate point in the training program field trips to local industries will be helpful. Special equipment and processes such as: electrical discharge machining, free abrasive grinding, or numerical control, can best be introduced by visits to industry. Additional information covering modern methods of machining and related material will be found in the suggested list of textbooks and references.

Length of Course and Course Units

The training program, as outlined, covers a period of 27 weeks with a total of 1080 hours of class instruction and laboratory practice. The training is programmed for 4 hours per day and 5 days per week.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Title</th>
<th>Suggested class hours</th>
<th>Suggested shop hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Orientation</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>II.</td>
<td>Bench Work</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>III.</td>
<td>Shop Mathematics</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>IV.</td>
<td>Blueprint Reading and Sketching</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>V.</td>
<td>Power Saws</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>VI.</td>
<td>Drill Press</td>
<td>10</td>
<td>33</td>
</tr>
<tr>
<td>VII.</td>
<td>Engine Lathe</td>
<td>60</td>
<td>300</td>
</tr>
<tr>
<td>VIII</td>
<td>Milling Machine</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>IX.</td>
<td>Surface and Cylindrical Grinders</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>X.</td>
<td>Shaper</td>
<td>15</td>
<td>70</td>
</tr>
<tr>
<td>XI.</td>
<td>Mass Production Methods</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

Sub-total | 281 | 799 |

Total | 1080 |
Course Unit I

ORIENTATION

Training Time

Classroom, 6 hours; shop, 6 hours

Objectives

To orient trainees to the nature and scope of the training course and the machine tool operator's work.

To develop an understanding and appreciation of shop safety.

Unit Outline

A. Departmental policies
B. Overview of course
C. Safety policies in the shop

Suggested Activities

1. Tour of shop facilities
2. Personal safety practices
3. Safety practices in using equipment, machines, and tools
4. Civil Defense procedures, fires, etc.

References

Shop Safety Education. The University of The State of New York.
Course Unit II

BENCH WORK

Training Time
Classroom, 10 hours; shop, 30 hours

Objectives
To develop knowledge and skills in the identification, use, care, maintenance and safety of hand tools, and to develop knowledge and skills in layout.

Unit Outline
A. Identification, use, care, and maintenance of hand tools
B. Laying out work
 1. Tools
 2. Measurements
 3. Procedures
C. Hand-threading
 1. Taps
 2. Dies
D. Filing and burring
E. Holding devices
F. Assembly procedures
G. Safety

Suggested Activities
1. Hand hacksawing
2. Filing
3. Hand drilling, portable electric
4. Chipping and shearing with cold chisel
5. Hand-threading, taps and dies
6. Finishing with file and emery cloth

References
Course Unit III
SHOP MATHEMATICS

Training Time
Classroom, 50 hours

Objectives
To provide the necessary knowledge and skills in shop mathematics relating to machine operations.

Unit Outline

A. Arithmetic
 1. Definition of terms
 2. Fractions and decimals
 3. Ratio and proportion
 4. Areas and volumes
 5. Measurements and conversion factors

B. Algebra
 1. Equations
 2. Shop formulas

C. Geometry
 1. Geometrical constructions
 2. Areas and volumes

D. Trigonometry
 1. Sines and co-sines
 2. Tangents and cotangents

Suggested Activities

1. Using measuring devices and calculations needed for precision measurement
2. Solving problems in measuring stock for layout
3. Using formulas for cutting speeds and feeds
4. Figuring angles
5. Solving problems in indexing
6. Solving problems on screw threads and tapers

References
Felker, C. A. Shop Mathematics.
Course Unit IV
BLUEPRINT READING AND SKETCHING

Training Time

Objectives

To develop knowledge and skills in blueprint reading and freehand sketching.

Unit Outline

A. Graphic language
B. Working drawings
C. Selection of views
D. Orthographic drawings
E. Dimensioning
F. Isometric drawings
G. Auxiliary views
H. Sectional views
I. Tolerances
K. Sketching

Suggested Activities

1. Freehand sketching practice
2. Blueprint reading practice
3. Laying out jobs from blueprints

References

Elementary Blue Print Reading for Beginners in Machine Shop Practice. Delmar Publishers, Inc.
Course Unit V
POWER SAWS

Training Time
Classroom, 5 hours; shop, 10 hours

Objectives
To develop knowledge and skills in the operation, maintenance, and safety of power saws.

