
ED 013714
RE $\operatorname{gog} 307$
COORDINATING CENTER FORE FIRST-GRACE GEACING FRIGGFAMS.
EY- EOND: GUY L. DYKSTFA, FIGEEKT
MINNESOTA UNIV., MINREAFIGLIS
KEFORT NUMEER CFF-n-001
REFORT NUMEEK ER-5-[1341
CONTRACT CEC-5-10-264
ECRS FRICE MF- $\$ 1.50$ HC- $\$ 15.76$ 394F.
CESCRIFTORS- *REACING FESEAKCH, シGIKACE 1, FREACING ACHIEVEMENT, *EASIC READING, \%EEGININING FEACING, SFELLING, FEADING FEADINESS, REACING INSTFUCTION, FEACING FREGGFAMS, KEADING SKILLS, UNIVEFSITY OF MINNESOTA,
the final fefurt fons the coordinated first-gkace stueies FROM THE OFFICE OF ECUCATION IS FEEESENTED. THE STUDIES INVESTIGATED THE FOLLOWING--(1) TO WHAT ENTENT FUFIL, TEACHER, CLASS, SCHOOL, AND COHMUNITY CHABEACTERISTICS ARE FELATED TO תIFST-GFACE FEADING AND SFELLINC ACHIEVEMENT, (2) WHICH AFFFT -H TO INITIAL REACING INSTRUCTICN FFOCUCES SUFEFIOR FEAUING RNE SFELLIHG ACHIEVEMENT AT THE END Cf GẼACE CNE, AND (3) THE EFFECTIVENESS OF ANY FFIGGEAM FGE FUFILS WITH HIGH OR LOW FEADING REACINESS SKILLS. THIS EÖTENSIVE FEFGRT contains a review of the litekature, ain ovefiview of the INDIVICUAL STUDIES AND OF THE FFROCECUEES; ARVALYSES OF EELATIUNSHIFS AND CF INSTFUCTICNAL METHCOS: ARIALISES EY READINESS LEVELS, A COtffafiscin if CLASS MEANS AND Cf INDIVICUAL ANALYSES, A. SISCUSSION OF THE FELATIVE INFLUENCE OF TREATMENT AND FROUJECTS, A SUMMAFY, AND CONCLUSIGNS. A

COORDINATING CENTER FOR FIRST-GRADE reading instruction programs

Fehruary 1967
U.S. DEPARTMENT OF HELITH, EDUCAIION \& WELFARE OFFICE OF EDUCATIOM

THIS DOCiMment has sefw reproduced exactiy as recelved frow me
 STATED DO MOi MECESSARLY REPRESENT OFFICILL OFFICE OF EDUCATION POSIION OR POUCY.

COCRDINATING CENTER FOR FIRST-GRADE
 reading instruction programs

Project No.: X-001

Contract No.: 0E-5-10-264

Guy L. Bond

Robert Dykstra

The research reported herein was performed pursuant to a contract with the Office of Education, U.S. Department of Health, Education, and Weifare. Contractors undertaking such projects under Government sponsorship are encouraged to express freely their professional judgment in the conduct of the project. Points of view or opinions stated do not, therefore, necessarily represent official Office of Education position or policy.

University of Minnesota Minneapolis, Minnesota

ACKNOWLEDGMENTS

The directors of the Coordinating Ceiter wish to express their appreciation to the many individuals who made the Cooperative Research Study of First-Grade Reading Instruction possible: the directors of the twenty-seven participating projects for their c:soperation and encouragement; the United States Office of Education for its support; Donald MacEachern and Cyril Hoyt for their many suggestions regarding statistical analysis; Garrett Mandeville, William Walster and John Viesselman for their help in organizing and analyzing the mass of data; Dale Bennett, Carl Braun, and Edward Hakanson for their assistance during various phases of the project in facilitating data collection and in preparing this report; and Roberta Brockschmidt for her diligence in keeping the office in operation and in typing the final report.

The directors also wish to thank the various publishers and individuals who made their tests available to the project at reduced costs or free of charge and American Education Publications which printed certain of the tests.
ACKNOWLEDGMENTS ii
LIST OF TABLES vi
CBAPTER
I. INTRODUCTION 1
Rationaie 1
Background of the Study 2
Organization of the Report 3
II. REVIEW OF LITERATURE 4
The Initial Teaching Alphabet 5
Phonic Methods 7
Linguistic Methods 12
Individualized Methods 14
Language Experience Methods 16
Sex Differences and Reading 17
Summary 19
III. AN OVERVIEW OF THE INDIVIDUAL STUDIES 21
IV. PROCEDURES 36
Role of the Coordinating Center 36
Data Collected 37
Common Experimental Guidelines 40
Organization of the Data 40
General Procedure of Analysis 41

1. ANALYSIS OF RELATIONSHIPS 43
Relationships between Readiness and Reading 43Intercorrelations Among Group andIndividual Achievement Measures50
Relationships between Teacher, Pupil, and Class Characteristics and Achievement 54
VI. ANALYSIS OF INSTRUCTIONAL METHOD? 63
General Procedures 63
Description of Analysis 65
An Illustration of the Analysis (Basal versus I.T.A.) 68
Basal versus Basal Plus Phonics Comparisons 85
Basal versus Language Experience Comparisons 94
Basal versus Linguistic Comparisons 108
Basal versus Phonic/Linguistic Comparisons 122
The Practicality of Significant Differences 139
Variability Within Treatments 142
Summary of Treatment Comparisons 147
Discussion of the Analysis of Treatment Comparisons 152
VII. ANALYSIS OF TREATMENT BY READINESS LEVEL 154
Plecking on Intelligence 154
Blocking on Phonemes 172
Blocking on Letter Knowledge 173
Summary 173
VIII. COMPARISON OF CLASS MEAN AND INDIVIDUAL ANALYSIS 175
IX. RELATIVE INFLUENCE OF TREATMENT AND PROJECT 183
X. SUMMARY AND CONCLUSIONS 205
Analysis of Relationships 205
Analysis of Methodology 208
Analysis of Treatment by Readiness Level 213
Comparison of Class Mean and Individual Analyses 215
Suggestions for Future Cooperative Research 216
BIBLIOGRAPHY 218
APPENDIX Adescriptive data by project and treatment
APPENDIX B
andiysis of dirferintial treatment eifects for SUBJECTS OF VARYING LEVEI.s JF Letter KNOWLEDGE AND AUDITORY DISCRIMINATION
APPENDIX CCategorical data by project and treatment for theFIFTEEN PROJECT: INCLUDED IN THE MAIN ANALYSIS

APPENDIX D
CATEGORICAL DATA BY PROJECT FOR ALL TWENTY-SEVEN PROJECTS

APPENDIX E

PHONETICALLY REGULAR WORDS ORAL READING TEST and
GATES WORD PRONUNCIATION TEST

Table		Page
5:01	Correlation Matrix for the Basal Treatment	44
5:02	Correlation Matrix for the I.T.A. Treatment	46
5:03	Correlation Matrix for the Basal plus Phonics Treatment	47
5:04	Correlation Matrix for the Language Experience Treatment	48
5:05	Correlation Matrix for the Linguistic Treatment	49
5:06	Correlation Matrix for the Phonic/Linguistic Treatment	51
5:07	Summary of Correlations between Premeasures and Stanford Paragraph Meaning Test for each of Six Treatments	52
5:08	Summary of Correlations between Premeasures and Word Reading Test for Each of Six Treatments	53
5:09	Intercorrelations cf Individual Outcome Measures and Selected Subtests from the Stanford Achievement Test for the Basal Treatment	55
5:10	Intercorrelations of Individual Outcome Measures and Selected Subtests from the Stanford Achievement Test for the I.T.A. Treatment	56
$5: 11$	Intercorrelations of Individual Outcome Measures and Selected Subtests from the Stanford Achievement Test for the Basal plus Phonics Treatment	57
5:12	Intercorrelations of Individual Outcome Measures and Selected Subtests from the Stanford Achievement Test for the Language Experience Treatment	58

Intercorrelations of Individual Outcome Stanford Achievement Test for the Basal Treatment

Intercorrelations of Individual Outcome Measures and Selected Subtests from the Stanford Achievement Test for the I.T.A. Treatment

保 Stanford Achievement Test for the Basal plus Phonics Treatment

Intercorrelations of Individual Outcome
Measures and Selected Subtests from the Experience Treatment

5:13	Intercorrelations of Individual Outcome Measures and Selected Subtests from the Stanford Achievement Test for the Linguistic Treatment	59
5:14	Intercorrelations of individual Outcome Measures and Selected Subtests from the Stanford Achievement Test for the Phonic/ Linguistic Treatment	60
5:15	Correlations be: seen Pupil, Class, and Teacher Characteristics and Stanford Battery	61
6:01	Materials and Numbers of Classes and Pupils for Basal vs I.T.A.	69
6:02	Across Projects Analysis of Variance on Premeasures for Basal vs I.T.A. Comparison	70
6:03	Across Projects Analysis of Varianc and Covariance on Stanford Measures for Basal vs I.T.A. Comparison	72
6:04	Within Projects Unadjusted Means on Stanford Measures for the Basal vs I.T.A. Comparison	73
6:05	Within Projects Analysis of Variance on Premeasures for the Basal vs I.T.A. Comparison	75
6:06	Premeasure Means for the Basal vs I.T.A. Comparisor.	76
6:07	Within Projects Analysis of Variance and Covariance on Stanford Measures for the Basal vs I.T.A. Comp, rison	77
6:08	Unadjusted and Adjusted Stanford Means for the Basal vs I.T.A. Comparison	79
6:09	Subjects Used for the Analysis of Individual Outcome Measures for the Basal vs I.T.A. Comparison	81
6:10	Within Projects Analysis of Variance on Premeasures for Basal vs I.T.A. Comparison	82

6:11	Within Projects Analysis of Variance and Covariance on Individual Outcome Measures for Basal vs I.T.A. Comparison	83
6:12	Unadjucted and Adjusted Means on Individual Outcome Measures for the Basal vs I.T.A. Comparison	84
6:13	Materials and Numbers of Classes and Pupils for Basal vs Basal plus Phonics	86
6:14	Across Projects Analysis of Variance on Premeasures for Basal vs Basal plus Phonics Comparison	87
6:15	Across Projects Analysis of Variance and Covariance on Stanford Measures for Basal vs Basal plus Phonics Comparison	88
6:16	Within Projects Analysis of Variance on Premeasures for the Basal vis Basal plus Phonics Comparison	90
6:17	Premeasure Means for the Basal vs Basal plus Phonics Comparison	91
6:18	Within Projects Analysis of Variance and Covariance on Stanford Measures for the Basal vs Basal plus Phonics Comparison	92
6:19	Unadjusted and Adjusted Stanford Means for the Basal vs Basal plus Phonics Comparison	93
6:20	Subjects Used for the Analysis of Individual Outcome Measures for the Basal vs Basal plus Phonics Comparison	95
6:21	Within Projects inalysis of Variance on Premeasures for Basal vs Basal plus Phonics Comparison	96
6:22	Within Projects Analysis of Variance and Covariance on Individual Outcome Measures for Basal vs Basal plus Phonics Comparison	97
6:23	Unadjusted and Adjusted Means on Individual Outcome Measures for the Basal vs Basal plus Phonics Comparison	98

6:24	Materials and Numbers of Classes and Pupils for Basal vs Language Experience	99
6:25	Across $1 \ldots$ - -cts Analysis of Variance on Premeasures fur REsal vs Language Experience Comparison	101
6:26	Across Projects Analysis of Variance and Covariance on Stanford Measures for Basal vs Language Experience Comparison	102
6:27	Within Projects Analysis of Variance on Preweasures for Basal vs Lanjuage Experience Comparison	104
6:28	Premeasure Means for the Basal vs Language Experience Comparison	105
6:29	Within Projects Analysis of Variance and Covariance on Stanford Measures for the Basal vs Language Experience Comparison	106
6:30	Unadjusted and Adjusted Stanford Means for the Basal vs Language Experience Comparison	107
6:31	Subjects Used for the Analysis of Individual Outcome Measures for the Basal vs Language Experience Comparison	109
6:32	Within Projects Analysis of Variance on Premeasures for Basal vs Language Experience Comparison	110
$6: 33$	Within Projects Analysis of Variance and Covariance on Individual Outcome Measures for Basal vs Language Experience Comparison	111
6:34	Unadjusted and Adijusted Means on Individual Outcome Measures for the Basal vs Language Experience Comparison	112
$6: 35$	Materials and Numbers of Classes and Pupils for Basal vs Linguistic	113
6:36	Across Projects Analysis of Variance on Premeasures for Basal vs Linguistic Comparison	115
6:37	Across Projects Analysis of Variance and Covariance on Stanford Measures for Basal vs Linguistic Comparison	115

6:38	Within Projects Analysis of Variance on Premeasures Enr the Basal vs Linguistic Comparison	117
6:39	Premeasures Means for the Basal vs Linguistic Comparison	118
6:40	Within Projects Analysis of Variance and Covariance on Stanford Measures for the Basal vs Linguistic Comparison	119
6:41	Unadjusted and Adjusted Stanford Means for the Basal vs Linguistic Comparison	120
6:42	Subjects Used for the Analysis of Individual Outcome Measures for the Basal vs Linguistic Comparison	121
6:43	Within Projects Analysis of Variance on Premeasures for Basal vs Linguistic Comparison	123
6:44	Within Projects Analysis of Variance and Covariance on Individual Outcome Measures for the Basal vs Linguistic Comparison	124
6:45	Unadjusted and Adjusted Means on Individual Outcome Measures for the Basal vs Linguistic Comparison	125
6:46	Materials and Numbers of Classes and Pupils for Basal vs Phonic/Linguistic	126
6:47	Across Projects Analysis of Variance on Premeasures for Basal vs Phonic/Linguistic Comparison	128
6:48	Across Projects Analysis of Variance and Corariance on Stanford Measures for Basal vs Phonic/Linguistic Comparison	129
6:49	Within Projects Analysis of Variance on Premeasures for Basal vs Phonic/Linguistic Comparison	130
6:50	Premeasure Means for the Basal vs Phonic: Linguistic Comparison	131
6:51	Within Projects Analysis of Variance and Covariance on Stanford Measures for the Basal vs Phonic/Linguistic Comparison	132

6:52	Unadjusted and Adjusted Stanford Means for the Basal vs Phonic/Linguistic Comparison	134
6:53	Subjects Used for the Analysis of Indivicual Outcome Measures for the Basal vs Phonic/ Linguistic Comparison	135
6:54	Within Projects Analysis of Variance on Premeasures for Basal vs Phonic/Linguistic Comparison	136
6:55	Within Projects Analysis of Variance and Covariance on Individual Outcome Measures for Basal vs Phonic/Linguistic Comparison	137
6:56	Unadjusted and Adjusted Means on Individual Outcome Measures for the basal vs Phonic/ Linguistic Comparison	138
6:57	Grade Equivalents for Stanford ':ievement Test Primary I Battery, Form W	140-141
6:58	Ranges of Class Means of Four Stanford Subtests by Treatment and Project	143-144
6:59	Standard Deviaticns of Stanford Measures According to Treatment	146
6:60	Comparison of Basal and Non-Basal Subjects on the Stanford Word Reading, Paragraph Meaning, and Spelling Subtests	148
6:61	Comparison of Basal and Non-Basal Subjects on the Stanford Vocabulary and Word Study Skills Subtests	149
6:62	Comparison of Basal and Non-Basal Subjects on the Fry and Gates Word Lists	150
6:63	Comparison of Basz1 and Non-Basal Subjects on the Gilmore Accuracy and Rate Scores	151
7:01	Cell Frequencies for Each Level of Intelligence for the Basal vs I.T.A. Treatments	156
7:02	Cell Frequencies for Each Level of Intelligence for the Basal vs Basal plus Phonics Treatments	157
7:03	Cell Frequencies for Each Level of Intelligence for the Basal vs Language Experience Treatments	158

7:04	Cell Frequencies for Fach Level of Intelligence for the Basal vs Linguistic Treatments	159
7:05	Cell Frequencies or Each Level of Intelligence for the Basal vs Phonic/Linguistic Treatments	160
7:06	Treatment by Project Interactions on Stanford Measures for Basal vs Non-Basal Treatment Comparisons (Blocking on Intelligence)	162
7:07	Selected Treatment Effects from Within Projects Analysis of Variance and Covariance on Stanford Measures for Basal vs I.T.A. Comparison (Blocking on Intelligence)	163
7:08	Selected Treatment Effents from Within Projects Analysis of Variance and Covariance on Stanford Measures for Basal vs Basal plus Phonics Comparison (Blocking on Intelligence)	165
7:09	Selected Treatment Effects from Within Projects Analysis of Variance and Covariance on Scanford Measures for Basal vs Language Experience Comparison (Blocking on Intelligence)	166
7:10	Unadjusted Stanford Keans for Project Four in Basal vs Language Experience Comparison by Treatment and Level of Inselligence	167
7:11	Unadjusted Premeasure Means for Project Four in Basal vs Language Experience Comparison by Treatment and Level of Intelligence	169
7:12	Selected Treatment Effects from Within Projects Analysis of Variance and Covariance on Stanford Measures for Basal vs Linguistic Comparison (Blocking on Intelligence)	170
7:13	Selected Treatment Eifects from Within Projects Analysis of Variance and Covariance on Stanford Measures for Basal vs Phonic/Linguistic Comparison (Blocking on Intelligence)	171
8:01	Comparison of Treatment Differences in Class Mean and Individual Analyses for the Basal vs I.T.A. Treatments	177

8:02	Comparison of Treatment Differenres in Class Mean and Individual Analyses for the Basal vs Basal plus Phonics Treatments	178
8:03	Comparison oī Treatment Differences in Class Mean and Individual Analyses for the Basal vs Language Experience Treatments	179
8:04	Comparison of Treatment Differences in Class Mean and Individual Analyses for the Basal vs Linguistic Treatments	180
8:05	Comparison of Treatment Differences in Class Mean and Individual Analyses for the Basal vs Phonic/Linguistic Treatments	181
9:01	Rank Order of Project-Treatment on Stanford Word Reading Test	184-188
9:02	Rank Order of Project-Treatment on Stanford Paragraph Meaning Test	189-193
9:03	Percentages of Teachers from High-Ranking and Low-Ranking Projects Categorized by Efficiency Rating	195
9:04	```Selected Teacher, Classroom, and Community Characteristics of High-Ranking and Low-Ranking Projects```	197
9:05	Length of School Day by Classrooms	198
9:06	Length of School Year by Classrooms	200
9:07	Median Number of Years' Education Completed by Adults by Classrooms	201
9:08	Median Income in Community by Classrooms	202
9:09	Cost Per Pupil in Average Daily Attendance by Classrooms	203

CHAPTER I

INTRODUCTION

This study was designed to obtain information relevant to three basic questions. (1) To what extent are various pupil, teacher, class, school, and community characteristics related to pupil achievement in first-grade reading and spelling? (2) Which of the many approaches to initial reading instruction produces superior reading and spelling achievement at the end of the first grade? (3) Is any program uniquely effective or ineffective for pupils with high or low readiness for reading?

Rationale

Every year hundreds of thousands of children begin the complex task of learning to read. For nost children growth in reading is a successful undertaking. For many, however, the progress is slow, and for other: learning to read appears to be an unobtainable accomplishment. There is a continuous starch for new ways to teach reading which will prevent the difficulties these children encounter, thereby enabling all children to become successful readers. Moreover, even for those children who have apparent success in learning to read, there is always the question of whether or not a different approach would have enabled them to become even more meture and diversified readers.

In recent years there have been suggested many new approaches to reading instruction. There have also been many questions raised about current methods of teaching reading. In fact, the teaching of beginning reading has been and continues to be a popular subject for debate among reading experts anc he general public alike. Even though a great deal of research has been devoted to the problem, there are still a number of controversies concerning instructional procedures in beginning reading. Many new approaches to initial instruction have been formulated and implemented but have not been subjected to comparative research to any extent. Furthermore, most of the research has been conducted in a piece-meal fashion by independent investigators. As a result, comparisons among the individual studies have been difficult for a number of reasons:

1. Independent investigators have used different tests to measure reading readiness and reading achievement. Norming populations for the various tests may be quite different and as a result it is difficult to compare achievement of pupils whose reading ability has been assessed by different instruments.
2. The extent to which investigators have assessed and/or controlled such factors as experiential background of children, class sizie, teacher competence, enthusiasm for the teaching method employed and other such variables has varied from study to study.
3. Research designs and methods of statistical analysis have varied from study to study.
4. Evaluation of post-instructional reading ability has been incomplete and inappropriate.
5. Experimental guidelines such as length of instructional period have varied considerably in independent investigations. Furthermore, the length of some experimental periods has been inadequate for demonstrating long-range effects of approaches to initial reading instruction.
6. Methods, materials, and experimental populations have not been adequately described in order to make comparisons between studies possible.

The Cooperative Research Studies in First-Grade Reading Instruction were designed to overcome many of the difficulties listed. The unique contribution of this research program was its provision for coordination of a number of individual reading studies; thereby making possible the exploration of the relative effects on early reading growth of various approaches to initial reading instruction under similar experimental conditions.

Background of the Study

A group of reading research experts met at Syracuse University in 1959 to discuss ways to improve the quality of research in the field of reading. The participants were members of the Committee on Needed Research in Reading which was established by the National Conference on Research in English. This group concluded that the problems of beginaing reading instruction should receive first priority.

In 1960 a second conference was held at the University of Chicago for the purpose of establishing guidelines for conducting a large-scale investigation of initial reading instruction. Plans were drawn for a cooperative research venture if support for the program could be obtained. In 1963 the Cooperative Research Branch of the U.S. Office of Education indicated its willingness to provide financial support and invited proposals dealing with primary reading instruction.

In 1964 another meeting of reading researchers was held at the Univer:ity of Chicago. This meeting had as its goal the formulation of recommendations concerning the cooperative research program. Among other things participants recommended the establishment of a coordinating center which would facilitate communication among projects which were going to take part in the study.

The Cocrdinating Center for the Cooperative Research Program in First Grade Reading Instruction was established at the University of Minnesota in 1964. Furthermore, twenty-seven projects were selected for support by the U.S. Office of Education out of seventy-six proposals which were sabmitted. The projects were selected on the basis of their individual merit as self-contained studies but each project director also agreed to abide by common standards regarding experimental procedures and data collection. A brief description of each project is presented in Chapter III. The role of the Coordinating Center and the cooperative aspects of the research program are presented in Chapter IV.

Organization of the Report

Relevant research is reviewed in Chapter II. Chapter III presents a brief overview of each of the participating projects. Chapter IV describes the role of the Coordinating Center, the types of data collected, the experimental procedures, and the organization of the data for analysis. The relationships among pupil readiness, class, school, and community characteristics, teacher characteristics, and pupil achievement are reported in Chapter V. The evaluation of approaches to initial reading instruction is described in Chapter VI. Chapter VII presents the analysis of differential treatment effects for pupils of high or low readiness as measured by the tests used in this investigation. Chapter VIII compares treatment effects according to two different ways of handling the data -- using either individual pupils or class means as the experimental variable. Chapter IX describes an analysis which ranked all of the treatments in all projects according to their effectiveness. Chapter X reports the summary and conclusions. Descriptive data concerning all treatments within all projects are presented in the appendix as are many tables not directly relevant to the discussion of the data analysis.

CHAPTER II

REVIEW OF LITERATURE

A large number of studies have been reported which aim to determine the efficiency of different methods of teaching beginning reading. The results of these experiments have often been inconclusive, and at times, contradictory. Because of the variability of the results reportc. by investigators, the reader is left with little irrefutable evidence from which to determine the comparative efficiency of the methods of teaching reading which have been studied. After reviewing literature concerning the various methods of teaching reading, Gray (30), in the reading section of the Encyclopedia of Educational Research concluded that the issue was not which method was better, but rather what does each method contribute most effectively.

Russe11 and Fea, in their chapter, "Research on Teaching Reading" in the Handbook of Research on Teaching stated that historically
thinking in the field has moved away somewhat from an either-or point of view about one method or set of books to a realization that different children learn in different ways, that the processes of learning to read and reading are more complex than we once thought, and that the issues in reading instruction are many sided. ($52: 867$)

Most of the studies reviewed in this chapter involved comparative studies between basal reading programs and some other approach to teaching children to read.

The basal reading series has been the backbone of the elementary reading program in the United States for many years. In 1957, Stewart (60) reported on a questionnaire survey of practices in teaching reading. The survey included school systems in 107 cities of over 25,000 population, in forty states. These districts were responsible for the reading instruction of 250,000 children. Stewart's conclusion was that "All the schools are making use of one or more basic reading series." Austin and Morrison (7) reported that in more than ninetyfive per cent of the elementary schools they studied, the teachers rely heavily upon a basal or co-basal reading program.

The review of literature that follows is not all-inclusive, but is intended to be a sampling of the results reported and of the literature available in the areas of concern. In the literature concerning some approaches to beginning reading instruction, there is a great deal of opinion and intuitive writing available, some of which has been included in this review.

The Initial Teaching Alphabet

One of the more recent innovations in the teaching of beginning reading is the Initial Teaching Alphabet, hereafter referred to as I.T.A. I.T.A., developed by Sir James Pitman, was originally called the Augmented Roman Alphabet. According to Downing, the major investigator in I.T.A. studies in England, "The initial teaching alphabet has been designed for the specific purpose of helping children in the early stages of learning to read." (22:15)

Using the I.T.A. materials, children learn to read using textbooks printed in a special alphabet c..stetin: of forty-four characters. Twenty-four of these are Roman or Latin characters used in i:raditional English print. There are twenty new letters, most of which are augmentations of the Roman alphabet. These characters are designed to regularize the coding of the basic sound units of English. Only lower case letters are used in order to reduce the number of characters necessary for the children to learn. Upper case letters are represented by larger forms of the I.T.A. lower case shapes. After pupils have gained confidence and fluency in reading I.T.A., they are to transfer their skills and confidence to reading material printed in the conventional characters.

Downing (22) claimed that the teacher does not generally have to modify his teaching methods except for some adaptations forced upon him by the nature of I.T.A. In other words, I.T.A. may be used with a whole-word method, a phonics method or a language experience method. Downing stated,

Summing up, it is claimed that i.t.a. should help the global approaches to the teaching of reading because it makes the visual patterns invariable, and it should help the phonic approach, because in i.t.a. each symbol represents, with certain exceptions, one phoneme. ($22: 21$)

Downing further asserted that the use of Y.T.A. with primary children will likely lead the pupils to learn that there is a systematic relationship between spelling and speech, and that experience with I.T.A. may help the children in their general intellectual development.

Downing (21) stated there are two criticisms sometimes leveled at I.T.A.: 1) there may be too many characters for the children to learn; and 2) the new characters may be too difficult for the beginner to form with a pencil. Downing refuted the first of these claims by explaining that by traditional orthography, the children have to learn many more characters than by the I.T.A. system. The second criticism of I.T.A. was answered by Downing in a rather lengthy explanation of the system by which the children are trained to form the I.T.A. characters.

According to Downing (21), the results of a longitudinal British study, begun in 1961, have shown that children using I.T.A. recognize more words in print, comprehend more continuous prose in print, read faster and more accurately, and progress through reading instruction more rapidly than children using the conventional type of basal reading program. Head teachers at the experimental. English schools have reported that the I.T.A. medium appears to have raised the beginner's level of self-confidence, increased their enthusiasm for, and interest in independent reading, allowed the children to be more independent in their work, resulied in a marked improvenent in creative writing, and permitted children's thoughts to flow more naturally.

After one year of an I.T.A. study conducted in Bethlehem, Pennsylvania, Mazurkiewicz (40) reported generally favorable conclusions in favor of his experimental (I.T.A.) group over his control group. However, in a discussion of the results of the same I.T.A. program after two years of the study in Bethlehem, Stewart (61) presented generally inconslusive results. At that time there was no particular statistically significant advantage for either the I.T.A. groups or the groups which learned to read by means of traditional basal readers.

A study done by Chasnoff (17), in which the teacher variable was controlled, yielded scores for the total experimental group significantly higher in word reading, word study, and spelling, with respect to scores on the Staniord, Form W, when the experimental group was tested with a test transliterated into I.T.A. and the control group tested by the same test in traditional orthography. On the Stanford, Form X, no significant differences were indicated with respect to scores gained on tests with all subjects taking the tests in traditional orthography. On a comparison of scores assigned to 616 writing samples gained from the total population, the differences of means for the experimental group was significantly higher at the .01 level. The scores generaliy appear to give an advantage to the total experimental group, especially to subjects from three particular schools involved in the study, and also to children who scored 35 to 44 on the California Test of Mental Maturity.

The results of many of the I.T.A. studies to date have been favorable for the I.T.A. groups. Most researchers recognize the need for follow-up studies on the effects of I.T.A.

Phonic Methods

Some confusion exists as to the meanings of the terms phonics and phonetics. Often these terms are used interchangeably in discussions of reading instruction practices. Phonics is a term for the practices of teaching reading in which individual letters of the alphabet are matched with the specific sounds of English pronunciation. Phonetics, on the other hand, is the process of systematic analysis and description of the vocal sounds, or phonetic features, of a language. It must be remembered, however, that the terms phonics, phonetics, or phonetic methods often refer to an entire method of teaching reading, supplementary teaching of phonics as an area of study in its own right, or the teaching of phonics as a part of another method.

Phonics can be further classified as either synthetic or analytic. The synthetic method is based upon the belief that the child should be taught certain letter-sound relationships of word elements before beginning to read, and then be taught to synthesize word elements learned into whole words. Most older methods of teaching phonics were usually synthetic. The analytic method is based upon the belief that children should be taught whole words and then, through various analytic techniques, be taught to apply letter combinations learned in familiar words to sounding out new words.

There is no paucity of literature concerning the use of phonics in teaching beginning reading. In 1958, at the University of Pittsburgh, Morrone (44) reviewed 198 references on phonics for a doctoral study. He suggested that no incontrovertible evidence was revealed by scientific investigations of phonics in reading and spelling. Morrone further stated:

Disagreement exists as to the approach and amount of phonic instiuction teachers should utilize in reading; however, most of the scientifically accurate experiments show that phonics has considerable value to the learner in the reading process. (44:14)

Harrington and Durrell (52) concluded that "auditory and visual discrimination and phonic ability are more important than mental age for learning to read." Gates and Russell (27) concluded that a
program containing little or no phonetic analysis was not as good as one which contained moderate amounts of informal wörd analysis. They also concluded that a moderate amount of informal word analysis made a better program than one which contained large amounts of drill-type phonics. In a study of the Carden method of teaching phonics, Gates stated,

> The findings of this study do not suggest that teaching phonics is futile or unneccosary. They show merely that the much less complex and less rigid programs employrd in mest American schools during the past decade produce reading abilities equal to, or somewhat better, thin the Carden system in much less time and with less effort. (25)

Rudisill (51), in a study designed to investigate the interrelatioas between phonic knowledge, reading achievement, spelling achievement, and mental age, found that a knowledge of phonics makes a substantial contribution to achievement in reading. Henderson (36), ${ }^{\prime} \mathrm{n}$ reporting the Champaign study, suggested that a phonics approach alas great advantages over a nor-phonic or look-say approach.

In a study designed to determine what relationships exist between phonic ability and reading ability, Tiffin and McKinnis (67) tested 155 pupils in grades five, six, seven, and eight on the Iowa Silent Reading Test and the New Stanford Reading Test. An individual phonic test using nonsense words was also administered. The investigators concluded that phovic ability is significantly related to reading ability, and that a reading program should include direct or indirect instruction in the principles of phonics.

Few research studies have been reported condemning phonics. Two such studies were reviewed in a publication issued in 1963 by the University of the State of New York (1). The first of these studies was reported b; Dumville in 1912. In his study, Dumville used only thirty-six elementary schcol children about whow he reports no information concerning mental age, chronological age, sex, or any of the other background information usually considered necessaiy in such an experiment today. In Dumville's experiment the children were divided into two groups, a phonics groups and a look-and-say group.

The look-and-say group was given a list of words in phonetic transcri - ind regular spelling and told to learn them as whole wo. \quad s. The phonics group was given a table of phonetic symbols, their sounds, and sample words in phonetic transcript.

They were also given the same list of words in phoretic spelling and regular spelling. Both groups were given 15 minutes to learn the words, the former group learning whole words with the latter applying word-analysis. They then had a practice test. The final tests were two extracts written in phonetic symbols; one contained the words on the list and the other was totally unfamiliar. Each student was tested individually for speed and number of mistakes. The results showed that the group using the look-and-say method was better on both tests in speed and lack of errors.

Obviously, the results of Dumville's experiment are somewhat questionable. The other study mentioned above was done by Mosher and Newhall and reported in 1930. This study, though better designed than Dumville's, was also open to question. The investigators concluded "that the differences were not significant enough to warrant spending time on phonics." ($1: 7$)

In a comparative study, Sparks and Fay (58) concluded that at the end of grade one, the Phonetic Keys to Reading method produced superior results in comprehension and vocabulary over a basal reading program. At the end of grade two, the phonic method led to superior results in comprehension only. However, at the end of grade four no significant differences were found between the two groups in reading comprehension, vocabulary, or speed. At this time the basic reading group was superior in reading accuracy. Sparks and Fay concluded that neither method was superior to the other.

In a study by Buswell (14), an elaborate phonic method was contrasted with another method emphasizing thoughtful reading attitude and meaningful experience. He found that the phonic method promoted progress in che ability to follow the lines and pronounce the words, but it did not create a vital concern for the content. The method emphasizing thoughtful reading attitude and meaningful experience promoted a keen interest in the content, but slower progress was noted in word recognition and in the ability to follow the lines.

McDowell (42) compared five schools using a synthetic phonic approach with five schools using a basal reading approach where phonics were taught as a part of the word attack skills. Using matched pairs, McDowell tested the children on the Iowa Silent Reading Test and the Metropolitan Achievement Battery. On the Iowa test the basal group obtained better scores on all measures except Directed Reading and Alphabetizing. Significant differences favoring
the basal group were found on Word Meaning and in the medial reading scores. Significant differences favoring the phonics group were found in Alphabetizing. No significant differences were found on the Metropolitan tests in reading, vocabulary, and language. McDowell also compared pupils who had missed the first five months of phonics instruction with a matched group who had had the entire phonics program. Scores on the Iowa Test s'ıowed no significant differences in the two groups. McDowell concluded that the phonics program was not accomplishing the results it is said to accomplish.

In a study of Phillipine children, Tensuan and Davis (34) compared a phonic method (called a "cartilla" method which involved learning grapheme-phoneme associations) with a "combination" method (a multiple approach similar to basal programs used in the United States). In the phonics approach, pupils were first taught the sound of letters and diphthongs and next to identify sounds and words and to blend sounds. In the "combination" appioach, interest in word knowledge was first aroused and whole words associated with their meanings, after which letters and diphthongs were associated with the sounds and words that the pupil was already reading by sight. The expected difference was in favor of the cartilia method because there is a close corresfondence between graphemes and phonemes in the Filipino language. No significant differences were found between the two groups on paragraph comprehension or language usage. The differences found, though not significant, favored the combination method.

Tate (65), in a rather limited study, compared two groups matched in chronological age, mental age, and I.Q. One of the groups was taught phonics in thirty minute drill periods while the other group had drill in word recognition and other skills. Both groups were using an identical basic reading series for reading instruction. The results showed that the phonics group made greater gains in word recognition while the other group gained more in word, plase, and sentence reading, and in reading directions. Fron his data, Tate corcluded that overemphasis upon phonics interferes with comprehension and that formal phonics drill is undesirable.

In a longitudinal study comparing synthetic and analytic approaches to teaching phonics, Bear (10) found that after one year of reading instruction, differences in performance on the Gates Frinary Reading Tests and the Metropolitan Achievement Test favored the group using the synthetic method. A follow-un study of the pupils, after they had completed the sixth grade, found that the group which had utilized the synthetic method of phonics in the first grade was significantly superior in performance on the vocabulary section of the Gates Reading Survey, although no differences were found between the groups on the comprehension and speed sections of the test.

In another recent study, Bleismer and Yarborough (11) concluded that the synthetic approach tended to be significantly more productive in terms of specific reading achievement than did the analytic approach.

Agnew (2), working with children in Durham and Raleigh, North Carolina, used matched pairs to compare results of a program which stressed phonics (Eurhell) with a program which did not stress phonics (Raleigh). On Gates' four tests of phonetic ability, the Gates Word Pronunciation Test, Pressey Diagnostic Test--Vocabulary, Gray Oral Check Tests, and the Eye-voice Span Test, the pupils from the program which stressed phoriiss were superior. On the Gates Silent Reading Tests, the groups were approximately equal, vith a slight superiority of those in the stressed phonics program. The pupils from the stressed phonics program appeared to be slower in oral reading but more accurate. Agnew concluded:

If the basic purpose in the teaching of primary reading is the establishment of skills measured in this study (namely: independence in word recognition, ability to work out the sounds of new words, efficiency in word pronounciation, accuracy in oral reading, certain abilities in silent reading, and the ability to recognize a large vocabulary of written words), the investigations would support a policy of large amounts of phonetic training. (2.)

In reviewing research on teaching reading, Russell and Fea concluded:

> The many "phonics versus whole-word" experiments in teaching have contained uncontrolled variables. Experiments designed to determine the relative effectiveness of different amounts of phonics, or the value of phonics at different maturational levels, have been more successful. (52:875)

Dolch and Bloomster (20) studied the correlation between phonics and mental ability. They concluded that the application of phonic principles required higher mental development than the memorization of sight words. Their results showed that children below the mental age of seven years made orly chance scores on Tests 1 and 2 of the Basic Reading Tests, Word Attack Series and concluded "as far as chis experiment indicates, a mental age of sever. years seems to be the lowest at which a child can be expected to use phonics, even in the si $\mathfrak{r l l}$ le situations provided by these two tests."

On the other hand, Olson (45), after testing first grade children in September, November, and February and comparing results, concluded there is no support for the assumption that a mental age of seven is necessary for the use of phonics.

Linguistic Methods

Recently, linguists have been attempting to apply their scientific knowledge of language to reading by suggesting linguistic generalizatjons which they believe are applicable to reading. Bloomfield and Barnhart (13) developed a system in which they systematicaily iutroduced the children to the written symbols that represent specific phenemes. Fries (24) has developed an approach to teaching zeading which he calls "linguistically sound." In his approach, Fries stresses contrastive patterns of letters in words that iunction in cousistent ways. Fries stated that a "structural base that cunstitutes the essential feature of every part of language" exists. He further stated ". . . structuralism not only reciuires us to abancion our word-centered thinking about language; it demands that in every aspect of language we must shift from an itemcentered view to one that is structure-centered." (24:64)

Strickland (62) has interpreted linguistics to mean that 1) the whole-word meaning approach without teaching the spoken linguistic forms symbolized by written shapes is wrong, 2) sounds are represented by letters and not letters by sounds, and 3) reading textbook writers need to give more attention to sentence structure, and systematic progress in sentence structure, and systematic progress in sentence difficulty.

Sister Mary Fidelia (57), in a comparative study of a linguistic approach, based upon the work of Bloomfield, and a phonics approach using a series of phonics vorkbooks called Phonics We Use, both groups also using a basal reading series, found no significant differences in reading achievement between the two groups.

Sister Mary Edward (56) attenpted to answer the question of whether introducing only regularly represented words in the early stages of reading is wise in light of the multitude of inconsistencies which the child will encounter in later reading. She compared groups of fourth grade pupils from parochial schools in Detroit, Michigan, and Dubuque, Iowa. One group used a composite basal method alone, while the other used a modified linguistic method in addition to a composite basal approach. In the modified linguistic approach, word recognition was begun with learning the alphabet and proceeded from sets of words and syllables with regular phoneme-grapheme relationships
to more irregularly spelled words. Sister Mary Edward found that the group using the linguistic materials in addition to the basal program performed significantly better on a majority of the reading tests administered. The author did hypothesize, however, as to factors other than the modified linguistic material which may have been responsible for this superior achievement.

In a study on linguistics and reading, Goldberg and Rasmussen (29) reported favorably on a "linguistic or phonemic-word" approach.

A number of studies have been done in attempts to discover a relation between reading and language structure. Gibbons (28) noted that a close association existed between the reading level of children and their ability to understand the structure of sentences. MacKinnon (39) found that beginning readers attempted to substitute syntactic patterns which they had previously read and with which they were familiar in place of unfamiliar patterns in attempting to decode new reading material.

In a comparative analysis of pupils' oral language patterns and the language patterns expressed in basal readers, Strickland (53) concluded that pupils' language patterns are much more varied than patterns found in basal readers. She also reported that children who ranked high in silent reading comprehension made more use of common structural patterns, movables, and elements of subordination and elaboration than did children who ranked low on these variables.

Ruddell (50) found that children's reading comprehension scores, at the fourth grade level, are significantly higher on reading passages using only high frequency patterns of their oral language structure when compared to reading passages encompassing only low frequency patterns of their oral language structure.

Davis (19) reported a comparative study involving a linguistic approach to first grade reading instruct' 7 n. Two of four groups used a basal reader program with a suppli at of one hundred eleven daily lessons in linguistics. The other two groups spent an equal amount of time on only the basal reading program. The linguistic lessons involved seventy-three lessons in methods of word recognition applying phonemic-graphemic analysis, twenty lessons in identification of writing systems, fifteen lessons on the alphabetical principle of writing, and five lessons on the structural patterns of written American alphabetical language. The investigator found significant differences in favor of the experimental groups on a battery of tests at the conclusion of the experiment.

Indicidualized Methods

Rather than a single method, individuElized reading programs are characterized by a multiple approach in which the teacher chooses his method or methods according to the child. No attempt is made to force predetermined standards upon the children and each child is to progress at his own rate. The classroom organization is surh that the child receives more individual attention eoncerning his reading problems. Individualized reading does not mean complete elimination of group procedures. The choice between individual and group procedures is governed by the purposes of the reading being done at the time. The initial stages of the individualized approach are comprised of conversation, storytelling, reading aloud, and possibly an approach similar to basal reading approaches. As the children gain some fluency in reading, a variety of books chosen to suit a wide range of ability levels and interests is provided and, with the assistance of the teacher, the children choose from these according to their readiness, needs, and interests. Opinions of the value of the individualized reading programs are conflicting. There isn't a great deal of research evidence available concerning this method.