Unit Outline
A. Layout for cutting operations
B. Band saw
 1. Types of blades
 2. Welding blades
 3. Straight sawing
 4. Contour sawing
 5. Speeds
C. Power hacksaw
 1. Types of blades
 2. Holding the work
D. Coolants
E. Safety and maintenance

Suggested Activities
1. Sawing to length
2. Angular sawing
3. Contour sawing
4. Removing and installing blade

References
Burghardt, Henry D. and Aaron Axelrod. Machine Tool Operation, Part II.
Course Unit VI

DRILL PRESS

Training Time

Classroom, 10 hours; shop, 33 hours

Objectives

To develop knowledge and skills in the operation, maintenance, and safe use of the drill press.

Unit Outline

A. Types of drilling machines
 1. Drill press
 2. Sensitive drill press
 3. Radial drill press
 4. Jig borer
B. Work holding devices
 1. Drill vise
 2. V-Blocks
 3. Angle plates
 4. Jigs and fixtures
C. Feeds and speeds
D. Types of drills
 1. Sizes
 2. Sharpening
E. Drilling operations
F. Reaming operations
G. Counterboring and countersinking operations
H. Tapping operations
I. Care, maintenance, and safety

Suggested Activities

1. Mounting tools
2. Drilling
3. Reaming
4. Tapping
5. Using jigs and fixtures
6. Counterboring and countersinking
7. Grinding drills
8. Holding work

References

Course Unit VII

ENGINE LATHE

Training Time

Classroom, 60 hours; shop, 300 hours

Objectives

To provide knowledge and skills in the operation, maintenance, and safe use of the engine lathe.

Unit Outline

A. Types and sizes
B. Tool holders and tool bits
 1. Sharpening tool bits
C. Speeds and feeds
D. Mounting work
 1. Between centers
 2. Chucking
E. Types of operations
 1. Turning
 2. Facing
 3. Shouldering
 4. Chamfering
 5. Knurling
 6. Taper turning
 7. Thread cutting (external and internal)
 8. Drilling and reaming
 9. Boring
 a. Straight and shoulder
 b. Tapers
 10. Undercutting and necking
 11. Cutting off
 12. Tapping
F. Planning job and sequence of operations
G. Safety and maintenance

Suggested Activities

Performing repetitive operations listed in E above on practical jobs.

References

DeGroat, George H. Metal Working Automation.
Hallett, F. H. Machine Shop Theory and Practice
How to Run a Lathe. South Bend Lathe Works.
Smith, Robert E. Machining of Metal.
Course Unit VIII
MILLING MACHINE

Training Time
Classroom, 25 hours; shop, 150 hours

Objective
To develop knowledge and skills in the operation, maintenance, and safe use of the milling machine.

Unit Outline
A. Types and sizes
B. Types of cutters
C. Work holding devices and clamping methods
 1. Milling machine vise
 2. Angle plates
 3. Clamps
D. Feeds and speeds
E. Installing arbors and cutters
F. Milling operations
 1. Plain milling
 2. Face milling
 3. Straddle milling
 4. Slotting
 5. End milling
 6. Gang milling
 7. Helical milling
 8. Gear cutting
G. Indexing methods
H. Coolants
I. Care, maintenance, and safety

Suggested Activities
Performing the various milling operations listed in F above on practical jobs.

References
Burghardt, Henry D. and Aaron Axelrod. Machine Tool Operation, Part II.
DeGroat, George H. Metal Working Automation.
Smith, Robert E. Machining of Metal.
Course Unit IX

SURFACE AND CYLINDRICAL GRINDERS

Training Time

Classroom, 25 hours; shop, 100 hours

Objectives

To develop knowledge and skills in the operation, maintenance, and safe use of surface cylindrical grinders.