Gates and others (30), in an early study compared the relat,ive merits of a systematic method and an opportunistic one in which the reading instruction was highly individualized. In respect to silent and oral reading, the investigators found that the results favored the systematic approach. However, the resuits also appeared to indicate that the method with highly individualized reading instruction was advantageous in respect to the development of interest, initiative, determination, and other personal and social traits.

In 1956, Anderson and others (6) compared one group using highly individualized methods with another using a systematic basal approach. The children in the individualized methods group were introduced to reading when they were ready for it, and were permitted to chouse the books that were read. Sume use of basal readers was made with the individualized group, but they were not followed systematically. The individualized methods were used in a laboratory school where the average $I Q$ was ten points higher than the public school group using the systematic basal approach. The investigators concluded that "the systematic approach employed by the public schools enables the children to learn to read eariy and reduces the individual variation in age of learning to read." (6:107) The mentally superior group did not overtake the public-school group until they were 132 months of age, on the average.

In a study of primary reading instruction patterns, Sperry (59) conul:ded that individualized reading classes showed significantly higher reading achicvement than classes grouped by ability.

In a comparstive study at the second grade level, McCristy (4) found the forr classes ix: her experimental group (individialized methed) were superior in total reading gains, vocabulary growth, and comprehension to the four classes in her control group (ability grouping).

In an investigation of individualized reading and the basal approach with primary children, Cariine (15) found no significant differences between the two approaches. Sartain (54), in comparing the progress in reading skills of second graders taught by an individualized approach with those taught by a basal reader method, found significant differences between methods only for pupils of lower ability whose gains on word-recognition tests under the basal approach were superior to the gains made by lower ability pupils under an individualized approach. The methods were reversed after three months, according to the design of the study, allowing the investigator to find that significantly greater gains were made during the first three months of school, regardless of method employed.

Safford (51) conducted a study of individualized reading involving aeven classes in grades three through six. Results on the California Achievement Test Battery, administered at the end of the experimental period, showed the classes made gains considerably below national or district norms. Safford concluded that for the majority of pupils in the classes involved, individualized reading resulted in lower gains, and that the use of self-selected reading methods achieved no significantly different results with pupils of high ability or those with average ability.

Zirbes and others (69) studied extensive individual reading instruction with short comprehension checks es compared with independent silent reading with second graders. The investigators found that the average growth in reading was about the same for both groups. The authors also concluded that the more intelligent children profited more from the independent silent reading while the slower children profited more from intensive instruction.

Language Experience Methods

The language experience approach to teaching beginning reading is an attempt to bring the communication or language arts skills (speaking, listening, writing, and reading) together as a unit. According to R. V. Allen, "The 'togetherness" of skill development makes possible the continuing use of each child's own experience background and thinking as he grows toward reading maturity." (3) The program is built upon a frame work of experiences resulting in pupil and teacher-made materials. The concept underlying the program is that children's language development proceeds from oral expression through written expression thus creating high motivation for reading one's own materials and easy transfer to reading what others have written. Allen stated, "Utilization of the child's language as a basis of reading instruction results in a high degree of independence in writing and reading." (3:63)

The language experience approach rejects the idea of a controlled vocabulary for beginning readers, and the development of a basic sight vocabulary is considered an individual matter based upon the child's oral expression. "The direct teaching program for phonics and other word recognition skills is more closely related to the writing and spelling activities where children are dealing with the language letter by letter, syllable by syllable, and word by word." (3 :64) It is claimed that dictation and writing of their own stories enables children to recognize enough words that they can read material written by others. As the children develop their skill in reading they select their own reading material.

There is evidence concerning the interrelationship of all the communicaiion skills (speaking, listening, writing, and reading) and this is acknowledged by most reading authorities regardless of the approach they advocate for beginning reading instruction. Gray (30) summarized the situation as follows:

Summaries of research by Hildreth and by other specialiists have shown that reading and the other language arts are closely interrelated in many important respects. It has been proposed, therefore, that instruction in all the language arts should be provided in a closely integrated program. Although many efforts have been made to develop such a program, no carefully controlled studies of its advant 3 ges and limitations have been reported. ($30: 1117$)

Loban (38) concluded from his longitudinal study of children's language that the children who were high in general language ability,
based on teacher's ratinge of oral language and vocabulary scores, were also high in reading ability. The children who were low in general language ability were also low in reading ability.

In a five year comparative study of the basic approach, individaulized approach, and the language experience approach, R. V. Allen (4) found that children taught by the language experience approach made as much as or more progress in reading, as measured on standardized tests, than did pupils taught through individualized and basic approaches.

Sex Differences and Reading

Research evidence concerning sex differences in reading achievement generally favors the girls. There are numerous theories as to the cause of these results, but to date, there has been no conclusive evidence as to the causes of these differences.

Balow (8), in a study of 151 girls and 151 boys with equivalent mean I.Q.'s, found that the girls were superior to the boys in a reading readiness test. However, when reading readiness was held constant using an analysis of covariance, he found no significant differences between the reading achievement of boys and girls at the end of grade one. Balow inferred from this study that the data supported the nonmaturational, cultural theory of sex differences in reading achievement because perception and readiness appear to be affected by training.

In a study of sex differences in reading readiness at the first grade level, Carroll (16) found that girls were slightly superior to boys in tests of visual, auditory, language, and articulation ability, and of ability to name letters.

Gates (26) studied sex differences in reading ability of 13,114 subjects (6,646 boys and 6,648 girls) in grades two through eight in twelve school systems and in ten states. On twenty-one comparisons made on tests of speed, vocabulary, and level of comprehension, the mean raw scores for girls were higher than those for boys. Gates concluded that on the average, girls' reading abilities exceeded those of boys. He commented that maturity did not explain the superiority of the girls because, in his study, the girls were superior in the upper grades as well as in the lower ones. Environmental rather than hereditary factors were suggested as causes for the differences in achievement.

As a group, the boys among 1500 second grade pupils studied by Pauley (46) were two months older chronologically than the girls, but their mean reading achievement was two months below that of the girls.

Templin (66) reported that girls were superior in articulation and sound discrimination at the age of eight while boys were superior in vocabulary at the ages of six to eight. Few significant differences were apparent between boys and girls at the ages of three through five years.

More boys than girls become remedial reading cases as shown by Heilman ($35: 356$) who reported the following data from a number of studies showing the percentage of boys and girls referred as remedial reading cases:

Study	Date	No. of Cases Boys	Girls	Per Cent	
Boys	Girls				
Blanchard	1936	63	10	86	14
Young	1938	37	4	90	10
Preston	1940	72	28	72	28
Missildine	1946	25	5	83	17
McCollum \&					
\quad Shapiro	1947	31	9	76	24
Axline	1947	28	9	76	24
Vorhaus	1952	178	47	80	20
Johnson	1955	23	11	67	33
Fry	1959	163	39	81	19

In a study of reading achievement of German and American children, Preston (48) matched 1,338 children in Philadelphia with 1,053 children in Wiesbaden, Germany. The children were matched on intelligence, parental occupations, and instructional ievel. The children were tested using crosstranslations on the Gates Reading Survey and the Frankfurter Test. Preston reported the German children were generally lower in comprehension than the American children. However, the difference was less at the sixth grade than at the fourth grade, and there was no difference for the sixth grade boys. German boys were superior to German girls in reading ability, adding support to the theory that environmental conditions are causing the sex differences favoring girls in America.

Waetien and Grambs (68) have suggested that schools reward verbal comprehension and language skill, consequently reinforcing girls'
greater facility with language. As a result of receiving little reward, the boys feel negative about their adequacy with language skills. Thus, language activities become identified as giri-like activities with the result that boys cannot then participate as fully as they might have in activities involving language.

Summary
It is evident, from the perusal of the studies reviewed in this chapter, that little conclusive evidence has been reported concerning the comparative efficiency of the methods which have concerned us. Some of the methods with which this report is concerned are new approaches and have not been thoroughly researched. In reviewing these studies, the experimental methods are often variations of a general class of methods and not totally equivalent, limiting the comparability of the conclusions reported. There is also the limitation of the effect of uncontrolled variables which may have confounded the results reported in some of the studies.

Most of the material concerning I.T.A., a more recent innovation in the teaching of beginning reading, has been written by Downing, the major investigator of I.T.A. experiments in British schools. Mazurkiewicz has been mainly responsible for American studies of I.T.A. More research evidence is necessary before a definite conclusion can be made concerning the effectiveness of using I.T.A. in beginning reading instruction.

From the evidence reported concerning the use of phonics in teaching children to read, there can be little doubt that phonics should be an important part of the reading program. However, there is disagreement on the type of phonic approach which should be used, and on the amnunt of phonics which should be included in the reading program. It seems apparent, from the studies reviewed, that phonics does not contribute much to children's comprehension of what is read.

Not a great deal of research evidence has been reported concerning the use of linguistic methods of teaching reading. The studies which have been done indicate there is value in the use of linguistic principles in designing a reading program. There is some indication that sentence structure should receive more consideration in the construction of reading materials. More research is needed concerning the use of linguistic principles in the teaching of reading.

Inconclusive and conflicting evidence has been reported concerning the use of individualized methods in beginning instruction in
reading. There is some evidence to indicate that individualized methods may be more veluable for high ability childres and that it may result in higher yotivatioa and interest on the part of the children.

There is little doubt that reading and other language akills are related. However, the eesearch evidence concerning the value of language experience methods is sparse and more research is i.seded before any conclusions can be drawn.

It is a fairly well established conclusion that girls are superior to boys in reading achievement as well as general language ability. There is some doubt, however, as to the causes for sex differences in reading. In this regard, there is some evidence to support the theory that the causes of sex differences in reauing are related to environmental conditions within our scciety and our schools.

Ir conclusion, the superiority of a single method of reading instruction is yet to be determined. It appears that a composite of methods would produce the best results and that an effort should be made to determine what each method would contribute to the reading program.

AN OVERVIEW OF THE INDIVIDÜAL STUDIES

Each of the twenty-seven studies which comprised the Cooperative Research Program in First-Grade Reading Instruction was a complete study in itself. Each was selected on the basis of its potential for yielding valuable information about the teaching of beginning reading. The unique characteristic of this study, however, was that each project director, in addition to carrying out his own analysis, made the data available to the Coordinating Center so that an analysis across projects could be conducted. Most of the projects investigated instructional methodology and the evaluation of method is the major focus of this report. However, a number of projects concerned themselves with aspects of the instructional program in beginning reading other than methodology.

Some studies not concerned with instructional materials investigated various grouping plans. One project evaluated the relative effectiveness of a "whole-class" system in which all pupils in the room met as a single group. This approach had the proposed advantage of increasing each child's contact time with the teacher since she didn't have to divide ner time among three groups. Another researcher investigated the effectiveness of grouping beginning readers by sex on the assumption that girls constitute unfair competition and tend to dominate the typical heterosexual reading group.

Other projects in the study investigated various devices for helping the beginning teacher of reading. One project studied the effect of an intensive in-service program on teachers' classroom behavior and reading achievement of pupils taught by the experimental teachers. The in-service program consisted of a two week pre-school seminar and twenty-five two-hour seminar sessi.ns held during the first thirty weeks of the school year. Another study sought to det: rmine the feasibility of improving the reading achievement of first-grade children by utilizing consultants in two different ways. One approach used the typical technique of consultant help on a one-to-cne basis in which the consultant answers a request for her services from the teacher or building principal. In the other method the consultant brought together teachers witin common problems such as thosia found in first grade reading instruction in scheduled meetings on reieased time. This approrch was designed to foster interaction among the teachers. Still another study evaluated the effectiveness of bi-weekly in-service reading seminars for first-grade teacheis.

In the following sections of this chapter, a brief overview of each of the twenty-seven projects is presented. The wide range of problems in beginning reading which were investigated in this Cooperative Research Study will be readily apparent.

An Evaluation of Three Approaches to Teaching keading in First Grade:
Project 2719; Elizabeth Ann Bordeaux, Director; Goldsboro City Schools, Goldsboro, North Carolina.

The project was an attenpt to identify the most effective of three methods of teaching reading to first grade children. Twentyseven first grade classes in the Goldsborc City Schools were divided into three groups of nine each.

All groups used the North Carolina basal text program--the ScottForesman scries. Group A, considered the controi group, used only materials being used at the time the study began. Group B , in addition to the basal text program, ised an intensive phonetic approach. Group C used both the basal program and the intensive phonetic approach plus a sensory experience approach.

A Study in Depth of First-Grade Reading: Project 2728; Jeanne S. Chall, Director; The City College of the City University of New York.

The preject investigated the effect of interactions between: (1) the published reading program; (2) the teacher's implementation and understanding of that program; and (3) the varying characteristics of the pupils, on various components of reading achievement.

Children from twelve first-grade classes in socially disadvantaged neighborhoods it. New York City were involved in this study. Fourteen teachers participated, including two teachers who replaced two others who left during the study. The teachers who were chosen for the sample had indicated their beliefs and practices concerning the teaching of reading in the first grade on a questionnaire given them prior to the study. The sample of teachers chosen for the study represented equal numbers of meaning and sound-symbol emphasis teachers as well as experienced and inexperienced teachers within each emphasis. All of the teachers followed the reading programs they had used in previous years, which were eclectic basal reader approaches.

Four teachers were observed once a week; the other eight were observed once a month for the eight months' period. Ratings of teacher characteristics and practices in teaching reading were made for each observed lesson, using a Classroom Observation Inventory constructed for the study. In addition, an interview was conducted with each teacher to obtain more information about her reading practices and procedures.

The relationships of the children's initial skills and abilities, the professed methods used, and the teacher's implementation of those methods to the final reading achievenent measures were analyzed.

Comparison of the Disal and the Coorginated Language-Experience Approaches in Fisst Grade Realing Instruction: Project 2729; Donald L. Cleland, iimector; University of Pittsburgh.

The objective of the project was to determine the effects and outcomes of teaching beginning reading to superior pupils from three levels of social strata by two different methods. The study included superior pupils assigned to twenty-four classrooms. Twelve classes used the basal reader approach tc first grade reading instruction and twelve classes used the coordinated language-experience approach.

Supplementary materials to enrich the program for superior pupils were used in the group using the basal reader approach. The coordinated language-experience approach emphasized oral expression of ideas and utiiized the stories told by the children, retaining as nearly as possible the language patterns of the children. Later in the program, self-selection of reading materials was permitted and use was made of teacher-made worksheets and programed self-corrective type materials for reinforcement of needed skills.

First Grade Reading Instruction Using Diacritical Marking System, Initial Teaching Alphabet and Basal Reading System: Project 274.5; Edward B. Fry, Director; Rutgers-The State University, New Erunswick, New Jersey.

This project compared three methods of beginning reading instruction using twenty-one first grade $\underset{r}{ }$ rassrooms frcin three middle class suburban school districus in central New Jerser:. Two of the methods under investigation were a diacritical marking systen. developed by the principal investigator, and the Initial Teaching ilphabet--writing systems which offered greater regularity than the traditional writing system. The material for the third method was a traditional set of basic reading texts.

The materials used for the I.T.A. group were the Eariy Yo Read Series by Albert Mazurkiewicz and Harold Tanyzer, The Diacriticai Marking System classes used the Sheldon Readers with diacritical marks superimposed on the wordis. The traditional set of basic reading texts used was the Sheldon Readers.

A Study of the Relative Effectiveness of Three Methods of Teaching Reading in Grade One: Project 2687; Harry T. Hahn, Director; Oakland Schools, Pontiac, Michigan.
 This study was designed to test the effectiveness of three approaches to teaching first grade reading: the language arts approach, the Initial Teaching Alphabet, and the basic reader approach. In twelve school districts one classroom was assigned to each of the three approaches. Thus the study comprised thirty-six classrooms in which children were matched on the basis of performance demonstrated in kindergarten as weil as on socio-economic status.

The language arts approach encouraged individual expression through a variety of media. After a firm language-experience relationship was established, a balance of directed group reading and individyalized reading was included. The I.T.A. approach employed materials prepared zor schools in England plus some structured materials prepared from Initial Teaching Alphabet Publications, Inc. The basic reader approach used controlled vocabulary and systematic instruction procedares in basic reading texts and workbooks normally found in a first grade classroom.

Comparing Reading Approaches in First-Grade Teaching with Disadvantaged
Children (The CRAFT Project): Project 2677; Albert J. Harris and Blanche L. Serwer, Investigators; The Research Foundation of The City University of New York.

The project compared the relative effectiveness of two major approaches to teaching reading to disadvantaged urban children: (1) the skills-centered approach, and (2) the language-experience approach. Each of these was tried 'with two variations, making four treatment methods in ail. These four treatment methods were as follows: (a) a skills-centered method using basal readers, with close adherence to the instructions contained in the teacher's manuals; (b) a skills-centered method utilizing basal readers, but substituting the phorovisual method of teaching word-attack skills for the wurd-attack lessons accompanying the basal reader; (c) a language-experience method, in which the beginning reading materials were developed from the oral ianguage of the children; and (d) a language-experience method with heavy supplementation of audio-visual procedures.

Twelve elementary schools, each with a very high percentage of Negro children and a minimum of six first-grade classes, were selected for the study. There was random assignment of the four methods to schools, two methods to each school.

The project sought to refine, extend, and strengthen knowledge of beginning reading by comparing methods and materials in four approaches. The four programs and the materials used were: (1) an eclectic, "whole word" reading program as represented by the Scott, Foresman Company, 1960 edition; (2) a "phonic" reading program as represented by the J. B. Lippincott Company, 1963 edition; (3) a combination eclectic, "whole word-phonic" reading program as represented by Scott, Foresman materials, 1960 edition, supplemented with the Phonics and Word Power, 1964 edition; (4) a language arts approach using the initial teaching alphabet as a medium, represented by the i/t/a Publications, Inc., 1963 edition.

Ten elementary schools and twenty first grades were selected for the study.

Effects of an Intensive In-Service Program on Teacher's Classroom Behavior and Pupil's Reading Achievement: Project 2709; Arthur
W. Heilman, Director; The Pennsylvania State University, University Park. Pennsylvania.

This project studied the effects of an intensive in-service program on (1) teachers' classroom behavior and (2) reading achievement of pupils taught by participating teachers.

Thirty first grade teachers of the Williamsport, Pennsylvania, public school volunteered for the experiment. Half of the group was selected at random to serve as the experimental group and the remaining group of teachers served as the control group.

The teachers in the experimental group (1) attended and participated in a two week pre-school seminar and (2) attended and participated in 25 two-hour seminar sessions held during the first thirty weeks of the school year. The pre-school seminar was devoted to examining research and the implications of research for first grade teachers. The weekly meetings were devoted to sharing teaching techniques and diagnostic procedures.

A Comparison Between the Effect of Intensive Oral-Aural Spanish Language Instruction and Intensive Oral-Aural English Language Instruction on the Reading Readiness of Spanish-speaking School Beginners in Grade One: Project 2648; Thomas D. Horn, Director; The University of Texas, Austin, Texas.

This study tested the hypothesis of no difference among the effects of three kinds of oral language instruction on the reading readiness of Spanish-speaking grade one pupils. The treatment groups were (1) oral-aural English intensive language instruction, (2) oralaural Spanish intensive language instruction, and (3) no intensive oral-aural language instruction.

Twenty-eight classes were arbitrarily assigned to one of the three treatments: nine to or il-aural English, ten to oral-aurai Spanish, and nine to no oral-aural treatment.

The first method involved intensive oral-aural English instruction one hour each day-thirty minutes by demonstrator and thirty minutes by teacher. The second method concentrated on oral-aural Spanish intensive instruction one hour per day with the same divisior of time. Each of these methods was used in place of the usual one hour pre-readiness instruction. The third group, considered the control group, received no intensive oral-aural instruction.

A Comparative Study of Two First Grade Language Arts Programs: Project
2576; William M. Kendrick, Director; Department of Education, San Diego County, San Diego, California.

This study sought to determine the relative effectiveness of the experience approach to the teaching of the language arts as compared with the traditional method. To accomplish this, four areas of the language arts were separately measured-nameiy, reading, writing, listening, and speaking. In addition, an index of development in reading interest was taken and pupil attitude toward reading determined.

The experience approach used the language and thinking of individual children as the basis for skill development. The traditional method group adhered very closely to the teacher's manual for each reader in the Ginn Series as a giide to instructional procedures. Fifty-four teachers, twenty-seven for each treatment group, participated in the study. The puril population of the study came from forty-one elementary schools of seventeen school districts located in various parts of San Diego County.

An Experimental Study of the Group versus the One-to-One Instructional Relationship in First Grade Basal Reading Programs: Project 2674; James B. Macdonald, Director; The University of Wisconsin, Madison, Wisconsin.

This study was designed to compare the effects of ability grouping with a one-to-one instructional relationship in beginning reading instruction. Seventeen classrooms, seven experimental and ten control, were involved in the project.

After the usual readiness program was completed, one group instituted a one-to-one relationship while the other used ability grouping. Both groups employed typical basal materials.

Evaluation of Level Designed Visual-Auditory and Related Writing Methods of Reading Instruction in Grade One: Project 2650; John C. Manning, Director; Fresno State College, Fresno, California.

This project compared the effectiveness of materials and techniques which were programmed at various ability levels on pupil reading achievement in grade one. Thirty-six classes were utilized in the study, thirteen, twelve, and eleven classrooms in treatment groups I, II, and III respectively.

In the first treatment group, the teacher's manual accompanying the Ginn Basic Reading Series was used to develop the instructional materials. With the second group, basic visual and auditory discrimination skills in letter knowledge, word recognition, word meaning, and word analysis were stressed and subsequent reading instruction was programed in a levels design using the Ginn Series for vocabulary and story content only. In addition tu the basic reading program used with the second group, written language pzocedures were used with the third group. A ten ievel design allowing for maximum learning rate diffesences was followed in the latter group.

A Comparative Study of Reading Achievement Under Three Types of Reading Systems at the First Grade Level: Project 2659; Sister M. Marita, Director; Marquette University, Milwaukee, Wisconsin.

The types of reading systems compared in this study were a basal approach using three to five groups within a class, an individualized approach in which sight vocabulary is built through experience charts
and reading proceeds through self-selection of books and individual conferences with the teacher, and an experimental approach which was a modification and combination of the language-experience and the basal approaches. In the experimental approach provision for individual differences was made through independent reading, more intensive instruction when needed, and other enrichment activities. Thirty classes from the Milwaukee suburban public schools constituted the sample for this study. Ten classes were used for each of the three systems under investigation.

Fizst Grade Reading Using Modified Co-Basal Versus the Initial Teaching Alphabet: Project 2676; Albert J. Mazurkiewicz, Director; Lehigh University, Bethlehem, Pennsylvania.

This project compared reading achievement at the end of first grade of two matched groups. Both groups used the language arts approach: one used co-basal materials printed in traditional orthography while the other used the Initial Teaching Alphabet materials. The study included thirty first grade classrooms divided into two groups of fifteen classes each matched on the basis of intelligence.

The hypothesis tested was that method rather than medium is responsible for the differences in reading achievement, and that if method is controlled no significant differences in reading achievement would be found.

A Study of Approaches to First Grade Eng1ish Reading Instruction for Children from Spanish-Speaking Homes: Project 2734; Roy McCanne, Director; Colorado State Department of Education, Denver, Colorado.

The major objectives of the study were (1) to test the hypothesis that there is no difference in achievement in reading English in first grade between pupils who speak Spanish at home and are taught by a conventional English readiness and basal reader approach, such pupils who are taught by a modified TESL (Teaching English as a Second Language) approach, and such pupils who are taught by a language experience approach; and (2) to provide and organize data to aid in determining a specific sequence of skills that is appropriate for first grade children from Spanish-speaking homes who are learning to read in English, and to Identify appropriate materials and techniques for teaching these skills in a culturally integrated first grade classroom.

Subjects in this study were non-migrant first-grade children in culturall: integrated classrooms containing twelve to twenty children from Spanish-speaking homes plus children from English-speaking homes, making a total class size of twenty-five to thirty pupils.

A Study of Two Methods of Reading Supervision: Project 2706; Katherine
\section*{A. Morrill, Director; University of Hartford, Hartford, Connecticut.}

This study sought to determine the feasibility of improving the reading achievement of first grade children by a change in the role of the reading consultant in her work with teachers. Two methods of consultant help were used. One method was that of a typical consultant role on a one-to-one basis in which the consultant served teachers on request from the teacher directly or from the building principal. The other method was that of a consultant role designed to foster teacher interaction. In this method the consultant brought together teachers with the common problem of first grade reading insiruction to share methods, materials, prccedures, problems and ideas, in scheduled meetings on released time. It was hoped that the interaction would result in more knowledgeable and more skilled teachers as evidenced by the greater achievement of their pupils. It was also hoped that the study would show that a consultant can serve several teachers at a time in a limited number of sessions, thus increasing her effectiveness beyond that when she works on a one-to-one basis.

The total first grade population of ten elementary schools in Wallingford, Connecticut, comprising 35 first grade classrooms with a like number of teachers was utilized in the study. Seventeen teachers were exposed to the usual consultant procedure, and eighteen teachers were released for one-half day twice a month for a series of meetings with the reading consultant and the other teachers in this group.

Reading Achievement in Relation to Growth in Perception of Word Elements in Three Types of Beginning Reading Instruction: Project 2675; Helen A. Murphy, Director; Boston University, Boston, Massachusetts.

The project examined (1) the relation of perception of word elements to sight vocabulary growth; (2) the effect of early teaching of a speech-based phonics program on reading achievement; and (3) the value of a writing emphasis in the speech-based phonics program.

Three different reading programs were included in the studyeach program being used in ten first grade classrooms. One group followed the "gradual phonics approach" found in the Scott-Foresman readers and workbooks. A second group followed the systematic Speech-to-Print Phonics program with visual word study. The third group also used the Speech-to-Print Phonics wich an emphasis on writing responses.

The thirty classrooms involved were located in three industrial cities. Five classrooms from eacin of two communities comprised the population for Treatment A; five other classrooms from each of the same two communities comprised Treatment B; and ten classrooms from a third community furnished the population for Treatment C. Care was taken to include at least three classrooms in each treatment group in "culturally deprived" areas.

Evaluation of Three 'Methods of Teaching First Grade Reading to Children
Likely to Have Difficulty with Reading: Project 2702; 01ive S. Niles, Director; Springfield Public. Schools; Massachusetts Department of Education, Boston, Massachusetts.

The project attempted to determine whether first grade children who have been identified by a series of tests as likely to have greater than usual problems in learning to read could be helped most effectively by (a) using the regular basal program which is used by all other children in their classroom; (b) using the regular basal program together with remedial teacher time assigned to serve the class of which they are a part; (c) using materials other than the regular basal program which is used by the otner children in the class; or (d) using a combination of remedial teacher time and materials other than the regular basal program.

One group had a supplementary remedial teacher. The remedial teacher worked with the regular classroom teacher, giving special attention to children in the potential problem group. Regular basal readers were used.

Another group was provided with special materials for the potential problem group. The children were given thorough instruction with a set of readiness materials. When they achieved success with these, they were put into library-type or trade books rather than basal readers.

The third group was provided with both the additional teacher time and the use of the special materials.

The fourth group was the control group. No changes were made in procedures and the regular basal program was used.

The Effect of Different Apprcaches of Initial Instruction on the Reading Achievement of a Selected Group of First Grade Children: Projert 2698; Hale C. Reid, Director; Cedar Rapids Public Schools; State University of Iowa, Iowa City, Iowa.

In this study, seven methods of teaching reading to the low reading group in forty-five classrooms were compared. In each classroom, an average of eight pupils were in the lowest reading group. The seven methods were
(1) a language method involving reading, writing, listening, and speaking,
(2) a method involving recognition of letters ard their sounds and the use of context clues,
(3) a funciional approach built around easy-to-read books,
(4) Skills Development Method,
(5) a combination of Method I, language, and Method II, letier sounds,
(6) a combination of Method I, language, and Method III, literature,
(7) a combination of Method I, language, and Method IV, Ski.11s

Development.

The Effect of Four Programs of Keading Instruction with Varying Emphasis on the Regularity of Grapheme-Phoneme Correspondences and the Relation of Language Structure to Meaning on Achievement in First Grade Reading: Project 2699; Robert B. Ruddell, Director; University of California, Berkeley, California.

The primary objective of this study was to investigate the effect on word recognition and reading comprehension of published and specially prepared reading programs varying in (a) the degree of regularity of grapheme-phoneme correspondences programmed into the vocabulary presented and (b) the emphasis on language structure as related to meaning.

Pupils in twenty-four classrooms took part in the study of four reading programs: (1) a program which used a basal reating series with little provision for emphasis on language structuse as related to meaning; (2) a program which used a set of programued reading materials with vocabulary utilizing consistent grapheme-phoneme correspondences to a high degree but placing little emphasis on language structure as related to meaning; (3) a program which used a basal reading series (same as 1 above) supplemented by materials designed to build an awareness and understanding of language structure as related to meaning; and (4) a program which used a set of programmed reading materials (same as 2 above) supplemented by materials designed to build an awareness and understanding of language structure as related to meaning.

A secondary consideration of the finvestigation involved the study of the relation of selected language and background variables to reading achievement in each of the four progiams.

Comparison of Res" ig Achievement of First Grade Children Taught by a Linguistic Approach and a Basal Reader Approach: Project 2666; J. Wesley Schneyer, Director; University of Pennsylvania, Philadelphia, Pennsylvania.

This study compared the reading achievement of first grade children taught by the Fries lingaistic approach with that of children taught ty a basal reader approach. Each group consisted of twelve classes: four of above average, four of average, and fonir of below average intelligencs leveis.

The two me' ads liffer in the amount of emphasis given to word discrimination and word meaning. The linguistic approach places anprasis upon the word discriminatiun principle, which is based upon a mastery of sound-symbol relaticaships of spoken language as expressad in spelling patterns. The objective of this approach is to develof an automatic - sponse and a rapid recognition on the part of the reader to the words in various mafor spelling patterns. Irregular or non-patterned words are learned as sight words.

The basal reader places heavy initiai emphasis apon meaning. Attention is focused upor regularicy of the meaning-freque. $16 \mathrm{y}^{-}$ repetition rinciple, rather than upon regulacity of the soundsymbol relationship.

Eifect of First Grade Instruction Using Basal Readers, Modified

- nguistic Kerials and Linguistic Readers: Project 2683; william D. Sheldon, Director; Syracuse University, Syracuse, New York.

This project compared the reading achievements of children taught by three methods of instruction. Twenty-c.le classfoums were divided among the .hree methods.

One group used a basal reading rogram, concentracing on direct small group instruction on children's ability levels at a rate commensurate with their ability to learn. Another group used modified linguistic instruction consisting of materials published by the Singer Company. The series of books progresses in difficulty so that it is possible for teachers to group chiidran for instruction.

The tlitid group used the linguistic approach consisting of the Barnhart:-bloomfield Linguistic Readers. Within each classroom a library of 100 easy-to-read books was installed and chilaren were efven the opportunity to practice their reading skills using these materials fior 30 minutes each day. The lowest third of each class was presented listening-viewing activities with equipment from a center consisting of a tape recorder, a record player, and a filmstrip projector.

A Study of a Longitudinal First Grade Reading Readiness Program:
Project 2742; George D. Spache, Director; Florida State
Department of Education, Tallahassee, Florida.
This study sought to determine the effect of an intensified and extended reading readiness program upon first grade reading achievement. The "intensified and extended readiness program" consisted of a plan of instruction which utilized materials that would theoretically contribute to the development of auditory discrimination, visual discrimination, and auditory languase ability, and which delayed the induction into formal reading of pupils in the second, third and fourth quarters of the realiness achievement distributions for periods of approximately two, four, and six months, respectively.

The design of the study provided for the inclusion of all first grade pupils in two schools (one white and one legro) in each of eight Florida county school systems. Of these, the eight schools in four counties served as experimental schools and the eight schools in the other four counties served as zomparisen schools and were designated as control schools.

Individualized Reading Versus a Basal Reader Prcgram at First Grade Leve1 in Rural Communities: Project 2673; Doris U. Spencer, Director; Johnson State College, Johnson, Vermont.

The project compared the effectiveness of an individualized reading method designed to meet the needs and challenge the abilities of first grade pupils with the basal reader method. Twenty-two teachers were selected on the basis of supervisors' ratings, interest in the project, education and experience to participate in the project. Twelve elected to teach by the individualized plan and ten chose to follow the Scott Foresman Basal Reader program.

The individualized method used in this study was based on the premise that the reading program becomes m‘re effective as individual
needs are determined and instruction is concentrated at points of weakness. The insiructional program was divided into two parts: an intensive systematic phonetic instruction and a motivated varied program of story reading. This method differs from the popular concept of individualized reading as a program of self-selected story reading unsupported by systematic instruction on word skills and comprehension.

Effectiveness of a Language Arts and Basic Reader Approach to First Grade Reading: Project 2679; Russell G. Stauffer, Director; The University of Delaware, Newark, Delaware.

In this study, the effects of a language arts approach and a basic reader approach to teaching reading were compared.

The language arts approach utilized the children's oral language facility to develop an initial reading vocabulary and initial word attack skills, as well as group type reading instruction in basic readers and individualized reading instruction using trade books.

The basic reader approach utilized basic readers, skill bocks, and teachers' manuals designed to develop and maintain a reading vocabulary and word attack skills.

The sample was comprised of twenty first grade classrooms; ten used the language arts approach, and ten used the basic readers.

A Comparison of the Effectiveness of Three Different Basal Reading Systems on the Reading Achievements of First Grade Children:
Project 2720; Harold J. Tanyzer, Director; Hofstra University, Hempstead, Long Island, New York.

This study compared the offectiveness of three basal reading systems: (i) a basal series with intensive emphasis upon phonics, (2) a basal reading program by Mazurkiewicz and Tanyzer utilizing the Initial Teaching Alphabet, and (3) a regular basal reading series which utilizes an eclectic approach. The study included tiventy-six classrooms from three schocl districts on Long Island, New York. The children were divided not only by sex, but also in terms of intelligence to determine wnether any of the basal systems have a differentia!. e^{\cdot}.ct; prove more successful with males than females; or more suce :ssful with children of high, average, or low intelligence.

Reading Achievements of First Grade Boys Versus First Grade Girls Using Two Approaches: A Linguistic Avproach and a Basal Reader Approach with Boys and Gir1s Grouped Separately: Project 2735; Nit \approx M. Wyatt, Director; University of Kansas, Lawrence, Kansas.

This F ºject sought to determine (1) whether first grade boys would make greater gains in reading achievement through the use of materials based on a linguistic approach than they would through the use of basal readers basad on the frequency of word usage, (2) whether first grade boys would make greater gains if they were grouped on the basis of sex and ability rather than if they were grouped on ability alone with no regard for sex, and (3) whether girls would maker greater gains under each of the approaches studied than would boys.

Two experimental groups and one control group, each consisting of ten first grade classes, were organized. Children from three elementary school districts were chosen to constitute the sample of 633 subjects.

In one experimental group children in ten classes were grouped by sex as well as by ability for reading instrustion. In this group, bright boys used the Houghten-Miffli: , sasal readers, while other boys used either fioughton-Mifflin or Ginn readers. Girls read the Scott, Foresman materials and any other suppiementary materials available except those published by Houghton-Mifflin or Ginr.

With the children in the second group of ten classrooms, a linguistic approach to reading was used. The basal program consisted of Book I of the Royal Road Readers published by Chatto and Windus of London, the pre-primers of the Harper Row Linguistic-Science Readers, and the primer and level 1-1 and 1-2 books of the Basic Reading series published by the Lippincctt Company.

The third group used materials published by Scott, Foresman, Ginn, and Houghton-Mifflin.

CHAPTER IV

PROCEDURES

This chapter describes the role of the Coordinating Center in the Cooperative Research Program in First-Grade Reading Instruction, the decisions of the project directors concerning data collection and experimental procedures, the organization of the data prior to analysis, and the general procedures of analysis employed.

Role of the Coordinating Center

The Coordinating Center was established primarily to perform two functions. First, the Center was charged with the responsibility for maintaining communication among the various projects and for facilitating thereby the cooperative aspects of the study. Its first function, therefore, was to host a conference of the individual project directors in June, 1964, at which decisions were made concerning experimental procedures and data collection. At this meeting the directors decided upon common prereading and reading outcome measures to be used by all projects. They also agreed to collect information common to all studies about teacher, pupil, school, and community characteristics which might reasorably be expected to be related to success or failure in beginning reading.

Two further meetings of project directors were held, the first in December, 1964, at the University of Minnesota, and the second during the International Reading Association convention in Detroit during May, 1965. These meetings were devoted to discussions of problens concerning cooperative aspects of the study. Every effort was made to establish experimental controls common to all projects in order to make possible comparisons between and among individual studies.

Uniformity in procedures was further enhanced through periodic memoranda issued by the Coordinating Center. A common format for recording data on cards was devised to facilitate the analysis of the common data. The center also served as a clearing house for questions about administration or scoring of certain of the tests employed in the study. In addition, all but five of the projects were visited by either the director or associate director of the Center. These visits enabled Center staff to get a first hand look at each project in order to be in a better position to interpret data collected from them. Moreover, the visits provided an opportunity for the individual project director to discuss any problems be might have relative to the cooperative aspects of the research.

The second major function of the Coordinating Center was to collect, organize, analyze and interpret the data common to each child in all twenty-seven individual projects. This function, of course, is the basis for this report. Information about the analysis is recorded in the section of this chapter on general experimental procedures and also in the various chapters devoted to the analysis of the data.

Data Collected

A great deal of information about each pupil who participated in the study, about his teacher, about the class and school in which he was enrolled, and about the community in which he lived was collected by all of the participating project directors.

Pupil Data

For each pupil, information was gathered concerning his sex, chronological age at the beginning of the year, amount of pre-school experience, and the number of days he was absent during the experimental period.

Data regarding the child's readiness for reading were gathered by means of an intelligence test and various tests of auditory discrimination, visual discrimination, and language facility. The group intelligence test employed was the Pintner-Cunningham Primary Test. Reading readiness information was gathered by administering: (1) the Murphy-Durrell Phonemes Test, which tests the ability to discriminate between like and unlike sounds; (2) the Murphy-Durrell Letter Names Test, which tests the child's ability to recognize lower case and capital letters; (3) the Murphy-Durrell Learning Rate Test, which tests the child's ability to learn a small number of words; (4) the Thurstone Pattern Copying Test, which tests the child's ability to copy a figure; (5) the Thurstone-Jefirey Identical Forms Test, which asks the child to select from a group of figures a figure similar to one used as a stinulus; (6) the Metropolitan Word Meaning Test, which is essentially a vocabulary test; (7) the Metropolitan Listening Test which measures a child's ability to follow directions. In addition to these tests which were given to all pupils, the Detroit Word Recognition Test was administered to those pupils who gave some evidence of being able to read at the beginning of first grade.

Post-instructional tests were selected to measure silent and oral reading ability as well as spelling ability, writing ability, and attitude toward reading. The group-administered Stanford Achievement Test, Primary Battery I was administered to all students.

Five subtests were used to measure the child's reading and general language ability. These subtests were: (1) the Word Reading Test, consisting of thirty-five items, which measures the ability of a pupil to idertify a word without the aid of context; (2) the Paragraph Meaning Test, which is a measure of the child's ability to comprehend connected discourse ranging in length from single sentences to paragraphs of six sentences, and which involves levels of comprehension varying from extremely simple recognition to the making of inference from several related sentences; (3) the Vocabulary Test, which measures a pupil's vocabulary independent of his reading skill; (4) the Spelling Test, which is a dictation type exercise; and (5) the Word Study Skills Test which tests auditury perception and phonics ability.

In addition to the group-administered Stanford Test of silent reading ability, a sample from each treatment group within each project was administered the Gilmore Oral Reading Test. This sample consisted of twenty to fifty students randomly selected from each treatment group. The Gilmore Test was scored in terms of reading accuracy and reading rate. The same sample pupils were asked to pronounce words from the Gates Word Pronunciation Test and the Fry Phonetically Regular Words Test. The Gates Test consisted of the first two columns from the Gates-McKillop Diagnostic Reading Test. These words are listed according to increasing difficulty, but there is no attempt to control sound-symbol regularity in the gradation of the words. The Fry Test is a list of words controlled on the basis of sound-symbol relationships and graded roughly in order of difficulty by vcwel sounds used -- short vowel words, long vowel words, broad a, vowel modified by r, and the like. In each of these word lists the child reads aloud and pronounces the word without the benefit of context.

Measures of the child's writing ability and his attitude toward reading were also obtained. The San Diego Pupil Attitude Inventory was administered to all pupils in those projects which chose to employ this instrument. Because not every project director administered this test the analysis of the combined data reported in this volume will not include this attitude measure. The sample pupils who were administered the Fry and Gates word lists and the Gilmore Oral Reading test, also were asked to write a story from a stimulus common to ail projects. The writing sample was to be evaluated in terms of mechanics and creative expression. However, because of the difficulty of scoring, not. all projects made use of this evaluative technique and therefore the analysis of the combined data likewise does not include this variable. However, reports of the various individual project: may include periirent information concerning writing ability as it is related to different instruetionz yrograms.

In summary, the pupil information that was utilized in the analysis of combined data reported in this volume included the seven readiness measures, the intelligence test, the five Stanford Achievement subtests, the two Gilmore Oral Reading measures, and the Fry and Gates word lists. Information concerning sex was also utilized in that all of the analyses were run using sex as a blocking variable. Pupil data not included in the analysis of the combined data included chronological age, which proved to be unrelated to reading achievement; amount of pre-school experience which was categorized in such a fashion as to make it impossible to use in a covariance analysis; number of days absent during the experimental period, which was found to be unrelated to readirg achievement; and the attitude and writing measures which were excluded for reasons already given.

Teacher Data

Data were collected concerning each teacher's (1) sex, (2) age, (3) degrees earned, (4) certification, (5) years of teaching experience, (6) years of experience teaching first grade, (7) marital status, (8) number of children, (9) attitude toward teaching of reading as measured by the San Diego Teacher Attitude Scale, (10) numbers of days absent during the experimental period, and (11) teaching effectiveness as rated by supervisors. All of these data are reported in the Appendix, although only years of experience was utilized as a covariate in any of the analyses. Quantitative measures, such as number of days absent and score on the San Diego Teacher Attitude Scale proved to be unrelated to the reading achievement of pupils and, therefore, were not used. The categorical data which were analyzed, such as the type of teaching certificate held, likewise proved to be unrelated to pupil achievement in reading. The teacher efficiency rating was not utilized because of lack of objectivity which raised questions ajout reliability and validity and because it was related to only a slight degree with pupil success in reading.