Unit Outline

A. Grinding wheels
 1. Types and sizes
 2. Grades
 3. Wheel selection

B. Surface grinders
 1. Types
 2. Work holding devices
 a. Magnetic chuck
 b. Vise
 3. Mounting and dressing wheel
 4. Surface grinding operations
 a. Grinding flat surfaces
 b. Squaring stock
 c. Grinding angles
 5. Care, maintenance, and safety

C. Cylindrical grinders
 1. Types and accessories
 2. Mounting and dressing wheel
 3. Holding the work
 4. Cylindrical grinding operations
 a. Straight grinding
 b. Grinding to a shoulder
 c. Taper grinding
 5. Care, maintenance, and safety

Suggested Activities

Performing the various grinding operations listed above in B.4 and C.4 on practical jobs.

References

Habicht, Frank H. *Modern Machine Tools*.
Smith, Robert E. *Machining of Metal*.
Course Unit X

SHAPER

Training Time
Classroom, 15 hours; shop, 70 hours

Objectives
To develop knowledge and skills in the operation, maintenance, and safe use of the shaper.

Unit Outline
A. Types and sizes
B. Feeds and speeds
C. Work holding devices
 1. Vise
 2. Parallels
 3. Clamps
D. Cutting tools
 1. Types and shapes
 2. Sharpening tools
E. Shaper operations
 1. Horizontal shaping
 2. Angular shaping
 3. Vertical shaping
 4. Contour shaping
 5. Keyway and slot shaping
F. Care, maintenance, and safety

Suggested Activities
Performing repetitive shaper operations listed above in E on practical jobs.

References
Smith, Robert E. Machining of Metal.
Course Unit XI

MASS PRODUCTION METHODS

Training Time

Classroom, 20 hours; shop, 100 hours

Objectives

To develop an understanding of mass production methods and knowledge and skills in the operation of certain specialized mass production machines.

Unit Outline

A. Turret lathes
 1. Application to mass production
 2. Types and sizes
 3. Feeds and speeds
 4. Methods of holding work
 a. Chucks
 b. Collets
 c. Special fixtures
 5. Tooling of turret
 a. Number and kinds of operations
 b. Progressive sequence of operations
 c. Tooling for maximum efficiency
 d. Types of cutting tools
 6. Coolants
 7. Turret lathe operations
 8. Care, maintenance, and safety

B. Screw machines
 1. Application to mass production
 2. Types and sizes
 3. Methods of holding work
 4. Screw machine tooling
 a. Number and kinds of operations
 b. Sequence of operations
 c. Actuating and controlling tools
 5. Speeds and feeds
 6. Cutting fluids
 7. Screw machine operations
 8. Care, maintenance, and safety

Suggested Activities

Performing the variety of turret lathe and screw machine operations on practical jobs.
References

DeGroat, George H. Metal Working Automation.

Increased Production, Reduced Costs Through a Better Understanding of the Machining Process and Control of Materials, Tools, and Machines. Curtiss-Wright Corp.
TEACHING THE COURSE

Planning the Lesson

The best guide or lesson plan is, of course, one that has been prepared by the individual teacher, based on personal experience and manner of teaching. Although teachers differ in their ways of organizing and coordinating important parts of their presentation, they agree that the purpose of a lesson is effective and meaningful classroom instruction.

Written plans may be brief, but the good teacher will know before the class starts:

1. The goals or objectives of the lesson—the kind of learning desired
2. The outline and suggested time schedule for the lesson, including:
 a. An interest approach—a way to introduce the lesson, to capture the interest of the trainees and to direct their attention to the lesson's goals or objectives
 b. Activities which will involve the trainees in discovering new facts and principles, solving realistic problems, or practicing skills
 c. A way to summarize the lesson—to help trainees arrive at some valid conclusions and/or to evaluate the extent to which lesson goals have been achieved
3. The subject matter content—the facts and principles or main ideas to be brought out in the lesson
4. The teaching materials and references to be used

Training Facility Considerations

The items of machines, tools, equipment and supplies included as appendixes in this guide indicate what is needed to prepare a group of twenty trainees to enter the machine tool operator occupation. The items listed represent an optimum program, however, the instructor responsible for a particular program may wish to make some substitutions, deletions, and additions to the lists shown depending on the particular industrial needs of the community. If the course is to be offered in an existing facility, the administrator should make a careful inventory of existing equipment in order to avoid costly duplications.