School and Community Data

Information collected about community characteristics included median education of adults in the community, median income of adults according to census figures, population of the community, and type of community (urban, rural, or suburban). Information collected about schools included the number enrolled in each first grade class, length of the school day, length of the school year, number of first-grade rooms in the building, number of first-grade rooms in the district, whether or not the school had the services of a school librarian, and the per pupil costs for education. These data for each project are
also included in the Appendix but no further reference will be made to them in terms of the analysis. In the first place, there was little indication that any of the school and community characteristics were significantly related to the reading achievement. This statement of no relationship. of course, is valid only with reference to the specific communit'.s, schools, and school populations included in this project. Furthermore, many of the community characteristics were categorized rather than quantified, thereby making it difficult to use them as control variables in a covariance analysis.

Common Experimental Guidelines

In addition to administering common pre-instrustional and postinstructional tests and collecting common information about teachers, schools and communities, the project directors also agreed to abide by certain experimental guidelines. These were necessary, of course, to make possible comparisons between studies. The following procedural controls were considered essential: (1) All testing instruments to be utilized in the collection of the data should not be in the hands of the classroom teacher until the close of the school day preceding the day the test was to be given. (2) Tests were not to be scored by the classroom teacher although she could administer the tests if the building principal or other professional person acted as an observer. (3) No instructions were to be given to the classroom teacher in test procedures beyond those which were provided in the manual for a given test. (4) The length of the experimental program was designated to be 140 instructional days. Pre-tests and post-tests were to be given before and after this 140 day period. Final testing would begin on the 141st day regardless of the time of year. (5) Each project director was encouraged to take whatever steps would be necessary to control for "Hawthorne effect" which would probably be associated with novel experimental programs.

Organization of the Data

The Coordinating Center devised a format to be used by all project directors in recording common data collected. Each project director then punched two sets of data cards, one for his own use and one for the Coordinating Center. Three cards were punched for each pupil in each study. The first of these cards included data on the readiness characteristics of the pupils and the data regarding t.eacher, school, and community characteristics which could be cbtained at the beginning of the school year. The second card for each child recorded the data on the outcome measures and data such as class size at the end of the year which could be obtained at the end of the experimental period. The third card recorded unique data which the project director had collected. Only the first two cards, those which carried common data, were organized and analyzed by the center.

When the data cards arrived at the Coordinating Center, they were first run through a computer program which eliminated from the analysis all pupils on whom complete data were not available. Any pupil's scores were included in the analysis only if he had taken all seven of the readiness tests, the Pintner-Cunningham Primary Test, and all five Stanford Achievement Tests. Furthermore, data were used in the analysis only if information concerning the child's sex and chronological age were punched on his card. As a result, varying numbers of pupils in the various projects were eliminated from the combined analysis because of missing data. However, the pupils eliminated for this reason were relatively few in number. The pupils with complete data were used in the analyses discussed in this volume.

After the cards were screened to eliminate pupils with missing data, descriptive statistics were calculated for all of the quantitative and most of the categorical data. For these descriptive statistics individuals were used as the experimental unit. The statistics were calculated separately for boys and girls within treatment and within project. These descriptive data are tabled in the Appendix. The tables reveal the differences among projects with respect to pupil, teacher, school, and community characteristics. They also point up differences within projects between treatments on the same variables. The descriptive data illustrate very graphically the tremendous project differences in reading achievement of pupils, in prereading readiness characteristics of pupils, and in various teacher, school, and community characteristics. The tables also illustrate that many times the prcjects were unsuccessful in assigning pupils of equal ability to each of the various treatment groups.

General Procedure of Analysis
This investigation was designed to obtain information relevant to three basic questions: (1) To what extent are various pupil, teacher, class, school, and community characteristics related to pupil achievement in first grade reading and spelling? (2) Which of the many approaches to initial reading instruction produces superior reading and spelling achievement at the end of the first grade? (3) Is any program uniquely effective or ineffective for pupils with high or low readiness for reading?

In order to assess the relationships between various pupil, teacher, class, school, and community characteristics and subsequent pupil achievement in reading, product-moment correlation coefficients were computed. Information about the numbers of pupils involved and the results of this analysis are reported in Chapter V.

Comparisons of method are discussed in Chapters VI and IX. Chapter Ví presents the major techniques of analysis utilized in the report. In this section of the analysis various reading programs were evaluated by comparing their effectiveness with that of wellknown basal readers used in the same project. Extensive project by treatmen' interactions, extensive project effects for treatment, and lack of complete replicacion of treatments in all projects made this the most appropriate technique of analysis to use. Procedures are discussed more completely in Chapter VI along with a presentation of the results.

An analysis was also conducted whereby each treatment withir each project was compared with each of the other treatments in all of the other projects. Pupil differences in readiness among the various treatments and projects, as well as teacher differences in experience, were adjusted by means of covariance. This analysis was designed to determine relative rankings of the many treatments used in the investigation. However, tremendous project differences in achievement even after teacher and pupil charactaristics had be \in n controlled statistically, coupled with incomplete replication of treatments within projects, made this method of analysis questionable. Nevertheless, it will be presented in Chapter IX for informational purposes. Again procedures will be discussed at greater length in the introductory section of that chapter.

The third general purpose for the study was to determine whether or not any of the programs used was uniquely effective for pupils with high or low readiness for reading. Readiness for reading in this portion of the analysis was assessed by means of an intelligence test, a measure of auditory discrimination, and a test of letter knowledge. Pupils were blocked in turn according to their performance on each of the three measures. Then the appropriate treatment by readiness characteristic interaction was examined to note whether or not it could have occurred by chance. A significant interaction would indicate that treatments were not operating in the same manner across all ranges of readiness. Discussion of the procedi 3 ?s and results for this analysis are presented in Chapeer VII.

CHAPTER V

ANALYSIS OF RELATIONSHIPS

This chapter discusses the relationships between reading and spelling achievement at the end of the first grade and (1) pupil characteristios such as chronologica! age, mental age, number of days absent, and readiness for reading; (2) teacher characteristics such as years of teaching experience, years of experience teaching first grade, efficency rating, and days absent; and (3) class sice. Relationships among the variou; individual outcome measures and che group-administered Stanford hchievement Test were also assessed. The Pearson product-moment correlation coefficient was utilized in all cases.

Relationships between Readiness ard Reading
Complece data were gathered on seven reading r adiness measures and the Pintner-Cunningham Intelligence Test. Achievement was measured by the five subtests of the Stanford Achievement Test. Product-moment correlation coefficients between each prereading measure and each achievement measure were computed separately for each of the treatments identified as Basal, Basal plus Phonics, I.T.A., Linguistic, Phonic/Linguistic, and Language Experience. Each of the correlations was calculated by pooling within class and sex for relevant projects. The number of pupils on whom the correlations were based varied from treatment to treatment.

Correlation relationships for Basal treatment. The productmoment correlation coefficients among readiness measures, among outcome measures, and between each readiness measure and each outcome measure for the Basal treatment are reported in Table 5:01. In general, the intercorrelations of the prereading measures range from .20 to . 40 , thereby indicating that these tests appear to measure different facets of readiness. Relationstips among the achievement measures, on the other hand, are somewhat higher with the correlation coefficient between word recognition and paragraph meaning found to be .76 .

The best single predictor of achievement on the Stanford Achievement battery was the Murphy-Durre 11 Letter Names test. This test correlated . 55 with Word Reading, .52 with Paragraph Meaning, 41 with Vccabulary, . 48 with Spelling, and .51 with Worc Stidy Skills. The Murphy-Durrell Phonemes test also correlated substantially with the achievement measures. The other reading readiness subtests correlated . 40 or les: with the reading and spelling measures. The PintaerCunningham Primary Inteliigence Test was relaced to the reading achie'vement measures to a somewhat lesser extent than the Phonemes and Letter Names tests. For example, the correlation between the intelligence test and the Paragraph Meaning subtest was . 42 .

$$
\begin{aligned}
& \text { Table 5:01 } \\
& \text { Correlation Matrix for the Basal Treatment }
\end{aligned}
$$

Correlation relationships for the I.T.A. treatment. Intercorrelations for the same variables are reported for the I.T.A. treatment in Table 5:02. Again the Letter Names subtest was the best predictor of future success on the Stanford Achievement Test. The Letter Names test correlated . 60 with Word Reading, . 58 with Paragraph Meaning, . 48 with Vecabulary, . 53 with Spelling, and .59 with Word Study Skills. The Phonemes subtest and the PintnerCunningham Intelligence Test also correlated to a relatively high degree with the Stanford measures. The correlations between prereading measures and reading achievenent measures were found to be somewhat higher for the I.T.A. group than for the Basal group but in general were very similar.

Correlation relationships for the Basal plus Phonics treatment. Intercorrelations for the Basal plus Phonics treatment are presented in Table 5:03. One of the best predictors of achievement on the Stanford was again the Letter Names tesc. The Letter Names test correlated . 58 with Word Reading, . 55 with Paragraph Meaning, . 46 with Vocabulary, 53 with Spelling, and . 56 with Word Study Skills. Correlations between the Pintner-Cunningham test and the Stanford Achievement test were of approximately the same magnitude. The Phonemes test also correlated well with the criterion measures. All of the predictive validity coefficients are somewhat higher for this treatment than for the Basal treatment. However, the tests tend to rank in approximately the same order as far as their predictive validity is concerned.

Correlation relationships ir the Language Experience treatment. The correlations between prereading measures and reading achievement measures for the Language Experience approach are found in Table 5:04. As a group these correlations are somewhat lower than the correlations found for previous tivatments. Again the Letter Names iest was the best single predictor of future success in reading and spelling. Knowledge of letter names correlated .52 with Word Reading, . 51 with Paragraph Meaning, . 36 with Vocabulary, . 53 with Spelling, and . 48 with Word Study Skilis. These correlation coefficients are not substantially different from those obtained between similar variables for the other treatments.

Correlation relationships for the Linguistic treatment. The intercorrelations for the Linguistic treatment are presented in Table 5:05. The Letter Names and Phonemes subtests were the best predictors of achievement. In general the correlation coefficients looked very much like those reported for the other treatments.

Correlation relationships for the Phonic/Linguistic treatment. The intercorrelations for the Phonic/Linguistic treatment are reported

Table 5:02													
	relatio	on Matr	ix for	the I	I.T.A.	Treatm	ent						
Variable	1	2	3	4	5	6	7	8	9	10	11	12	13
1. Murphy-Durrell Phonemes		. 57	. 36	. 42	. 25	. 39	. 31	. 50	. 54	. 53	. 52	. 43	. 54
2. Murphy-Durrell Letter Names	. 57		. 37	. 38	. 28	. 37	. 30	. 48	. 60	. 58	. 48	. 53	. 59
3. Murphy-Durrell Learning Rate	. 36	. 37		. 26	. 20	. 23	. 22	. 31	. 35	. 34	. 26	. 30	. 30
4. Thurstone Pattern Copying	. 42	. 38	. 26		. 27	. 33	. 30	. 51	. 45	. 41	. 40	. 35	. 43
5. Thurstone-Jeffrey Identical Forms	. 25	. 28	. 20	. 27		. 30	. 27	. 46	. 36	. 33	. 34	. 25	. 33
6. Metropolitan Word Meaning	. 39	. 37	. 23	. 33	. 30		. 38	. 48	. 40	. 38	. 51	. 28	. 41
7. Metropolitan Listening	. 31	. 30	. 22	. 30	. 27	. 38		. 38	. 31	. 29	. 41	. 25	. 31
8. Pintner-Cunninghain Raw Score	. 50	. 48	. 31	. 51	. 46	. 48	. 38		. 52	. 52	. 58	. 40	. 52
9. Stanford Word Reading	. 54	. 60	. 35	. 45	. 36	. 40	. 31	. 52		. 83	. 60	. 64	. 77
10. Stanford Paragraph Meaning	. 53	. 58	. 34	. 41	. 33	. 38	. 29	. 52	. 83		. 60	. 60	. 75
11. Stanford Vocabulary	. 52	. 48	. 26	. 40	. 34	. 51	. 41	. 58	. 60	. 60		. 42	. 62
12. Stanford Spelling	. 43	. 53	. 30	. 35	. 25	. 28	. 25	. 40	. 64	. 60	. 42		. 66
13. Stanford Word Study Skills	. 54	. 59	. 30	. 43	. 33	. 41	. 31	. 52	. 77	. 75	. 62	. 66	
Means	28.9	31.7	9.9	12.0	15.7	9.1	9.2	39.1	23.5	21.4	22.0	10.6	38.8
Standard Deviations	11.49	12.32	4.41	6.50	6.45	2.52	2.46	7.71	6.98	9.54	5.89	5.13	8.96
NOTE: Correlations were calculated by pooling within class and sex for thos Means and pooled estimates of the standard deviations are presented at The N upon which this table is based is 1055 from 48 classes in 5 pro													

Table 5:03

Correlation Matrix for the Basal plus Phonics Treatment													
Variable	1	2	3	4	5	6	7	8	9	10	11	12	13
1. Murphy-Durrell Phonemes		. 59	. 45	. 44	. 41	. 46	. 41	. 56	. 54	. 52	. 47	. 46	. 55
2. Murphy-Durrell Letter Names	. 59		. 50	. 47	. 46	. 46	. 43	. 58	. 58	. 55	. 46	. 53	. 56
3. Murphy-Durrell Learning Rate	. 45	. 50		. 35	. 35	. 32	. 33	. 45	. 39	. 39	. 32	. 34	. 37
4. Thurstone Pattern Copying	. 44	. 47	. 35		. 45	. 34	. 37	. 59	. 46	. 46	. 38	. 40	. 47
5. Thurstone-Jeffrey Identical Forms	. 41	. 46	. 35	. 45		. 34	. 35	. 54	. 40	. 40	. 39	. 37	. 4.1
6. Metropolitan Word Meaning	. 46	. 46	. 32	. 34	. 34		. 49	. 54	. 41	. 44	. 52	. 34	. 41
7. Metropolitan Listening	. 41	. 43	. 33	. 37	. 35	. 49		. 54	. 31	. 44	- 52	. 34	. 41
8. Pintner-Cunningham Raw Score	. 56	. 58	. 45	. 59	. 54	. 54	. 51		. 57	. 56	. 54	. 51	7
9. Stanford Word Reading	. 54	. 58	. 39	. 46	. 40	. 41	. 37	. 57		. 77	. 55	. 70	.76
10. Stanford Paragraph Meaning	. 52	. 55	. 39	. 46	. 40	. 44	. 38	. 56	. 77		. 55	. 71	. 73
11. Stanford Vocabulary	. 47	. 46	. 32	. 38	. 39	. 52	. 42	. 54	. 55	. 55		. 48	. 58
12. Stanford Spelling	. 46	. 53	. 34	. 40	. 37	. 34	. 31	. 51	. 70	. 71	. 48		.73
13. Stanford Word Study Skills	. 55	. 56	. 37	. 47	. 4.1	. 41	. 39	. 57	. 76	. 73	. 58	. 73	
Means	21.4	30.8	8.1	12.3	12.0	7.5	7.9	34.1	21.1	20.4	21.5	10.8	35.9
Standard Deviations	12.65	14.14	4.69	6.72	7.07	2.76	2.75	9.09	6.49	8.34	5.58	5.34	9.32
Correlations were calcul plus phonics. Means and of the table. The N upo		ing mate tab	$\begin{aligned} & \text { thin } \\ & \text { of th } \\ & \text { is } \end{aligned}$	lass stan sed	and adard is 11	for iat from	those ons a 46 cl	reatm Fre ses	ents ented n 4 p	abele at th oject	basa base		

Table 5:04
 $\begin{array}{cc}1 & 2 \\ & .48\end{array}$

> Variable

1. Murphy-Durrell Phonemes
 3. Murphy-Durrell Learning Rate 4. Thurstone Pattern Copying 5. Thurstone-Jeffrey Identical 6. Metropolitan Word Meaning 7. Metropolitan Listening 8. Pintner-Cunningham Raw Score 9. Stanford Word Reading 10. Stanford Paragraph Meaning 11. Stanford Vocabulary

Standard Deviations
NOTE: $\quad \begin{aligned} & \text { Correlations were calculated by pooling within class and sex for those treatments labeled language } \\ & \text { experience. }\end{aligned}$ table. The N upon which this table is based is 1431 from 60 classes in 4 projects.

in Table 5:06. The three best predictors of success again were the Letter Names, $P:$, nemes, and Pintner-Cunningham tests. The Letter Names subtest correlated . 57 with Word Reading, . 59 with Paragraph Meaning, .47 with Vocabulary, . 54 with Spelling, and . 55 with Word Study Skills. The Phonemes and Pintner-Cunningham tests also correlated near or above . 50 with the criterion measures.

Summary of relationships between readiness and reading. A summary of predictive relationships of the various prereading measures is reported in Tables 5:07 and 5:08. In Table 5:07 the Paragraph Meaning subtest of the Stanford Achievement Test is used as a measure of reading achievement. For each of the treatment groups, the Murphy-Durrell Letter Names test ranked first in its relationship with the criterion. Likewise, in four of the six treatment groups the Murphy-Durrell Phonemes test ranked as the second best predictor of reading achievement. The lowest corre' al ion between Letter Names and the Paragraph Meaning subtest was .51 wnice the highest relationship was .59. Obviously, the ability to recognize letters at the beginning of first grade was related to reading success in all of the methods and programs employed in the study.

Correlations between the other readiness measures and reading achievement were more variable. Coefficients of correlation between the Phonemes subtest and the Paragraph Meaning subtest ranged from .41 to .57. Furthermore, correlations with Paragraph Meaning ranged from .28 to .52 for the Iearning Rate test, .33 to .46 for the Pattern Copying test, 27 to .40 for the Identical Forms test, . 19 to . 44 for the Metropolitan Meaning Test, . 18 to .38 for the Metropolitan Listening Test, and, 42 to . 56 for the Pintner-Cunningham Intelligence test. For these tests there was some indication that predictive relationships were higher within some treatments than within others.

The predictive relationship of each of the various subtests with the Word Reading tests are presented in Table 5:08. For five of the six treatments the Letter Names subtest was the best predictor of Word Recognition ability. The only exception was the Phonic/Linguistic treatment where the Phonemes test correlated best with the criterion. The lowest correlation between Letter Names and Word Reading was . 52 for the Language Experience group while the highest correlation was .60 for the I.T.A. group. For most of the other readiness measures the predictive relationship was also consistent from treatment to treatment.

Intercorrelations Among Group and Thdividual Achievement Measures
Intercorrelations were also computed for the Stanford Word Reading, Stanford Paragraph Meaning, Gilmore Accuracy, Gilmore Rate
Table 5:06

Variable	1	2	3	4	5	6	7	8	9	10	11	12	13
1. Murphy-Durrell Phonemes		. 56	. 54	. 40	. 33	. 41	. 40	. 54	. 59	. 57	. 53	. 50	. 59
2. Murphy-Durrell Letter Names	. 56		. 49	. 27	. 30	. 34	. 33	. 50	. 57	. 59	. 47	. 5't	. 55
3. Murphy-Durrell Learning Rate	. 54	. 49		. 35	. 28	. 30	. 27	. 44	. 48	. 52	. 40	.45	. 50
4. Thurstone Pattern Copying	. 40	. 27	. 35		. 28	. 27	. 20	. 50	. 36	. 34	. 34	. 35	. 39
5. Thurstone-Jeffrey Identical Forms	. 33	. 30	. 28	. 28		. 35	. 32	. 52	. 38	. 35	. 31	. 32	. 35
6. Metropolitan Word Meaning	. 41	. 34	. 30	. 27	. 35		. 39	. 48	. 35	. 32	. 55	. 29	. 36
7. Metropolitan Listening	. 40	. 33	. 27	. 20	. 32	. 39		. 51	. 31	. 33	. 42	. 27	- 31
8. Pintner-Cunningham Raw Score	. 54	. 50	. 44	. 50	. 52	. 48	. 51		. 56	. 52	. 54	. 47	. 56
9. Stanford Word Reading	. 59	. 57	. 48	. 36	. 38	. 35	. 31	. 56		. 81	. 60	. 84	. 80
10. Stanford Paragraph Meaning	. 57	. 59	. 52	. 34	. 35	. 32	. 33	. 52	. 81		. 60	. 76	. 76
11. Stanford Vocahulary	. 53	. 47	. 40	. 34	. 31	-5	. 42	. 54	. 60	.60		-601	. 63
12. Stanford Spelling	. 50	. 54	. 45	. 35	. 32	. 29	.27	. 47	. 84	. 76	. 60		. 80
13. Stanford Word Study Skills	. 59	. 55	. 50	. 39	. 35	. 36	. 31	. 56	. 80	.76	.63	.80	
Means	29.2	35.6	10.8	9.6	15.3	9.1	9.5	39.5	26.7	24.4	24.1	14.2	41.7
Standard Deviations	12.12	11.55	3.91	5.77	5.55	2.53	2.29	7.30	6.44	9.33	6.08	5.49	8.98
NOTE: Correlations were calcul linguistic. Means and of the table. The N upo	y poo estim ch thi	$\begin{aligned} & \text { ing } \\ & \text { tes } \\ & \text { tabi } \end{aligned}$	ichin f the e is	ass and sed	and s d de 488	for ation rom	hose are cla	treat presen ses in	ents ed a 3 pr	abeled the jects	phon se	ic /	

Summary of Correlations Between Premeasures and rd Paragraph Meaning Test for Each of Six Treatments						
	Basal	I.T.A.	Basal plus Phonics	Language Experience	Linguistic	Phonic/ Linguistic
Murphy-Durrell Phonemes	. 46	. 53	. 52	. 41	. 50	. 57
Murphy-Durrell Total Letters	. 52	. 58	. 55	. 51	. 55	. 59
Murphy-Durrell Learning Rate	. 40	. 34	. 39	. 28	. 48	. 52
Thurstone Pattern Copying	. 34	. 41	. 46	. 33	. 35	. 34
Thurstone-Jeffrey Identical Forms	. 29	. 33	. 40	. 29	. 27	. 35
Metropolitan Woיd Meaning	. 30	. 38	. 44	. 19	. 27	. 32
Metropolitan Listening	. 23	. 29	. 38	. 18	. 27	. 33
Pintner-Cunningham Intelligence Test	. 42	. 52	. 56	. 43	. 48	. 52

Table 5:07
Summary of Correlations Between Premeasures and Stanford Paragraph Meaning Test for Each of Six Treatments

$=\square \square \square$						
Table 5:08						
Summary of Correlations Between Premeasures and Word Reading Test for Each of Six Treatments						
	Basal	I.T.A.	$\begin{aligned} & \text { Basal } \\ & \text { plus } \\ & \text { Phonics } \end{aligned}$	Language Experience	Linguistic	Phonic/ Linguistic
Murphy-Durrell Phonemes	. 48	. 54	. 54	. 45	. 55	. 59
Murphy-Durre 11 Letter Names	. 55	. 60	. 58	. 52	. 56	. 57
Murphy-Durrell Learning Rate	. 38	. 35	. 39	. 29	. 44	. 48
Thurstone Pattern Copying	. 34	. 45	, 46	. 33	. 36	. 36
Thurstone-Jeffrey Identical Forms	. 29	. 36	. 40	. 29	. 29	. 38
Metropoli.tan Word Meaning	. 32	. 40	. 41	. 21	. 31	. 35
Metropolitan Listening	. 22	. 31	. 37	. 17	. 23	. 31
Pir.tner-Cunningham Intelligence Test	. 44	. 52	. 57	. 42	. 47	. 56

[^0]The relationships between various pupil, class, and teacher characteristics and achievement on the Stanford Battery are reported in Table 5:15. Fror this table it is obvious that none of the characteristics is i. ahly related to achievement on any of the Stanford measures. Fcr the class sizes reported in this study there was no relationship with first grade achievement. However, there were no very large or very small elasses involved in the study. Teacher absence (within the limiss of this particular sample) was likewise unrelated to achieveme .t. Teacher experience was positively related to reading achievement with correlations in the neighborhood of .30. However, the correlations reported between teacher experience and reading achievement were substantially lower than similar correlations between reading readiness and reading achievement. In general, the younger child did somewhat tetter in reading than did his older counterpart. Also, in general, the child who attended school regularly did somewhat better than the child who was absent
NOTE: Correlations were calculated within projects and sex and pooled over these units. The N upon which the table is based is 609 coming from 15 projucts.
Correlations were calculated within projects and sex and pocled over these units. The \mathbb{N} upon which the table is bened is 163 coming from 5 projects.
Table 5:11 Intercorrelations of Individual Outcome Measures and Selected Subtests
from the Stanford Achievement Test for the Basal plus Phonics Treatm. it
カ

6
.74
.77
.81
.53
84

123
Variable 1
Variable
Table 5:13

Variable	1	2	3	4	5	6
1. Stanford Word Reading		. 81	. 83	. 70	. 83	. 84
2. Stanford Paragraph Meaning			. 85	. 70	. 79	. 84
3. Gilmore Accuracy				. 81	. 88	. 90
4. Gilmore Rate					. 70	. 78
5. Fry Word List						. 92
b. Gates Word List						
Means	18.6	15.8	18.4	43.8	8.0	10.7
Stan ${ }^{\text {ard D Deviations }}$	7.96	9.33	12.14	27.70	7.19	8.30
NOTE: Correlations were cal table is based is 146	ed with	ts and ts.	poo	these		

Table 5:14

Intercorrelations of Individual Outcome Measures and Selected Subtests from the Stanford Achievement Test for the Phonic/Linguistic Treatment						
Variable	. 1	2	3	4	5	6
1. Stanford Word Reading		. 83	. 75	. 59	. 83	. 79
2. Stanford Paragraph Meaning			. 78	.64	. 75	. 72
3. Gilmore Accuracy				. 65	. 83	. 84
4. Gilmore Rate					. 67	. 68
5. Fry Word List						. 87
6. Gates Word List						
Me.ans	26.8	24.7	30.1	59.7	18.2	20.5
Standard Deviations	6.57	9.64	14. 26	25.34	8.76	9.79

NOTE: Correlations were calculated within projects and sex and pooled over these units. The N upon which the table is based is 94 coming from 3 projects.
Table 5:15
Correlations Between Pupil, Class, and Teacher Characteristics and Stanford Battery

	Word Reading	Paragraph Meanitrg	Vocabulary	Spelling	Word Study Skills
Class Size	-.01	.01	-.03	.02	-.04
Teacher Absence	$\ldots .07$	-.08	-.04	-.01	-.03
Teacher Total Experience	.27	.32	.24	.34	.32
Teacher First Grade Experience	.$\angle 3$.30	.20	.30	.27
Teacher Rating	.14	.13	.10	.22	.19
Child Age	-.17	-.17	-.15	-.22	-.20
Pupil Absence	-.09	-.05	-.02	-.08	-.09

NOTE: Correlation coefficients were computed using class means as experimental variables.
occasionally. However, this relationship was negligible. In summary, it can be said that the teacher characteristics measured in this study were negligibly related to reading success. Furthermore, child age, pupil absence, and class size were related only to very slight degrees.

Data which could not be quantified were also obtained. A great deal of information about school and community characteristics was collected but much of this was categorical in nature. Information concerning these characteristics within each project is tabled in the appendix.

CHAPTER VI

ANALYSIS OF INSTRUCTIONAL METHODS

This chapter discuss ; that part of the analysis which was concerned with evaluating the relative effectiveness of the primary reading programs in the Cooperative Research Program in First-Grade Reading Instruction. Because the various approaches were not all used in all projects, comparisons could not be made between and among all of them. However, projects which had in common a Basal treatment and another treatment (such as I.T.A.) were grouped together. In this manner, the basal reader treatment was used as a bench-mark against which to compare achievement in each of the less traditional non-basal programs.

General Procedures

Data from fifteen projects were used in this section of the analysis. These particular fifteen projects were included because they utilized a sample which was considered to be representictive of the total population and an experimental program which also was used in another investigation. The establishment of these two criteria eliminated atypical populations such as those comprised of Spanish-speaking youngsters and projects which included a treatment such as individualized reading which was not replicated in any other project.

Six types of instructional materials or methods were used as experimental treatments in more than one project. These six groupings were labeled Initial Teaching Alphabet, Basal plus Phonics, Language Experience, Linguistic, Phonic/Linguistic, and Basal. A listing of the specific materials which comprised each of these major groupings will be provided in later sections of this chapter. Five separate analyses were then performed, each analysis using the basal reader as a control against which to compare progress in other instructional programs. All of the projects which used as experimental treatments both a basal reader approach and an I.T.A. approach, for example, were combined into a single analysis. Similarly, projects were grouped together for analysis if they had in common programs labeled Basal and Language Experience, Basal and Basal plus Phonics, Basal and Linguistics, and Basal and Phonic/Linguistic. It should be emphasized that for this section of the analysis, methods and materials were placed in categories arbitrarily on the basis of their common characteristics. The purpose was to get some idea of whether or not there was a general superiority of some treatment over several different projects. The paragraphs which follow will discuss major characteristics of each treatment.

One of the program groupings was labeled the Basal approach. The basal reading program, then, was considered an entity even though the programs of many different publishers were utilized. The various sets of materials included in this category possess most, if not all, of the following characteristics: (1) Vocabulary is introduced slowly and repeated often. Vocabulary control is based on frequency of usage rather than on regularity of sound-symbol relationships.
(2) Phonic analysis is introduced gradually and usually only after some "sight" words have been taught. However, from the beginning the child is encouraged to use such other word recognition skills as context, structural analysis, and picture clues. (3) Emphasis from the beginning is placed not only on word recognition but on comprehension and interpretation of what is read. (4) Silent reading is emphasized early in the program. (5) The various reading skills are introduced and developed systematically. (6) A well-known 3asic Reading Series is used as the major instructional tool.

Another method category utilized in this phase of the analysis was labeled I.T.A. or the Initial Teaching Alphabet. This instructional medium purports to simplify the task of learning to read by introducing a novel forty-four character alphabet with which to encode the approximately forty sounds in sur language. In general, one symbol is used to represent one sound thereby making possible more consistent phonic analysis of words. Furthermore, the nature of the alp'abet is such that the transition from the use of the Initial Teaching Alphabet to the use of traditional orthography is purported to be a ralatively simple task. Two different programs comprised the I.T.A. approach discussed in this chapter but these two programs had in commoin the unique characteristic of a teaching medium which was quite different from that used by any of the other methods and materials.

A third treatment category was labeled Basal plus Phonics. Each of the treatments in this group was comprised of a basal reading series with supplementary phonics materials. The instructional programs, therefore, although somewhat different from project to project, followed the basic philosophy of the basal reader with the addition of a greater phon.c emphasis.

A fourth treatment group was labeled Language Experience. A basic element of this instructional method is that the child's own writing serves as a medium of instruction. The child's first stories are dictated to the teacher who acts as the recorder. As soon as he is able, the pupil writes his own stories and shares them with the teacher. During the individual conferences between pupil and teacher he is helped to recognize the commonality between the words he writes
and speaks and he develops the skills necessary for reading. This approach, then, ordinarily utilizes far fewer highly structured instructional materials than do most instructional programs. In addition, vocabulary control is viewed as being in the language itself and in the language background of each child. The pupil learns to read the words which he finds it necessary for him to use in writing. One of the major instructional tasks in this method is to engender a stimulating language environment.

A fifth treatment category was labeled Linguistic. The various materials included in this treatment possess most, if not all, of the following characteristics: (1) There is an early introduction to letters, and knowledge of letter names and the ability to recognize letters are considered prerequisite skills for reading instruction. (2) Sound-symbol relationships are taught through careful sequencing of word patterns. Words with high sound-symbol regularity are taught first and the child is led to discover the sound-symbol relationships which exist. In many cases, the child is encouraged to use sound-symbol relationships as the basic word recognition technique by withholding from him such clues as pictures and word length. (3) In many cases there is less emphasis on understanding and comprehension in the early stages. Reading is considered a process of translating graphic symbols into sounds and primary attention is paid to helping the child learn the decoding system. Materials which were placed in the Linguistic category tended to follow in general the characteristiss described above.

The only "pure" treatment was the Phonic/Linguistic program published by the Lippincott Company. As the name implies, this instructional program has certain characteristics in common with phonic and linguistic programs, as well as with basal programs, but it does not fit well with any of the vther treatrients. Therefore, the decision was made to recognize this program as a separate method under the category of Phonic/Linguistic. It is in some respects a linguistically oriented basal program with more demanding pupil expectations.

Description of Analysis
The effectiveness of the various reading programs was evaluated in terms of the pupils' end-of-year performance on the five subtests of the Stanford Achievement Test, Primary I Sattery. This test was administered to all participating pupils after 140 days of instruction in the first grade. In addition, a sample was selected from the
experimental population to be administered the Gilmore Oral Reading Test, the Fry Phonetically Regular Word List, and the Gates Word Pronunciation Test. These tests were individually administered in the testing period immediately following the 140 day instructional period.

Analysis of Stanford Achievement Test Scores

The dnalysis followed a general patterr For each of the five comparisons (I.T.A. versus Basal, Language Experience versus Basal, Basal plus Phonics versus Basal, Linguistic versus Basal, and Phonic/ Linguistic versus Basal) separate means were calculated for males and females within each class on all quantitative variables. The analysis was then conducted using these class means for males and females as the experimental unit, blocking on project, treatment, and sex. This section of the analysis was conducted as if a complete factorial arrangement of treatments had been made. Projects were treated as blocks and the assumption was made that within each project treatments were assigned at random to a set of classes. was assumed that identical treatments were used in each project (within a specified comparison such as I.T.A. versus Basal), thus making it reasonable to test for a general treatment effect over all projects. This portion of the analysis, therefore, gave "acroos-projects" information.

For each of the five treatment comparisons an analysis of variance was carried out on the seven premeasures--Murphy-Durrell Phonemes, Murphy-Durrell Letter Names, Murphy-Durrell Learning Rate, Thurstone-Jeffrey Identical Forms, Metropolitan Word Meaning, Metropolitan Listening, and Pintner-Cunningham Primary Test. The analysis of variance on premeasures was designed to indicate those premeasures on which significant differences in performance were found between basal and non-basal treatments. In this analysis, the Thurstone Pattern Copying Test, which had been administered to Ell purils, was not ucilized because of its relatively low correlation with the criterion measures and because of the difficulty encountered in scoring the instrument. School, community, and teacher characteristics were not considered in this analysis for two reasons. In the first place, these characteristics, as measured in this investigation, were found to be relatively unrelated to reading achievement. Secondly, many of these characteristics were not quantitative and in many cases no ordered relationship existed among categories. As a result, most community characteristics and such teacher characteristics as amount of education could not easily be incorporated as controls in a covariance analysis. All teacher, school, and community characteristics by treatment withir project are presented in the appendix.

The next step was to perfoum an analysis of covariance using a minimum number of covariates. These were chosen on the basis of their potential for adjusting differences in pre-instructional readingrelated characteristics. Therefore, the particular premeasures utilized as covariates for an I.T.A. versus Basal comparison might be different from those used for a Language Experience versus Basal comparison.

In each of the five treatment comparisons a second covariance analysis was also conducted. This covariance analysis utilized all seven premeasures as covariates in order to malse pupils in basal and non-basal treatments as similar as possible in their readiness for reading. This second covariance analysis also had the advantage of being entirely consistent from one treatment comparison to another in that the very same preneasures vere used as covariates.

The across-projects covariance analysis of outcome measures was then examined to determine whether or not project by treatnent interactions were present. It should be remembered that in this analysis projects were treated as blocks and analysis of the data ignoring project lines would be meaningful orily if no significant project by treatment interactions were found. If such interactions were present, thereby indicating that treatment effects did not operate 1.7 the same fashion over all projects, a within-projects analysis was conducted. This within-projects analysis tested for treatment differtaces within each project but simultaneously for all projects. As a result, all data from all projects involved in a comparison were used to obtain the error term, thus increasing the precision of the experiment. This analysis also followed the pattern of firsi performing an analysis of variance and then two analyses of covariance, utilizing in turn a selected set of premeasures and the total set of seven premeasures.

Tinc discussion of the method comparisons sill proceed in the manner descrised above. First, the across-projects analysis for each basal versus non-basal treatment comparison vill be discussed. Next, the witin-projects analysis showing the relative effectiveness of the basal ard non-basal treatments vithin the projects maiking up that particular treatment comparison will be presented.

Analysis of Sampie Measures
An analysis similar to the one described for the Stanford Achievement Test results was conducted on the accuracy and rate scores from the Gilmore Oral Reading Test, as well as on the Fry Phonetically Regular Word Test and the Gates Word Pronunciation Test.

Each of these tests was individually administered to a random sample from each treatment within each project. Although these numbers varied from project to project, approximately twenty to fifty pupils were chosen to represent each treatment in each project.

The analysis followed the same steps as those described for Stanford scores. The only difference was that individuals were used as the experimental unit rather than class means based on each sex. With the small numbers involved it was felt that the use of class means would not have been reasonable. Furthermore, because of consistent project by treatment interactions only the withinprojects analysis will be reported. In this chapter the discussion of the within-projects analysis of individual outcome measures will follow the discussion of the Stanford data for each of the treatment comparisons.

An Illustration of the Analysis (Basal versus I.T.A.)

The analysis of the I.T.A. versus B. itreatment comparison demonstrates the technique used for all such comparisons. The discussion of this analysis will be presented in greater detail and will serve as a model of the analysis used in all cases. The projects used in this particular comparison, as well as the numbers of pupils for each treatment and the exact nature of the materials employed, is recorded in Table 6:01. Four of the five I.T.A. treatments used the Mazurkiewicz-Tanyzer Early-to-Read materials while one project employed the Downing Readers. Althouph these two sets of materials differ to a considerable extent, the decision was made to pool the data because of the unique similarity regarding the alphabet used for beginning reading instruction. Tabie 6:01 also reveals that a variety of basal readers were used in the various projects. In fact, in one project, the teachers using basal programs were encouraged to choose any basal series they wished. However, for the purposes of this analysis, the basal treatment was considered to be similar from project to project.

As a first step an analysis of variance was carried out on the seven premeasures and the five Stanford Reading Achievement Test scores. As was true in all of the basal versus non-basal treatment comparisons, the experimental unit was a class mean calculated separately for each of the sexes. Projects, treatments, and sex constituted the blocks in the across-projects design. Information pertaining to the analysis of the premeasures is reported in Table 6:02. Highly reliable project differences were found indicating that pupils in the various projects differed considerably in their readiness for reading. Significant differences were also found favoring girls on five of the seven premeasures. Only one treatment
Table 6:01
Materials and Numbers of Classes and Pupils for Basal vs I.T.A.

	Fry		Hahn		Hayes		Mazurkiewicz		Tanyzer	
	Classes	Pupils	Classes	Pupils	Classes	Pupils	Classes	Pupils	Classes	Tupils
Nurabers										
Basal	6	110	12	276	5	87	17	317	9	228
i.t.a.	7	134	12	255	5	96	1.5	330	9	240
jiaterials										
Basal	Allyn-Bacon		Variety		Scott-Foresman		Row-Peterson American Book		Scott-Foresman	
i.t.a.	Early--to-Read		Downing Readers		Early-to-Read		Early-to-Read		Early-to-Read	

				$\square \square \square$		
		Table 6:02				
	Across Projects Analysis of Variance on Premeasures for Basal vs I.T.A. Comparison					
Effect	Murphy-Durrell Murphy-Durrell Phonemes Letter Names	Murphy-Durrell Learning Rate	Thurstone Identical Forms	Metropolitan Meaning	Metropolitan Listening	PintnerCunningham I.Q.
Sex	$13.39 \mathrm{~F} \quad 2.5 .87 \mathrm{~F}$	7.88F	$4.05 f$. 34	3.63	12.90F
Treatment	3.38 17.02B	2.22	. 77	. 41	. 08	. 11
Sex x Treatmerit	.63 .34	. 00	. 24	. 65	1.92	. 82
Project:	17.71\%* 10.68**	40.52**	10.15**	7.35**	5.84**	11.70**
Sex x Project	. 34 . 65	. 74	. 10	. 10	. 42	. 38
Tri x Project	2.94* 5.12**	1.17	. 71	3.60**	1.93	1.51
Sex \times Tri \times Proj	.14	. 22	. 05	. 17	. 37	. 30
NOTE:	Significant difference favoring I.T.A. indicated by N or n, Basal by B or b, females by F or f males by M or m . Capital letter in each case signifies .01 level of significance; lower case letter, . 05 level. One asterisk indicates project difference or interaction significant at .05 level; two asterisks, . 01 level. Numerator degrees of freedom equal one (1) except for all effects involving project in which case numerator d.f. equal 4. Denominator d.f. equal 174.					

difference was found, that favoring the Basal treatment. Treatment by project interactions were found to be significant on threa of the seven premeasures.

The across-projects analysis of variance on the Stanford measures is summarized in Columns A of Table 6:03. Sex differences favoring girls were found to be significant on four of the five outcome measures. Negligible sex by treatment interactions indicate that boys and girls were not uniquely influenced by either the Basal or I.T.A. treatments. Treatment differences were found to be significant favoring the I.T.A. on the Word Reading Test and Basal pupils on the Spelling Test. The interpretation of differences, however, is clouded by the treatment by project interaction reported to be significant for each of these two measures. Moreover, significant treatment by project interactions were found on the Paragraph Meaning and Word Study Skills variäbles.

It was hoped that an analysis of covariance might eliminate the project by treatment interactions. The analysis of variance of the premeasures eported in Table 6:02 was sturied to find covariates with the greatest potential for eliminating the interaction. Letter Names was used as a covariate because of the significant treatment by project interaction and because of the large main effects for treatment. Since the Phonemes subtest had somewhat the same relationship it was also included. Columns B of Table 6:03 report the results of this covariance aralysis. The utilization of the Phonemes and Letter Names subtests as covariates reduced the treatment by project interaction on each of the outcome variables, but the same four were still significant. Covariance had the desired effect but it was not enough to erase the treatment by project interactions. Therefore, the utility of the analysis of treatment differences across projects was still questionable.

The nature of the treatment by project interactions is illustrated on Table 6:04. It is apparent from this table of unadjusted means that (1) on the Word Reading test the only large differences between treatments favored I.T.A.; (2) for the Paragraph Meaning variable, the only large differences favored I.T.A., while small differences in the other projects went both ways; (3) for the Spelling test the differences were, in general, large but not consistent since project 3 favored I.T.A. while the other differences generally favored Basal; and (4) for the Word Study Skills variable all differences except those in project 4 favored I.T.A. but the differences were of varying amounts.
Table 6:03
Across Projects Anailysis of Variance and Covariance on Stanford Measures for Basal vs I.T.A. Comparison
Column C, covariance using all seven premeasures as covariance using Phonemes and Letter Names as covariates;
indicated by N or n, Basal by B or b, females by F or f, males by Snificant difference favoring I.T.A.
signifies . 01 level of significance; lower case letter, . 05 level. One asterisk indicates project difference
or interaction significant at .05 level; two aste!isks, . 01 level. Numerator degrees of freedom are 1 for all
effects except those involving project which are based on 4 d.f. Denominator d.f. are 174 , 172 , and 167 for
Columns A, B, and C respectively.
NOTE:
Table 6:04
Within Projects Unadjusted Means on Stanford Meai ures for the Basal vs I.T.A. Comparison

	Word Reading		Paragraph Meaning		Vocabulary		Spelling		Word Study Skills	
Project	Basal	iTA								
Fry	20.2	20.7	19.9	17.4	23.2	22.3	10.8	7.4	33.9	35.2
Hahn	22.5	24.0	21.8	21.6	21.7	22.0	13.2	11.2	38.5	39.6
Hayes	18.5	24.7	19.3	22.0	22.0	22.2	9.0	14.7	34.2	40.2
Mazurkiewicz	22.0	21.8	21.1	20.1	22.4	20.4	13.6	8.9	(39.1	36.1
Tanyzer	17.5	25.3	16.1	23.2	20.5	22.5	10.2	11.9	33.9	42.0

The analysis of covariance summarized in Columns B of Table 6:03 also reveals that only one sex difference was recorded, that favoring boys. Adjusting for premeasure differences on the Phonemes and Letter Names tests erased significant differences in reading ability which had been shown to favor girls in the analysis of variance. Project differences, however, were found on each of the five outcome measures.

One last attempt was made to eliminate treatment by project interaction. A covariance analysis using all seven premeasures as covariates was conducted. The result of this covariance analysis is reported in Columns C of Table 6:03. Very substantial project differences still existed .ven though pupils' readiness had been controiled. Furthermore, the treatment by project interactions on four of the five variables were still significant. Therefore, the treatment differences found on the Word Reading, Paragarph Meaning, Spelling, and Word Study Skills tests could not be interpreted unambiguously.

As a result of the persistence of the project by treatment interactions, the data were then analyzed within each project. This analysis permitted the assessment of the effects of treatment and sex separately for each project. It proceeded in exactly the same fashion as did the across-projects analysis. First an analysis of variance on the premeasures within each project was carried out. As reported in Table 6:05, three of the five projects found no treatment differences on any of the seven premeasures. However, within the two remaining projects significant differences were found in pupil performance on the Phonemes, Letter Names, and Word Meaning subtests. In these projects, the randomization procedure had not succeeded in equalizing prereading ability (as measured by the three subtests) between the basal and non-basal group. This within-project analysis of premeasures again points out the superiority of girls with respect to prereading ability. The extent of the differences in mean performance on the premeasures between basal and non-basal groups is illustrated on Table 6:06 which presents treatment means on each measure for each of the five Basal versus I.T.A. projects.

The next step in the within-prejects analysis involved conducting an analysis of variance on the Stanford Achievement measures. This analysis is summarized in Columns A of Table 6:07. On the Word Reading test, significant differences favoring the I.T.A. treatment were found in two of the five projects. One project recorded a significant difference favoring the I.T.A. treatment on the Paragraph Meaning subtest. On the Voca'bulary test, however, the only significant difference favored the Basal treatment. Four of the five projects reported significant differences between treatments on the

Tab1e 6:07

	Word Reading				Paragraph Meaning			Vocabulary			Spelling			Word A	Study Skills	
P	Eff	A	B	C	A	B	C	A	B	C	A	B	C		B	C
1	Sex	1.34	. 38	. 77	2.28	. 00	. 14	. 43	2.14	3.02	2.76	. 21	. 00	1.64	. 05	. 19
	Trt	. 10	1.76	2.55	1.29	. 38	. 15	. 48	. 00	. 16	7.52B	6.56b	5.84b	. 38	<. 26	3.09
	SxT	. 49	. 10	. 00	. 26	. 00	. 02	4.15*	4.84*	4.16*	. 30	. 03	. 01	. 50	. 14	. 01
2	Sex	. 96	. 00	. 07	4.30f	2.47	3.05	. 04	1.31	. 52	3.61	1.89	2.03	. 69	.00	.11
	Trt	1.68	1.39	1.92	. 01	. 36	. 25	. 07	. 03	. 01	4.66b	8.37B	8,37B	. 43	. 05	. 17
	SxT	. 16	. 03	. 01	. 10	. 05	. 01	. 03	. 27	. 01	. 40	. 07	. 31	. 35	. 02	. 19
3	Sex	.96	. 09	. 00	2.52	1.22	. 85	. 01	1.14	1.67	. 85	. 12	. 02	. 33	. 02	. 17
	Trt	11.49N	10.29N	17.07N	1.29	. 02	1. 34	. 02	2.01	. 20	15.66 N	13.56N	21.37N	$6.04 n$	3.46	9.021
	SxT	. 05	. 30	. 06	. 19	. 57	. 14	. 26	. 90	. 27	. 11	. 28	. 02	. 01	. 00	. 08
4	Sex	6.77 F	. 77	1. 34	5.67 f	. 49	. 91	. 20	5.10m	2.87	2.43	. 00	. 03	4.59 f	.17	. 79
	Tr t	. 05	$4.89 n$	9.02N	. 55	2.46	1.65	5.57 b	. 00	. 03	35.33B	18.50B	23.17 B	5.02b	. 45	. 78
	SxT	. 17	. 83	. 90	. 06	. 32	. 31	. 01	. 19	. 34	. 19	. 12	. 19	. 91	2.58	2.78
5	Sex	3.64	. 00	. 11	4.64 f	. 21	. 00	. 70	2.63	4.07 m	5.97 f	1.20	. 42	3.97 f	. 15	. 01
	Trt	32.69N	33.21N	29.92N	15.03N	12.66N	11.41N	3.15	1.17	. 43	2.64	. 98	. 68	19.65N	13.98N	10.92N
	SxT	. 11	. 14	. 13	. 16	. 19	. 18	. 01	. 08	. 14	. 31	. 35	. 35	. 02	. 01	. 03

[^1]Spelling subtest, three of these ditferences favoring the basal group. This lack of unanimity was further pointed out by the analysis of scores on the Word Study Skills subtest where two projects found significant treatment differences favoring I.T.A., but one project found a significant difference favoring the E sal treatment.

Again a covariance analysis was run using the Phonemes and Letier Names subtests as covariates. This covariance analysis was conducted within projects although simultaneously for all projects and is sumnarized in Columns B of Table 6:07. The results were very similar to those reported for the analysis of variance. One additional treatment difference favoring I.T.A. was found on the Word Reading subtest and the significant difference which had been found favoring the Basal treatment on the Vocabulary subtest was erased but no changes were reported for the Spelling and Paragraph Meaning subtests. On the Word Study Skills subtest the covariance analysis erased two of the three significant treatment differences which had been found in the analysis of variance. The use of covariance also tended to eliminate sex differences which had been found to favor girls. Evidently, the superiority of girls in reading achievement at the end of the year could be accounted for by their superiority in prereading capability at the beginning of the year.

The second covariance analysis, utilizing all seven premeasures as covariates, is reported in Columns C of Table 6:07. The utilization of seven premeasures instead of two changed matters very little. Generally speáking, the same conclusions would be drawn from either of thase two covariance analyses. In this case, adding, covariates beyond the first two served very little purnose.

The inadjusted and adjusted means for the Basal versus I.T.A. groups within each project are reported in Table 6:08. This table illustrates the actual extent of the difference betivenn the two treatments. Much greater differences in mean performance can be noted for some projects than for others.

Analysis of Individual Outcome Measures

The Gidrare Cral Reading 'lest, the Fry Phonetically Regular Word Test, and t.Ga'ses Word Pronunciation Test were administered individuaity to a sainple from each treatment. The analysis of these test sccres followed the same pattern as that described for the Stanford Achievement Test results. However, although both acrossprojects and within-projects analyses were employed, only the withinprojects results will be reported. In general, project by treatment interactions were found to exist, thereby making unambiguous interpretation or treatment differences across projects dirficult.

							Table									
		Unad	usted	and Adj	usted	anfor	Mean	for th	Basa	s I.	Comp	rison				
	$\because 2$	Wo	d Read		Para	anh Me			abula			elling		Word	Study	Skills
		A	B	C	A	B	C	\therefore	B	C	A	B	C	A	B	C
	3 asal	20.2	2i. 2	20.6	19.9	21.0	20.4	23.2	24.0	23.3	10.8	11.4	İ. $\dot{\text { I }}$	33.9	35.3	34.6
	ITA	20.7	22.7	22.4	17.4	20.0	19.8	22.3	24.1	23.7	7.4	8.6	8.7	35.2	37.9	37.3
	Basal	22.5	22.1	22.0	21.8	21.2	21.2	21.7	21.3	21.0	13.2	12.9	13.0	38.5	38.2	37.9
	ITA	24.0	23.1	23.1	21.6	20.5	20.7	22.0	21.2	21.0	1.1. 2	10.7	10.8	39.6	38. 5	38.3
	Basal	18.5	23.6	23.7	19.3	25.6	25.8	22.0	26.4	26.5	9.0	12.1	12.2	34.2	40.8	40.8
	I'1'A	24.7	27.7	28.9	22.0	25.9	27.8	22.2	24.9	26.0	14.7	16.5	17.7	40.2	44.2	46.1
	Basal.	22.0	20.0	20.0	21.1	18.5	18.2	22.4	20.6	20.7	13.6	12.4	12.1	39.1	36.6	36.5
	ITA	21.8	21.8	21.6	20.1	20.4	19.7	20.4	20.6	20.5	8.9	9.1	8.5	36.1	35.8	35.5
	Basal	17.5	17.7	18.1	16.1	16.0	16.5	20.5	20.4	20.9	10.2	10.1	10.8	33.8	34.2	35.2
	I'T'A	25.3	23.8	23.8	23.2	21.5	21.5	22.5	21.4	21.7	11.9	11.1	11.2	42.0	41). 0	40.1

[^2]NoMT:

Table 6:09 reports the number of subjects for whom complete information on the premeasures and individual tests was obtained for the Basal versus I.T.A. comparison. The within-projects analysis of variance on the premeasures is summarized in Table 6:10. Relatively few treatment differences on premeasures are reported. The random selection of pupils from each treatment apparently succeeded quite well in making the two groups of pupils similar in readiness for reading.

The within-projects analysis of variance and covariance of o:tcome measures is summarized in Table 6:11. As usual, Columns A summarize the analysis of variance, Columns B summarize an analysis cf covariance using a minimum set of covariates, and Columns C report the analysis of covariance using all eight premeasures. (Throughout this chapter eight premeasures are recorded fux the individual outcome measures analysis. The Patiern Copying test, which was not used in the analysis of Stanford scores, is used in all of the analyses of individual outcome measures.) As reported in Column C there were no differences between the I.T.A. subjects and the Basal subjects on the accuracy score of the Gilmore Oral Reading Test in four of the five projects. The one project which reported a significant difference between treatments indicated that these differences favored the I.T.A. group. In terms of reading rate, none of the five projects found significant differences between treatments. However, there were pronounced differences on the two Word Recognition tests. Four of the five projects reportea significant differences on the Fry Word List, all of which favored the I.T.A. treatment. Three of the five projects found significant differences in favor of the I.T.A. treatment on the Gates test. This finding supports the results of the analysis of treatment differences on the Stanford Word Reading test where differences were also found to favor the I.T.A. approach.

The actual unadjusted and adjusted means for the I.T.A. and Basal treatments are reported in Table 6:12. The differences in mean performance on the Fry and Gates word lists are often quite striking.

Summary of Basal versus I.T.A. Comparisons
The I.T.A. and Basal approaches were of approximateiy equal effectiveness in terms of pupils' achievement on the Paragraph Meaning test. However, the I.T.A. treatment produced superior word recognition abilities as measured by the Mord Reading subtest of the Stanford and the Fry and Gates word recognition lists. Evidence concerning the spelling abiiity of pupils in the two groups was inconclusive. Basal subjects were superior in spelling ability

Table 6:09
Subjects Used for the Analysis of Indivicual Outcome Measures for the Basal vs I.T.A. Comparison

Proiect	Trt.	Males	Females	Total
FRY	Basal	12	15	27
	ITA	23	14	37
HAHN	Basal	24	26	50
	ITA	23	23	46
HAYES	Basal	15	15	30
	ITA	15	15	30
MAZURKIEWICZ	Basal	12	13	25
	ITA	16	16	32
TANYZER	Basal	9	8	10
	ITA	8	18	

Table 6:11
Within Projects Analysis of Variance and Covariance on Individual Outcome Measures for Basal vs I.T.A. Comparison

	Gilmore Accuracy			Gilmore Rate			Fry Word List			Gates Word List		
Effect	A	B	C	A	B	C	A	B	C	A	B	C
1 Sex	16.07F	12.95F	9.83F	16.39F	13.58 F	10.24F	2.27	. 46	. 13	7.36F	$4.15 f$	2.03
Treatment	. 10	. 35	. 01	4.70b	5.21b	3.15	5.60 n	7.25 N	10.09 N	7.36F .83	$4.15 f$.91	2.03 2.16
Sex x Treatment	. 00	. 36	. 20	. 38	1.10	. 99	. 00	. 45	. 32	. 48	2.37	2.18
2 Sex	. 44	1.18	. 47	. 32	. 45	. 08	. 53	. 43	1.58	. 04	. 00	
Treatment	. 01	. 98	. 52	1.11	2.50	1.97	11.75 N	10.72N	1.1 .05 N	5.52 n	$4.04 n$	4.25
Sex x Treatment	. 00	. 00	. 27	. 30	. 14	. 00	. 05	.00	.11	. .00	4.04n .01	$4.29 n$.35
3 Sex	1.37	. 70	. 09	9.32F	8.28F	$6.65 f$	2.42	1.55	. 80	1.76	1.00	. 08
Treatment	2.84	2.67	3.27	3.21	1.36	1.70	36.62N	36.86N	38.69N	28.38N	32.42N	$37.49 \mathrm{~N}$
Sex x Treatment	. 82	1.34	1	. 28	. 29	. 41	. 90	1.17	1.22	. 47	32. .74	$.96$
4 Sex	. 05	. 56	. 04	1.09	. 41	1.34	. 02	1.07	. 35	. 00	1.12	. 50
Treatment	1.14	2.74	. 76	1.43	. 81	2.57	. 83	. 37	1.96	. 00	. 13	. 04
Sex x Treatment	. 45	. 77	1.33	. 14	. 19	. 37	. 13	. 25	. .34	. 22	. 24	. 15
5 Sex	1.85	. 76	. 61	. 80	. 12	. 03	5.18f	. 24	. 53	1.18	1.45	1.56
Treatment	9.08 N	4.78 n	8.97N	. 44	. 02	. 09	48.06N	45.50 N	56.38 N	28.83N	25.27N	35.10N
Sex x Treatment	1.55	2.26	2.14	1.41	1.49	1.13	1.28	1.93	2.06	. 19	25.24 .24	. 09

[^3]Table 6:12
Unadjusted and Adjusted Means on Individual Outcome Measures

in three projects but the I.T.A. subjects were superior in a fourth project. Furthermore, no differences were found between treatments in reading accuracy and rate as measured by the Gilmore Oral Reading Test.

In interpreting the results of the I.T.A. versus Basal comparisons it should be pointe $\begin{gathered}\text { cut that all testing was done in traditional } 10\end{gathered}$ orthography. Furthermore, a child was judged to spell a word correctly only if he spelled it correctly in the traditional sense. No credit was given for spelling a word correctly according to the rules of I.T.A. Varying proportions of children in each of the projects were still receiving instruction in I.T.A. at the time of testing and had not made formal transition to traditional orthography. Therefore, many of the pupils were asked to take a test in an orthography which they had not used during their instruction in reading.

Basal versus Basal Plus Phonics Comparisons

The Basal plus Phonics versus Basal treatment comparison was analyzed in a manner similar to that outlined for the I.T.A. versus Basal comparison. However, in this section, as well as the sectıons which follow, the analysis will be presented in much less detail. Information about projects which were involved in the Basal versus 3asal plus Phonics comparison is provided in Table 6:13. Four projects with varying numbers of students had in common a Basal treatment and a treatment which could be considered a basal reading program with supplementary phonics. The nature of the materials is also recorded in Table 6:13. Two of the four projects used exactly the same Basal plus Phonics program. Here again, however, any difference among programs within either the Basal or Basal plus Phonics treatments was i.gnored.

The first step again involved an analysis of variance on the premeasures and Stanford tests blocking on sex, treatment, and project. The across-projects analysis of variance on the premeasures is summarized in Table 6:14. Highly reliable project differences were found on each of the premeasures. A number of sex differences also showed girls predominating. Only two treatment differences were reported, both of these favoring the Basal plus Phonics subjects. Furthermore, only one treatment by project interaction was found to be significant.

The across-projects analysis of variance and covariance on the Stanford measures is reported in Table 6:15. Signiffcar.t treatment differences on all five reading achievement measures were found to favor the Basal plus Phonics approach. Furthermore, sex differences were found to be significant and in favor of girls on three of the

ERIC
I
Table 6:14
Across Projects Analysis of Variance on Premeasures for Basal vs Basal Plus Phonics Comparison

Effect	Murphy-Durrell Phonemes	Murphy-Durre11 Letter Names	Murphy-Durrell Learning Rate	Thurstone Identical Forms	Metropolitan Meaning	Metropolitan Listening	PintnerCunningnam I.Q.
Sex	4.90 f	5.22f	5.19f	2.26	. 63	. 12	5.65f
Treatment	1.19	4.94n	. 51	. 00	1.56	$6.39 n$. 02
Sex x Treatment	. 06	. 12	. 49	. 01	. 02	. 03	. 06
Project	12.40**	8.23**	14.09**	12.85**	3.68*	27.29**	19.21**
Sex x Project	. 03	. 05	. 40	. 20	. 39	. 47	. 09
Trt x Project	. 73	4.39**	1.62	1.74	2.19	. 26	1.05
Sex \times Trt \times Proj	. 60	. 05	. 71	. 13	. 06	. 73	. 28
NOTE:	Significant dif by F or f, male lower case lett at . 05 level; t effects involvi	rence favoring by M or m. Capi . 05 level. On asterisks, . 01 project in whi	al plus Phonics letter in eac asterisk indica vel. Numerator case nimerator	indicated case sign es project degrees of .f. equal	N or $\mathrm{n}, \mathrm{Basa}$ ies . 01 level ifference or reedom equal Denominator	y B or b, fe significanc eraction sig (1) except f. equal 134	es icant all

Table 6:15
Across Piojects Analysis of Variance and Covariance on Stanford Measures for Basal vs Basal Plus Phonics Comparison

Erfect	Word Recognition			Paragraph Meaning			Vocabulary			Spelling			Word A	Study Skills B C	
	A	B	C	A	B	C	A	B	C	A	B	C			
Sex	6.13 f	2.74	4.68 f	16.80F	13.32F	16.10F	. 53	. 18	. 00	6.93 F	3.42	$4.40 f$	5.21 f	2.57	3.15
Tr	20.86 N	23.43 N	18.30N	15.89N	16.43N	12.98N	14.16N	12.15N	8.66N	22.37N	16.19 N	13.53N	24.47N	24.10N	21.94N
8x	. 03	. 28	. 13	. 39	. 40	. 82	. 00	. 01	. 08	. 01	. 00	. 04	. 00	. 00	. 08
Proj	14.82\%	29.17**	13.85**	9.89**	22.30**	7.28**	8.77**	17.45**	8.02**	11.04**	17.80**	3.54*	19.38**	22.65**	13.88*
Sxe	. 18	. 14	. 09	. 43	. 51	. 51	. 21	. 29	. 34	. 10	. 12	.17	.16	. 09	. 11
Trip	1.25	. 07	. 21	1.26	. 86	. 76	3.45*	1.95	2.11	2.52	. 90	. 75	1.77	. 60	. 52
Sxixp	. 30	. 37	. 41	. 35	. 37	. 52	. 73	. 31	1.18	. 30	. 25	. 21	. 38	. 24	. 10

[^4]five outcome measures even when the scores were adjusted for premeasure differences. Similarly, highly reliable project differences were found on all measures in both covariance analyses, again indicating that projects differed on important reading-rela_ed characteristics other than pupil readiness. Perhaps the most interesting information in Table 6:15 is that regarding the treatment by project interactions. In the covariance analyses no treatment by project interactions were found to be significant. Apparently, the Basal plus Phonics and Basal treatments were operating in the same fashion within each project. This analysis graphically illustrates the superiority of the Basal plus Phonics approach over the Basal alone.

Despite the absence of treatment by project interactions, in the interests of concistency, a within-projects analysis was also employed. The analysis of variance on premeasures is reported ir. Table 6:16. Except for one project, no treatment difference on any premeasure was found to exist. The actual premeasure means by experimental treatment are reported in Table 6:17. The similarity of treatment means on the various premeasures within projects demonstrates the effectiveness of the random assignment of pupils or classes to treatment.

The within-projects analysis of variance and covariance on the Stanford measures is summarized in Table 6:18. It is clearly evident that the superiority of the Basal plus Phonics treatment was not as clear-cut in this within-projects analysis as it had been in the across-projects analysis. In the covariance analysis reported in Columns C, none of the four projects showed significant treatment differences on the Word Reading variable. Only one significant. difference was found for the Paragraph Meaning subtest, the Vocabulary subtest, and the Spelling subtest, while two significart differences were found on the Word Study Skiils test. All significant differences favored the Basal plus Phonics approach but the superiority of this program was not nearly so apparent in this type of analysis.

The unadjusted and adjusied Stanford means for the Basal versus Basal plus Phonics comparisor are reported in Table 6:19. The table indicates that practically all of the mean differences favored the Basal plus Phonics treatment. In the within-projects analysis many of these differences were not statistically significant. However, when the data from the four projects were pooled in the acrossprojects analysis the resuiting differences did prove to be significant, favoring the Basal plus Phonics approach.
Table 6:16
Within Projects Analysis of Variance on Premeasures for the Basal vs Basal Plus Phonics Comparison

Project	Effect	Murphy-Durrell Phonemes	Murphy-Durrell Total Letters	Murphy-Durrell Learning Rate	Thurstone Identical Forms	Metropolitan Meaning	Metropolitan Listening	PintnerCunningha I.Q.
Rorcleaux	Sex \times Treatment	1.43	. 00	1.91	. 23	. 21	1.98	. 39
	Treatment	. 01	. 04	1.57	2.96	. 22	. 32	. 85
	Sex	. 37	. 52	2.46	.43	. 01	. 47	. 23
ianyes	Sex x Treatment	. 39	. 00	. 42	. 04	. 01	. 01	. 03
	Treatment	. 01	1.28	. 01	1.24	. 80	. 04	. 95
	Sex	. 85	1.17	2.12	1.26	. 04	. 09	1.50
Piantuing	Sex x Treatment	.01	. 00	. 04	. 12	. 02	. 26	. 41
	Treatment	4.01.n	16.45N	3.93 n	. 03	5.86n	. 12	1.10
	Sex	1.40	1.11	. 69	. 97	1.70	. 52	1.68
Murphy	Sex x Treatment	. 04	. 24	. 18	. 02	. 01	. 02	. 06
	Treatment	. 04	. 26	1.75	1.93	. 44	1.45	. 29
	Sex	2.35	2.60	1.21	. 21	. 00	. 42	2.35
NOTE:	Significant difference favoring Basal plus Phonics indicated by N or n, Basal by B or b, Fe Males by M or m. Capital letter in each case signifies . 01 level of significance, lower ca level. All. F ratios based on 1 and 134 legrees of freedom.							

Table 6:17
Premeasure Means for the Basal vs Basal plus Phonics Comparison

Project	Tr t	Murphy-Duzrell Phonemes	Murphy-Durrell Letter Names	Murphy-Durrell Learning Rate	Thurstone Identical Forns	Metropolitan Meaning	Metropolitan Listening	PintnerCunningham I.Q.
BORDEAUX	Basal	21.2	31.6	9.6	14.2	8.0	9.9	43.7
	$B+P$	21.5	30.8	8.3	18.1	8.3	9.5	41.6
ITAYES	Basal	14.7	24.0	7.0	13.0	7.2	7.8	33.3
	B+P	15.0	19.9	7.1	10.6	6.6	8.0	31.1
MANNING	Basal	24.5	28.0	9.3	15.0	6.8	9.5	32.1
	$B+P$	28.8	37.4	10.6	14.7	7.8	9.3	33.7
MUKPHY	Basal	21.2	29.9	6.3	¢. 7	8.1	7.5	33.7
	$B+P$	21.6	31.1	7.7	10.6	7.8	7.0	34.4

Table 6:18

Within Projects Analysis of Variance and Covariance on Stanford Measures for the Basal vs Basal Plus Phonics Comparison

NOTE: \quad Column A reports unadjusted means; Column B, means adjusted for premeasure differences on Letter Names

The number of subjects who comprised the Basal and Basal plus Fhonics sample groups for the individual analysis is reported in rable 6:20. The number of subjects chosen for the individual tests varied considerably from project to project. The within-projects analysis of variance on premeasures for the sample subjects is reported in Table 6:21. Only one significant sex difference was found and relatively few treatment differences were reported. The analysis of variance and covariance on the individual outcome measures is reported in Table 6:22. The covariance analysis reported in Columns C found no differences in rate of reading between the two treatments. One of the four projects found a significant difference favoring the Basal group in reading accuracy. Differences on the Fry and Gates word lists tended to favor the Basal plus Phonics group with three such differences reaching statistical significance. The actual unadjusted and adjusted treatment means are reported on Table 6:23. The Basal plus Phonics treatment tenced to surpass the Basal treatment in performance on the two word lists but no trend was apparent on the Gilmore Oral. Reading Test.

Summary of Basal versus Basal plus Phonics Comparison

In general, basal programs accompanied by supplementary phonics materials led to significantly greater achievement in reading than did basal materials alone. This superiority was especially pronounced in mean performance on the Stanford Achievement Test and the Fry and Gates word recognition tests. Practically all differences on these measures favored the Basal p.lus Phonics group (particularly in the across-projects analysis) even though some of the differences failed to reach statistical significance. No differences in rate or accuracy of reading were found between the two treatments.

Basal versus Language Experience Comparisons

Four projects had as experimental treatments bcth the Language Experience approach and the Basal reader approach. Information about the numbers of classes involved and the nature of the basal readers is provided in Table 6:24. For purposes of this analysis, the Basal approach was considered a single method even though a variety of basal readers were employed. Likewise, the Language Experience approach differed considerably in its implementation from one project to another. However, the Language Experience approaches had more similarities than differences and therefore were considered tc constitute a single treatment.

Table 6:20
Subjects Used for the Analysis of Individual Outcome Measures for the Bassl vs Basal Plus Phonics Comparison

Project	Trt.	Males	Females	Total
BORDEAUX	Basei	9	10	19
HAP	10	10	20	
MANNING	Bassl	15	15	30
	Basal	15	15	30
B+P	29	26	64	
MURPHY	30	22	48	

Table 6:21
Within Projects Analysis of Variance on Premeasures for Basal vs Basal Plus Phonics Comparison

Project	Eff	Murphy-Durrell Phonemes	Murphy-Durrell Letter Names	Murphy-Durrell Learning Rate	Thurstone Pattern Copying	Thurstone Identical Forms	Metropolitan Meaning	Metropolitan Listening	PintnerCunningham I.Q.
Manning	Sex	. 28	. 24	. 22	. 11	. 39	4.42m	. 05	, 95
	Trt	3.88	7.98N	7.65 N	. 25	. 40	5.16 n	2.17	. 02
	SxT	. 14	. 26	. 20	1.90	. 50	. 24	. 70	. 04
Hayes	Sex	. 25	. 41	. 81	. 01	3.11	. 26	. 01	3.18
	Trt	. 00	1.49	. 54	12.31B	3.11	. 49	. 46	4.55 b
	SxT	. 01	. 84	. 16	. 74	. 31	1.36	1.13	. 07
Murphy	Sex	. 30	. 08	. 32	. 70	. 99	1.70	. 96	. 42
	Trt	. 49	. 65	3.05	11.79N	. 39	. 16	. 08	2,29
	SxT	1.07	. 00	1.71	3.56	. 04	. 80	1.15	. 09
Bordeaux	Sex	. 08	. 84	. 63	. 33	1.38	. 05	. 76	. 20
	Trt	. 32	2.47	. 01	. 03	4.93n	4.67n	. 01	. 23
	SxT	. 50	. 12	. 14	. 35	. 09	. 06	1.93	. 08
NOTE:	Significant difference favoring Basal plus Phonics indicated by N or n, Basal by B or b, Femal level. All F ratios based on 1 and 349 degrees of freedom. Males by M or m. Capital letter in each case signifies . 01 level of significance; lower case								

Table 6:22
Within Projects Analysis of Variance and Covariance on Individual Outcome Measures
for Basal. vs Basal plus Phonics Comparison

Effect		Giimore Accuracy			Gilmore Rate			Fry Word List			Gates Word List		
		A	B	C	A	B	C	A	B	C	A	B	C
1	Sex	1.14	. 63	. 78	2.42	1.99	2.12	. 01	. 37	. 34	. 49	. 08	. 13
	Treatment	1.53	. 03	1.40	. 14	. 25	. 00	4.29n	1.87	3.87	. 90	. 01	. 45
	Sex x Treatment	. 75	1.22	. 85	. 58	. 75	. 57	1.00	1.46	1.00	. 73	1.30	. 87
2	Sex	. 39	. 09	. 07	2,14	1.69	1.32	. 00	. 18	. 53	. 25	. 02	. 07
	Treatment	. 05	2.73	2.81	. 43	. 00	. 01	. 08	1.96	1.55	. 29	. 30	. 20
	Sex x Treatment	. 10	. 58	. 62	2.44	2.46	2.89	. 75	. 38	. 45	. 04	. 04	. 05
3	Sex	2.59	4.601	2.80	1.55	2.43	2.11	. 19	. 25	. 00	. 65	. 97	. 25
	Treatment	4.92n	. 43	1.44	4.05n	. 69	. 68	6.37 n	1.55	2.32	9.18 N	2.72	4.58 n
	Sex x Treatment	. 13	. 03	. 07	1.62	3.06	2.68	. 23	. 01	. 16	. 19	. 00	. 16
4	Sex	1.13	2.58	1.38	1.64	2.60	2.1 .5	. 00	. 03	. 16	. 00	. 03	. 09
	Treatment	. 82	3.98b	4.56b	1.33	2.77	3.08	37.25N	38.54N	45.12N	15.48N	15.62N	17.46N
	Sex x Treatment	. 21	. 23	1.47	. 46	. 49	. 08	. 79	. 83	1.74	1.86	2.56	4.92*

[^5]Unadjusted and Adjusted Means on Individual Outcome Measures
Table 6:24
Materials and Numbers of Classes and Pupils for Basal vs Language Experience

	Cleland		Hahn		Kendrick		Stauffer	
	Classes	Pupils	Classes	Pupils	Classes	Pupils	Classes	Pupils
Numbers								
Basal	1.2	376	12	276	27	652	10	219
Language Experience	11	287	12	269	27	637	10	238
Materials								
Basal	Scott-Fo		Variety		Ginn		Variety	

Again the first step was to carry out an analysis of variance on both the premeasures and the post-measures blocking on treatment, sex, and project. The across-projects analysis of variance on premeasures is reported in Table $6: 25$. Among the interesting results of this analysis were the superiority of girls on the premeasures, the highly reliable project differences on six of the seven premeasures, the treatment differences on four of the seven premeasures, and the absence of treatment by project interactions on six of the seven premeasures.

The analysis of variance and covariance across projects on the Stanford measures is reported in Table 6:26. The differences in mean achievement among projects is graphically illustrated by the highly reliable F ratics reported for the projects main effect in the two covairiance analyses. It is also apparent from Table 6:26 that sex differences in achievement tend to disappear when differences in premeasure capability are taken into account. Treatment differences in the analysis of variance as reported in Columns A tended to be negligible. However, the analysis of covariance reported in Columns B, in which Phonemes and Identical Forms are used as covariates, found significant differences favoring the Language Experience approach on the Word Reading test, the Vocabulary test, the Spelling test, and the Word study Skills test. Strangely enough, these treatment differences were erased for all but the Word Reading test when covariance analysis was performed using all seven premeasures as covariates. This unusual set of events is probably a result of the peculiar nature of the treatment differences on premeasures as reported in the acrossprojects analysis in Table 6:25. Significant treatment differences were found in the across-projects analysis for four of the seven premeasures. In two cases the difference favored the Basal group, but in the other two cases the difference favored the Language Experience approach. At any rate, one would likely draw different conclusions about the effectiveness of Language Experience and Basal approaches depending on which of the analyses he considers. Quite different results were obtained by the analysis of variance repozted in Columns A and the analysis of covariance reported in Columns B. Similariy, quite different results were found between the covariance analyses reported in Columns B and C.

One further finding of note in the across-projects analysis of the Stanford measures concerns the treatment by project interactions reported in Table 6:26. The covariance analysis using all seven premeasures as covariates found significant treatment by project interactions on four of the five Stanford measures. This finding made it necessary to look to the within-projects analysis for an assessment of the relative effectiveness of the Basal and Language Experience programs. However, it would be of interest to find the reason for the project by treatment interactions. The means reported
Table 5:25
Across Projects Analysis of Variance on Premeasures for Basal vs Larıguage Experience Comparison

Effect	Across Projects Analysis of Variance on Premeasures for Basal vs Language Experience Comparison						
	Murphy-Durrell Phonemes	Murphy-Durreil Letter Names	Murphy-Durrell Learning Rate	Thurstone Identical Forms	Metropolitan Meaning	Metropolitan Listening	PintnerCunningham I.Q.
Sex	11.3:F	10.06 F	4.23f	8.82F	5.70 m	. 32	7.16F
Treatment	9.92.B	1.54	4.18 n	11.99B	5.29n	. 61	1.89
Sex x Treatment	. 76	. 03	. 06	. 55	. 07	. 06	. 45
Project	36.37**	18.54**	18.17**	1.64	16.43**	7.23**	7.95**
Sex x Projeci	. 06	.41	. 40	. 11	. 10	. 33	. 23
Trt \times Project	11.17**	1. 20	. 37	2.03	2.19	1.42	1.27
Sex x Trt \times Proj	. 11	. 20	. 08	. 27	.16	. 56	. 45

[^6]Table 6:2.6

Effect	Word Reading			Paragraph Meaning			Vocatulary			Spelling			Word A	Study Skills	
	A	B	\checkmark	A	\square	C	A	B	C	A	B	C		B	C
Sex	7.57 F	.00	. 81	18.25F	5.56m	6.95 F	. 12	7.44 M	3.10	12.42F	2.11	2.98	8.16F	. 06	. 98
Tre	2. 53	35.92N	8.40 N	1.44	2.28	. 34	2.09	24.66N	1.49	. 03	$6.77 N$. 06	.03	14.60N	. 21
SxT.	.1.	. 28	.16	. 00	. 00	. 03	. 51	. 98	.42	. 06	. 08	. 02	.09	. 21	. 04
Proj	25.3ixt	68.2\%**	52.44**	30.44**	75.57**	62.78**	11.65**	22.91**	20.15**	30.87**	60.91**	49.06**	14.88**	53.8	* 43.27*
SxP	.10	.40	. 26	. 13	. 25	. 33	. 10	. 25	. 27	. 01	. 01	. 03	.11	. 28	.13
TxP	2.23	1.43	2.95*	5.49**	2.57	5.26**	. 56	3.35*	4.19**	1.40	. 74	. 88	1. 04	2.64	2.86*
SxTxP	. 20	$\cdots ?$. 23	. 28	. 27	. 34	. 45	. 45	. 27	. 17	.14	. 15	. 33	. 31	. 25

[^7]for the Stanford tests and the treatment \dot{s} within each project on Table 6:30 (Columns C) reveal that the Language Experience subjects in each of the projects were superior on the Word Reading test. However, the extent of the superiority varied from project to project, thereby bringing about a significant project by treatment interaction effect. On the Paragraph Meaning subtest, the Language Experience treatment was superior in three of the four projects although the extent of the superiority varied considerably. However, in the fourth project the Basal treatment was superior. A similar situation cccured with respect to the Vocabulary subtest. On the Word Study Skills subtest the difference in two projects favored the Basal treatment, but in the other two projects the difference favored the Language Experience group. Therefore, on all of the subtests except the Word Reading test, the significant project by treatment interaction was caused by treatment differences favoring one approach in one project, the other approach in another project.

Because of the treatment by project interactions it was necessary to perform a within-project analysis. The analysis of variance on premeasures is reported on Table 6:27. A number of ireatment differences were found in the various projects. Evidel $: 1 y$, the process of assigning students or classes to treatments did not anhieve the desired result of placing pupils of equal prereading capability in the two treatment groups. Relatively few sex differencis :rere found to be significant in these four projects. The actual mean periormance of the various treatment groups within projects on the readiness measures is reported in Table $\mathrm{e}: 28$.

The analysis of variance and covariance on the Stanford measures is reported in Table 6:29. One striking finding again is absence of significant sex by treatment interactions in any of the projects. Neither the Basal nor Language Experience approact. was : niquely advantageous or disadvantageous for boys or girls. Treatment differences generally favored the Language Experience apprnach. Columns C of Table 6:29 report the covariance analysis using all seven premeasures as covariates. In this analysis two significant differences favoring the Language Experience approach were found for the Word Reading test. Two significant differences were likewise found for the Paragraph Meaning subtest, but one of the significant differences favored each of the two treatments. No significant differences were found on the Spelling test and one of the four projects found a significant difference favoring the Language Experience treatment on both the Vocabulary and Word Study Skills tests.

The unadjusted and adjusted means for each of the analyses are reported in Table 6:30. The adjusted means are generaily quite similar for treatment groups in each of the projects. It is unlikely that even those aifferences whicn were found to be statistically significant were cf ruch practical significance.
Table 6:27
Within Projects Analysis of Variance on Premeasures for the Basal vs Language Experience Comparison

Project	Effect	Murphy-Durrell Phonemes	Murphy-Durrell Total Letters	Murphy-Durrell Learning Rate	Thurstone Identical Forms	Metropolitan Meaning	Metropölitan Listening	PintnerCunningha I.Q.
Cieland	Sex x Treatinent	. 36	. 25	. 09	. 69	. 11	. 71	. 02
	Treatment	4.49 b	. 86	. 03	3.33	1.18	. 46	. 15
	Sex	2.34	2.14	. 06	. 89	. 38	. 01	1.27
Hann	SEx \times Treatment	. 00	. 01	. 06	. 02	. 27	. 07	. 06
	Treatment	. 14	. 17	. 29	. 11	. 42	. 85	. 05
	Sex	3.18	3.56	. 64	1.50	1.10	. 87	. 41
Kendrick	Sex x Treatment	. 02	. 15	. 15	. 00	. 00	. 50	. 29
	Treatment	30.2\%B	$\therefore .04 \mathrm{n}$	3.99n	2.74	8.69 N	2.65	5.32n
	Sex	3.87 f	1.85	4.58f	4.08 f	2.78	. 01	3.22
Stauffer	Sex x Treatment	. 03	. 22	. 01	. 67	. 18	. 45	1.42
	Treatment	8.93 N	. 09	1.11	11.80B	1.44	. 87	. 10
	Sex	2.09	3.73	. 16	2.67	1.74	. 42	2.96
NOTE:	Sisnificant difference favoring Language Experience indicated by N or n, Basal by B or b, Femal Males by M or m. Capital letter in each case signifies . 01 level of significance, lower case l level. All F ratios based on 1 and 226 degrees of freedom.							

Table 6:28
Premeasure Means for the Easal vs Language Experience Comparison

CLELAND	Basal	24.7	34.9	10.0	19.4	8.7	9.2	37.1
	L. E	3.2	32.9	10.1	16.1	8.2	8.9	36.5
HAHN	Basal	26.9	35.5	8.6	18.7	9.9	9.5	40.0
	LE	27.6	36.3	9.0	18.1	10.2	9.2	40.3
KENDKICK	Basal	34.2	33.9	9.8	17.8	8.4	9.4	37.5
	LE	26.6	36.7	10.7	15.9	9.3	9.8	39.8
STAUFFER	Basal	13.9	25.8	7.1	19.0	7.4	8.3	35.6
	LE	20.8	26.5	7.8	12.4	8.0	8.7	35.1

Analysis of Individual Outcome Measures

The projects which were used to analyze Language Experience versus Basal treatment differences on the individual tests are listed on Table 6:31. This table records the number of students who comprised the sample for each treatment within each project. One of the four projects which was used in the analysis of Stanford measures is not included in this analysis because of the unavailability of sample data. An indication of the comparability of the Language Experience and Basal subjects within projects can be ascertained from Table 6:32. This table summarized an analysis of variance conducted on premeasures. In two of the three projects significant treatment differences on certain premeasures are indicated.

The analysis of variance and covariance on the individual outcome measures is presented in Table 6:33. Again there is no evidence of sex by treatment interaction in the second covariance analysis. Furthermore, in most cases sex differences were not found in rate of reading and only one difference, that favoring the Language Experience approach, was found in Reading Accuracy. One of the three projects reported a significant difference favoring the Language Experience approach on both the Fry and Gates word lists. The unadjusted and adjusted means for each treatment group within each project are recorded in Table 6:34. It is difficult to ascertain any definite trend regarding the effectiveness of the two treatments in terms of achievement on the individual measures.

Summary of Basal versus Language Experience Comparison

Relatively few significant differences were found between the Language Experience and Basal approaches. Those significant differences which were found to exist generally favored the Language Experience approach. However, these sporadic differences were often not of much practical signisicance in terms of actual reading achievement. Little was found in this analysis to support a claim of superiority by either the Language Experience or Basal method.

Basal versus Linguisiic Comparisons

Three projects were involved in the assessment of the relative effectiveness of Basal and Linguistic programs. Infcrmation concerning the number of students and types of materials which comprised the Basal and Linguistic groups is provided in Table 6:35. Three different sets of basal readers were used in the three projects and four types of linguistic readers were employed in the Linguistic group. Again the assumption was made that the Basal programs had a great deal in common with one another and that the Linguistic programs also had many similarities.