The laboratory floor plan indicates a typical arrangement that might be used in industry to give the greatest production schedule with the lowest overhead cost. The arrangement is planned for maximum safety. It is suggested that the safety lane be a full 36 inches wide, and that no machinery be located within one foot of this area. To make the safety lane especially effective, green anti-slip paint should be used with yellow 4-inch borders, also of anti-slip material. The use of a standard industrial color scheme on every machine throughout the working area is also recommended as a safety measure.

Prices shown on listed items are for the purpose of indicating the approximate quality of each item. No attempt has been made to list the complete specifications needed by a supplier for the purpose of completing a purchase order.

17
Criteria for Judging Trainee Readiness for Employment

The criteria which serve as guides for determining whether the trainee is ready for employment as a machine tool operator may be more stringent than in some other occupations. However, some understanding and insight into how to provide various services are of such importance that every attempt should be made to evaluate trainee progress.

The use of various evaluative devices is necessary for the teacher and the trainee to accumulate objective information about the growth of the trainee. The following kinds of competencies are important to develop or to strengthen during the training program.

A. Personal qualities:
 1. Courtesy, friendliness, and tact in dealing with supervisors, and the general public
 2. Acceptable appearance--good grooming
 3. Mature judgment in a variety of typical situations
 4. Good personal habits in speech, mannerisms, cleanliness, and methods of work
 5. Acceptable attitudes--calmness in disorganized situations, positive attitude toward work, cooperativeness, willingness to work with others
 6. Assumption of role appropriate for the machine tool operator

B. Activities showing knowledge, understanding, and skills:
 1. Understands and carries out instructions or directions
 2. Works effectively under supervision
 3. Demonstrates knowledge of basic machine operation techniques
 4. Understands need for safety--dangerous areas, basic precautions
 5. Uses common machine tools and equipment carefully
 6. Demonstrates ability to develop and follow a work plan or schedule
SUGGESTED LIST OF TEXTBOOKS AND REFERENCES

American Machinist, (magazine) Paul F. Cowie, Publisher, 330 West 42nd Street, New York: 10036.

Automatic Machining, (magazine) Howard Spaulding, Publisher, Screw Machine Publishing Co., 65 Broad Street, Rochester, N. Y., 14614.

How to Run a Lathe. South Bend, Ind.: South Bend Lathe Works.

Machine Trades I Learners Manual. Trade and Industrial Education, Instructional Materials Laboratory, Ohio State University, College of Education, Columbus 10, Ohio.

Machine Trades II Learners Manual. Trade and Industrial Education, Instructional Materials Laboratory, Ohio State University, College of Education, Columbus 10, Ohio.

Metal Progress, (magazine) Published by American Society for Metals, Metals Park, Ohio.

Smith, Robert E. Machining of Metal. Bloomington, Ill.: McKnight & McKnight, 1949.
Tool and Manufacturing Engineer, (magazine) Harry E. Conrad, publisher. The American Society of Tool and Manufacturing Engineer's, 5400 W. Good Hope Road, Milwaukee, Wis.

SUGGESTED LIST OF FILMS

TEAM WORK--THE TOOL STEEL STORY
16 mm, sound, color, 30 minutes
Modern Talking Picture Service, Inc.
3 East 54th Street
New York, N. Y., 1956

ALUMINUM ON THE MARCH
16 mm, sound, color, 28 minutes
Associated Films, Inc
347 Madison Avenue
New York 17, N. Y., 1956

OPTICAL TOOLING
16 mm, sound, color, 35 minutes
Sales Planning Department
Charles Bruning Co.
4700 Montrose Avenue
Chicago, Ill.