Table 6:31
Subjects Used for the Analysis of Individual Outcome Measures for the Basal vs Language Experience Comparison

Project	Trt.	Males	Females	Total
HAHN	Basal	24	26	50
KENDRICK	LE	31	20	51
STAUFFER	Basal	25	24	49
	LE	24	25	49

Table 6:32
Within Projects Analysis of Variance on Premeasures for Basal vs Language Experience Comparison

Project	Eff	Murphy-Durrell Phonemes	Murphy-Durrell Letter Names	Murphy-Durrell Learning Rate	Thurstone Pattern Copying	Thurstone Identical Forms	Metropolitan Meaning	Me-opolitan Listening	PintnerCunningham I.Q.
Hahn	Sex	. 00	2.63	1.16	. 23	1.97	. 82		
	Trt	1.78	. 01	. 18	. 29	2.18	. 82	. 56	. 02
	SxT	. 12	. 10	. 30	1.67	2. .74	.89 1.49	. 02	. 60
Kendrick	Sex	2.32	. 30	2.66	. 36	9.77 F			
	Trt	5.64b	1.74	1.38	. 05	9.77 F .80	4.01	3.26	. 05
	SxT	. 04	. 12	. 28	. 10	. 12		$\begin{gathered} 4.0 \mathrm{hn} \\ .18 \end{gathered}$	$5.46 n$
Stauffer	Sex	14.89 F	14.59 F	2.21	1.95	. 92	. 03		
	Trt	7.60 N	. 70	1.59	1.87	9.92 B	2.96	7.26 F .27	12.75F
	Sxi	. 07	. 40	1.03	. 05	. 09	. 11	1.21	
NOTE:	Significant difference favoring Language Experience indicated by N or n , Basal by B or b , Femal Males by M or m. Capital lettcr in each case signifies . 01 level of significance; lower case le level. All F ratios based on 1 and 260 degrees of freedom.								

Table 6:34
Unadjusted and Adjusted Means on Individual Outcome Measures
for the Basal vs Language Experience Comparison

Project	Trt	Gilmore Accuracy			Gilmore Rate			Fry Wora List			Gates Word List		
		A	B	C	A	B	C	A	B	C	A	B	C
HAHN	Basal	24.9	23.5	24.1	67.6	66.0	65.4	10.4	9.4	10.0	15.6	14.6	15.3
	LE	23.4	23.4	23.9	67.1	66.9	66.7	11.0	11.0	11.5	15.0	14.9	15.5
KENDRICK	Basal	14.6	12.7	11.9	35.3	33.3	34.2	4.9	3.0	2.3	10.6	9.3	8.5
	L.E	17.4	15.6	15.1	34.0	30.9	31.5	4.8	3.1	2.5	10.4	8.8	8.1
STAUFFER	Basal	17.1	20.4	20.7	53.7	58.0	57.7	2.5	6.0	6.2	10.1	12.9	13.2
	LE	24.6	28.1	28.1	57.9	62.9	62.3	11.5	14.3	14.2	15.0	18.7	18.6

NOTE: Column A reports unadjusted means; Column B, means adjusted for Phonemes, Letter Names, Identical Forms, Meaning, and I.Q.; Column C, means adfusted for all eight premeasures.
Materials and Numbers of Classes and Fupils for Basal vs Linguistic

	Rudde 11		Schneyer		Sheldon	
	Classes	Pupils	Classes	Pupils	Classes	Pupils
Numbers						
Basal	6	120	12	334	7	143
Linguistic	5	97	12	347	14	316
Materials						
Basal	A.llyn--Bacon		Scott-For		Ginn	
Linguistic	Mcôraw-Hill		Fries		Singer Bloomíie	hart

The across-projects analysis of variance on the premeasures is reported in Table 6:36. This table is surprisingly devoid of significant effects. Only the main effect for projects is significant, chereby indicating that pupils in the various projects differed considerably in their readiness for reading. The acrossprojects analysis of variance and cuvariance on Stanford measures is reforted in Table 6:37. Here again the project differences are most striking even when pupil readjness is adjusted by covariance. However, treatment differences were found to be significant on the Word Recognition and Paragraph Meaning subtests, the first difference favoring the Linguistic subjects and the second difference favoring the Basal subjects. Treatment by project interactions were found to be sigrificant on three of the five Stanford Achievement measures in the covariance analysis using all seven premeasures as covariates. The explanation for these interactions can be found in Columns C of Table 6:41. On each of these Stanford subtests for which significant treatment by project interactions were found the difference favored one treatment in one project and another treatment in another project. The Linguistic and Basal treatments did not operate in the same fashion 'rom project to project.

As a result of the project by treatment interactions a withinprojects analysis was conduci.ed. The analysis of variance on premeasures is reported in Table 6:38. Only two significant effects are found in the entire table. Table 6:39 reports the premeasure means for treatment groups within projects. The treatment groups are very similar in performance on the premeasures within each of the projects.

A within projects analysis of variance and covariance on Stanford measures is reported in Table 6:40. Again there are no significant sex by treatment interactions. Neither the Linguistic materials nor Basai materials utilized in these projects has a unique effect on boys and girls. Columns C record the result of a covariance analysis ising all seven premeasures as covariates. Relativeiy few treatment differences were found. One difference favoring the Linguistic approach was found for the Word Reading, Spelling, and Word Study Skills subtests. This general lack of superiority of either approach is further supported by the uñdjusted and adjusted means recorded in Table 6:41. The differences tend to favor one experimental group in one project and the other experimental group in another project.

Analysis of Individual Outcome Measures

The numbers of subjects who comprised the sample group in the three Easal versus Linguistic comparisons are reported in Table 6:42.
Table 6:36

Effect	Murphy-Durre 11 Phonemes	Murphy-Durrell Letter Names	Murphy-Durre11 Learning Rate	Thurstone Identic 1 Forms	Metropolitan lleaning,	Hetropolitan Listening	PintnerCunningham I.Q.
Sex	. 56	. 78	. 13	1.47	1.13	. 14	
Treatment	2.13	. 99	3.24	. 78	1.23	.14 2.36	
Sex \times Treatment	. 00	. 01	. 08	. 23	. 09	.36 .00	.76 .00
Project	19.73**	3.99*	6. 56 **	2.26	16.66**	16.23**	
Siex x Project	. 15	. 50	. 19	. 11	. 13	. 26	$.39$
Trt \times Project	. 26	. 10	. 88	2.30	. 99	. 29	.39 .21
Sex \times Trix Proj	. 03	. 17	. 16	. 12	. 16	. 12	. 00

Table 6:38
uosṭxeduoj כṭךsṭnชutt s

Project	Effect	Murphy-Durrell Phonemes	Murphy-Durrell Total Letters	Murphy-Duric :1 Learning Rat	Thurstore Identical Form's	Metropolitan Meaning	Metrpolitan Listening	Pintner-Cunningha I.Q.
Ruddell	Sex x Treatment	. 02	. 05	. 06	. 35	. 43	. 22	. 01
	Treatment	. 48	. 07	4.38 b	1.15	2.56	2.72	1.21
	Sex	. 03	. 00	. 05	. 09	. 30	. 05	.31 .31
Schneyer	Sex x Treatment	. 02	. 03	. 38	. 04	. 00	. 02	. 01
	Treatment	2.14	1.17	. 60	2.07	. 12	1.26	. 47
	Sex	. 44	. 01	. 03	. 30	. 94	. OC	. 10
Sheldon	Sex x Treatment	. 02	. 28	. 02	. 00	. 04	. 00	. 00
	Treatment	4.06 b	1.00	1.05	1.81	3.56	2.39	1.81
	Sex	. 40	1.76	. 37	1.38	. 09	. 60	. 52
NOTE:	Significant difference favoring Linguistic indicated by N or: n, Basal by B or b, Females by F or by M or m. Capital letter in each case signifies. 01 level. of significance, lower case letter All F ratios are based on 1 and $10 G$ degrees of freedom.							

		Word Recognition$\begin{array}{lll} \text { A } & \text { B } & \text { C } \end{array}$			Paragraph Meaning			Vocabulary			Spelling			Word Study Skills$\text { A } \quad \text { B } \quad \text { C }$		
1	Sex	. 01	. 24	. 36	. 00	. 06	.61	. 01	. 17	. 22	. 49	. 63	3.44			
	Trt	. 98	18.69N	25.37N	. 40	2.26	. 34	. 12	3.05	2.54	. 25	9.55 N	8.42 N	. 01	6.61n	1.78 $6.48 \mathrm{n}$
	SxT	. 11	. 04	2.07	. 34	. 37	3.08	. 00	. 08	. 38	. 00	. 08	. 14	. 03	. 000	. 48 n .82
2	Sex	. 04	. 35	. 97	. 23	. 95	1.67	. 03	. 04	. 01	. 27	1.00	. 70	. 18	. 78	
	Trt	1.24	. 67	. 71	1.22	. 62	1.04	1.96	1.49	1.14	3.26	3.41	2.61	2.63	.78 2.53	1.28 2.92
	SxT	. 01	. 87	. 10	. 02	. 91	. 12	. 01	. 25	. 03	. 04	. 10	. .61	2.63 .01	2.53 .73	. .92 .02
3	Sex	. 12	. 05					. 00	. 38		. 68	. 30		. 93	. 59	
	Trt	. 38	. 12	. 04	4.68b	f.54b	. 08	2.47	1.43	. 18	3.05	2.14	. 24	2.09	.59 1.03	
	SxT	. 06	. 06	. 04	. 03	. 01	. 00	. 29	. 88	1.88	. 05	. 03	. 05	. 00	+.03	. 20

Table 6:41
Unadjusted and Adjusted Stanford Means for the Basal vs Linguistic Comparison

P.oject	Trt	Word Reading			Paragraph Meaning			Vocabulary			Spelling			Word A	Study B	Skills C
		A	B	C	A	B	C	A	B	C	Λ	B	C			
RUDDELL	Basal	18.0	14.2	17.3	17.7	13.0	16.9	19.5	16.5	18.8	8.4	5.4	7.4	32.8	27.8	31.6
	Ling	20.6	21.1	22.6	15.6	16.3	17.8	18.7	19.1	20.8	9.5	9.9	11.1	33.1	33.8	35.8
SCHNEYER	Basal	18.2	19.5	20.2	17.6	19.2	20.3	20.1	21.1	21.7	10.7	11.7	12.3	35.2	37.0	37.9
	Ling	16.3	18.6	19.7	15.1	18.1	19.3	18.0	19.9	20.8	8.0	9.9	11.0	31.3	34.5	36.1
SHELDON	Basal	21.2	19.0	15.7	22.3	19.6	15.5	24.8	23.1	20.3	13.3	11.6	9.1	41.0	38.0	33.8
	Ling	20.0	19.4	17.6	16.8	16.1	13.8	22.1	21.7	20.2	10.4	10.0	8.5	37.0	36.2	33.6

Column A reports unadjusted means; Column B, means adjusted for premeasure differences on Learning Rate; Column C, adjusted for all seven covariotes.

Subjects Used for the Analysis of Individual Outcome Measures for the Basal vs Linguistic Comparison				
Project	Trt.	Males	Females	Total
RUDDELL	Basal	21	20	41
	Ling	20	14	34
SCHNEYEF	Basal	21	23	44
	Ling	16	28	44
SHELDON	Basal	15	2.)	35
	Ling	29	39	68

The analysis of variance on premeasures for this sample group is reported in Table 6:43. A number of treatment differences are reported pointing out the difficulty of obtaining experimental groups equal in prereading capability. Surprisingly, two of the three significant sex differences on premeasures favored boys.

The within-projects analysis of variance and covariance on individual outcome measures is recorded in Table 6:44. Columns C of the table summarize an analysis of covariance which utilized all eight premeasures as covariates. In this analysis no treatment differences were found in reading accuracy. Two of the three projects found significant differences favoring the Basal group in rate of reading. Conversely, two significant differences favoring the Linguistic group were found in performance on the Fry Phonetically Regular Word Test. This finding is somewhat to be expected because the Fry list was devised tu approximate the vocabulary introduced in Linguistic programs. However, it was thought the Gates list would favor pupils who had been taught to read using a Basal series. However, in this analysis no treatment differences were found on the Gates test. The unadjusted and adjusted means for the Linguistic and Basal groups in the three projects are listed in Table 6:45. The means indicate that the Basal method produced higher mean performance in terms of reading accuracy in all three projects although these differences were not significant. Likewise, the Basal program produced higher rate of reading in all three projects, two cases of which proved to be statistically significant. The Linguistic group outperformed the Basal group on the Fry test in all three projects. The Linguistic group also surpassed the Basal group on the Gates test in two of the three projects.

Summary of Basal versus Linguistic Comparison

The most common finding for the Linguistic versus Basal comparison was that of no difference between treatments. However, the Linguistic group tended to outperform the Basal group on tests of word recognition while the Basal group exhibited somewhat greater speed and accuracy in reading. No differences in comprehension were ascertained.

Basal versus Phonic/Linguistic Comparisons

Three projects were involved in the Basal versus Phonic/Linguistic comparison. Information about the numbers of classes and students and the kinds of Basal series utilized is recorded in Table 6:46. Two of the three projects used the same Basal series but the third project used a variety of Basal materials. The Phonic/Linguistic series was treated as a separate approach because it didn't seem to fit any of the other categories used in this investigation.

0	\%	1	-	\square	\square	$\square 10$	$\square 1$	5men	+1	
Table 6:43										
Within Projects Analysis of Variance on Premeasures for Basal vs Linguistic Comparison										
Project		Eff	Murphy-Durrell Phonemes	Murphy-Durrell Letter Names	Murphy-Durrell Learning Rate	Thurstone Pattern Copying	Thurstone Identical Forms	Metropolitan Meaning	Metropolitan Listening	PintnerCunaingham I.Q.
Rudde11	Sex	. 03	. 26	. 80	. 87	4.65m	6.85 M	. 66	. 47	
	Trt	. 61	. 74	3.76	. 56	. 00	2.62	12.94 B	6.65b	
	Sxis	. 96	. 01	. 34	. 08	. 37	. 38	1.53	. 76	
Schneyer	Sex	3.42	8.94F	. 19	1.55	. 20	. 03			
	Trt	1.88	. 66	2.12	3.95b	6.20 n	. 32	1.41	. 35	
	SxT	. 12	. 12	2.12	. 45	. 87	. 18	. 02	2.06	
Sheldon	Sex	. 96	. 07	. 11	. 09	1.91	. 03	1.23	2.18	
	Trt	5.13b	4.27b	. 40	. 13	3.11	4.61b	1.78	4.72b	
	SxT	1.59	. 20	. 09	. 76	1.02	1.69	1.42	1.83	
NOTE:	Significant difference favoring Linguistic indicated by N or n, Basal by B or b, females by F or M or m. Capital letter in each case signifies . 01 level of significance; lower case letter, . 0 F ratios based on 1 and 254 degrees of freedom.									

Table 6:44
Within Projects Analysis of Variance and Covariance on Individual Outcome Measures for Basal vs Linguistic Comparison

Table 6:45
Unadjusted and Adjusted Means on Individual Outcome Measures
for the Basal vs Linguistic Comparison

Project	Trt	Gilmore Accuracy			Gilmore Rate			A Fry Word List ${ }_{\text {B }}$			$\mathrm{A}_{\text {Gates Word List }}^{\text {c }}$		
		A	B		A								
RUDCELL	Basal	19.1	15.5	17.8	54.0	46.3	50.7	6.2	3.9	5.6	11.5	9.1	10.9
	Ling	15.0	15.8	17.3	42.4	43.6	46.3	8.0	8.1	8.9	10.4	10.7	11.6
SCHNEYER	Basaı	24.2	25.0	27.0	60.5	62.4	66.1	6.3	6.9	8.1	11.6	12.0	13.3
	Ling	19.1	22.5	24.0	45.7	52.6	55, 1	5.7	7.7	8.7	8.9	11.1	12.2
SKELDON	Basal	26.7	24.8	20.3	62.9	59.1	50.8	6.6	5.9	3.0	13.1	12.0	8.8
	Ling	19.6	19.7	17.5	43.4	43.7	40.0	9.6	9.9	8.5	12.1	12.3	10.7
NOTE:	Column Ident	A repo al For	$\begin{aligned} & \text { ts une } \\ & \text { is, and } \end{aligned}$	Liste	; Co	C,	ad	fo	$1 \text { ei }$	prem	res.		

The across-projects analysis of variance on premeasures is reported in Table 6:47. Significant sex differences favoring girls were found on five of the seven premeasures. Significant treatment effects favoring the Phonic/Linguistic subjects were found on two of the seven premeasures. Highly reliable project differences were reported. Also treatment by project interactions were found to be significant on three of the seven premeasures.

The analysis of variance and covariance on Stanford measures across projects is reported in Table 6:48. Although the analysis of variance summarized in Culumns A found significant sex differences favoring females on four oi the five outcome measures, these differences were erased when the achievement scores were adjusted for differences in prereading capability. In other words, the superiority of girls in reading capability at the end of the year appeared to be merely a reflection of their superiority in readiness for reading at the beginning of the year. Project differences were found to be highly reliable indicating that pupils differed considerably from project to project in their reading ability. Again, sex by creatment interactions were found to be negligible. Treatment differences were found to favor the Phonic/Linguistic approach on four of the five Stanford measures. Moreover, with respect to the covariance analysis, only one treatment by project interaction was found to be significant. Apparently the Phonic/Linguistic and Basal treatments operated in a similar fashion from frcject to project. Furthermore, the Phonic/Linguistic treatment tended to produce higher reading achievement at the end of the first grade.

Despite the relative freedom from project by treatment interactions a wi ihin-projects analysis was conducted. This analysis was performed in the interests of consistency with the other Basal versus non-Basal treatment comparisons. The wathin-projects analysis of variance on premeasures is reported in Table 6:49. Two of the three projects are free from significant treatment efferts. However, the other project found significant treatment differences favoring the Phonic/Linguistic group on six of the seven premeasures. Obviously, in the project the Phonic/Linguistic group was in a very favored position in terms of readiness for reading. Further information concerning this fact is presented in Table 6:50 which presents the premeasure means for treatments within projects. In the project in question large differences were found in mean performance between treatments on most of the premeasures. This lack of homogeneity between treatment groups must be considered in interpreting the achievement results.

The within-projects analysis of variance and covariance on the Stanford measures is reported in Table 6:51. The general superiority
Table $6: 47$
Table 6:47
Across Projects Analysis of Variance on Premeasures for Basal vs Phonic/Linguistic Comparison

Effect	Murphy-Durre11 Phonemes	Murphy-Durrell Letter Names	Murphy-Durrell Learning Rate	Thurstone Identical Forms	Metropolitan Meaning	Metropolitan Listening	PintnerCunningham I.Q.
Sex	7.28F	8.34F	5.10 f	5.40 f	3.06	3.62	8.69F
Treatment	15.04 N	. 57	11.28N	2.31	2.27	1.24	3.39
Sex x Treatment	. 07	. 08	1.32	. 23	. 13	. 54	. 24
Project	51.31**	51.53**	42.41**	10.90**	34.45**	34.15\%*	31.23**
Sex x Project	. 13	. 95	1.73	. 11	. 66	. 46	. 93
Trt \times Project	8.45**	3.03	. 39	6.85**	3.82*	2.38	2.28
Sex x Trt x Proj	. 55	. 38	. 11	. 27	. 72	. 85	. 33

[^8]Table 6:48
Across Projects Analysis of Variance and Covariance on Stanford Measures for Basal vs Phonic/Linguistic Comparisun

Effect	Word A	Recognition		Paragraph Meaning			Vocabulary			Spelling			Word Study Skills		
		B	C	A	B	C	A	B	C	A	B	C	A	B	U
Sex	7.60 F	. 95	. 39	13.60 F	4.46f	1.41	. 05	7.19M	6.35 m	8.00 F	1.27	. 01	4.90 f	. 00	. 19
Tret	77.20N	54.17N	79.89N	18.18N	$4.24 n$	8.95N	5.72n	. 07	1.45	20.16 N	5.39n	10.59N	19.33N	3.81	7.011
SxT	. 03	. 00	. 17	. 45	. 00	. 29	. 14	. 04	. 29	. 01	. 03	. 02	. 05	. 49	. 20
Project	6.71**	14.70**	24.15**	6.21**	18.87**	32.58**	4.26*	11.97**	23.07**	6.13**	6.59**	12.59**	5.56**	1.7.00**	20.72*
SxP	. 44	. 49	. 36	. 24	. 25	. 60	. 64	. 99	1.10	. 64	. 70	. 18	. 30	. 15	. 13
TxP	3.99*	1.57	3.32*	2.64	1.12	1. 51	3.40*	. 15	. 36	1.32	2.28	1.16	3.09	2.05	1.69
SxTxP	. 31	. 02	. 32	. 04	. 11	. 30	. 36	. 40	. 08	. 65	. 28	. 36	. 22	. 01	. 08

Table 6:51
Within Protevts Analysis of Variance and Covariance on Stanford Leasures for the Basal vs Phonic/Linguistic Comparison

		Word Recognition A B C			Paragraph Meaning			Vocabulary			Spelling			Word A.	Study B	SkillsC			
		A	B	C	A	B	C												
1	Sex				3.58	1.60	. 32	4.78 f	2.70	. 37	. 69	. 01	. 50	4.15f	2.17	. 06			
	Trt	15.27 N	26.44N	32.27N	2.98	5.38 n	5.27 n	. 06	. 03	. 07	5.17n	2.17 8.74 N	8.34N	1.29 3.21	$\begin{gathered} .04 \\ 7.50 \mathrm{~N} \end{gathered}$	$\begin{gathered} .32 \\ 7.54 \mathrm{~N} \end{gathered}$			
	SxT	. 38	. 03	. 11	. 02	. 14	. 18	. 06	. 10	. 00	. 76	. 27	8.34 N .43	3.21 .49	$\begin{gathered} 7.50 \mathrm{~N} \\ .05 \end{gathered}$	$\begin{gathered} 7.54 \mathrm{~N} \\ .13 \end{gathered}$			
2	Sex	3.60	. 30	. 02	5.57f	1.32	. 03	. 03	4.21 f	7.52F	4.04f	. 56	. 22	3.42	. 08	. 17			
	Tr t	54.16N	13.03N	31.17 N	18.21N	. 22	4.16n	11.92N	. 32	1.38	14.38 N	. 00	2.03	20.41 N	. 00	1.58			
	SxT	. 18	. 00	. 00	. 02	. 08	. 07	. 80	. 45	. 39	. 53	. 2.1	. 27	. 02	. 17	.58 .23			
3	Sex	1.30	. 02	. 79	3.73	1.32	2.56	.61	5.41f	2.40	1.09	. 00							
	Trt	14.67 N	18.59 N	17.49N	1.58	. 97	. 39	. 37	. 02	. .03	3.05	2.54	2.24	1.58	.16 1.00	. 00			
	SxT	. 09	. 00	. 71	. 09	. 00	. 64	. 01	. 28	. 10	. 00	2.54 .11	2.24 .05	1.58 .00	1.00 .30	. .00			

[^9]of the Phonic/Linguistic program is also indicated here, although the results are not as striking as in the across-projects analysis. Ir. the within-projects analysis all significant treatment differences favored the Phonic/Linguistic program. In the second covariance analysis, all three projects reported significant differences in favor of the Phonic/Liaguistic program on the Word Reading test. Two of the three projects found significant differences favoring the Phonic/Linguistic program on the Paragraph Meaning test. One of the three projects found significant differences favoring the Phonic/ Linguistic program on both the Spelling and Word Study Skills tests. No significant differences were found between treatments on the Vocabulary test. A further indication of this same trend can be found in Table 6:52 which reports the unadjusted and adjusted means for the various projects. Each of the mean comparisons in Columns C for each outcome variable within each project favored the Phonic/ Linguistic program. In other words, even those differences which were not found to be statistically significant pointed out the same general trend.

Analysis of Individual Outcome Measures

The number of subjects who were given the individual tests in the Basal versus Phonic/Linguistic projects are recorded in Table 6:53. The result of the within-projects analysis of variance on the premeasure scores of these individuals is reported in Table 6:54. Nothing very unusual is found there except that the treatment differences favoring the Phonic/Linguistic program on premeasures in one project are again pointed out.

The within-projects analysis of variance and covariance on the individual outcome measures is reported in Table $6: 55$. Columns C report an analysis of covariance using all eight premeasures as covariates. In this analysis no differences between treatments were found in reading rate while one difference favoring the Phonic/ Linguistic program was found in reading accuracy. However, striking differences in favor of the Phonic/Linguistic program were found in each project for each of the word recognition tests. The corresponding unadjusted and adjusted means are reported in Table 6:56 and tend to lend further support to the superiority of the Phonic/ Linguistic program to the Basal approach on the measures utilized in this investigation. Substantial differences between treatments were found on both the Gates and Fry word lists. Furthermore, each mean difference on the Gilmore Accuracy score favors the Phonic/ Linguistic program as do two of the three reading rate scores.

Summary of Basal versus Phonic/Linguistic Comparison

The data presented here tend to point out the superiority of the Phonic/Linguistic program to the Basal readers utilized in these
Table 6:52
Unadjusted and Adjusted Stanford Means for the Basal vs Phonic/Linguistic Comparison

Project	Word Reading				Paragraph Meaning			Vocabulary			Spelling			Word Study A B		Skid
	Trt	A	B	C	A	B	C	A	B	C	A	B	C			
Hayes	Basal	18.5	23.6	24.7	19.3	26.1	28.0	22.0	26.6	27.3	9.0	13.4	14.3	34.2	42.7	$4{ }^{4}$
	n / L	25.2	30.4	31.4	23.5	30.6	32.0	21.6	26.4	27.6	12.5	17.0	17.6	38.8	47.7	$\therefore 8$
Tanrzer	Basal	17.5	18.9	17.2	16.1	18.0	15.1	20.5	21.7	20.3	10.2	11.4	9.8	33.9	36.2	33^{\prime}
	P/L	27.2	23.3	23.4	24.1	18.8	18.5	24.7	21.1	21.4	14.7	11.4	11.3	42.8	36.2	$3 \cdot \therefore$
Wyatt	Basal	22.7	21.4	21.8	23.3	21.5	22.4	24.0	2.. 8	22.8	13.1	11.9	12.4	40.3	38.0	
	P/L	27.4	25.4	25.4	25.5	22.9	23.2	24.7	22.9	22.9	15.0	13.3	13.6	42.5	39.3	33.
NOTE:	Column A reports unadjusted means; Column B, means adjusted for premeasure differences on Phon Identical Forms; Column C, adjusted for all seven covariates.															

Table 6:53
Subjects Used for the Analysis of Individual Outcome Measures for the Basal vs Phonic/Linguistic Comparison

Project	Trt.	Males	Females	Total
HAYES	Basal	15	15	30
P/L	16	14	30	
TANYZER	Basal	9	8	17
WYATY	8	6	25	14
	Basal	25	25	50

Table 6:54
Within Projects Analysis of Variance on Premeasures for Basal vs Phonic/Linguistic Comparison

Project	Eff	Murphy-Durrell Phonemes	Murphy-Durrell Letter Names	Murphy-Durrell Learning Rate	Thurstone Pattern Copying	Thurstone Identical Forms	Metropolitan Mearing	Metropolitan Listening	PintnerCunningham I.Q.
Hayes	Sex	4.44 f	8.93F	4.02 f	3.11	5.08f	. 29	3.67	$6.05 f$
	Trt	. 54	4.08 b	. 10	14.50 B	8.90B	. 25	1.23	1.24
	SxT	2.08	1.26	2.11	. 38	. 53	. 03	. .35	.04 .04
Tanyzer	Sex	5.35 f	2.20	. 23	2.51	. 90	. 80	. 44	
	Trit	10.27 N	3.45	7.30 N	. 44	4.96 n	3.26	2.34	6.83n
	SxT	1.92	. 24	. 02	. 39	. 12	. 48	. 01	5.63 n
Wyatt	Sex	. 80	. 92	. 03	1.53	2.51	3.97m	. 07	
	Trt	. 11	. 68	1.06	2.25	. 26	. 26	1.89	. 01
	SxT	4.14*	. 25	. 48	. 00	. 01	. 04	. 36	. 10
NOTE:	Significant difference favoring Phonic/Linguistic indicated by N or n, Basal by B or b, femal males by M or m. Capital letter in each case signifies . 01 level of significance; lower case level. All F ratios based on 1 and 179 degrees of freedom. One asterisk indicates interacti at . 05 level; two asterisks, . 01 level.								

Table 6:55
Within Projects Analysis of Variance and Covariance on Individual Outcome Measures for Basal vs Phonic/Linguistic Comparison

Effect	Gilmore Accuracy			Gilmore Rate			Fry Word List			Gates Word List		
	A	B	C	A	B	C	A	B	C	A	B	C
1 Sex	5.48 f	. 49	. 75	21.75F	12.63F	13.31 F	6.66 f	1.13	1.24	6.24 f	1.25	1.37
Sreatment	1.48	7.32N	5.35n	. 30	. 06	. 01	39.32N	66.93 N	61.89 N	18.12 N	31.53 N	28.35 N
Sex x Treatment	4.31	2.07	1.93	2.60	1.56	1.34	3.64	2.21	1.87	3.65	1.87	1.61
2 Sex	3.53	. 43	. 55	2.09	. 50	. 70	. 68	. 17	. 06	1.43	. 01	. 04
Treatment	3.25	. 22	. 01	8.44N	3.81	3.11	30.93N	22.03N	19.74 N	12.46N	6.54 n	5.33n
Sex x Treatment	. 49	. 01	. 19	1.14	. 62	. 90	. 15	. 03	. 00	. 03	. 16	. 04
3 Sex	2.46	1.07	2.81	1.66	. 69	1.45	1.33	. 19	. 62	2.03	. 78	1.58
Treatment	1.89	6.08n	2.94	. 20	. 01	. 18	27.12N	44.44N	37.13 N	9.12 N	16.22N	12.04 N
Sex x Treatment	1.14	4.27	2.66	. 12	. 00	. 03	. 25	. 00	. 07	. 01	. 46	. 15

Table 6:56
Unadjusted and Adjusted Means on Individual Outcome Measures for the Basal vs Phonic/Linguistic Comparison

Project	Trt	re Accuracy			Gilmore Rate			Fry Word Lis			Gates Word List		
		A	-	c	A	B	C	A	B	c	A	B	C
HAYES	Basal	19.2	23.7	24.7	65.2	71.3	72.1	3.8	5.8	6.1	11.4	13.7	14.0
	Li.pp	23.1	31.3	31.2	62.0	72.7	72.7	16.8	21.6	21.5	20.5	25.1	25.0
TANYZER	Basal	23.4	20.5	21.0	45.9	43.6	42.7	3.8	2.7	2.5	9.9	8.4	8.4
	Lipp	31.5	22.2	21.3	69.8	59.1	56.9	19.9	14.8	14.1	20.4	15.4	14.7
WYATT	Basal	30.5	27.6	23.2	57.5	53.5	54.5	11.3	8.7	9.1	15.5	13.9	14.3
	Lipp	33.9	32.7	31.7	55.4	53.1	52.6	18.6	18.0	17.8	20.5	19.9	19.5
NOTE:	Column A reports unadjusted means; Column B, means adjusted for Phonemes, Letter Names, Pattern Copying, and Identical Forms; Column C, means adjusted for all eight premeasures.												

projects. The Phonic/Linguistic program produced pupils with superior Word Reading, Paragraph Meaning, Spelling and Word Study Skills. Phonic/linguistic pupils were also superior on the Fry Test of Phonetically Regular Words and the Gates Word Recogaition Test. No significant differences were found between the Phonic/Linguistic and Basal subjects in rate or accuracy of reading.

The Practicality of Significant Differences

Many significant differences have been reported above for the various basal versus non-basal comparisons. Differences were regarded as being significant if they reached the .05 level of significance. However, with the large number of comparisons involved one would expect a substantial number of differences to reach statistical significance on the basis of chance alone. Furthermore, a large sample was employed in this investigation. As a result, a relatively small difference between treatments might be statistically significant. It would be of interest to know how important the statistically reliable differences reported are in a practical sense. In the discussion of the results, unadjusted and adjusted means were given for each treatment comparison. These means were based on raw scores for the various achievement tests. Therefore, it is possible to note the degree of disparity between means for the various basal versus non-basal comparisons. However, since the achievement measures were standardized tests, nornative information is also available. Each of the raw scores can be translated into a grade equivalent score. It is therefore possible to judge the prantical significance of the differences in terms of whether or not the mean achievement for each group would result in sinilar grade equivalents. Perhaps, two groups could obtain a grade equivalent score of 1.9 , even though a statistically significant difference had been obtained in comparing the achievement means.

Relevant information concerning the grade equivalents for various raw scores on each of the Stanford Tests is reported in Table 6:57. This table reveals, for example, that scores of 18,19 , and 20 on the Stanford Word Reading test result in the same grade equivalent, 1.7. Therefore, two groups would achieve the same grade equivalent even though one of them averaged 18 correct answers on the Word Reading test while the other group averaged 20 correct answers. A raw score difference of this magnitude in this study in many instances would be regarded as statistically significant. The reader is encouraged to check the raw scores obtained on the various tests for each basal versus non-basal comparison against this table of norms to obtain some idea of the practical significance of the statistically reliable treatment differences reported.

Table 6:51

Grade Equivalents for Stanford Achievement Test
Primary I Battery, Form W

Word Reading		Paragraph Meaning		Vocabulary		Spelling		Word Study Skills	
No. Right	Grade Score	No. Right	Grade Score	No. Right	Grade Score	No. Right	Grade Score	NO. Right	Grade Score
1		1	1.0	1		1	1.0	1	
2	ow 1.0	2	1.1	2 B	Ow 1.0	2	1.1	2	
3	ow 1.0	3	1.1	3		3	1.3	3	
4		4	1.2	4	1.0	4	1.4	4	
5	1.0	5	1.2	5	1.0	5	1.5	5 B	ow 1.0
6	1.0	6	1.3	6	1.0	6	1.6	6	
7	1.1	7	1.4	7	1.1	7	1.6	7	
8	1.1	8	1.4	8	1.1	8	1.7	8	
9	1.2	9	1.5	9	1.1	9	1.7	9	
10	1. 3	10	1.5	10	1.2	10	1.8	10	
11	1.3	11	1.5	11	1.2	11	1.9	11	1.0
12	1.4	12	1.6	12	1.2	12	2.0	12	1.0
13	1.4	13	1.6	13	1.3	13	2.1	13	1.0
14	1.5	14	1.6	14	1.3	14	2.2	14	1.1
15	1.5	15	1.6	15	1.4	15	2.3	15	1.1
16	1.6	16	1.6	16	1.4	16	2.4	16	1.1
17	1.6	17	1.7	17	1.5	17	2.6	17	1.2
18	1.7	18	1.7	18	1.5	18	2.8	18	1.2
19	1.7	19	1.7	19	1.6	19	3.0	19	1.2
20	1.7	20	1.7	20	1.7	20	3.4	20	1.2
21	1.8	21	1.8	21	1.8			21	1.3
22	1.8	22	1.8	22	1.9			22	1.3
23	1.9	23	1.8	23	2.1			23	1.3
24	1.9	24	1.9	24	2.2			24	1.3
25	2.0	25	1.9	25	2.3			25	1.4
26	2.1	26	2.0	26	2.4			26	1.4
27	2.2	27	2.0	27	2.5			27	1.4
28	2.3	28	2.1	28	2.7			28	1.5
29	2.4	29	2.2	29	2.9			29	1.5
30	2.5	30	2.3	30	3.1			30	1.5
31	2.6	31	2.4	31	3.3			31	1.6
32	2.7	32	2.5	32	3.6			32	1.6
33	2.9	33	2.6	33	4.0			33	1.7
34	3.2	34	2.7	34	4.4			34	1.8
35	3.6	35	2.9	35	4.8			35	1.8

Table 6:57 (Continued)

Word Reading	Paragraph Meaning		Vocabulary		Spelling	Word Study Skills	
No. Grade Right Score	No. Right	Grade Score	No. Right	Grade Score	No. Grade Right Score	No. Right	Grade Score
	363738	$\begin{aligned} & 3.1 \\ & 3.6 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 36 \\ & 37 \\ & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.5+ \end{aligned}$		36	1.9
						37	1.9
						33	2.0
						39	2.0
						40	2.1
						41	2.2
						42	2.3
						43	2.4
						44	2.5
						45	2.6
						46	2.7
						47	2.8
						48	3.0
						49	3.2
						50	3.4
						51	3.9
						52	4.8
						53	$5.5+$
						54	
						55	
						56	

A word should also be said about the average grade equivalents found for the various treatments. The experimental period was 140 days or approximately seven months. Therefore, a grade score of 1.7 would be a reasonable expectation of achievement. Furthernore, there is some indication that the norms on the Stanford test are somewhat depressed. That i.s, the same level of achievement on many other primary reading tests would result in a higher grade equivalent.

Variability Within Treatments

The discussion to this point has centered around the mean achievement of pupils in various reading programs. Another important question involves the extent to which any program reduces or increases pupil variability. Two kinds of information from this study are relevant. In the first piace, the within-projects analysis made possible the location of the highest and lowest mean class achievement within each treatment. Assuming that classes were randomly assigned to treatments, it might be expected that a superior treatment would tend to be superior across all classrooms. Perhaps, as a result, the classes involved in the superior treatment would cluster near the top achievement level and would exhibit limited interclass variability.

For each basal versus non-basal comparison the lowest class mean and highest class mean on each subtest are reported for each treatment within each project. These class means, based on combined data from the twc sexes are recorded in Table 6:58. There is little to indicate that interclass variability is different for I.T.A. and Basal classrooms. In three of the five projects the I.T.A. classes exhibited a greater range between the lowest class mean and the highest class mean on the word recognition variable. However, in the other projects greater variability was exhibited by the Basal classrooms. A somewhat similar situation existed with respect to the Paragraph Meaning subtest. The Fry and Hahn projects found greater variability among I.T.A. classrooms, chiefly because of very low achievement on the part of one classroom in the I.T.A. treatment. In each of these projects the lowest mean achievement was produced by an I.T.A. class. The Hayes project found practically identical interclass variability although in this project both the lowest and highest I.T.A. class means were considerably above their Basal counterparts. In the last two projects slightly higher variability was exhibited by the Basal classrooms. A similar lack of consistency is found for the Spelling and Word Study Skills subtests. In certain projects greater interclass variability was found for the Basal treatment while in other projects greater interclass variability was obtained for the I.T.A. classes. Overall, th. mo is no evidence that either the Basal or I.T.A. treatment tends to increase or decrease interclass variability. of course, the feformation in Table 6:58 says nothing about intraclass variability.

Table 6:58

Ranges of Class Means of Four Stanford Subtests

 by Treatment and ProjectBasal vs I.T.A.

Project	Tr t	WordReadingMin Max Range			ParagraphMeaningMin Max Range			Spelling Min Max Range			Word Study Skills Min Max Range		
Fry	$\begin{aligned} & \text { Basal } \\ & \text { ITA } \end{aligned}$	$\begin{aligned} & 16 \\ & 14 \end{aligned}$		$\begin{array}{r} 6 \\ 9 \\ \hline \end{array}$	$\begin{aligned} & 17 \\ & 10 \\ & \hline \end{aligned}$	23 22	$\begin{array}{r} 6 \\ 12 \\ \hline \end{array}$	8 4	$\begin{aligned} & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \\ & \hline \end{aligned}$	28 30	$\begin{aligned} & 37 \\ & 40 \end{aligned}$	$\begin{array}{r} 9 \\ 10 \\ \hline \end{array}$
Hahn	$\begin{aligned} & \text { Basal } \\ & \text { ITA } \\ & \hline \end{aligned}$	$\begin{array}{r} 18 \\ 18 \\ \hline \end{array}$	$\begin{aligned} & 27 \\ & 32 \\ & \hline \end{aligned}$	$\begin{array}{r}9 \\ 14 \\ \hline\end{array}$	$\begin{aligned} & 17 \\ & 11 \end{aligned}$	29 32	$\begin{aligned} & 12 \\ & 21 \end{aligned}$		$\begin{aligned} & 15 \\ & 17 \\ & \hline \end{aligned}$	7 12	$\begin{aligned} & 29 \\ & 33 \end{aligned}$	45 47	16 14
Hayes	Basal ITA	12 19	$\begin{aligned} & 22 \\ & 32 \\ & \hline \end{aligned}$	10 13	9 16	26 34	17 18		$\begin{array}{r} 13 \\ 19 \\ \hline \end{array}$	$\begin{array}{r}11 \\ 8 \\ \hline\end{array}$	25 35	43 49	$\begin{array}{r} 18 \\ 14 \\ \hline \end{array}$
Mazurk.	iasa. ITA	12	$\begin{aligned} & 27 \\ & 27 \\ & \hline \end{aligned}$	15 13	$\begin{array}{r} 9 \\ 10 \end{array}$	$\begin{array}{r} 30 \\ 28 \\ \hline \end{array}$	$\begin{array}{r} 21 \\ 18 \\ \hline \end{array}$		17 13	12 10	25 26	45 43	$\begin{aligned} & 20 \\ & 17 \end{aligned}$
Tanyzer	Basal ITA	13 22	$\begin{aligned} & 21 \\ & 28 \end{aligned}$	8 6		$\begin{aligned} & 20 \\ & 27 \\ & \hline \end{aligned}$	8 7		$\begin{aligned} & 13 \\ & 14 \\ & \hline \end{aligned}$	7 4	28 39	37 49	9 10

Basal vs Basal plus Phonics

Table 6:58 (Continued)
Basal vs Language Experience

Basal vs Linguistic

Ruddell	Bas\&l	12	22	10	8	24	16	4	12	8	26	37	11
Schneyer	Basal	8	29	21	4	32	28	1	18	17	18	49	31
Ling	6	27	21	5	30	25	0	16	16	17	46	29	
Sheldon	Basal	17	25	8	16	27	11	5	17	11	33	46	13
	Ling	12	29	17	8	29	21	3	17	14	28	51	23

Basal vs Phonic/Linguistic

Hayes	Basal	12	22	10	9	26	17	2	13	11	25	43	18
Tanyzer	Basal	17	33	16	12	34	22	6	17	11	29	47	18
P/L	21	8	12	20	8	6	13	7	28	37	6		
Wyatt	Basal	17	26	9	7	19	38	9	12	16	4	37	48
P / L	22	32	10	18	31	13	12	18	7	18	11	28	50

The Basal versus Basal plus Phonics comparison leads to a similar conclusion. There is no clear-cut evidence that interclass variability is greater or smaller in either of the two treatments. The same could be said of the Basal versus Linguistic and Basal versus Phonic/iinguistic comparisons.

The Basal versus Language Experience comparison presents a somewhat different picture. Although not all of the differences go in the same direction, there is an indication that the range between the highest and lowest average clasa achievement is greater in the Language Experience approach than the Basal program. Note, for example, the tremendous interclass variability for the Language Experience approach in the first and fourth projects listed on the table. In these two projects the range for each subtest was greater in the Language Experience approach and usually the difference between the ranges for the Language Experience and the Basal approash is quite striking. Furthcmore, in these two projects, for each subtest the lowest class mean was found in the Language Experience treatment as was the highest class mean. Perhaps this indicates that certain teachers find it difficult to put into practice an instructional program which does not use a structured set of materials which systematically introduces to the child the basic reading skills. On the other hand, this finding might also indicate that certain other teachers find that they can proceed much more efficiently without the "lock-step" inherent to some extent at least in the teacher's use of most basal reader programs.

One obvious finding of this part of the analysis is that large differences exist in the mean achievement of various classrooms even within a treatment and within a project. It is often said that greater differences exist among classrooms within a treatment than between treatments. There is much to support that statement here.

The second approach to assessing variability within treatments was to examine the standard deviations obtained for each treatment on each achievement measure. A relatively large standard deviation for any treatment might indicate that that treatment encouraged superior pupils to achieve up to their capabjilties or that the treatment was relatively ineffective for pupils experiencing difficulty in beginning reading. Certainly the variability of pupils targht by a specific method or prograr is a matier of interest. Table 6:59 records the standard deviation of scores by treatment on all outcome measures. The standaid deviations reported are pooled estimates based on all pupils within classes labeled Basal, I.T.A., Linguistic, Language Experience, Basal plus Phonics, and Phonic/ Linguistic. These measures of variability should be considered illustrative only because of the problems involved in pooling data from different projects. However, there is an unusual degree of
Table 6:59
Standard Deviations of Stanford Measures According to Treatment

> Paragraph
.

> Vocabulary
5.72
5.58
5.89
5.86
5.15
6.08

1abeled
These standard deviations are pooled estimates based on all pupils within classes standard deviation is calculated.
Word Reading
6.03
6.49
6.98
$09^{\circ} 9$

$$
\begin{array}{ll}
6.29 & 7.33 \\
6.44 & 9.33
\end{array}
$$

9.54
8.53
$\begin{array}{ll}\stackrel{\infty}{\sim} & \infty \\ \stackrel{\infty}{\sim} & \infty \\ & \end{array}$
NOTE: These standard deviations are pooled estimates based on all pupils within classes labeled
similarity in variability among the various treatments. All of the standard deviations for the Word Reading subtest, for example, are greater than six but less than seven. These are certainly negligiole differences. The variability is somewhat greater for the Paragraph Meaning subtest. For this test the lowest variability was found for the Linguistic treatment while the highest variability was reported for the I.T.A. treatment. However, the differences are probably of limited practical significance. The six standard deviations are within one point of each other for the Vocabulary subtest. The same can be said for the Spelling subtest. Furthermore, the intertreatment variability is only slightly greater for the Word Study Skilis subtest. Rised on the informaction reported here there is iittle to indicate that the variability of pupils differs to any extent from treatment to treatment.

Summary of Treatment Comparisons

A summary of the within-projects treatment comparisons is presented in Tables 6:60, 6:61, 6:62, and 6:63. Each of the tables lists the methods compared and the number of projects in which significant differences favored either the basal approach or the nonbasal approach. The number of projects in which no differences between treatments were found is alsc recorded. Tables 6:60 and 6:61 report significant differences foi the Stanford Achievenent Test; Tables 6:62 and 6:63 report data on the individual sample measures. As a general finding it can be stated that the non-basal programs tended to produce pupils with better word recognition skills than did the Basal programs. This finding was especially true with respect to the I.T.A., Phonic/Linguistic, and Basal plus Phonics programs. Differences between basal and non-basal approaches were less consistent with respect to Paragraph Meaning, Spelling, rate of reading, and reading accuracy. Furthermore, there was littie evidence that any approach increased or decreased variability of pupil achievement in reading.

Another general finding is that girls tended to have a greater degree of readiness for reading at the beginning of the first grade and tended to achieve at a higher level in reading at the end of the first grade. In most cases differences in reading achievement which favored girls at the end of the year disappeared when the criterion scores were adjusted for differences in prereading ability. This finding supports the general conclusion that girls are more mature in the first grade and more able to profit from instruction. A related finding in this investigation was that none of the treatments had a unique effect on the achievement of boys and girls. That is, no significant sex by treatment interactions were found to exist. On the average, girls tended to achieve at a higher rate in all programs.