THE FORD PEOPLE
16 mm, sound, color, 22 minutes
Ford Film Libraries
16 East 52nd Street
New York 22, N. Y.

ABC OF HAND TOOLS, Part 1 and 2
16 mm, sound, color, 33 minutes
General Motors Corporation
405 Montgomery Street
San Francisco 4, Calif.

THE ART OF REAMING
16 mm, sound, 47 minutes
The Cleveland Twist Drill Company
1242 East 49th Street
Cleveland 14, Ohio

BEING ON TIME
16 mm, sound
Audio-Visual Center
Brigham Young University
Provo, Utah

CHISELS & HAMMERS
16 mm, sound, 23 minutes
Cromers' Modern Films
28 East 9th Avenue
Denver 3, Cola.
COOL CHIPS
16 mm, sound, 13 minutes
The Cincinnati Milling Machine Company
Cincinnati Milling Products Division
Advertising Department
4701 Marburg Avenue
Cincinnati 9, Ohio

DON'T DROP YOUR GUARD
16 mm, sound, color, 10 minutes
Aetna Life Affiliated Companies
Public Education Department
151 Farmington Avenue
Hartford 16, Conn.

ELEMENTARY OPERATIONS ON THE ENGINE LATHE
16 mm, sound
Iowa State College
Department of Public Instruction
Division of Vocational Education
Ames, Iowa

GRINDING CUTTER BIRS
16 mm, sound, color, 20 minutes
425 East Madison Street
South Bend 22, Ind.

THE GRINDING WHEEL, ITS CARE AND USE
16 mm, sound, color, 17 minutes
Norton Company
Publicity Department
Worcester 6, Mass.

HIGHWAY TO PRODUCTION
16 mm, sound, 30 minutes
The Cincinnati Milling Machine Co.
Cincinnati Milling Products Division
Advertising Department
4701 Marburg Avenue
Cincinnati 9, Ohio

NUMERICAL CONTROL
16 mm, sound, color, 30 minutes
(Application of numerical control to turret drilling, tapping, boring and milling. Also advantages such as reduced lead time, precise machining, exact repetition, reduced tooling costs, etc.)
Burgmaster Corp.
15001 South Figueroa Street
Gardena, Calif.
GRINDING WHEEL SAFETY
16 mm, sound, color, 20 minutes
Norton Company
Publicity Department
Worcester 6, Massachusetts

PRECISION TOOL MAKING AND MACHINING--KEYSTONE OF AMERICAN INDUSTRY
16 mm, sound, 30 minutes
Examines Role of: Tool, Die, and precision machining industry in mass production and shows how apprentices are trained.
National Tool, Die and Precision Machining Assn.
907 Public Square Building
Cleveland, Ohio 44113

KEY TO THREADING ECONOMY
16 mm, sound, color, 20 minutes
Advertising Department
Landis Machine Co.
Waynesboro, Pennsylvania

COMMAND PERFORMANCE
16 mm, sound, color, 13 minutes
Traces in Detail: Six basic cycles of a numerically controlled turret drill
Cincinnati Lathe and Tool Co.
Attention: John Mitchell, Sales Manager
Cincinnati 9, Ohio
APPENDIX A. SUGGESTED LIST OF MACHINES