Table 6:60

Methods Compared	Number of Studies	word Keading			Paragraph Meaning			Spelling		
		Non-Basal Method Superior*	No Significant Difference	Basal Reader Superior*	Non-Basal Method Superiur*	No Significant Difference	Basal. Reader Superior*	Non-Basal Method Superior*	No Significant Difference	Basal Reader Superior*
$\begin{gathered} \text { I.T.A. } \\ \text { vs } \\ \text { Basal } \end{gathered}$	5	3	2	0	1	4	0	1	1	3
```Linguistic vs Basal```	3	1	2	0	0	3	0	1	2	0
Basal + Phonics vs Basal	4	0	4	0	1	3	0	1	3	0
Language Experience vs Basal	4	2	2	0	1	2	1	0	4	0
Phonic/   Linguistic   vs   Basal	3	3	0	0	2	1	0	1	2	0
* $\mathrm{P}<.05$					$148$					

Table 6:61
Comparison of Basal and Non-Basal Subjects on the
Stanford Vocabulary and Word Study Skills Subtests

Methods   Compared	Number of Studies	Vocabulary.			Word Study Skills			
		Non-Basal Method Superior*	No Significant Difference	Basal   Reader   Superior*	Non-Basal Method Superior*	No   SIgnificant Difference	Basal   Reader   Superior*	
I.T.A.								
vs	5	0	5	0	2	3	0	
Basal								
Linguistic								
vs	3	0	3	0	1	2	0	
Basal								
Basal + Phonics								
vs	4	1	3	0	2	2	0	
Basal								
Language								
Experience	4	1	3	0	1	3	0	
vs								
Basal								
Phonic/								
Linguistic								
-ss	3	0	3	0	1	2	0	
Basal								

* $P<.05$
Table 6:62
Comparison of Basal and Non-Basal Subjects on the Fry and Gates Word Lists

Methods Compared	Number   of   Studies	Fry			Gates		
		Non-Hasal   Method   Superior*	No   Significant   Difference	Basal   Reader   Supeifor*	Non-Basa1   Method   Superior*	No Significant Difference	Basal   Reader   Superior*
$\begin{gathered} \text { I.T.A. } \\ \text { vs } \\ \text { Basal } \end{gathered}$	5	4	1	0	3	2	0
```Linguistic vs Basal```	3	2	1	0	0	3	0
Basal + Phonics vs Basal	4	1	3	0	2	2	0
Language Experience vs Basal	3	1	2	0	1	2	0
```Phonic/ Linguisti.c vs Basal```	3	3	0	0	3	0	0
$\star \quad \mathrm{P} \leqslant .05$							

Table 6:63
Comparison of Basal and Non-Basal Subjects
on the Gilmore Accuracy and Rate Sc?res

Methods Compared	Number   of   Studies	Gilmore Accuracy			Gilmore Rate		
		Non-Basal Method Superior*	No   Significant   Difference	Rasal   Reader   Superior*	Non-Basal Method Superior*	No   Significant   Difference	Basal   Reader   Superior*
I.T.A.   Vs   Rasal	5	1	4	0	0	5	0
Linguistic V8   Basal	3	0	3	0	0	1	2
Basal + Phonics vs   Basal	4	0	3	1	0	4	0
Language   Experience   $V 8$   Basal	3	1	2	0	0	3	0
Phonic/   Linguistic Vs   Basal	3	1	2	0	0	3	0

One of the most striking findings was the persistence of project differences in reading achievement even after adjustments were made for differences in pupil readiness for reading. Evidently, reading achievement is influenced by factors peculiar to school systems over and above differences in measured prereading capability of pupils.

## Discussion of the Analysis of Treatment Ccaparisons

There are a number of limitations involved in interpreting the findings of the analysis of treatment comparisons. A first limitation is that not all treatments were represented in all projects. This made it impossible to make direct comparisons between such treatments as I.T.A., Language Experience, Linguistic, and Phonic/ Linguistic. The tremendous project differences in achievement would have made comparisons between treatments found in different projects meaningless. As a result, it was only possible to compare the various experimental treatments with the basal treatment in each project. Of course, these other comparisons have been made in the reports of the individual projects.

Another limitation is that treatments labeled Linguistic, Basal, Basal plus Phonics, and I.T.A. did not follow exactly the same program in each project. For example, the Basal reader approach was considered a single treatment even though a variety of Basal programs were used in the various projects. Furthermore, the Linguistic, Basal plus Phonics, and I.T.A. treatments also used different materials from project to project. Furthermore, the Language Experience approach was not exactly the same instructional program in the our projects which utilized this treatment. Grouping programs and materials into a single category should not disguise the fact that actual differences existed in the instructional program within a category.

Another limitation of the study is that there was evidence of non-random assigninent of pupils to treatments in certain projects. In some cases there were substantial differences in fupil performance on premeasures for the experimental treatments. The analysis of covariance was used to adjust for premeasure differences but there is a question of how adequately this statistical technique adjusts for differences in capabilities between groups.

Another limitation which might influence the results is that there appeared to be differences among projects in the extent to which the Hawthorne effect was controlled. It is likely that the newer programs profited from the increased motivation, the greater teacher and parental interest, the awareness on the part of pupils
and teacher: that experimentation was going on, and similar factors usually associated with new methodological techniques. The extent to which these extraneous factors were controlled in the various projects undoubtedly influenced the results. In this regard, it is likely that the less traditional instructional programs profited from whatever Hawthorne effect was present in the investigation.

ANALYSIS OF TREATMENT EY READINESS LEVEL

This chapter reports the section of the analysis which was designed to test for differential treatment effects for pupils who possessed different pre-reading characteristics. Chapter VI of this report discussed the avalysis of general treatment effects across all levels of readiness. The analysis reportea in tinis chapter, however, sought to assess the relative effectiveness of treatments for pupils of low, awerage, and high readiness for reading as measured by tests of intelligence, auditory discrimination, and letter knowledge. Using the Basal versus non-Basal comparisons employed in the main analysis reported in Chapter Vi, subjects were blocked in turn according to performance on the Pintner-Cuntingham Primary Test, the Kurphy-Lurrell Phonemes Test, and the MurphyDurrell Zetter Names Test. A separate analysis of variance was conducted to test differential treatment effects for various levels of performance on the three variables.

The focus of interest in each analysis of var:ance was the apprcpriate rreatment by intelligence, treatment by auditory discrimination, and treatment by letter knowledge interaction. A significant interaction would indicate that treatments were not operating in the same fashion across all levels of performarce on the specific measure being utilized. When a significant interaction of this sort was located, the data were scanned to find the rea;on. An interesting possible explanation would be that one treatment was more effective for low-readiness pupils, another treatrent more effective for high-reaċəness pupiis.

Because of the nature of this section of the analysis, individuals were used as the experimental unit. Half class means comprited separately for the sexes were used as the experimental unit in the analysis of method discussed in Chapter VI. Since the same pupils were involved in both analyses it was possible to compare treatment effects in the two methods of analysis, This comparison is reported ir Cnapter VIIJ.

## BJocking on Intelligence

Subjects were categorized according to performance on the Pintner-Cunningham Primary Test in order to test for differential treatment effects for pupils with varying levels of intelligence. Four levels of intelligence were established. Cutoff points were selected in such a way that apr - oximarely one-fourth of the
population in each Basal versus non-Basai comparison fell in each of the four mental age categories. Furthermore, cutoff points were set so as to be identical for all Basal versus non-Basal comparisons. For example, the nigh intelligence group in all comparisons (Basal versus I.T.A., Basal versus Basal plus Fhonics, Basal versus Language Experience, Basal versus Linguistic, and Basal versus Phonic/Linguistic) was comprised of those pupils who obtained raw scores of 44 or higher on the intelligence measure. Likewist, the low intelligence group in each of the comparisons consisted of pupils who scoreud 33 or iower. Pupils in the high-middle range of intelligence scored 39 to 43 while pupils in the low-middle range scored 34 to 38.

The numbers of pupils who fell in each of the four level.s of intelligence within each sex, treatment, and project are reported in Tables 7:01, 7:02, 7:03, 7:04, and 7:05. It should be noted that relatively small numbers of subjects were found in certain cells, a case in point being high-intelligence males in the Phnnic/Linguistic treatment in Hayes' project. As a result, the findings of this section of the analysis should be interpreted with caution.

Cell frequencies for the Language Experience versus Basal comparison are illusirative of those for other treatment comparisons. These cell frequencies are reported in Table 7:03. Adding across projects reveals that there were 1431 pupils in the Language Experience group and 1523 pupils in the Basal group. Adding across sex reveals that there were 1.540 boys and 1414 girls in all of the projects. A breakdown of intelligence levels by sex resuits in the finding that there were 405 boys and 452 girls in the highest level of intelligence. The high-middle range of intelligence included 366 boys and 365 girls. The low-middle range of intelligence was comprised of 287 boys and 279 girls. The lowest level of intelligence included 482 boys and 318 girls.

It is possible to analyze the table further to determine the number of subjects who made up the high, high-middle, low-middie, and low intelligence groups. Summing acrose sex, treatment, and project reveals that there were 857 pupils in the high intelligence group, 731 pupils in the high-middle intelligence gorup, 566 pupils in the low-middle intelligence group, and 800 pupils in the lowest intelligence group. Therefore, for this particular treatment comparison the cutoff points selected did not succeed in placing one-fourth of the pupils within each of the intelligence levels. However, it should be remembered that the cutoff points were selected to divide the total population (all five treatment comparisons combined) into approximately four levels. Therefore, for each of the five treatment comparisons some deviation from this standard resulted.

Table 7:01
Cell Frequencies for Each Level of Intelligence for the Basal vs I.T.A. Treatments


Table 7:02

Project	Ceii Frequencies for Each Level of Intelligence for the Basal vs Basal plus Phonics Treatments					
	Sex	Trt.	$\begin{gathered} \mathrm{L} \\ \text { (33 or less) } \end{gathered}$	$\begin{gathered} \text { LM } \\ (34-38) \end{gathered}$	$\begin{gathered} \text { HM } \\ (39-43) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { (44 or more) } \end{gathered}$
Bordeaux	Male	Basal	6	11	14	32
		$B+P$	5	14	15	31
	Female	Basal	4	3	9	32
		$B+P$	5	13	15	21
Hayes	Male	Basal	25	8	7	5
		$B+P$	32	7	5	6
	Female	Basal	16	8	6	12
		B + P	25	13	12	3
Manning	Male	Basal	75	37	31	15
		$B+P$	64	44	14	12
	Femalc	Basal	60	41	34	17
		$B+P$	50	32	27	17
Murphy	Male	Basal	53	17	23	17
		$B+P$	129	57	$6 i j$	37
	Female	Basal	42	25	24	13
		$B+P$	80	46	62	47

Table 7:03
Cell Frequencies for Each Level of Intelligence for the Basal vs Language Experience Treatments

Project	Sex	Trt.	$\stackrel{\mathrm{L}}{\text { (33 or less) }}$	$\begin{gathered} \text { LM } \\ (34-38) \end{gathered}$	$\begin{gathered} \text { HM } \\ (39-43) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { (44 or more) } \end{gathered}$
Cleland	Male	Basal	68	46	44	34
		LE	56	25	26	24
	Female	Basal	44	42	44	54
		LJE	47	32	37	40
Hahn	Male	Basal	28	26	44	50
		LE	21	34	38	42
	Female	Basal	24	19	45	40
		LE	24	20	32	58
Kendrick	Male	Basal	119	65	75	95
		I.E	75	61	88	108
	F'emale	Basal	65	67	75	91
		LE	52	60	82	111
Stauffer	Male	Basal	68	18	25	16
		LE	47	12	26	36
	Female	Basal	21	22	27	22
		IE	41	17	23	36

Table 7:04
Cell Frequencies for Each Level of Inte11igence for the Basal vs Linguistic Treatments

Project	Sex	Trt.	$\begin{gathered} \mathrm{L} \\ (33 \text { or less) } \end{gathered}$	$\begin{gathered} \text { LM } \\ (34-38) \end{gathered}$	$\underset{(39-43)}{ }$	$\begin{gathered} \mathrm{H} \\ \text { (44 or more) } \end{gathered}$
Ruddell	Male	Basal	18	10	15	17
		Ling	25	6	5	15
	Female	Basal	17	14	9	20
		Ling	27	7	5	7
Schneyer	Male	Basal	100	16	22	32
		Ling	108	22	26	23
	Female	Basal	73	26	25	40
		Ling	102	18	22	26
Sheldon	Male	Basal	8	20	19	26
		Ling	47	24	40	43
	Female	Basal	7	6	19	38
		Ling	43	13	38	68

Table 7:05
Cell Freguencies for Each Level of Intelligence for the Basal vs Phonic/Linguistic Treatments

Project	Sex	Trt.	$\stackrel{L}{\text { (33 or less) }}$	$\begin{gathered} \text { LM } \\ (34-38) \end{gathered}$	$\begin{gathered} \text { HM } \\ (39-43) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { (44 or more) } \end{gathered}$
Hayes	Male	Basal	25	8	7	5
		P/L	33	10	6	4
	Female	Basal	10	8	6	12
		P/L	22	9	7	8
Tanyzer	Male	Basal	38	41	20	19
		P/L	22	21	24	39
	Female	Basal	23	23	27	37
		P/L	10	8	23	39
Wyatt	Male	Rasal	15	9	32	31
		$f / L$	14	13	28	34
	Female	Basal	12	25	35	51
		P/L	11	13	44	46

After the cutoff points were established, a four-way analysis of variance was employed in which pupils were biocked on intelligence, project, treatment, and sex. For each Basal versus non-Basal comparison an across-projects analysis similar to that described in Chapter VI was conducted on the assumption that within each project treatments were assigned at random to a set of classes. The acrossprojects analysis would be meaningful only if no treatment by project interactions were found. The existence of significant treatment by project interactions would indicate that treatments were not operating in the same fashion across all projects and that interpretation of any effects involving treatment would then be difficult. A summary of all of the treatment by project interactions for the various Basal versus non-Basal comparisons is recorded in Table 7:06. It is obvious that treatments did operate differently in various projects and that therefore a within-projects analysis was necessary.

A within-projects analysis for each Basal versus non-Basal treatment comparison was conducted along the lines of the analysis described in Chapter VI. The first step in the within-projects analysis was to conduct an analysis of variance blocking on sex, treatment, and intelligence. Primary attention in this analysis was focused on the treatment and treatment by level of intelligence effects. In the discussion which follows only these two treatment effects will be reported for each project within each treatment comparison.

Following the analysis of variance, an analysis of covariance was also conducted using the readiness premeasures (except for the intelligence test) as covariates. The treatment effents which resulted from this covariance analysis will be reported for each treatment comparison. However, the treatment by readiness interaction will not be reported. The use of the seven readiness scores as covariates tended to eliminate treatment differences among the four levels of intelligence and also practically eliminated intelligence differences. This destroyed the reason for the analysis whici was to see whether or not treatments had a differential effect on high and low readiness pupils. Therefore, interpretation of differential treatment effects will be based on the within-grojects analysis of variance.

## Basal versus I.T.A. Treatment Comparisca

A sumnary of the within-projects analysis of the I.T.A. versus Basal comparison blocking on sex, intelligence, and treatment is reported in Table 7:07. Only the treatment and treatment by intelligence effects are reported for each project. Columns $A$ of the of the table report the analysis of variance. The table reports many significant treatment effects, most of which favor the I.T.A. treatment. However, only one significant treatment by intelligence

Comparisons	Word Reading $A$   C	Paragraph A	$\begin{aligned} & \text { Meaning } \\ & \mathrm{C} \end{aligned}$	Vocabulary   A C		$A_{C}^{\text {Spel.1ing }}$		$\underset{\mathrm{A}}{\text { Word Study }} \underset{\mathrm{C}}{\mathrm{Skill}}$	
I.T.A. vs Basal Degrees of Freedom	$\begin{gathered} 23.49 * * \quad 25.68 * * \\ (4,1993)(4,1986) \end{gathered}$	13.94**	1.7.04**	2.78*	. 52	45.96**	43.19**	23.31**	21.70**
Basal plus Phonics vs Basal Degrees of Freedom	$\begin{gathered} 5.61 \star *: \quad 2.76 * \\ (3,1658)(3,1651) \end{gathered}$	3.13*	1.70	9.37**	6.81**	14.36**	10.41**	4.41**	2.41
Language Experience vs Basal Degrees of Freedom	$\begin{array}{cc} 12.45 * * & 10.62 * * \\ (3,2890)(3,2883) \end{array}$	30.47**	28.54**	6.15**	8.58**	4.08**	3.31*	8.85**	7.ó1**
Linguistic vs Basal Degrees of Freedom	$\begin{array}{cc} 12.57 * * & 17.32 * * \\ (2,1309)(2,1302) \end{array}$	6.29**	6.13**	2.80	5.30**	12.07**	12.73**	5.52**	5.67**
Phonic / Linguistic vs Basal Degrees of Freedom	$\begin{array}{rr} 13.11 * * & 12.31 * * \\ (2,965) & (2,958) \end{array}$	8.64**	8.80**	6.51**	2.38	5.79**	8.58**	10.33**	9.26**

Table 7:07
Selected Treatment Effects from Within Projects Analysis of Variance and Covariance on Stanford Mcasures for Basal vs I.T.A. Comparison (Blockirg on Intelligence)

Effect	Word Rea   A	ding	Paragraph A	$\begin{aligned} & \text { Meaning } \\ & \text { C } \end{aligned}$	$A^{\text {Vocal }}$	ry	Spelling		Word Study Skills	
1 Treatment   Treatment x Intelligence	$\begin{aligned} & 5.09 n \\ & 2.33 \end{aligned}$	12.29N	$\begin{array}{r} .54 \\ 1.27 \end{array}$	. 00	$\begin{array}{r} .12 \\ .82 \end{array}$	. 61	17.92 B .21	15.618	$\begin{gathered} 5.38 n \\ .23 \end{gathered}$	11.15\%
2 Treatment   Treatment $x$ I:.telligence	$\begin{gathered} 10.24 \mathrm{~N} \\ 2.08 \end{gathered}$	5.48n	$\begin{array}{r} .07 \\ 1.03 \end{array}$	. 93	$\begin{aligned} & 1.04 \\ & 2.54 \end{aligned}$	. 01	$\begin{gathered} 17.06 B \\ 1.04 \end{gathered}$	32.68B	$\begin{aligned} & 2.49 \\ & 1.08 \end{aligned}$	19
3 Treatment   Treatment $x$ Intelligence	$\begin{gathered} 60.84 N \\ .86 \end{gathered}$	60.18 N	$\begin{array}{r} 12.75 \mathrm{~N} \\ 2.96 * \end{array}$	6.76 N	1.13 .12	. 12	$\begin{gathered} 71.39 \mathrm{~N} \\ 1.11 \end{gathered}$	69.62N	$\begin{gathered} 36.07 \mathrm{~N} \\ 2.08 \end{gathered}$	31.07 N
4 Treatment   Treatment $x$ Intelligence	$\begin{aligned} & 3.08 \\ & 1.04 \end{aligned}$	28.31N	$\begin{array}{r} .08 \\ 2.38 \end{array}$	11.42 N	$\begin{gathered} 4.69 b \\ .66 \end{gathered}$	. 01	$\begin{gathered} 116.92 B \\ .77 \end{gathered}$	81.05B	$\begin{gathered} 7.85 B \\ .24 \end{gathered}$	. 19
5 Treatment   Treacment $x$ Intelligence	$\begin{gathered} 125.01 \mathrm{~N} \\ e \quad 1.04 \end{gathered}$	176.45N	$\begin{gathered} 55.64 \mathrm{~N} \\ 1.86 \end{gathered}$	81.20 N	$\begin{aligned} & 3.51 \\ & 1.92 \end{aligned}$	2.00	$\begin{gathered} 3.95 n \\ .17 \end{gathered}$	9.67 N	$\begin{gathered} 71.39 N \\ .57 \end{gathered}$	90.40N

variance; Column C, covariance with all seven premeasures as covariates. Significant treatment difference favoring I.T.A. indicated by $N$ or $n$, Basal by $B$ or $b$. Capital letter in each case indicates at 05 level; significance; lower case letter, . 05 level. One asterisk signifies interaction $1993 \mathrm{~d} . \mathrm{f}$. ; those in Column $\mathrm{C}, \mathrm{l}$ and two asterliks, 01 in Column A, 3 and 1993 d.f.
interaction was found. Obviously, the I.T.A. treatment produced somewhat better readers across all levels of intelligence. There is no indication that the Basal and I.T.A. treatments operated differently for pupils with varying degrees of intellectual ability.

## Basal versus Basal plus Phonics Treatment Comparison

The within-projects analysis of the Basal versus Basal plus Phonics comparison is reported in Table 7:08. The treatment effects reported for both the analysis of variance and covariance favor the Basal plus Phonics treatment in every instance except for the Vocabulary subtest in project two. However, no treatment by intelligence interactions were found to be significant in any of the projects. These two findings would indicate that the Basal plus Phonics approach was somewhat superior to the Basal approach for high intelligence, average intelligence, and low intelligence pupils alike and that the extent of this superiority was consistent across intelligence levels. Furthermore, there was no indication that one treatment was better for high-intelligence pupils, the other treatment better for lowintelligence pupils.

## Basal versus Language Experience Treatment Comparison

A summary of the within-projects analysis for the Basal versus Lanyuage Experience treatment comparison is presented in Table 7:09. Again only the treatment and treatment by interaction effects are reported. A number of treatment effects were fcund to be statistically significant in the various projects. In three of the four projects the differences favored the Language Experience approach while in the fourth project the differences favored the Basal approach. However, a number of significant treatment by intelligence interactions were found. Projects 1 and 3 reported significant interactions between treatment and intelligence on the Vocabulary subtest, while project 4 recorded significant interactions on all five subtests.

The reason for the interaction in project 4 is reported in Table 7:10. On each of the subtests the Language Experience approach was superior to the Basal approach for the upper three levels of intelligence. However, in each case the Basal approach produced higher performance for the low intelligence pupils. The data from project 4 would indicate that the less capable pupil would profit more from a Basal program while more capable pupils would profit from the Language Experience approach. However, this conclusion is tempered by the fact that significant project by treatment interactions were not found on the four reading-related achievement measures for the other three projects in the Basal versus Language Experience comparison.

Table 7：09
Selected Treatment Effects from Within Projects Analysis of Variance
and Covariance on Stanford Measures for Basal vs Language Experience Comparison （Blocking on Intelligence）

Effert	Selected Treatment Effects from Within Projects Analysis of Variance Covariance on Stanford Measures for Basal vs Language Experience Comparison （Blocking on Intelifgence）									
	$\underset{\mathrm{A}}{\text { Word Reading }}$		$\underset{\text { A }}{\text { Paragraph Meaning }}$		Vocabulary		Spelling		Word Study A	Skills
1 Treatment   Treatment $x$ Intelligence	$\begin{gathered} 17.36 \mathrm{~N} \\ .4 ? \end{gathered}$	43．25N	$\begin{aligned} & 9.39 \mathrm{~N} \\ & 1.24 \end{aligned}$	22.54 N	$\begin{array}{r} 19.46 \mathrm{~N} \\ 3.49 * \end{array}$	42．52N	$\begin{array}{r} 1.08 \\ .46 \end{array}$	． 03	$8.28 \mathrm{~N}$	23．09N
2 Treatment ${ }^{\text {Treatment }} \times$ Intelligence	$\begin{aligned} & 5.97_{12} \\ & 1.15 \end{aligned}$	5.60 n	$\begin{array}{r} .42 \\ 1.95 \end{array}$	． 10	1.43 .68	． 96	1.18 .46	． 75	$\begin{array}{r} .89 \\ 1.06 \end{array}$	． 49
3 Treatment Treationt $\times$ In $e$ eiligence	$\begin{aligned} & 6.23 \mathrm{~b} \\ & 2.02 \end{aligned}$	． 04	$\begin{gathered} 81.88 \mathrm{~B} \\ .92 \end{gathered}$	52.388	$\begin{aligned} & 1.52 \\ & 3.92 * * \end{aligned}$	． 68	$\begin{gathered} 5.24 \mathrm{~b} \\ .47 \end{gathered}$	1.12	$\begin{gathered} 17.22 \mathrm{~B} \\ 1.91 \end{gathered}$	1.84
4 Treatment   Treatment $x$ Intelligence	$\begin{aligned} & 17.86 \mathrm{~N} \\ & 10.46: 6.6 \end{aligned}$	20.68 N	$\begin{gathered} 8.88 \mathrm{~N} \\ 12.58 * * \end{gathered}$	9.65 N	$\begin{aligned} & .59 \\ & 8.22^{x: *} \end{aligned}$	． 54	$\begin{aligned} & 5.72 \mathrm{n} \\ & 6.34 * * \end{aligned}$	9．07N	$\begin{gathered} .52 \\ 10.82 * * \end{gathered}$	． 33

[^10]Tabl: 7:10
Unadjusted Stanford Means for Project Four in Basal vis Language Experience Comparison by Treatment and Level of Intelligence.

Level of Intelligence	Word Reading		Poxagrarh Meáning		Spelling		Word Study Ski.1s	
	Basal	LE	Basal	LE	Basal	LE	Basal	LE
High Intelligence 44 or more	19.4	25.9	20.3	28.6	12.3	16.3	38.7	4.5 .7
High-Middle Intel.ligence $39-43$	17.7	22.5	17.9	23.4	10.1	13.7	37.3	30. 8
Low-Middle Intelligencrs $34-33$	16.5	20.7	15.4	19.9	9.8	12.8	34.2	37.4
Low Intelligence 33 or less	13.1	İ. 5	12.7	9.2	6.0	4.3	28.4	23.4

Because the interactions were prinarily restricted to one project, the data were examined further. It was possible that an examination of performance on premeasures would reveal the reason for the significant interactions. Table 7:11 presents relevant information. The same pattern of performance existed on the premeasures as had been found on the Stanford Achievement Test. Within the lowest range of incelligence, Basal pupils scored better on readiness measures than did children in the Language lixperience treatment. Within the higher range of intelligense, hovever, Language Experience pupils were more ready for reading. This finding suggasts that the significant treatment by intelligence interactions on the post-instruntional achievement measures were simply a zeflection of treatment by project interactions on readiness measures. Low intelligence Basal pupils were more ready for reading in other respests thar were low intelligence Language Experience pupils and the: becare moxe sucressful readers. High intelligence ranguage Experiense pupils were more ready for reading in respects nther than inteligigence than were their high intelligeace Basal counterfarts and they becane better readers. Therefore, the fateractions jetween treatmeat and intelligence on the achievement measures probably is of little edacational significance.

Basal versus Linguistic Ireatment Comparison
The summary of the within-projents analysis for the basal vers's Linguistic treatment comparison is reported in Iable 7:12. The analysis of variance and analysis of covariance foint out a number of significant treatment differences, some favoring the Rasal approach and some favoring the Linguistic approach. However, only one significant treatment by intelligence interaction was found, that for the Vocabulary subtest. Therefore, there is nothing to indicate that the treatn ents operated differentiaily for pupils of high or low intelligence. In some projects the Basal approach was superior and the superiority was evident for all ranges of intelligence. In other projects the Linguistic approach was superior and the superiority held up across all ranges of intelligence.

## Basal versus Phonic/Linguistic Treatruent Comparison

Selected treatment effects from the within-projects analysis of the Basal versus Phonic/Linguistic comparisons are presented in Table 7:13. The analysis of variance and analysis of covariance found many significant treatment differences favoring the Phonic/Linguistic treatment. However, only two treatment by project interactions were found to be significant. One of these interactions involved the Vocabulary subtest while the other involved the Paragraph Meaning subtest. Therefore, it is apparent that the Phonic/Linguistic probram was superior across all levels of intelligence. There was no indication that che Basal approach was better for pupils of a given incellectual capability while the Phonic/Linguistic program was bettex for pupils of a different level of intelligence.
Tab1e 7:11
Unadjusted Premeasure Means for Project Four in Basal vs Language Experience Comparison

	Murpliz-Murrell Phonemes		Murply-Durrell   Letter Names		Murphy-Durrell Learning Rate	
Level	Basal	LE	Basal	LE	Basd	LE
High Intelligence   44 or more	19.2	23.7	20.0	26.1	22.6	24.5
High-Middle Intelligence $39-43$	19.4	22.9	19.0	23.8	22.1	22.3
Low-Middle Intelligenc: $34-38$	19.2	22.7	18.4	22.1	19.4	27.7
Low Intelligeince 33 or less	18.0	17.8	13.2	16.3	18.9	17.4


Tabīe 7:12
Selected Treatment Effects from Within Projects Analysis of Variance and Covariance on Stanford Ileasures for Basal vs Linguistic Comparison (Blocking on Intelligence)

	Word Reading		ParagraphA	$\begin{aligned} & \text { Meaning } \\ & \mathrm{C} \end{aligned}$	Vocabulary		Spelling		Word Study A	$\begin{aligned} & \text { Skills } \\ & \text { C } \end{aligned}$
Effrct	A	C			A	C	A	C		
1 Treatment   Treatmer: $x$ Intelligence	$\begin{gathered} 24.92 \mathrm{~N} \\ 1.61 \end{gathered}$	44.46 N	$\begin{aligned} & .04 \\ & . ~ \end{aligned} 97$	. 33	$\begin{array}{r} .33 \\ .83 \end{array}$	2.95	$\begin{aligned} & 7.12 \mathrm{~N} \\ & 1 . .58 \end{aligned}$	9.56 N	$\begin{array}{r} 3.06 \\ .31 \end{array}$	$5.78 n$
2 Treatment $\begin{aligned} & \text { Treatment } x \text { Intelligence }\end{aligned}$	$\begin{aligned} & 1.98 \\ & 1.06 \end{aligned}$	. 57	$\begin{gathered} 4.43 b \\ .41 \end{gathered}$	2.84	$\begin{aligned} & 12.34 \mathrm{~B} \\ & 4.32 * * \end{aligned}$	10.56B	$\begin{gathered} 15.98 B \\ .13 \end{gathered}$	15.02B	$\begin{aligned} & 9.81 \mathrm{~B} \\ & 1.00 \end{aligned}$	7.19B
E Treatnent Treatment $x$ Inteiligence	$\begin{aligned} & .01 \\ & .99 \end{aligned}$	6.77 N	$\begin{gathered} \text { 28. } 99 \mathrm{~B} \\ .76 \end{gathered}$	22.45B	$\begin{aligned} & 9.893 \\ & 1.19 \end{aligned}$	1.82	$\begin{gathered} 17.69 \mathrm{~B} \\ .67 \end{gathered}$	11.40B	$\begin{gathered} 6.66 B \\ .55 \end{gathered}$	1.06

[^11]Table 7:13


[^12]For four of the five Basal versus non-Basal treatment comparisons there was no evidence $o^{f}$ tifferential treatment effects according to pupil intelligence. Eıfaer no difference between the Basal and nonBasal treatment existed or the stperior treatment operated in the same fashion across all levels of incelligence. On the other hand, there was some evidence in the analysis, $f$ the Basal versus Language Experience comparison that the Language Experience apprcach was supcrior for average and above-average pupils, while the jasal approach was better for the pupils at the lowest level of intelligence. This finding, however, has limited sigaificance in light of the fact that differences between treatiments in performance on premeasures other than intelligence were very similar to the differences found on achievement measures.

## Blocking on Phouemes

Pupils were classifift as having high, average, or low auditory discrımination by n+tirg up cutoff points on the Murphy-Durreli Phonemes Test. The cutoff points ware established so that approximately one-third of the total population fell into each of three categories. Infor ation concerning the numbers of pupils from each of the projects who $f \in 11$ in each of the auditory discrimination levels is reported in the Appendix. Smmaries of the across-projects and within-projects analyses are also reported in the appendix. The results can be summarized by stating that except for the Basal versus Language Experience comparison, very few treatment by auditory discrimination interactions were found to be significant. Where treatment diffe: ces were $f$ and to be significant in a Basal versus nonEasal comparison the usual finding was that the superior treatment was superior over all three levels of auditory discrimination. There was ric indication that Basal and ron-Basal treatments operated dirferentially for the three levels of auditory discrimination. Tables similar to those presented for the various treatnent comparisons blocked on intelligence, re presented in the Appendix for the various treatment comparisons bıicked on the ilurphy-Durrell Phonemes Test.

Auditory discrimination by treatment interactions were found to be significant in the Languaf̧e Experience versus Basal comparisons. Pupils with 10 auditory discrimination profited more from instruction in $a$ basal program while pupils wit! average and nigh auditory discrimination gained more from a Lang: age Experience approach. However, this finding 三ioair. must be interpreted in light of an identical treatment by auditory discrimination interaction on many premeasures. Basal pupils in the low anditory discrimination group were superior to similar Language Experience pupils $c$ he Lette: Names, Learning Rare, and Pintner-Cunningham Primary fest. The
reverse was true of pupils with high auditory discrimination skills. Among this group, the Language Experience pupils were superior in performance on the premeasures. This interaction involving premeasures probably explains the interaction involving post-measures.

## Blocking on Letter Knowledge

An analysis similar to the one used blocking on inteiligence and auditory discrimination was conducted blocking on letter knowledge. Pupils were placed in approximately equal numbers in four categories according to letter knowledge as measured by the Murphy-Durrell Letter Names Test. The numbers of pupils within each project who were placed in the four levels of letter knowledge are presented in the Appendix. Summaries of the analysis of variance and analysis of covariance pertinent to this aspect of the data analysis are also presented in tie Appendix. In general, the results showed that few if any significant treatment by letter knowledge interactions were found for the Basal versus I.t.A., Basal versus Basal plus Phonics, Basal versus Linguistic, and Basal versus Phonic/Linguistic comparisons. Whenever treatment differences were founo to be significant, the superior treatment was superior across all levels of letter knowledge. There was no indication that the Basal treatment was particularly effective for pupils with high or low letter knowledge while the nonBasal treatment was more effective for pupils with the opposite characteristics.

This finding did not hold true for the Basal versus Language Experience comparison. In that treatment comparison a number of treatment by letter knowledge interactions (mostly in one project) were found to be significant. An examination of the data revealed that these interactions resulted from the fact that pupils low in letter knowledge profited more from the Basal approach while pupils at the higher levels of letter knowledge achieved better under the influence of the language arts program. However, the same problem of dissimilarity in readiness characteristics of Basal and Language Experience pupils that existed in the analysis blocking on intelligence and the analysis blocking on auditory discrimination was evident also in this case. The significant treatment by letter knowledge interactions on achievement measures appeared to be merely reflections of treatment by letter knowledge interactions on other premeasures.

Summary
For four of the five Basal versus non-Basal comparisons there was no evidence of a differential treatment effect for various levels of intelligence, auditory discrimination, or letter knowledge. Very few, if any, significant creatment by intelligence, treatment by auditory discrimination, or treatment by letter knowledge interaction effects were found to be significant. This finding of no interaction between
treatment and readiness characteristics generally held true for the Basal versus I.T.A., Basal versus Basal plus Phonics, Basal versus Linguistic, and Basal versus Phonic/Linguistic treatment comparisons.

A somewhat different conclusion could be drawn from the analysis involving the Basal versus Language Experience comparison. For this treatment comparison, a number of treatment by intelligence, treatment by auditory discrimination, and treatment by letter knowledge interactions were found to be significant. The interactions resulted from the fact that the least mature pupils achieved better in a Basal program than in a Language Experience program. Conversely, more capable students with respect to these skills profited more from a Language Experience approach. It should be emphasized again, however, that this finding probably resulted from similar differential readiness characteristics of Basal and Language Experience pupils and therefore, has questionable significance.

## CHAPTER VIII

## COMPARISON OF CLASS MEAN AND INDIVIDUAL ANALYSIS

There is a continuing controversy in educational research about the relative merits of using individual pupils or classes as the experimental unit. Many authorities of experimental design insist that in typical classroom experimentation, the class should be considered the experimental unit. This belief is based on at least two reasons. First, classes or teachers (and not pupils) are usually assigned to experimental treatment. Secondly, regardless of the sampling technique employed, pupils within a given class have a number of things in common in addition to the experimental treatment which might tend to make the class a more reasonable experimental unit. For one thing they have the same teacher. Furthermore, they are subject to the sane extraneous factors such as class disruptions which are common to aill individuals in a classroom and are peculiar to that classroom.

The techniques of analysis utilized in this study made possible a comparison of the results which were obtained using either the class or the individual as the experimental unit. For the major section of the analysis, that involving instructional methodology reported in Chapter VI, half-class means computed separately for males and females were used as the experimental variable. This procedure seemed to te appropriate coñidiering the designs of the individual studies and the arguments advanced in the last paragraph. However, the analysis designed to test for differential treatment effects according to level of readiness as reported in Chapter VII used the individual pupil as the experimental unit. Treatment effects were evaluated in both analyses and in each case the analysis was based on exactly the same subjects. Therefore, it is possible to compare the findings to determine the extent of agreement.

Before comparing the results, a word should be said about the comparability of the two analyses. Although the same individuals were used, the analyses differed in minor ways over and above the different experimental units cmployed. In the analysis of variance based on individual pupils, intelligence, sex, and treatment were used as blocking variables. Only sex and treatment were blocked in the class mean analysis. The covariance analyses differed somewhat also. In the class mean analysis, the Pintner-Cunningham Primary Intelligence Test was used as a covariate along with the MurphyDurrell Phonemes, Murphy-Durrell Letter Names, Murphy-Durrell Learning Rate, Thurstone-Jeffrey Identical Forms, Metropolitan Word Meaning,
and Metropolitan Listening subtests. In the individual pupil analysis, the Pintner-Cunningham test was used as a blocking variable while the six readiness tests listed above, along with the Thurstone Pattern Copying Test, were used as covariates. It is difficult to assess the effect that these differences would have on the evaluation of treatment differences, but they should be considered in interpreting the comparisons of class mean and individual analyses presented in this chapter.

Comparisons of the results are reported in Tables 8:01, 8:02, 8:03, 8:04, and 8:05. Table 8:01 records the comparisons for the Basal versus I.T.A. treatments. The upper section of the table compares the analysis of variance within projects for each achievement variable. The lower section of the table reports the comparison of covariance analyses. In the two analyses of variance, five more significant treatment differences were found in the individual analysis than were found in the class mean analysis. Moreover, in every case where significant differences were found in the class mean analysis they were also found in the individual analysis. A similar situation existed in the twc analyses of covariance. Six additicnal significant treatment differences were found in the individual analysis. Aga_n there were no cases where a significant treatraent difference was found in the class mean analysis but not in the individual analysis. Therefore, in the I.T.A. versus Basal comparison more significant differences were reported in the analysis which used individuals as the experimental unit.

Comparisons of the two analyses for the Basal versus Basal plus Phonics treatments are recorded in Table 8:02. Here again the individual analysis resulted in more significant treatment differences. In the analysis of variance using individuals as the experimental unit four significant treatment differences were found that were not found to exist in the class mean analysis. Furthermore, twelve significant treatment differences were found for the various achievement subtests within projects in the individual covariance analysis while only five significant treatment differences were found when class means were used as the experimental unit. The class mean analysis again proved to be a much more conservative analysis.

The same pattern emerged in the comparison of Basal versus Language Experience treatments in Table 8:03. Whereas the analysis of variance using class means as experimental units produced only two significant treatment differences for the various outcome measures withiü projects, the analysis of variance which employed individuals as the experimental unit reported eleven significant treatment differences. The differences in the two analyses of covariance were not as striking but followed the same trend. Six

$$
u \nvdash^{\circ} \mathrm{S}
$$

?

$$
\begin{aligned}
& \text { z } \\
& \dot{0}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N} \nabla^{\circ} \cdot \mathrm{LL} \\
& 98^{\circ} \mathrm{L}
\end{aligned}
$$

Comparison of Treatment Differences in Class Mean and Individual Analyses for the Basal vs I.T.A. Treatments

$$
\begin{gathered}
.5 \\
.1 \\
12.7 \mathrm{~N} \\
.1 \\
55.6 \mathrm{~N}
\end{gathered}
$$

Table 8:01
Analysis of Variance
Word Reading Paragraph Meaning Vocabulary Spelling Word Study Skills
 Analysis Analysis Analysis Analysis Analysis Analysis Analysis Analysis Analysis Analysis

$$
\begin{gathered}
.0 \\
5.6 \mathrm{~b}
\end{gathered}
$$

$$
3.2
$$

Analysis of Covariance

$$
\begin{array}{r}
.1 \\
1.0
\end{array}
$$

$$
\begin{aligned}
& 1.0 \\
& 1.1
\end{aligned}
$$

$$
4.7 \mathrm{~b}
$$

$$
3.5
$$

$$
\begin{aligned}
& 7.5 B \\
& 4.6 b
\end{aligned}
$$

$$
\begin{gathered}
15.7 \mathrm{~N} \\
35.3 \mathrm{~B} \\
2.6
\end{gathered}
$$

$$
71.4 \mathrm{~N}
$$

!

$$
\because
$$

| Fry | 2.5 | 12.3 N | .2 | .0 | .2 | .6 | 5.8 b | 15.6 B | 3.1 | 11 lN |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hahn | 1.9 | 5.5 n | .3 | .9 | .0 | .0 | 8.7 B | 32.7 B | .2 | .2 |
| Hayes | 17.1 N | 60.2 N | 1.3 | 0.8 N | .2 | .1 | 21.4 N | 69.6 N | 9.0 N | 31.1 N |
| Mazurkiewicz | 9.0 N | 28.3 N | 1.6 | 11.4 N | .0 | .0 | 23.2 B | 81.0 B | .8 | .2 |
| Tanyzer | 29.9 N | 176.4 N | 11.4 N | 81.2 N | .4 | 2.0 | .7 | 9.7 N | 10.9 N | 90.4 N |


Table 8:03
and Individual Analyses for the Basal vs Language Experience Treatments
Analysis of Variance

Analysis of Covariance
NOTE: Significant treatment difference favoring Language Experience indicated by $N$ or $n$, Basal by $B$ or b.
significant differences were found in the class mean analysis, but nine differences were found to be significant in the individual araiysis.

Compariscns of the two analyses for the Basal vereus Linguistic treatinents are reported in Table 8:04. Again the class mean analysis resuited in fewer significant treatmert differences. In the anaiysis of variance based on class means, only one significant treatinent difference was found. However, in the analysis of variance based on individuals, ten such differences existed. The analysis of covariance on class means found three significant differences, while the covariance analysis using individuals reported nine significant treatment differences.

The differences between the two sets of analyses were not as extersive for the Basal versus Phonic/Linguistic treatments. As reported in Taj̉e 8:05 the analysiz of variance based on class mans reported eight significant treatment differences. A similar analysis based on individuals found tweive significant treatment differences. Moreover, seifn differences were found to be significant in the analysis of covariance using class means as the experimental unit. This result cumpares with twelve significant treatment differences for the covariance analysis based on indivis'uals.

It is evident from the data presented in this chapter that the dac̃a analysis based on class means as tie experimental unit was much more conseivative than an analysis based on pupils. Furthennore, it was apparent from the design of most of the individual projects that the class mean was clearly the appropriate experimental init. How ever, the data reported on the tables in this clapter clearly demonstrate that quite different findings regarding the reiative effectiveness of methods would have been obtained had the individual analysis leen considered the appropriate techrique.

## CHAPTER IX

## RELATIVE INFLUENCE OF TREATMENT AND PROJECT

Despite the fact that previous chapters have shown significant project by treatment interactions and significanc project effects in the analysis of method, it was decided that a combined analysis including all projects and ignoring project lines would be undertaken. The purpose of this analysis was to rank all treatments in all projects on the Word Reading and Paragraph Meaning tests vhen certain pupil and teacher characteristics were controlled by means of covariance. Differences among treatments in pupil readiness for reading were adjusted by using scores from the Murphy-Durre11. Phonemes, Murphy-Durrell Letter Names, Metropolitan Word Meaning, Metropolitan Listening, and Pintner-Cunningham tests as covariates. Differences among treatments in teacher experience ware also adjusted in the analysis of covariance. The analysis was performed on class means computed separately for boys and girls and each treatment witnin each project was considered a unique treatment. Three projects were not included in this analysis because of missing data.

The distribution of adjusted treatment means was studied to determine the relative position of the various instructional programs and the relative ranking of projects. Interest was focused on whether instructional method or project was the more important factor in determining the success or lack of success of a particular treatment within a particular project. If any specific treatment produced relatively superior readers regardless of the project in which it was included, this would tend to point up the importance of method. If, on the other hand, all of the treatments within any particular project were relatively successful or unsuccessful, this would tend to point up the importance of project rather than method, It should be emphasized that this analysis was net performed to evoluate the relative effectiveness of approaches to beginning reading instruction. The analysis report in Chapter VI was considered the appropriate one for that purpose.

The covariance analyses controlifing on reading readiness and teacher experience were tun for boys and girls separately. This was done because of the large sex differences foand to exist in achievement at the end of the fizst grade. Carrying out the analysis separately for boys and girls also made it possible to comare the treatment rankings for the two sexes to look for similarities or differences. Tables $9: 01$ and 9:02 give the results in rank order of achievement for the project treatinent variables for boys and girls on

Table 9:0?

Rank Order of Project Treatment on Stanford Word Reading Test*

Rank	Proi	Males Treatments	Adjusted Mean Scores	Grade Scores	Rank	Pros	Pemales   Treatments	Adjusted Меаи Scores	Grade   Scores
1	A	Phonic/ Linguistic	27.5	2.2	1	A	Phonic/ binguistic	30.2	2.5
2	A	ITA	25.7	2.0	2	A	ITA	27.0	2.2
3	C	Rasal + Shonics	24.8	1.9	3	C	Basal + Phonics	26.5	2.1
4	D	Ind. Read.	23.4	1.9	4	D	Ind. Read.	24.9	1.9
5	A	Basal +   Phonics	23.3	1.9	5	E	Phonic/ Linguistic	24.3	1.9
6	B	Basal   Reader	23.2	1.9	6	B	Lang. Ex.	24.2	1.9
7	E	Phonic/ Linguistic	23.1	1.9	7	C	Basal + Ph.   + Hriting	23.7	1.9
8	C	BR	22.4	1.8	8	$\dot{\boldsymbol{A}}$	$\mathrm{BR}+\mathrm{Ph}$	23.6	1.9
9	G	ITA	22.1	1.8	9	C	BR	23.4	1.9
10	C	$\begin{aligned} & \mathrm{BR}+\mathrm{Ph}+ \\ & \text { Writing } \end{aligned}$	21.9	1.8	10	G	Phonic/ Linguistic	23.3	1.9
11	G	Phonic/ Linguistic	21.7	1.8	11	0	Prog Ling	23.1	1.9
12	M	Lang. Ex.	21.2	1.8	12	G	ITA	23.0	$\therefore .9$
13	0	Prog Ling	21.0	1.8	13	A	BR	22.0	1.8

[^13]Table 9:01 (continued)

Rank	Pro4	Males Treatments	Adjusted Mean Scores	Grade   Scores	Rank	Pros 1	Females Treatments	Adjusted Mean Scores	Grade Scores
14	E	BR by Sex Group	20.6	1.7	14	M	ITA	21.7	1.8
15	B	Lang. Exp.	20.6	1.7	15	Q	ITA	21.6	1.8
16	A	BR	20.5	1.7	16	F	$\begin{aligned} & \mathrm{BR}+\mathrm{Ph}+ \\ & \text { Vis (N) } \end{aligned}$	21.4	1.9
17	M	ITA	20.4	1.7	17	B	BR	21.4	1.8
18	$F$	$\begin{gathered} \mathrm{BR}+\mathrm{Ph}+ \\ \mathrm{Vis}(\mathbb{N}) \end{gathered}$	20.2	1.7	18	M	Lang. Exp.	21.2	1.8
19	L	ITA	20.2	1.7	19	M	BR	20.7	1.7
20	Q	ITA	20.0	1.7	20	0	Prog. Ling. + Meaning	20.6	1.7
21	$T$	Modifier Ling.	20.0	1.7	21	H	Lang. Exp.	20.6	1.7
22	H	Lang. Exp.	19.4	1.1	22	E	BR by Sex Group	20.5	1.7
23	M	BR	19.3	1.7	23	P	Readiness	20.5	1.7
24	P	Readiness	19.2	1.7	24	L	ITA	20.4	1.7
25	D	BR	19.2	1.7	25	E	BR	20.4	1.7
26	K	BR	19.0	i. 7	26	K	BR	20.3	1.7
27	I	SY-TT	18.9	1.7	27	I	SM-TT	20.3	1.7
28	F	$\begin{array}{r} \mathrm{BR}+\mathrm{Ph}+ \\ \text { Vis }(W) \end{array}$	18.8	1.7	28	J	Ind. Read.	20.3	1.7
29	is	$\overline{i n}$	18.6	1.7	29	S	$\mathrm{Bi}+$ Group Consult	20.1	1.7


Rank	Proí	Males   Treatments	Adjusted Mean Scores	Grade   Scores	Rank	Proj	Females Treatments	Adjusted Mean Scores	Score Scores
30	0	Prog. Ling.   + Meaning	18.6	1.7	30	K	Linguistic	20.1	1.7
31	K	Linguistic	18.6	1.7	31	P	BR	20.1	1.7
32	E	BR	18.6	1.7	32	D	BR	20.1	1.7
33	R	BR + Ph	18.5	1.7	33	F	BR + Ph (w)	19.6	1.7
34	S	BR + Group Consult	18.5	1.7	34	L	Diacritical Marking	19.6	1.7
35	L	Diacritical Marking	18.4	1.7	35	T	Modified Ling.	19.6	1.7
36	F	BR (N)	18.3	1.7	36	I	$\begin{gathered} \text { BR + } \\ \text { Remedial } \end{gathered}$	19.4	1.7
37	S	BR + Indiv. Consult	23.3	1.7	37	I	HMR	19.4	1.7
38	J	Lang. Exp.	18.2	1.7	38	J	Lang. Exp.	19.4	1.7
39	J	BR	18.2	1.7	39	Q	BR	19.3	1.7
40	J	Ind. Read.	18.1	1.7	40	F	$\begin{aligned} & \mathrm{BR}+\mathrm{Ph} \\ & +\mathrm{Vis}(\mathrm{~W}) \end{aligned}$	19.2	1.7
41	P	BR	18.1	1.7	41	J	BR	19.1	1.7
42	Q	BR	17.8	1.6	42	$F(\mathrm{~N})$	BR	18.9	1.7
43	I	BR	17.7	1.6	43	S	BR + Indiv. Consult	18.9	1.7
44	R	$\underset{\text { Writing }}{\text { BR }+\mathrm{Ph}+}$	17.6	1.6	44	L	BR	18.8	1.7
45	0	BR	17.6	1.6	45	R	$\mathrm{BR}+\mathrm{Ph}$	18.7	1.7

Table 9:01 (continued)

Rank	Prod	Males Treatments	Adjusted Mean   Scores	Grade Scores	Pwnk	Proj	Females Treatments	Adjusted Mean   Scores	$\begin{aligned} & \text { Score } \\ & \text { Sc:res } \end{aligned}$
46	N	BR + Teacher Training	17.5	1.6	46	F	BR (W)	18.4	1.7
47	H	BR	17.5	1.6	47	R	$\begin{gathered} \text { BR + Ph + } \\ \text { Writing } \end{gathered}$	18.3	1.7
48	$F$	$\mathrm{BR}+\mathrm{Ph}(\mathrm{W})$	17.5	1.6	48	R	BR	18.3	1.7
49	$F$	$\mathrm{BR}+\mathrm{Ph}(\mathrm{N})$	17.1	1.6	49	F	$B R+D h(N)$	18.2	1.7
50	N	BR	17.1	1.6	50	0	BR	18.0	1.7
51	I	H:	17.0	1.6	51	H	BR	17.9	1.6
52	I	BR + Remedial	17.0	1.6	52	N	BR + Teacher Training	17.9	1.6
53	F	BR (W)	16.8	1.6	53	I	BR	17.8	1.6
54	T	BR	16.4	1.6	54	$\mathbf{U}$	BR	17.7	1.6
55	R	BR	16.3	1.6	55	T	BR	17.4	1.6
56	T	Linguistic	16.0	1.6	56	$\mathbf{N}$	BR	17.3	1.6
57	U	BR	15.8	1.5	57	$T$	İnguistic	17.2	1.6
58	0	$B R+$ Meaning	15.7	1.5	58	U	Lang. Exper.	17.1	1.6
59	U	Lang. Exper.	15.6	1.5	59	G	BR	16.5	1.6
60	G	BR	15.3	1.5	60	0	BR + Meaning	15.9	1.5

Table 9:01 (continued)

Prog	Males Treatments	Adjusted   Mean   Scores	Grade Scores	Prod	Females Treatments	Adjusted Mean Scores	Grade   Scores
v	BR	21.1	1.8	W	OAE	21.9	1.8
v	Lang. Exper.	20,0	1.7	V	BR	21.4	1.8
W	OAE	19.8	1.7	W	NOA	20.8	1.7
W	OAS	19.8	1.7	v	Lang. Exper.	20.7	1.7
v	English as 2nd Language	19.1	1.7	W	OAS	20.6	1.7
W	NOA	18.0	1.7	V	English as 2nd Language	19.1	1.7
x	Aud-Vis	17.8	1.5	X	Lang. Exper.	18.9	1.7
X	Lang. Exper. + DTR	17.7	1.6	X	DTR	18.1	1.7
X	Lang. Exper.   + Aud-Vis	17.2	1.6	X	Lang. Exper.   + Aud-Vis	17.6	1.6
X	DTR	16.8	2.6	X	Alch-Vis	16.9	1.6
X	Easy to Read Books	16.1	1.6	X	Easy to Read Books	16.2	1.6
X	Lang. Exper.	15.7	1.5	X	Lang, Exper. + DTR	15.5	1.5
x	Lang. Exper.   + Easy to   Read Books	13.5	2.4	X	Lang. Exper.   + Easy to   Read Books	14.5	1.5

Table 9:02

Rank Order of Project-Treatnent on Stanford Paragraph Meaning Test*

Rank	Pros	$\begin{aligned} & \text { Males } \\ & \text { Treatments } \end{aligned}$	Adjusted Mean Scores	Crade Scores	Rank	Pros	Females Treatments	$\begin{gathered} \text { Adjusted } \\ \text { Mean } \\ \text { Scores } \end{gathered}$	Grade   Scores
1	A	Phonic/ Linguistic	25.9	1.9	1	A	Phonic/ Linguistic	29.9	2.2
2	B	BR	24.8	1.9	2	B	Lang. Exper,	27.9	2.0
3	C	$\mathrm{BR}+\mathrm{Ph}$	24.0	1.9	3	C	$\mathrm{BR}+\mathrm{Ph}$	26.5	2.0
4	A	ITA	22.9	1.8	4	A	$\mathrm{BR}+\mathrm{Ph}$	26.1	2.0
5	B	Lang, Exper.	22.5	1.8	5	D	Ind. Read.	25.7	1.9
6	f.	$\mathrm{BR}+\mathrm{Fh}$	22.1	1.8	6	A	ITA	25.6	1.9
7	D	Ind. Read.	22.1	1.8	7	C	$\begin{gathered} \mathrm{BR}+\mathrm{Ph}+ \\ \text { Writing } \end{gathered}$	24.9	1.9
8	A.	BR	20.5	1.7	8	A	BR	24.9	1.9
9	C	BR	20.4	1.7	9	B	BR	24.3	1.9
10	E	BR by Sex Group	20.1	1.7	10	E	Phonic/ Linguistic	22.4	1.8
11	F	$\begin{gathered} \mathrm{BR}+\mathrm{Ph}+ \\ \text { Vis }(\mathrm{N}) \end{gathered}$	29.8	1.7	ii	E	BR by Sex Group	22.2	1.8
12	E	Phonic! Linguistic	19.7	1.7	12	J	Ind. Read.	22.1	1.8
13	C	$\begin{gathered} \mathrm{BR}+\mathrm{Ph}+ \\ \text { Writing } \end{gathered}$	19.5	1.7	13	I	$S M+T T$	21.9	1.8

* Analysis of covariance adjuated Ior Paonerser, Total Letters, Meaning, Listening, Intelligence, and Teacherw' Yaars of Experience.

Table 9:02 (continued)

Rank	Pros	Males Treatments	$\begin{gathered} \text { Adjusted } \\ \text { Mean } \\ \text { Scores } \end{gathered}$	Grade Scores	Rank	Pro, 1	Fenaler   Treatn ints	Adjusted Mean Scores	Grade   Scores
14	G	ITA	19.3	1.7	14	F	$\begin{gathered} \mathrm{BR}+\mathrm{Ph}+ \\ \mathrm{Vis}(\mathrm{~N}) \end{gathered}$	21.8	1.8
15	H	Lang. Exper.	18.9	1.7	15	$E$	BR	21.5	1.8
16	I	$S M+T T$	18.6	1.7	16	C	BR	21.4	1.8
17	F	BR ( $\mathrm{A}^{\text {) }}$	18.4	1.7	17	G	ITA	21.3	1.8
18	J	BR	18.3	3. 7	18	F	$\mathrm{FR}+\mathrm{Ph}(\mathrm{W})$	21.2	1.8
19	K	BR	18.2	1.7	19	I	HMR	21.1	1.8
20	$F$	$\begin{gathered} \mathrm{BR}+\mathrm{Ph}+ \\ \mathrm{Vi}:(\mathrm{W}) \end{gathered}$	18.1	1.7	20	F	$\mathrm{Bh}+\mathrm{Ph}$ (N)	21.1	1.8
21	L	BR	17.9	1.7	21	$F$	BR (1)	21.0	1.8
22	M	Lang. Exper.	17.8	1.7	22	D	BR	20.9	1.7
23	E	BR	17.8	1.7	23	H	Lang. Exper.	20.9	1.7
24	F	$\mathrm{BR}+\mathrm{Ph}(\mathrm{N})$	17.7	1.7	24	M	Lang. Exper.	20.8	1.7
25	H	BR	17.6	1.7	25	J	BR	20.7	1.7
26	F	BR (W)	17.6	1.7	26	G	Phonic/ Linguistic	20.6	1.7
27	N	BR + Teacher Training	17.6	1.7	27	M	BR	20.5	1.7
28	$\pm$	BR	17.6	1.7	28	I	$B R+R e m e d i a l ~$	20.5	1.7
29	K	Linguistic	17.5	1.7	29	J	Lang. Exper.	20.4	1.7
30	0	BR	17.5	1.7	30	F	BR (W)	20.2	1.7
31	J	Lang. Exper.	17.5	1.7	31	K	BR	20.1	1.7

Table 9:02 (continued)

Rank	Pros	Males   Treatments	Adjusted Mean Scores	Grade   Scores	Rank	Pros	Females Creatments	Adjusted Mean Scores	Grade   Scores
32	D	BR	17.4	1.7	32	K	Linguistic	20.1	1.7
33	M	BR	17.2	1.7	33	Q	ITA	20.0	2.7
34	I	Readiness	16,9	1,6	34	M	ITA	19.7	1.7
35	P	Readiness	16.8	1.6	35	$I$	BR	19.7	1.7
36	G	Phonic/   Linguistic	16.8	1.6	36	0	Zrogramed Ifguistic	19.5	1.7
37	J	Ind. Read.	16.5	1.6	37	0	Irog. Ling.   + Meaning	19.5	1.7
38	L	Diacritical Marking	16.5	1.6	38	S	$\begin{gathered} \text { BR + Ind. } \\ \text { Supervis. } \end{gathered}$	19.5	1.7
39	F	$\mathrm{BR}+\mathrm{Ph}$ (W)	16.4	1.6	39	F	$\begin{gathered} \mathrm{BR}+\mathrm{Ph}+ \\ \mathrm{Vis}(W) \end{gathered}$	19.3	1.7
40	Q	ITA	16.4	1.6	40	R	$\begin{gathered} \mathrm{BR}+\mathrm{Ph}+ \\ \text { Writing } \end{gathered}$	19.2	1.7
41	I	BR + Remedial	16.3	1.6	41	P	BR	19.2	1.7
42	R	$\begin{gathered} \mathrm{BR}+\mathrm{Pn}+ \\ \text { Writing } \end{gathered}$	16.3	1.6	42	S	$B R+G r o u p$ Supervis.	-9.1	1.7
43	N	BR	16.3	1.6	43	L	Diacritical Marking	19.1	1.7
44	M	ITA	16.3	1.6	44	N	BR + Teacier Trainsng	18.8	1.7
45	L	ITA	16.3	1.6	45	P	Readiness	18.8	1.7
46	S	BR + Group Supervis.	16.2	1,6	46	L	BR	18.7	1.7

Table 9:02 (continued)

Rank	Pros	Males Treatments	Adjusted Mean Scores	Grade Scores	Rank	Pros	Femalec Treatments	Adjusted Mean Scores	Grade   Scores
47	$T$	BR	16.1	1.6	47	U	BR	18.3	1.7
48	S	$\begin{aligned} & \text { BR + Indiv. } \\ & \text { Supervis. } \end{aligned}$	16.0	1.6	48	H	BR	18.2	1.7
49	0	Prog. Ling.   + Meaning	16.0	1.6	49	R	$\mathrm{BR}+\mathrm{PH}$	18.1	1.7
50	Q	BR	15.9	1.6	50	L	ITA	13.0	1.7
51	P	BR	15.8	1.6	51	Q	BR	18.0	1.7
52	R	$\mathrm{BR}+\mathrm{Ph}$	15.7	1.6	52	M	BR	17.9	1.7
53	0	Prog. Ling.	15.5	1.6	53	T	BR	17.9	1.7
54	T	Modified   Linguistic	15.3	1.6	54	R	BF	17.7	1.7
55	R	BR	14.9	1.6	55	0	BR	17.3	1.7
56	U	BR	14.8	1.6	56	$T$	Modified Linguistic	16.8	1.7
57	$G$	BR	13.2	1.6	57	G	BR	15.2	1.6
58	$T$	Linguistic	12.9	1.6	58	U	Leng. Exper.	14.3	1.6
59	U	Lang. Exper.	11.8	1.5	59	T	Linguistic	13.9	1.6
60	0	BR + Meaning	11.5	1.5	60	0	$B R+$ Meaning	12.8	1.6

Table 9:02 (continued)

	Specia	projects	not in	ded i	in ranking		
Prof	Males   Treatments	Adjusted Mean Scores	Grade   Ssores	Proj	Females   Treatments	Adjusted Mean Scores	Grade   Scores
V	BR	20.3	1.7	W	NOA	21.5	1.8
W	OAS	18.4	1.7	V	BR	21.2	1.8
$v$	English as 2nd Language	18.3	2.7	W	OAE	20.5	1.7
W	OAE	17.0	1.7	v	English as 2nd Language	20.5	1.7
W	noe	16.8	1.6	W	OAS	20.3	1.7
v	Lang. Exper.	16.7	1.6	v	Lang. Exper.	19.1	1.7
X	Easy to Read Books	15.4	1.6	X	DTR	16.9	1.6
x	Lang. Exper.	14.2	1.6	X	Lang. Exper.	16.9	1.6
X	Lang. Exper.   + Aud-Vis	13.8	1.6	X	Easy to Read Books	16.0	1.6
X	DTR	13.6	1.6	X	Lang. Exper.   + Aud-Vis	15.8	1. ${ }^{\text {\% }}$
X	Lang. Exper. + DTR	13.1	1.6	X	Lang. Exper.   + DTR	14.0	1.6
X	Aud-Vis   Readiness	12.9	1.6	X	Aud-Vis   Resoiness	13.8	1.6
X	Lang. Exper.   + Easy to Read Books	10.0	1.5	X	Lang. Exper.   + Easy to   Read Books	12.1	1,6

the Word Reading and Paragraph Meaning subtests of the Stanford Achievement Test. The adjusted mean scores and the grade equivalents are given sc that relative differences in sutcomes can be interpreted. The twenty-one projects (encompassing sixty treatments) dealing with more typical school populations are listed in rank order in each table. Three projects which were involved with unusual populations are given at the bottum of each table in a separate listing. Two of these latter projects were devoted to study methods for Spanish-speaking c!ildren and one project worked only with potential disabled readers.

A study of the tables reveals that the rankings of the treatment variables are surprisingly similar for boys and girls. While, in general, the boys' adjusted scores are somewhat lower chan the girls' adjusted scores, the relative order of the treatments is quite similar. The fact that the rank orders of treatments are very similar for boys and girls supports the finding that no one method appears to be particularly suited for either males or females.

It is aiso apparent that the project within which a method is included has more influence on its rank order than do differences in the methods themselves. For example, the ranking of the treatments for boys on the Paragraph Meaning Test reveals that project A places all four of its treatments in the first eight highest ranks. The iocation or project $B^{\prime}$ 's two method variables shows the basic reader group ranking second among the sixty and the other method, Language Experience, ranking fifth out of the sixty possible ranks. Furthermore, basic reader methods ranked second (project B), eighth and ninth (projects $A$ and $C$ ), and also fifth-fifth, fifty-sixth, and fiftyseventh (projects $R, U$, and $G$ ) out of sixty. The differential effectiveness of methods apparent in these rankings is supportive of the treatment by project interactions described in earlier sections of this report. These interactions necessitated analyzing treatments within projects as described in Chapter VI. It is also apparent that the grade scores among treatments within projects are generally quite s'rilar.

After looking at the sirilarity of treatment effectiveness within projects, it was decided to compare teacher, school, and community characteristics of projects with the higkest overall ranking with similar characteristics of projects with the lowest overall ranking. This was done to idertify characteristics associated with relatively high and low project efficiency. This after-the-fact analysis could, of course, only be considered a matter of interest and is useful primarily for providing ideas for future research.

Teacher efficiency ratings for the five highest-ranking and five lowest-ranking projects are compared in Table 9:03. This table

Table 9:03

> Percentage of Teachers from
> High-Ranking and Low-Ranking Projects Categorized by Efficiency Rating

Upper 5 Projects (126 Classes)	Class Structure	
	Vague MEderately   Loose Well Structured	Well Orgenizea   Highly Structured
	$6 \%$ 13\%	$82 x^{*}$
Lower 5 Projects (181 Classes)	44\%\% 34\%	22\%
Class Participation		
Upper 5 Projects (126 Classes)	Low \& In One g:-osp does   Ireguent most cionii	Moderate to High
	9\% $21 \%$	70\%
Lower 5 Projects (181 Classes)	39\% \% 38\%	23\%
	Awareness of and Attention to Individual Pupil Heeds	
	Linj.ted Moderate   Avareneas	$\begin{aligned} & \text { Extensive } \\ & \text { Effective } \end{aligned}$
(126 Classes)	10\% 25\%	65\%
Lower 5 Projects (181 Classes)	35\% ${ }^{\text {c }}$ 50\%	15\%
	Overall Teacher Competence	
	Inconpetent or Poor   Adequate	Good to Brcelle
- (126 Clasises)	$7 \%$ 17\%	76\%
Lower 5 Projects (181 Classes)	38\% $38 \%$	248
	- Significant at . 01 Level	

shows substantial differences in teacher ratings. The gratest difference was demonstrated in the supervisors' rating of the teachers' ability to establish a well-organized c'issroom. The five high-ranking projects had eighty-one per cent of the classrooms rated by supervisors as being well-organized and highly structured, whereas the projects which ranked lowest had only twenty-two per cent so rated. Seventy per cent of the teachers in the hig. group of projects were also highly rated in amount of cl-ss participation by the pupils as cor ${ }^{\text {d }}$ with twenty-three per cent for the five lowest projects. The awaralass of and attention to the individual needs of the pupils also distinguished the teachers in the five top-ranking projects from teachers in the five low-ranking ones. The percentages were sixtyfive and fifteen respectively. It should be noted that more than one-third of the teachers in the low-ranking projects were rated as paying limited attention to or displaying total lack of awareness of the needs of the pupils being taught. The overall teacher competence was rated good or high for seventy-six per cent of teachers in the top-ranking projects as compared with twenty-four per cent for teachers in the bottom-ranking projects. Even more important is the fact that thirty-eight per cent of the teachers in the lowest projects were shown to have poor competence ratings, while only sever per cent of the teachers in the top group of projects were so rated by their supervisors. All of the differences in teacher ratings were significant at the .01 level. It should be pointed out that these findings contradict somewhat those presented in Chapter $V$ which report a negligible relationship between teacher effectiveness and reading achievement of pupils. This may result from the fact that correlations were computed for ali projects while in this analysis only the extremes were considered.

In other teacher characteristics, no such outstanding differences were found. Nevertheless Table 9:04 reveals that teachers in projects which ranked high were found to be somewhat more experienced, had slightly more training, and presented somewhat more advanced certification than did teachers who were in the projects which ranked lowest. In fact, the difference in the per cent of teachers vho held more than standard certification was significant at the .01 level.

Sciool and classroom characteristics tended to favor somewhat the high-ranking projects. As shown in Table 9:04 classes in this group were slightly smaller, averaging 24 pupils in the spring compared with 28 pupils in the low-ranking projects. The two groups of projects did not differ substantially with respect to the availability of a school librarian. Table 9:05 presents information comparing the high-ranking and low-ranking projects on the length of the typical school day. There is a mared tendency for the low-ranking projects
Table 9:04
Selected Teacher, Classroom, and Community Characteristics of High-Ranking and Low-Ranking Projects

Table 9:05

Length of School Day by Classrooms

to be associated with a shorter school day. Fifty-eight classrooms from the low-ranking group were in session four hours or less each day. Only one classroom from the top-ranking projects had such a short school day. Information concerning the length of the school year is presented in Taide 9:06. No clear trend is apparent here. Furthermore, since all projects agreed on a 140 day experimental period, the length of the school year would probably not influence the results of the study.

Community characteristics that were available for study showed very few distinct differences. Information about the median number of years education completed by adults in each community is presented in Table 9:07. The high-ranking and low-ranking projects do not appear to differ on this variable. Information about median income of adults in the community is presented in Table 9:08. One of ne low-ranking projects had all of its classrooms in the income range $\$ 1,001$ to $\$ 2,000$. Fxcept for this project very few obvious differences in median income are apparent. Table 9:09 presents the cost per pupil in average daily attendance for the various high-ranking, and low-ranking projects. The low-ranking projects tend to report higher costs per pupil. Information about the type of community in which a school is located is provided in Table 9:04. A greater number of schools were found in urban and suburban areas among the high-ranking projects while a significantly greater number of schools were found in rural areas in the low-ranking projects.

## Summary of Findings

1. In general, the project within which a method was studied had a greater influence on its location in rank among all the project treatments than did the specific method of instruction even when differences in pupil readiness and teacher experience were controlled by covariance. This finding supports the project by treatment interactions and significant project effects for treatments reported for other analyses in this investigation.
2. The ranking of the projects for boys and girls showed that the order of the project treatments was surprisingly similar. The boys' performance was consistently lower than the girls', but the order of ranking was so sinilar that no superiority of a method for boys in contrast to girls could be isolated. This finding is supportive of the lack of treatment by sex interactions fround in the other analyses conducted.
3. When the five highest-ranking projects were compared with the five lowest-ranking projects, certain teacher characteristics

Table 9:06

Length of School Year by Classrooms


Table 9:07

Median Number of Years' Education Completed by Adults by Classrooms

-je	Highest Ranking Projects					Lowest Ranking Projects				
No. of Years	A	B	C	D *	E	R.	T	0	Q	U
5										
6										
7										
8				1			1			
9		3						6		
10	20	8	10	2		36	2	5	48	1
11		5	20	2			5	5		11
12		3			2		12	5		29
13		4			22			1		12
14					6		1			1

* Only 5 classrooms reported.

Table 9:08

Median Income in Commuaty by Classrooms

Project	Highest Ranking Projects					Lowest Rarking Projects				
Income	A	B	C	D	E	R	T	0	Q	U
\$ $000-\$ 1,000$										
\$1,001-\$2,000						36				1
\$2,001-\$3,000				2						
\$3,001-\$4,000		1		6				6		4
\$4,001-\$5,000	20	2		11			1			4
\$5,001-\$6,000		8	10	4	9		2		48	15
\$6,001-\$7,000		5	20				8	10		16
\$7,001-\$8,000		3			8		2	3		13
\$8,001 - \$9,000					7		8	2		
More than \$9,000		4			6			1		1

Table 9:09

Cost Per Pupil in Average Daily Attendance by Classrooms

were found to be significantly different. Supervisor ratings of class structure, class participation, awareness of and attention to individual needs, and overall competence of teachers in the high-ranking projects were all significantly higher than were those of the teachers in the low-ranking projects. The top-ranking projects had a significantly greater per cent of teachers who held more than a standard teaching certificate than did the bottom-ranked projects. Teachers from favored projects also had sligintly more advanced training and somewhat more total and first-grade experience. These findings are somewhat different than ...ose reported in the correlation chapter of this report, where only slight but positive relationships between teacher characteristics and success of pupils were reported.
4. The projects which ranked highest had, on the average, a somewhat longer school day than did the projects which ranked lowest. Furthermore, the difference in class size, in the spring, of these two groups of projects was 24.2 and 28.2 , favoring the higher-ranked projects.
5. No marked difference was found in $L$ - community characteristics of these two groups of projects except that the bottom-ranked projects had significantly (at the one per cent level) more classrooms in rural situations than did the top-ranked projects.

## CHAPTER X

## SUMMARY AND CONCLUSIONS

This study was designed to obtain information relevant to three basic questions. (1) To what extent are various pupi.1, teacher, class, school, and community characteristics related to pupil achievement in first grade reading and spelling? (2) Which of the many approaches to initial reading instruction produces superior reading and spelling achievement at the end of the first grade? (3) Is any program uniquely effective or ineffective for pupils with high or low readiness for reading? The method in which tne data were analyzed also made it possible to compare the results of using the class and the individual pupil as the experimental unit.

Analysis of Relationships
Summary of Findings
The findings of the investigation relevant to question one can be summarized as follows:
(1) The single best predictor of first grade reading success anong the premeasures used in this investigation was the Murphy-Durrell letter Names Test. This test correlated between .52 and .60 with both the Stanford Word Reading and Stanford Paragraph Meaning subtests for each of the six treatments used in the investigation. (2) The Murphy-Durrell Phonemes and the Pintner-Cunningham Primary Test also correlated relatively well with the cri乞erion measures. Each of these tests correlated . 40 or greater with both the Word Reading and Paragraph Meaning subtests for each of the six treatments.
(3) The other readiness tests used in this study correlated positively with the reading measures but to a smaller extent. Correlations with reading were usually . 40 or less for these premeasures.
(4) For the subtests with the sest predictive ability (Letter Names, Phonemes, Pintner-Cunningham) there was little evidence of differential prediction of reading success in the programs used in this study. Correlations between these premeasures and reading were very similar for pupils in the Basal, I.T.A., Basal plus Phonics, Language Experience, Linguistic, and Phonic/Linguistic groups.
(5) A correlation coefficient of .86 was found between the Fry Test of Phonetically Regular Words and the Gates Word Pronunciation Test for the Ba'sal treatment. Each of these tests was administered individually to a sample but they differed in the degree to which words were controlled on the basis of sound-symbol reguiarity. The Fry Test consisted of words with high regularity while the Gates

Test consisted of words selected on the basis of frequency of usage with no control of sound-symbol relationship. Furthermore, the Word Reading subtest from the group-administered Stanford Achievement Test correlated .72 with the Fry Word List and .78 with the Gates Word Pronunciation Test for the Basal group. Correlations for the treatments other than Basal were very similar.
(6) For the range of class sizes reprrted in this stuad there was a negligible correlation between class size and reading achievement. Furthermore, in this study pupil absence and chili age were negatively related to the various reading measures. However, these correlations were alsc negligible with the largest of them being -. 22 .
(7) The total experience of teachers correlated between . 24 and .34 with the five Stantrrd fichievement measures. Teacher experience in the first grade correlated between . 20 and .30 with the same masures. A rating of general overall teacher efficiency correlated between . 10 and .22 with the five achievement measures.
(8) The accuracy score on the Gilmore Oral Reading Test correlated between . 81 and .90 with the Gates Word Pronunciation Test for the various reading programs.
(9) The Stanford Word Reading test, a measure of word recognition, and the Stanford Paragraph Meaning test, a measure of comprehension, correlated between . 71 and . 33 for the various programs.

## Conclusions

From the correlation relationships found in the study, the following conclusions can be drawn:
(1) There are many pupil capabilities related to the success children have in beginning reading. The results of this study would indicate that a fair amount of the variation in pupil success can be accounted for by thie attributes brought to the learning situation. Such pupil capabilities as auditory and visual discrimination, prefirst grade familiarity with print and intelligence are all substantially related to success in learning to read under whatever approach to initial instruction is used.
(2) Among those attributes measured in this study, knowledge of letter names and the ability to discriminate between word sounds appear to have the greatest relationship to reading success under each of the various methods of instruction employed. The knowledge of letter names gained prior to initial instruction alone would account for approximately twenty-five to thirty-six per cent of the variation in reading ability found at the end of the year under the various methods of instruction used in this study. It is also interesting to note that the predictive validity of a single subtest such as the Letter Names subtest is of approximately the same magnitude as the predictive validity of an entire reading readiness battery. Therefore, it is probably not necessary to give a complete readiness test if prediction of reading success is the only objective.
(3) Test constructors should note the high positive relationship between the length of the various readiness tests, their variability, and their predictive validity. The length of the tests alone might account for the differential predictive power found among the premeasures used in this study.
(4) Although thire were some differences in the magnitude of correiations between prereading pupil characteristics and success in reading under the various methods, there was enough uniformity in these relationships to conclude that no one method of instruction would uniquely ciercome the limitations imposed on children by deficiencies in any characteristic measured in this study. Furthermore, no approach used in this study was found to be uniquely effective for pupils who scored well on any of the premeasures. (5) There were some differences in the magnitude of the correlations between the pretests and the Stanford Paragraph Meaning and Stanford Word Reading tests. However, there was enough uniformity in these relationships to conclude that no one attribute measured by the premeasures would predispose the child to having specific difficulty in word recognition as opposed to comprehension or vice versa. In this respect is should be noted that the correlation between the two reading tests was so high that little differential prediction could be expected.
(6) Although no relationship between class size and success in firstgrade reading was found in this study, the conclusion that class size makes no difference would be unwarranted. No very large or very small classes were represented in the study. It can be concluded, however, that the addition or subtraction of a pupil or two would not seriously influence successful teaching.
(7) The relationship between pupil age and reading success indicates that the younger child did somewhat better than did his older classmate. The correlation was so small, however, that differences in age of these pupils accounted for little if any of the differences in reading success. Furthermore, the negative relationship between achievement and chronological age may be a result of selective admission procedures whereby unusually mature children are admitted to schosl at a young age.
(8) A child who has the ability to read phonetically regular words also has skill in reading words of high utility even though these latter words may be highly irregular. Similarly, children who can read words orally in individual test situations also are relatively suc:essful in reading words silently in a group testing situation. Therefore, in most instances it is probably not necessary to employ both individual and group measures of word recognition. Similarly, it is probably not necessary to use different tests to evaluate the reading ability of pupils who learn to read by means of linguistic programs (where words are controlled on the basis of sound-symbol regularity) from those used to test reading ability of pupils from basal reading programs.
(9) The high inter-correlations found in the variety of reading mesasures used in this study indicate that reading at the end of the first grade is largely a unitary accomplishment depending upon the ability to reccgnize words accurately and to associate meaning with those words. An alternative conclusion, of course, is that it is difficult io develop tests which differentiate abilities at this early level even if they exist.
(10) From the correlation studies, the evidence is that teacher experience and efficiency ratings are only slightly related to pupil success. While there is ample evidence that class differences influence reading success, the estimates of teacher efficiency used in this study did not explain these differences.

## Analysis of Methodology

The relative effectiveness of the various instructional programs utilized in this investigation was evaluated in two different ways. The major technique was to compare various ni basal programs with basal programs used in the same project. The ewer experimental programs were thereby evaluated by comparing cheir relative effectiveness with that of the well-known basal reading programs. This analysis was considered the appropriate one to be used in the study. However, an analysis was also conducted whereby each treatment within each project was compared with all of the other treatments in all of the other projects. In this latter analysis, pupil differences in readiness among the various treatments and projects were adjusted by means of covariance as were teacher differences in experience. Because of tremendous project differences in achievement even after teacher and pupil characteristics had been controlled statistically, this method of analysis was presented for informational purposes only. However, each of these two analyses presented a number of interesting findings.

Summary of Findings from Basal versus Non-Basal Comparisons
The findings of the Basal versus I.T.A., Basal versus Basal plus Phonics, Basal versus Language Experience, Basal versus Linguistic, and Basal versus Phonic/Linguistic treatment comparisons can be summarized as follows.

Summary of Basal versus I.T.A. comparisons. The I.T.A. and Basal approaches were of approximately equal effectiveness in terms of pupils' achievenent on the Paragraph Meaning test. However, the I.T.A. treatment produced superior word recognition abilities as measured by the Word Reading subtest of the Stanford and the Fry and Gates word lists. Evidence concerning the spelling ability of pupils in the two groups was inconclusive. The Basal subjects were superior in spelling abiiity in three projects but the I.T.A. subjects were superior in a
fourth project. No differences were found between treatments in reading accuracy and rate as measured by the Gilmore Oral Reading Test.

Siümary of Basal versus Basal plus Phonics comparison. In generā1, Basal prograns accompanied by supplementary phonics materials produced significantly greater achievement in reading than did Basal materials alone. This superiority was especially pronounced in the across-projects analysis of mean performance on the Stanford Achievement tests and the Fry and Gates word recognition tests. Practically all differences on these measures favored the Basal plus Pionics group even though some of the differences failed to reach statistical significance. No differences in rate or accuracy of oral reading were found between the two treatments.

Summary of Basal versus Language Experience comparisons. Relatively few significant differences were found between the Language Experience and Basal approaches. Those significant differences which were found to exist generally favored the Language Experience approach. However, these sporadic differences were often not of much practical significance in terms of actual reading achievement.

Summary of Basal versus Linguistic comparison. The most common finding for the Linguistic versus Basal comparison in the various projects was that of no difference between treatments. However, the Linguistic group tended to out-perform the Basal group on tests of word recognitior while the Basal group exhibited scmewhat greater sfeed and accuracy in reading. No differences in comprehension were a:certained.

Sumary of Basal versus Phoniz/Linguisicic comparison. The Phonic/ Linguistic program was superior to the Bessal program utilized in the projects of this investigation. The Pronic/Linguistic program produced pupils with superior word reading, paragraph meaning, spelling, and word study skills. Phonic/Lir.guistic pupils were also superior on the Fry Test of Phonetically regular Words and the Gates Word Pronunciation Test. No significant differences were found in rate or accuracy of oral reading.

General findings. In general, there was less difference in variability among treitments than in mean achievement among treatments. Standard deviations on each of the outcome measures were very similar for the Basal, I. $\mathrm{I}^{2}$.A., Basal plus Phonics, Language Experience, Linguistic, and Phonic/Linguistic pupils. Furthermore, the interclass variation within the various treatments was very similar except for the Languege Experience approach. Wide differences in mean achievement of classrooms were found for all of the programs. However, the range
between the inighest and lowest average clase achievement in the Language Experience appreach generally was greater than the range for the Basal classrooms in the same project.

Another general finding was that girls tended to have a greater degree of readiness for reading at the beginning of first grade and tended to read at a higher level of reading at the end of the first grade. In most cases differences in reading achievement which favored girls at the end of the year disappeared when criterion scores were adjusted for differences in prereading ability. A related finding in this investigation was that none of the treatments had a unique effect on the achievement of boys and girls. That is, no signjficant sex by treatment interactions were found to exist. On the average, girls tended to be better readers in all programs.

One of the most striking findings was the persistence of project differences in reading achievement even after adjustments were made statistically for differences in pupil readiness for reading. Evidentally reading achievement is influenced by factors peculiar to school systems over and above differences in prereading capabilities of pupils.

One other common finding was that statistically significant treatment by project interactions were found in most of the Basal versus Non-Basal comparisons. In general, treatments did not operate in the same fashion across projects.

## Conclusions

The findings of the analysis of methodology led to the following conclusions:
(1) Word study skills must be emphasized and taught systematically regardless of what approach to initial reading instruction is utilized. (2) Combinations of programs, such as a basal program with supplementary phonics materials, of ten are superior to single approaches. Furthermore, the success of such methods as the Language Experience approach indicates that the addition of 1 anguage experiences to any kind of reading program can be expected to make a contribution. (3) Innovative programs such as Linguistic readers are especially effective in the word recognition area. The superiority of these programs to Basal programs is not as evident in the area of comprehension. It is likely that Basal programs should develop a more intensive word study skills element, while programs which put major emphasis on word recognition should increase attention paid to other reading skills.
(4) It is necessary for teachers to make differential expectations concerning mean achievement of boys and girls. On the average, boys
cannot be expected to achieve at the same level as girls, at least with the materials, methods, and teachers involved in this investigation. A probable explanation from the data of this study is that boys are less ready to read when they enter school.
(5) Boys and girls do not profit uniquely from any of the programs utilized in this investigation. On the average, girls' achievement is superior to boys' no matter what approach to beginning reading is used.
(6) Reading programs are not equally effective in all situations. Evidentally, factors other than method, within a particular learning situation influence pupil success in reading.
(7) Reading achievement is related to characteristice in addition to those investigated in this study. Pupils in certain school systems become better readers than pupils in other school systems even when pupil characteristics are controlled statistically. Furthermore, these differences in achievement from project to project do not seem to be directly related to the class, school, teacher, and community characteristics appraised in this study.
(8) Pupils taugit to read by means of a transitional alphabet such as I.T.A. may experience greater difficulty making the transition to traditional orthography in spelling than they do in reading. Longitudinal information is necessary to study this problem.
(9) Future research might well center on teacher and learning situation characteristics rather than method and materials. The tremendous range among classrooms within any method points out the importance of elements in the learning situation over and above the methods employed. To improve reading instruction it is necessary to train better teachers of reading rather than to expect a panacea in the form of materials.
(10) Children learn to read by a variety of materials and methods. Pupils become successful readers in surh vastly different programs as the Language Experience approach wina its relative lack of structure and vocabulary control and the various Linguistic programs with their relatively high degree of structure and vocabulary control. Furthermore, pupils experienced difficulty in each of the programs utilized. No one approach is so distinctly beticer in all situations and respects than the others that it should be considered the one best method and the one to be used exclusively.
(11) The expectation of pupil accomplishment in initial reading instruction probably should be raised. Programs which introduced words at a more rapid pace tended to produce pupils with superior word recognition abilities at the end of the first grade. Children today tend to be better equipped for reading instruction when they enter firs" grade than they were some years ago and are probably prepared $t$, learn more words and develop more mature study skills than are currently expected of them in many programs.
(12) Indications are inat the initial reading vocabulary should be selected with a greater balance between phonecically regular words and high utility words. It is likely that introducing words solely on the basis of frequency of use presents an unusually complex decoding task for the beginning reader. On the other hand, it appears that presenting only phonetically regular words makes it very difficult to write meaningful material.
(13) A writing component is likely to be an effective addition to a primary reading program. In the first place, the Language Experience approach which involves considerable written expression, was an effective program of instruction. In addition, programs such as I.T.A. and Phonic/Linguistic, boin of which were relatively effective, encourage pupils to write symbols as they learn to recognize them and to associate them with sounds. This appears helpful to the pupil in learning sound-symbol relationships. Furthermore, it is likely that writing such common but irregular words as "the" heips the child to commit them to his sight vocabulary.
(14) It is impossible to assess the relative effectiveness of $p$ ograms unless they are used in the same project. Project differences are so great even when pupil readiness for reading is controlled that a program utilized in a favored project would demonstrate a distinct advantage over one used in a less favored project regardless of the effectiveness of the program.
(15) The relative success of the non-basal programs compared to the basal programs indicates that reading insicuction can be improved. It is likely that improvement would result from adopting certain elements from each of the approaches used in this study. The first step would be to determine the elements within the various approaches most important to the success of that program. For example, the I.T.A. and Phonic/Linguistic programs, both of which were relatively effective, have in common a vocabulary controlled on sound-symbol regularity, introduction of a relatively large reading vocabulary, and emphasis on writing symbols as a means of learning them. It would be interesting to know which of these elements, if any, is primarily responsible for the effectiveness of the program. Perhaps an instructional program which incorporated the most important elements of all of the approaches used in the study would be a more effective method of teaching than any currently in use.

## Summary of the Findings of the Combined Analysis

The covariance analysis which considered each treatment within each project to be unique reported the following results: (1) The project within which a method was studied had a greater influence on its location in rank among all the project treatments than did the specific method of instruction. This project influence existed even when differences in pupil readiness and teacher experience were adjusted by means of covariance.
(2) A comparison of the five most successful projects in terms of pupil achievement with the five least successful projects revealed certain significant differences between the two groups. For example, supervisor ratings of class structure, class participation, awareness of and attention to individual needs, and overall competence of the teachers of the most successful projects were all significantly higher than were those for the teachers of the least successful projects. Furthermore, the most successful projects had a significantly greater per cent, of teachers who had more than a standard teaching certificate than did those in the bottom-ranked projects.
(3) The projects which ranked highest had, on the average, a longer school day than did the projects which ranked lowest. The smaller average class size ( 28.2 to 24.2 ) also favored the more successful projects.
(4) No marked differences were found in community characteristics of the two extreme groups of projects except that the least successful projects had significantly more classrooms in rural areas.
(5) The ranking of the treatments within projects for boys and girls showed that the order of the treatments was surprisingly similar. The boys' performance tended to be lower than the girls' but the order was quite uniform.

## Conclusions

From the above findings, the following conclusions may be drawn:
(1) The entire instructional setting is involved in the effectiveness of reading instruction and differences in method alone do not alcer, to any great extent, the reading growth of the children. There is apparently no methodological panacea represented among the methods herein explored.
(2) The learning situations and methods, herein explored, that are conducive to effective learning for girls were also the most suitable for the boys. The solution to the boys' problem in estabiishing reading capability, in the early years, needs further exploration. (3) Teachers are an extremely important element in the learning situation. Teachers should be trained to conduct well-organized arij systematic reading programs, to encourage class participation by all the pupils, and to be aware of and adjust to the individual needs of the pupils within their classes.

## Analysis of Treatment by Readiness Level

In this section of the analysis pupils were blocked in turn according to levels of ability as measured by an intelligence test, an auditory discrimination test, and a test of letter knowledge. Interactions between treatments and each of these readiness measures were examined to determine whether or not there was a differential treatment effect for pupils of varying levels of readiness.

## Summary of Findings

For four of the five Basal versus non-Basal comparisons there was no evidence of differential treatment effects for various levels of intelligence, auditory discrimination or letter knowledge. Very few, if any, significant treatment by intelligence, treatment by auditory discrimination, or treatment by letter knowledge interaction effects were found to be significant. This finding of no interaciion between treatment and readiness characteristics generally held true for the Basal versus I.T.A., Basal versus Basal plus Phonics, Basal versus Linguistic, and Basal versus Phonic/Linguistic comparisons.

A somewhat differel: situation existed for the Basal versus Language Experience comparison. For this treatment comparison a number of treatment by intelligence, treatment by auditory discrimination, and treatment by letter knowledge interactions were found to be significant. The interactions resulted from the fact that the least mature pupils achieved better in a Basal program than in a Language Experience approach, while more capable students with respect to these skills profited more from a Language Experience approach. This finding was tempered by the fact, however, that the low readiness Basal pupils were generally superior to the low readiness Language Experieace pupils on premeasures other than the one used for blocking. Therefore, it was not surprising to find that they were superior in achievement. On the other hand, the high readiness Basal pupils were inferior to the high readiness Language Experience pupils on premeasures other than those used for blocking. It is possible that the treatment by readiness interaction on the achievement measures was primarily a result of similar interaction on the premeasures.

## Conclusions

With respect to the Z.T.A. versus Basal, Basal plus Phonics versus Basal, Linguistic versus Basal, and Phonic/Linguistic versus Basal treatment comparisons, the following conclusions can be drawn:
(1) Programs which were superior in the various Basal versus non-Basal comparisons tended to be superior across all levels of intelligence. There was no indication that approaches operated differentially for pupils with high or low intelligence.
(2) Programs which were superior in the various Basal versus non-Basal comparisons tended to be superior across all levels of aaditory discrimination ability. There was no indication that approaches operated differentially for pupils with high and low auditory discrimination.
(3) Programs which were superior in the various Basal versus non-Basal comparisons tended to be superior across all levels of pre-instructional letter knowledge. There was no indication that approaches operated differentially for pupils with high or low ability to recognize letters.
(4) There is no basis for using readiness test information to place pupils differentially in a Basal program or any other instructional program utilized in this investigation. A teacher who is successful with a given instructional program will probably be successful with that approach for pupils of varying degrees of readiness and capability.

Conclusions from the Basal versus Language Experience comparison are less clear-cut. There is some indication that low readiness pupils are more successful in a Basal program while high readiness pupils profit more from a Language Experience program. However, this trend must be studied further in light of the fact that the finding in this investigation on which the conclusion is based may have resulted from sampling problems.

## Comparison of Class Mean and Individual Analyses

The procedures of analysis in this study made possible a comparison of the results which were obtained using first the class and then the individual pupil as the experimental variable. The major section of the analysis used the class as the experimental variable because this seemed to be the appropriate procedure. However, the analysis which dealt with blocking on intelligence, auditory discrimination, and letter knowledge used the individual pupils as the experimental unit. Treatment effects were analyzed in both situations and were based on exactly the same individuals.

## Summary of Findings

The analysis based on individual pupils resulted in many more significant treatment differences. This general finding was true for both the analysis of variance and analysis of covariance reported for each Basal versus non-Basal treatment comparison. In many cases the difference in the number of treatment effects found to be significant was quite extensive.

## Conclusions

The decision about whether to use classes or individuals as the experimental variable in educational research is crucial because it may well affect the conclusions drawn from an investigation. Typical sampling procedures, in which a treatment is assigned to a class, dictate that the class be the experimental unit. Yet, often in these situations data are analyzed on individuals rather than on classes. Moreover, even if children are randomly assigned to a class, there is still a great deal of logic behind using the class as the experimentai variable. Children within a class are exposed not only to the same
treatment, but also to the same teacher, same class size, same class interruptions, same construction noises, and same epidemic of influenza. To treat individuals as if the class did not exist seems a questionable procedure.

## Suggestions for Future Cooperative Research

The director and associate director of the Coordinating Center for the Cooperative Research Study in First-Grade Reading Instruction believe that the study has demonstrated the feasibility of cooperative research. There were many positive aspects of the program which could nct be subjected to statistical analysis. This, of course, is true of all research but the nature of this program probably made it more beneficial to more people. In the first place, the directors and teachers of the various projects who were interviewed by the Coordinating Center staff were unanimous in their opinion that the reading programs in the participating schools profited by involvement in the study. It is also appareat from observations of classrooms involved in the project and from visiting with the various project staffs that the teachers who participated in the cooperative study also gained uch from the expericnce. The research program proved to be a valuable technique for the in-service training of teachers. The teachers attended regular meetings with other experimental teachers and members of the project staff and became acquainted with new materials and new teaching techniques'. Their teaching of reading will undoubtedly be enhanced for many years to come and the experimental attitude fostered in the research should encourage continued growth in the profession.

The project directors, their staffs, and the staff of the Coordinating Center also grew professionally as a result of the study. The sharing of ideas involved in implementing a cooperative venture of this nature was a stimulating and rewardins experience. Each of the participants sharpened his views on research design and on problems of initiating and evaluating reading instruction. Furthermore, everyone involved in the study gained additional experience in translating educational questions into testable hypotheses and in exploring further the role of the computer in educational research.

As a result of experience gained in conducting the coordinating center for this research study and as an outgrowth of discussions with the independent project directors, the following suggestions for future cooperative research endeavors are listed for consideration:
(1) A coordinating center is necessary in cooperative research and should be selected prior to the awarding of support to individual projects.
(2) Individual projects should be selected on the basis of the director's willingness to work on a joint enterprise designed to study in depth a specific educational problem.
(3) The first meeting between directors of cooperating centers and the coordinating center should be held far enough in advance of the actual study that definite and uniform plans of rescarch design can be formulated. At this time guidelines for common experimental procedures should be established and the common specific hypotheses to be studied should be formulated.
(4) In methodological studies, at least, all treatments should be replicated in all projects. This consideration is essential in light of the tremendous project differences and project by treatment interactions found in this study.
(5) Over and above the study of common hypotheses, individual project directors should be encouraged to study unique aspects of the problem being studied.
(6) Each of the experimental variables should be carefully defined, and in methodological studies provisions should be made for monitoring classrooms to determine how carefully teachers are following the specific approach and agreed-upon procedures.
(7) Relevant information about teacher, school, and community characteristics should be collected and organized in such a way that this informarion could be utilized in a covariance analysis if it was desirable to do so.
(8) Consideration should be given to constructing instruments for evaluation. In some cases currently available tests and other evaluative devices are inadequate for measuring the outcomes desired. Here again selection of the coordinating center and the projects far in advance of the beginning of the experiment would be very heipful.
(9) Much time and duplication of effort could be avoided by analyzing all data at the coordinating center. Programs could thereby be written specifically for the computer in operation at the coordinating center and duplicate programming efforts could be avoided.
(10) Deadlines for submitting data to the coordinating center should be closely followed in order that the findings from the study could be made available at the earliest possible date. In a cooperative study tardiness on the part of one participating project director affects the entire study.

The cooperative research program in first grade reading instruction has demonstrated that independent researchers can cooperate in a study of this nature. The staff of the Coordinating Center feels that cooperative research programs have potential for improving the quality of educational research.

## BIBLIOGRAPBY

1. "A Critical Review of Research and Opinion on Phonics." Hew York: Division of Research, The State Edncation Department, The University of the State of Hew York, 1963.
2. Agnew, Donald C., The Effect of Varied Amounts of Phonetic Training on Primary Reading. Duke University Research Studies in Education, No. 5. Durhen, North Carolina: Duke University Press, 1939.
3. Allen, R. V. "The Language Experience Approach," Teaching Young Children to Read, Warren G. Cutts, editor. Washington, D. C.: Office of Education, U.S. Departant of Health, Education, and Welfare, 1964.
4. Allen, R. V. and San Diego Public Schools. "Three Approaches to Teaching Reading." Challenge and Experiment in Reading. Internationsl Reading Associstion Proceedings, Vol. 7. 1962, pp. 153-154.
5. Anderson, Irving $H$. and others. "Age of Learning to Read and Its Relation to Sex, Intelligence, and Reading Achievement in the Sixth Grade," Journal of Educational Research, 49:447-53, 1956.
6. $\qquad$ - "The Relationship Between Reading Achievement and the Method of Teaching Reading;" University of Michigan School of Education Bulletin, 27:104-8, 1956.
7. Austin, Mary C. and Coleana Morrison. The First R: The Harvard Report on Readirg in Elementary Schools, New York: The Macmillan Company, 1963.
8. Balcw: Irving H. "Sex Differences in First Grade Reading " Elementary English, 40:303-06, March, 1963.
9. Bear, Darid E. "Phonics for First Grade: A Comparison of Two Methods," Elementary School Journai, 59:394-02, April, 1959.
10. $\qquad$ - "Iro Methods of Teaching Phonics: A Longitudinal Study," Elementary School Journal, 64:273-79, Pebruary, 1964.
11. Bliesmer, Baery P. and Betty E. Yarborough. "A Cgparison of Ten Different Beginning Reading Prograns in Firet Grade," Phi Delta Kappan, 46:500-04, June, 1965.
12. Bloomer, Richard. "An Investigation of an Experinentel First-Giade Phonice Progran," Journal of Eduestional Research, 53:188-93. January, 1960.
13. Blcomfield, Leonard and Clarence L. Barnkart. Let's Read. Detroit: Wayne State University Press, 1961.
14. Buswell, Guy T. Fundamental Reading Habits: A Study of Their Development. Chicago: University of Chicago, 1922.
15. Carline, Donaid Eugene. "An Investigation of Individualized Reading and Basal Text Reading Through Pupil Achievement and Teacher Performance." Unpublished Doctoral Dissertation, PennsyIvania State University, 1960.
16. Carroll, Marjorie W. "Sex Differences in Reading Readiness at the First Grade Level," Elementary English, 25:370-75, 1948
17. Chasnoff, Robert E. "Comparison of the Initial Teaching Alphabet with the Traditional Alphabet in First. Grade Reading," Cooperative Research Project No. S-210, 1965.
18. Clymer, Theodore and Helen M. Robinson. "Reading," Review of Educational Research, $31: 130-44$, April, 1961.
19. Davis, David C. "Phoneric Structural Approach to Initial Reading Instruction," Elementary English, 41:218-23, March, 1964.
20. Dolch, E. W. and M. Bloomster. "Phonic Readiness," Elementary School Journal, 38:201-05, 1937.
21. Downing, John A. Experiments with Pitman's Initial Teaching Alphabet in British Schools. New York: Initial Teaching Alphabet Publication, Inc., 1963.
22. $\qquad$ - The Initial Teaching Alphabet. New York: The Macmillan Co. s 196
$\qquad$ . "Teaching Reading with I.T.A. in Britain," Phi. Delta Kappan, 45:322-29, April, 1964.
23. Fries, Charles C. Linguistics and Reading. New York: Holt, Rinehart, and Winston: 1962.
24. Gates, Arthur I. "Results of Teaching a System of Phonics," The Reading Teacher, 14:248-52, March, 1961.
25. . "Sex Differences in Reading Ability," Elementary School Journal, 61:431-34, May, 1961,
26. $\qquad$ and David H. Russell. "Types of Materi:ls, Vocabulary Burden, Word Analysis, and Other Factors in Eeginning Reading. I and II," Elementary School Journal, 39:27-35, September, 1938; 39:119-28, October, 1938.
27. Gibbons, Helen D. "Reading and Sentence Elements," Elementary Znglish Revier, 18:42-46, February, 1941.
28. Goldberg, Lyan and Donald Raamussen. "Linguistics and Reading," Elementary English, 40:242-47, March, 1963.
29. Gray, William S. Rncyciopedía of Educational Research, MacMillan Company, New York, pp. 1087-88, 1960.
30. Groff, Patrick J. "Materials for Iudividualized Reading," Elementary English, 38:1-7, January, 1961.
31. Gunderson, Doris V. Research in heading at the Primary Level. U.S. Department of Health, Education, and Welfare, OE-30008. Wasinington, D.C.: Superintendent of Documents, 1963.
32. $\qquad$ - Researci fin Reaaing Readiness. U.S. Department of Health, Education, and Wilfare, OE-30013. Weahington, D.C.: Superintendent of Documents, 1064.
33. Harris, Theodore L. "Summary of Investigaticns Relating to Reading," Journal of Educational Research, 57:283-536, February, 1964.
34. Heilman, Archur W. Teaching Reading. Columbus, गhio: Cnarles E. Merrill Books, Inc., 1961.
35. Henderson, Margaret. Progress Report of Reading Study 1952-1955. Chanpaign, Illinois: Board of Education, Comunity Unit Schcol District No. 4.
36. Holmes, Jack A. and Harry Singer. "Theoretical Models and Trencs Toward More Basic Research iü Reading," Review of Educational Research, 34:127-50, April, 1964.
37. Loban, Walter D. The Language of Elementary School Children. Champaign Illinois: Hational Council of Teachers of English, 1963.
38. MacKinnon, A. R. How Do Children Learn to Read. Vancouver: The Copp Clark Publishing Co., Limited, 1959.
39. Mazurkiewicz, Albert $J_{0}$. "Teaching Reading In America Using the Initial Teaching Alphabet," Elementary English, 41:766-72, November, 1964.
40. McCristy, Antoinette. "A Comparative Study to Determine Whether SelfSelective Reading Can Be Successfully Used at Second Grade." Unpublished Master's Thesis, The University of Southern California, Ins Ângeles, 1957.
41. McDorell, Rev. J. B. "Report on the Phonetic Method of Teaching Children to Read," Catholic Education Review, 51:506-19, October, 1953
42. Morgan, Elmer F. Jr., and Morton Light, "A Statistical Evaluation of Two Programs of Reading Instruction," The Journal of Educational Research, Vol. LVII, October, 1963, pp. 99-101.
43. Morrone, Victor Eugene, "A Critical Analysis of Scientific Research in Phonics." Unpublished Doctoral Dissertation, University of Pittsburgh, Pittsburgh, 1958.
44. Olson, A. V. "Growth in Word Perception Abilities as It Relates to Success in Beginning Reading," Journal of Education, 140:25-36, February, 1958.
45. Pauley, Frank R. "Sex Differences and Legal School Entrance Age," Journal of Educational Research, 45:1-9, Sept ember, 1951.
46. Prescett, George A. "Sex Differences in Metropolitan Readiness Test Results," Journal of Educational Researcn, 48:605-10, April, 1955.
47. Preston, Ralph C. "Reading Achievement of German and American Children," School and Society, 90:350-54, October 20, 1962.
48. Robinson, Helen M. "Summary of Investigations Relating to Reading," The Reading Teacher, 17:326-92, February, 1964.
49. Ruddell, Robert B. "An Investigation of the Effect of the Similarity of Oral and Written Patterns of Language Structure on Reading Comprehension." Unpublished Doctoral Dissertation, Indiana University, Bloomington, Indiana, 1963.
50. Rudisill, Mabel. "Interrelations of Functional Phonic Knowledge, Reading, Spelling, and Mental Age," Elementary School Journal, 57:264-67, February, 1957.
51. Russell, David H., and Henry Pea. "Research on Teaching Reading," Handbook of Research on Teaching, H. L. Gage, editor. Chicago: Rand, McNally and Co., 1963.
52. Safford, Alton L. "Evaluation of an Individualized Reading Program," The Reading Teacher, 13:266-70, April, 1960.
53. Sartain, Harry W. "The Roseville Experiment with Individualized Reading," The Reading Teacher, 13:277-81, April, 1960.
54. Shane, Harold G., and June Grant Mulry. Improving Language Arts Instraction Through Research. Washington D. C.: Association for Supervision and Curriculum Develipment, NEA, 1963.
55. Sister Mary Edvard. "A Modified Linguistic Versus a Composite Basal Reading Program," The Reading Teacher. 17:51i-15, Aprii, 1964.
56. Sister Mary Fidelia. "The Relative Effectiveness of Bloomfield's Linguistic Approach to Word Attack as Compared with Phonics We Use," Unpublished Doctoral Dissertation, University of Ottawa, Ottawa, Canada, 1959.
57. Sparks, Paul E. and Leo C. Fay. "An Evaluation of Two Methods of Teaching Reading," Elementary School Journal, 57:386-90, April, 1957.
58. Sperry, Florence, "What Research Says About Individualized Reading," Claremont Reading Conference, 1961.
59. Stewart, David K. "Values and Limitations of Basal Readers." Materials for Reading, Supplementary Education Monographs, No. 86, Helen M. Robinson, editor. December, 1957.
60. Stewart, Rebecca W. "ITA-aAfter Two Years," Elementary English, 42: 660-65, October, 1965.
61. Strickland, Ruth G. "Implications of Research in Linguistics for Elementary Teaching," Elementary English, 40:168-71, February, 1963.
62. $\qquad$ - "The Language of Elementary School Children: Its Relationship to the Language of Reading Textbooks and the Quality of Reading of Selected Children," Bulletin of the School of Education, Indiana University, 38, No. 4, July, 1962.
63. Stroud, J. B. and E. F. Lindquist. "Sex Differences in Achievement io the Elementary and Secondary Schools," Journal of Educational Psychology, 33:657-67, Decenber, 1942.
64. Tate, H. "The Influence of Phonics on Silent Reading in Grade I," Elementayy School Journal, 37:752-63, June, 1937.
65. Templin, Mildred C. Certain Language Skills in Children. Minneapolis, University of Minnesota Press, 1957.
66. Tiffin, J. and M. McKinnis. "Phonic Ability: Its Measurement and Relation to Reading Ability," School and Society, 51:190-92, February, 1940.
67. Waetjen, Walter B. and Jean D. Grambs. "Sex Differences: A Case of Educational Evasion?" Teachers Col.': $\because$ Record, 65:261-71, December, 1963.
68. Zirbes, Laura, et. al. Practice Exercises axd Checks on Silent Reading in the Primary Grades. New York: Columbia University, 1925.

## Biblicgrarly of Instructional Materials

Betts, Emmett A., and Carolyr M. Welch. Betts Basal Readers. 3rd Edition, New York: American Book Company, 1963.

Bloomfield, Leonard, and Clarence L. Barnhart. Let's Read. Detroit: Wayne State University Press, 1961.

Buchanan, Cynthia Dee. Programmed Reading. New York: McGraw-Hill Book Company, Inc., 1963.

Bumpass, Fay L. We Learn English Series. American Book Company, 1963.
Diack, Hunter, and J. C. Danieis, The Royal Road Readers. Chatto and Windus Ltd., 4C-42 William IV Street, London, W. C. 2, 1960.

Downing, J. A. Downing Readers. Iondon: Initial Teaching Publishing Co. Ltd., 1963.

Fries, Charles C., Agnes C. Fries, Rosemary G. and Mildred K. Rudolph. A Basic Reading Series Developed Upon Linguistic Principles, Ann Arbor, Michigan, 1963-65.

Johnson, Eleanor M., Carlton Singleton, and Elaine Wonsavage. Phonics and Word Power. Program I, Columbus: Arerican Education Publications, 1964.

McCracken, Glen, and Charles C. Walcutt. Basic Reading. New York: J. B. Lippincott Company, 1963.

McKee, Paul and others. Reading for Meaning. Boston: HoughtonMifflin Company, Fourth Edition, 1966.

Murphy, Helen, and Donald Durrell, Speech to Print Phonics. Harcourt, Brace and World Book Company, 1965.

Ousley, Odille, and David H. Russell. Ginn Basic Readers. Revised FJition, Boston: Ginn \& Co., 1964.

Robinson, Helen M., Marion Monroe, A. Sterl Artley, and W. Cabell Greet. The New Basic Readers, Chicago: Scott, Foresman and Company, 1960-62.

Sheldon, William D., and others. Sheidon Basic Readers, Allyn and Bacon.

Stern, Catherine, and others. Structural Reading Series. Syracuse, New York: L. W. Singer Company, Inc., 1963.

Stratemeyer, Clara, and Henry Lee Smith, Jr. The Linguistic Scierce Readers. Evanston, Illinois: Harper and Row, 1963.

Tanyzer, Harold J., and Albert J. Mazurkiewicz. Early to Read i/t/a Prc $_{5}$ ram. New York: i/t/a Publications, Inc., 1964.

Pintrer-Cunningham Primary Test, Form A (General Ability Tests Revised). Rudolf Pintner, et al, New York: Harcourt, Brace and World, 1946.

Readiness Tests
Metropoligan Readiness Test, Gertrude Hildreth, et al, New York: Harcourt, Brace and World, 1964.

Murphy-Durrell Diagnostic Reading Readiness Tesc. New York: Harcourt, Brace and World, 1964.

Thurstone Pattern Copying Test. Thelma G.Thurstone.
Identical Forms Test, L. L. Thurstone and T. E. Jeffrey, Psychometric Laboratory, University of North Carolina.

Reading Achievement Tests
Detroit Word Recognition Test. Eliza F. Oglesby. New York: Harcourt, Brace and World, 1953.

Gates Word Pronunciation Test. Designed for the U.S. Office of Education Studies.

Gilmore Oral Reading Test, Form A. John U. Gilmore, New York: Harcourt, Brace and World, 1951.

Karisen Phonenic Word Tesi. Designed for the U.S. Cffice of Education Studies.

Phonetically Regular Words Oral Reading Test. Edward B. Fry. Designed for the U.S. Office of Education Studies.

Stanford Achievement Test, Primary I Level, Form X. Kelley L. Truman, et al. New York: Harcourt, Brace and Worjd, 1964.

Reading Inventories
An Inventory of Reading Attitude, Monograph No, 4. Reading Study Project Comittee, Department of Education, San Diego County, 1961.

Teacher Inventory of Approaches to the Teaching of Reading, Monograph No. 3, Keading Study Project Comittee, Department of Education, San Diego County, 1961.

APPENDIX A

DESCRIPTIVE DATA BY PROJECT AND TREATIENT


P R O			C.A.		D.Ph.		D.L.N.		D.L.R.		D.Pat.		T.Id.F.		Met. Word		Met. List.	
J			M	F	$M$	$F$	$M$	$F$	M	$F$	$M$	F	M	F	M	$F$	$M$	$F$
	Initial Teaching Alphabet	N	132	123	132	123	132	123	132	123	132	123	i32	123	132	123	132	123
H		$\bar{X}$	76.2	76.2	28.8	2.9 .4	34.4	36.6	8.8	9.4	10.7	11.5	19.0	20.8	10.3	9.7	9.5	10.1
A	Language Experience	N	135	134	135	134	135	134	135	134	135	134	i35	134	135	134	135	134
H		$\bar{X}$	75.4	75.6	25.3	29.5	33.6	38.5	8.6	9.1	10.4	10.2	17.0	19.2	10.3	10.0	9.0	9.5
N	Basal	$N$	148	128	148	128	148	128	148	128	148	128	148	128	148	128	148	128
		$\bar{X}$	76.4	76.1	24.9	28.1	33.4	37.2	8.1	8.8	20.0	9.6	17.5	20.1	9.9	9.7	9.4	9.6
H	Language Experience	N	165	163	167	172	131	139	165	159	168	159	1.60	159	175	174	175	174
		$\bar{X}$	79.7	79.8	8.0	9.2	17.1	20.7	6.8	7.1	2.5	3.3	4.9	6.2	5.5	5.2	6.5	7.0
	```Language Experience + Audio- Visual```	$N$	158	168	149	147	113	115	1.57	157	157	159	169	168	168	168	168	168
RIIS		\bar{X}	80.1	79.2	11.1	10.2	21.2	19.6	9.0	8.5	3.2	2.5	5.5	5.3	5.4	4.8	6.9	6.5
	Skills Centered Basal	N	164	157	117	115	102	110	153	152	157	154	168	158	165	157	165	158
		\bar{X}	80.0	79.1	6.9	10.3	17.4	20.6	7.3	8.0	2.6	2.8	4.9	5.9	5.1	5.0	6.5	6.8
	Skills Centered Basal with Phonovisual Word Attack	N	161	176	155	168	114	123	148	172	143	164	160	170́	159	173	159	173
		\bar{X}	80.0	79.5	10.6	11.5	20.7	21.3	9.4	8.5	2.1	2.3	4.8	4.7	5.2	5.1	7.0	6.9
		N																
		\bar{X}																
		N																
		$\overline{\mathbf{X}}$																