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Estimated total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Sensitive drill presses, floor model, size 15"</td>
<td>$840.00</td>
</tr>
<tr>
<td>1</td>
<td>Upright drill press</td>
<td>350.00</td>
</tr>
<tr>
<td>1</td>
<td>Radial drill press, 3 ft. arm</td>
<td>500.00</td>
</tr>
<tr>
<td>2</td>
<td>Grinders, bench or pedestal, 6-8" wheel dual arbor</td>
<td>300.00</td>
</tr>
<tr>
<td>1</td>
<td>Grinder, pedestal, 10-14" wheel, dual arbor</td>
<td>308.00</td>
</tr>
<tr>
<td>1</td>
<td>Disc sander, 15"</td>
<td>150.00</td>
</tr>
<tr>
<td>1</td>
<td>Belt sander, 4" x 60"</td>
<td>400.00</td>
</tr>
<tr>
<td>1</td>
<td>Upright metal cutting band saw</td>
<td>980.00</td>
</tr>
<tr>
<td>1</td>
<td>Power hacksaw</td>
<td>450.00</td>
</tr>
<tr>
<td>1</td>
<td>Tool grinder, with attachments</td>
<td>952.00</td>
</tr>
<tr>
<td>1</td>
<td>Surface grinder</td>
<td>1995.00</td>
</tr>
<tr>
<td>1</td>
<td>Cylindrical grinder - distance between centers 22", swing over table 8½", table travel 14"</td>
<td>2000.00</td>
</tr>
<tr>
<td>5</td>
<td>Engine lathes with motor, complete tooling 10" x 3'</td>
<td>6500.00</td>
</tr>
<tr>
<td>5</td>
<td>Engine lathes with motor, complete tooling 13" x 5'</td>
<td>9500.00</td>
</tr>
<tr>
<td>1</td>
<td>Engine lathe with motor, complete tooling 30" x 8'</td>
<td>2400.00</td>
</tr>
<tr>
<td>1</td>
<td>Milling machine, universal</td>
<td>4000.00</td>
</tr>
<tr>
<td>1</td>
<td>Milling machine, vertical</td>
<td>4000.00</td>
</tr>
<tr>
<td>1</td>
<td>Shaper, 20"</td>
<td>3000.00</td>
</tr>
<tr>
<td>1</td>
<td>Shaper, 30"</td>
<td>4000.00</td>
</tr>
<tr>
<td>1</td>
<td>Turret lathe with tooling, 3"</td>
<td>6000.00</td>
</tr>
<tr>
<td>1</td>
<td>Jig boring machine for drilling, reaming and precision boring</td>
<td>1495.00</td>
</tr>
<tr>
<td>1</td>
<td>Screw machine, 10-inch swing, 40" bed, collet capacity -- 1"</td>
<td>1490.00</td>
</tr>
<tr>
<td>2</td>
<td>Hardness testing machines, complete with accessories for testing hard and soft materials</td>
<td>1300.00</td>
</tr>
<tr>
<td>1</td>
<td>Arbor press, hydraulic, 25 ton capacity</td>
<td>325.00</td>
</tr>
</tbody>
</table>
APPENDIX B. SUGGESTED LIST OF TOOLS

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Estimated total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 sets</td>
<td>Hand tools (hammers, punches, chisels, scales, try-squares, pliers, wrenches, screwdrivers, files, hacksaw, 20-drawer roller cabinet, etc.)</td>
<td>$1980.00</td>
</tr>
<tr>
<td>20</td>
<td>Small micrometers, 0-1", 1-2", 2-3", and 3-4"</td>
<td>500.00</td>
</tr>
<tr>
<td>3</td>
<td>Dial-test indicators, complete, assorted fixed gages</td>
<td>75.00</td>
</tr>
<tr>
<td>1</td>
<td>Electric drill, portable, ¼" capacity</td>
<td>45.00</td>
</tr>
<tr>
<td>1</td>
<td>Electric drill, portable, ½" capacity</td>
<td>70.00</td>
</tr>
<tr>
<td>3</td>
<td>Drill set, fractional, 1/64" to 2"</td>
<td>600.00</td>
</tr>
<tr>
<td>3</td>
<td>Drill set, numbered, 1 to 30</td>
<td>75.00</td>
</tr>
<tr>
<td>3</td>
<td>Drill set, letter, A to Z</td>
<td>75.00</td>
</tr>
<tr>
<td>3</td>
<td>Tap and die sets, N.C. and N.F. series, No. 4 screw to 1" bolt</td>
<td>100.00</td>
</tr>
<tr>
<td>3</td>
<td>Die sets, N.C. and N.F. Series, No. 4 screw to 1" bolt</td>
<td>300.00</td>
</tr>
<tr>
<td></td>
<td>Clamps, "C" and parallel, assorted</td>
<td>85.00</td>
</tr>
<tr>
<td></td>
<td>Center drills, countersinks, spot facer, assorted sizes</td>
<td>50.00</td>
</tr>
<tr>
<td>1</td>
<td>Tap wrenches, T handle, set</td>
<td>25.00</td>
</tr>
<tr>
<td></td>
<td>Reamers, assorted sizes</td>
<td>200.00</td>
</tr>
<tr>
<td>1</td>
<td>Pipe tapes and dies, set, 1/8" to 2"</td>
<td>125.00</td>
</tr>
<tr>
<td></td>
<td>Small specialty tools and gages and measuring instruments</td>
<td>400.00</td>
</tr>
<tr>
<td>6</td>
<td>Angle plates 2-4x4, 2-6x6, 2-10x10</td>
<td>360.00</td>
</tr>
<tr>
<td>1</td>
<td>Micrometer depth gage, range 0" to 6", 5" base</td>
<td>35.00</td>
</tr>
<tr>
<td>2</td>
<td>Micrometer calipers, inside, range 2" to 12"</td>
<td>60.00</td>
</tr>
</tbody>
</table>
APPENDIX C. SUGGESTED LIST OF EQUIPMENT

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Estimated Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indexing head</td>
<td>$240.00</td>
</tr>
<tr>
<td>3</td>
<td>Tilting, indexing, and rotary tables</td>
<td>420.00</td>
</tr>
<tr>
<td>8</td>
<td>Drill press vises</td>
<td>120.00</td>
</tr>
<tr>
<td>2</td>
<td>Milling machine vises, graduated swivel</td>
<td>338.00</td>
</tr>
<tr>
<td>8</td>
<td>Bench vises, swivel base, 4" jaws</td>
<td>440.00</td>
</tr>
<tr>
<td>2</td>
<td>Work benches</td>
<td>146.00</td>
</tr>
<tr>
<td></td>
<td>Lathe tools and attachments (boring bars, knurling tools, dogs, drill chucks, sleeves), assorted</td>
<td>500.00</td>
</tr>
<tr>
<td>1</td>
<td>Tapping attachment for high production tapping on drill press with chuck and lead screw</td>
<td>550.00</td>
</tr>
<tr>
<td>2</td>
<td>Bench plates, precision ground, 14" x 18"</td>
<td>224.00</td>
</tr>
<tr>
<td>2 sets</td>
<td>Mechanical drawing equipment, complete including: T-square, instruments, 31 x 42 board, triangles curves, drawing pencils, erasing shield, etc.</td>
<td>90.00</td>
</tr>
<tr>
<td>20</td>
<td>Personnel lockers, steel, double compartments 31" h x 24" d x 18" w</td>
<td>500.00</td>
</tr>
<tr>
<td>3</td>
<td>Laboratory work tables, 30" x 5' top</td>
<td>114.00</td>
</tr>
<tr>
<td>2</td>
<td>Drawing tables, adjustable, 30" x 36" top</td>
<td>300.00</td>
</tr>
<tr>
<td>20</td>
<td>Tablet armchairs</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Drafting stools</td>
<td>18.00</td>
</tr>
<tr>
<td>1</td>
<td>Instructor's chair and desk</td>
<td>150.00</td>
</tr>
<tr>
<td>1</td>
<td>File cabinet, 4-drawer</td>
<td>75.00</td>
</tr>
<tr>
<td>1</td>
<td>Projector, filmstrip or slide</td>
<td>75.00</td>
</tr>
<tr>
<td>1</td>
<td>Overhead projector</td>
<td>185.00</td>
</tr>
<tr>
<td>1</td>
<td>Projector, 16 mm, sound</td>
<td>500.00</td>
</tr>
<tr>
<td></td>
<td>Allowance for slides and transparencies</td>
<td>300.00</td>
</tr>
</tbody>
</table>
APPENDIX D. SUGGESTED LIST OF EXPENDABLE SUPPLIES

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Estimated total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 lbs.</td>
<td>Rags</td>
<td>$10.00</td>
</tr>
<tr>
<td>60</td>
<td>Power hacksaw blades, 18 teeth by .932" by 14" long HSS</td>
<td>35.00</td>
</tr>
<tr>
<td>60</td>
<td>Hand hacksaw blades, 24 teeth by .025" by 10"</td>
<td>10.25</td>
</tr>
<tr>
<td>60</td>
<td>Hand hacksaw blades, 32 teeth by .025" by 10"</td>
<td>10.25</td>
</tr>
<tr>
<td>15 gal.</td>
<td>Machine oil</td>
<td>30.00</td>
</tr>
<tr>
<td>30 gal.</td>
<td>"Bestol" thread cutting oil</td>
<td>90.00</td>
</tr>
<tr>
<td>2 boxes</td>
<td>Rex AAA tool bits, 1/4"</td>
<td>40.00</td>
</tr>
<tr>
<td>2 boxes</td>
<td>Rex AAA tool bits, 5/16"</td>
<td>45.00</td>
</tr>
<tr>
<td>2 boxes</td>
<td>Rex AAA tool bits, 7/16"</td>
<td>55.00</td>
</tr>
<tr>
<td>2 boxes</td>
<td>Rex AAA tool bits, 3/8"</td>
<td>50.00</td>
</tr>
<tr>
<td>2 boxes</td>
<td>Rex AAA tool bits, 1/2"</td>
<td>75.00</td>
</tr>
<tr>
<td>500 sheets</td>
<td>Fine emery cloth</td>
<td>50.00</td>
</tr>
<tr>
<td>1 doz.</td>
<td>12" mill files</td>
<td>15.00</td>
</tr>
<tr>
<td>1 doz.</td>
<td>10" bastard files</td>
<td>13.00</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 1/4" round</td>
<td>4.77</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 3/8" round</td>
<td>11.30</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 1/2" round</td>
<td>20.64</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 5/8" round</td>
<td>31.30</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 3/4" round</td>
<td>45.06</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 1" round</td>
<td>70.10</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 1 1/4", round</td>
<td>95.00</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 1 1/4", round</td>
<td>102.50</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 1 3/8", round</td>
<td>135.00</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 1 1/2", round</td>
<td>146.00</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 2", round</td>
<td>254.50</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 1/2", square</td>
<td>29.85</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 5/8", square</td>
<td>46.50</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 3/4", square</td>
<td>64.90</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 1", square</td>
<td>115.65</td>
</tr>
<tr>
<td>Quantity</td>
<td>Description</td>
<td>Estimated total cost</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 1/2" hex</td>
<td>$35.00</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 5/8" hex</td>
<td>52.50</td>
</tr>
<tr>
<td>100'</td>
<td>Cold rolled steel, 3/4" hex</td>
<td>68.90</td>
</tr>
<tr>
<td>72'</td>
<td>Stainless steel, 1" diameter, type 303, machining quality</td>
<td>288.00</td>
</tr>
<tr>
<td>120'</td>
<td>Brass rod, 1" diameter, free cutting</td>
<td>367.20</td>
</tr>
<tr>
<td>36'</td>
<td>Brass rod, 2" diameter, free cutting</td>
<td>421.20</td>
</tr>
<tr>
<td>72'</td>
<td>Aluminum rod, 2" diameter, 2011-T3</td>
<td>324.00</td>
</tr>
<tr>
<td>72'</td>
<td>Aluminum rod, 1 1/2" square, 2024-T4</td>
<td>194.40</td>
</tr>
<tr>
<td>60 lbs.</td>
<td>Carbon vanadium tool steel, 1.0% carbon</td>
<td>60.00</td>
</tr>
<tr>
<td>20'</td>
<td>High speed tool, steel 1/2" bar stock</td>
<td>35.00</td>
</tr>
<tr>
<td>60'</td>
<td>Drill rod, carbon steel</td>
<td>780.00</td>
</tr>
<tr>
<td>500 lbs.</td>
<td>Grey iron castings</td>
<td>500.00</td>
</tr>
<tr>
<td>1</td>
<td>Refill kit first aid supplies</td>
<td>15.00</td>
</tr>
</tbody>
</table>
APPENDIX E

SUGGESTED TRAINING FACILITY