	4	$\underset{\sim}{n}$	$\stackrel{\square}{0}$	N	$\stackrel{\circ}{0}$	O	$\stackrel{\sim}{\sim}$	त	$\stackrel{+}{+}$	ก	$\stackrel{\infty}{\bullet}$	$\stackrel{\text { N }}{ }$	$\stackrel{\square}{\infty}$	\cdots	$\stackrel{¢}{\infty}$	$\stackrel{\infty}{\circ}$	\bigcirc	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\infty} \times$
	₹	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\infty}$	べへ	$\stackrel{\square}{\circ}$	号	$\stackrel{\sim}{\square}$	$\underset{\sim}{\sim}$	$\stackrel{n}{\sim}$	n	$\stackrel{\rightharpoonup}{\bullet}$	$\stackrel{\text { ¢ }}{\sim}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{ \pm}{\text { N }}$	$\stackrel{9}{\infty}$	$\stackrel{\stackrel{c}{\text { ¢ }} \text {－}}{ }$	∞	$\stackrel{\sim}{\sim}$	\bigcirc
$$	4	$\underset{\sim}{n}$	$\stackrel{\sim}{\circ}$	$\underset{\sim}{N}$	$\stackrel{m}{\sigma}$	$\xrightarrow{\square}$	$\stackrel{0}{\infty}$	극	$\stackrel{\rightharpoonup}{\infty}$	$\underset{\sim}{\sim}$	$\stackrel{n}{n}$	$\underset{\sim}{\sim}$	$\stackrel{0}{0}$	$\underset{7}{n}$	∞	$\stackrel{\sim}{-1}$	$\stackrel{\square}{\circ}$	N	\cdots
	E	$\stackrel{\infty}{n}$	$\stackrel{-}{0}$	～	$\begin{aligned} & \hline \stackrel{0}{0} \\ & \hline \end{aligned}$	－	$\underset{\infty}{\square}$	$\underset{\sim}{\sim}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	${ }_{7}^{7}$	\vec{r}	$\stackrel{\infty}{n}$	ó	$\underset{\sim}{\text { N }}$	$\stackrel{\text { t }}{\circ}$	$\stackrel{\sim}{7}$	$\stackrel{\square}{0}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\circ}$
	U	$\underset{\sim}{n}$	$\begin{aligned} & n \\ & \dot{n} \end{aligned}$	$\underset{\sim}{N}$	$\begin{gathered} 0 \\ 0 \\ \hline \end{gathered}$	O	$\stackrel{\sigma}{\infty}$	N	$\begin{aligned} & 0 \\ & \dot{\eta} \end{aligned}$	$\underset{\sim}{n}$	$\stackrel{0}{\infty}$	$\underset{\sim}{\mathrm{O}}$	$\stackrel{\rightharpoonup}{\dot{I}}$	$\stackrel{n}{7}$	$\underset{\underset{i}{H}}{\underset{\sim}{4}}$	$\stackrel{\infty}{-1}$	$\stackrel{\infty}{\text { N }}$	N	N \vdots
	\pm	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { o } \\ & \dot{1} \end{aligned}$	$\underset{\sim}{\circ}$	$\begin{aligned} & \stackrel{m}{0} \\ & \stackrel{-}{1} \end{aligned}$	$\underset{\sim}{7}$	$\underset{\infty}{\infty}$	$\underset{\sim}{\sim}$	$\begin{gathered} \text { M } \\ \underset{A}{\prime} \end{gathered}$	－	$\underset{\infty}{n}$	$\stackrel{\infty}{\sim}$	$\dot{0}$	$\underset{\sim}{\text { I }}$	$\begin{aligned} & \underset{\sim}{\AA} \\ & \hline \end{aligned}$	$\stackrel{\sim}{7}$	$\begin{gathered} n \\ \underset{\sim}{n} \end{gathered}$	$\stackrel{\text { N }}{\sim}$	
$\begin{aligned} & \dot{\sim} \\ & \text { م } \\ & \dot{0} \end{aligned}$	4	$\underset{\sim}{n}$	$\begin{aligned} & \text { 1} \\ & \stackrel{1}{1} \end{aligned}$	$\underset{\sim}{N}$	$\begin{gathered} \text { n } \\ \dot{y} \\ \hline \end{gathered}$	$\underset{\sim}{t}$	$\stackrel{\infty}{0}$	$\underset{~}{\sim}$	$\begin{array}{r} n \\ \dot{O} \\ \hline \end{array}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \infty \\ & \dot{j} \\ & \hline \end{aligned}$	$\underset{\sim}{\sim}$	0	$\underset{\sim}{n}$	$\begin{aligned} & \stackrel{0}{j} \end{aligned}$	$\stackrel{\infty}{\square}$	i？	N	N
	\pm	$\begin{aligned} & \infty \\ & \sim \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\sim} \\ & \dot{A} \end{aligned}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\prime} \\ & \dot{G} \end{aligned}$	$\underset{\sim}{7}$	$\stackrel{\rightharpoonup}{\infty} .$	$\tilde{\sim}$	$\stackrel{\sim}{\circ}$	$\stackrel{\sim}{n}$	$\stackrel{\dot{N}}{\underset{\sim}{2}}$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & \infty \\ & n \end{aligned}$	$\underset{\text { N }}{\text { N }}$	$\underset{\dot{i}}{\underset{\sim}{2}}$	$\stackrel{\sim}{7}$	$\stackrel{\square}{\text { i }}$	N	$\stackrel{+}{0}$
	U	$\underset{N}{n}$	$\begin{aligned} & 9 \\ & 0 \\ & \hline \end{aligned}$	$\underset{\sim}{N}$	$\begin{aligned} & \mathrm{i} \\ & \dot{-} \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{O}}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\bullet} \end{aligned}$	$\underset{\underset{Z}{\prime}}{ }$	0	$\underset{\sim}{N}$	$\begin{aligned} & \dot{0} \\ & \dot{0} \end{aligned}$	$\underset{\sim}{\sim}$	$\bar{\sigma}$	$\stackrel{n}{\sim}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	3	$$	$\stackrel{\sim}{\text { ¢ }}$	\square
	E	$\stackrel{\infty}{n}_{n}^{n}$	$\stackrel{\rightharpoonup}{9}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \stackrel{3}{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \stackrel{3}{0} \end{aligned}$	$\widetilde{\sim}$	$\underset{\sim}{\sim}$	$\sqrt[7]{n}$	$\stackrel{+}{i}$	$\stackrel{\infty}{\sim}$	$\begin{array}{r} \dot{0} \\ \dot{Q} \end{array}$	$$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\sim}{7}$	$\begin{aligned} & \infty \\ & \dot{\alpha} \end{aligned}$	$\xrightarrow{\text { O}}$	$\stackrel{+}{\circ}$
$\begin{aligned} & \dot{z} \\ & \dot{j} \\ & \dot{\theta} \end{aligned}$	4	$\underset{A}{n}$	$\begin{aligned} & \infty \\ & \dot{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\underset{\sim}{N}$	$\begin{aligned} & 0 \\ & \dot{f} \\ & \dot{J} \end{aligned}$	O	$\begin{aligned} & \boldsymbol{o} \\ & \infty \\ & \sim \\ & \hline \end{aligned}$	극	$\stackrel{\rightharpoonup}{\tilde{m}}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \vec{j} \\ & \dot{\sim} \end{aligned}$	$\underset{\sim}{\circ}$	$\stackrel{m}{n}$	$\xlongequal[7]{7}$	$\begin{aligned} & \overrightarrow{1} \\ & \stackrel{0}{0} \end{aligned}$	\bigcirc	$\begin{aligned} & 0 \\ & \dot{\sim} \end{aligned}$	$\stackrel{\sim}{N}$	$\stackrel{\infty}{\infty}$
	I	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \end{aligned}$	iv	$\begin{aligned} & \hat{o} \\ & \dot{\sigma} \end{aligned}$	0	$\begin{aligned} & 0 \\ & \infty \\ & \sim \end{aligned}$	$\underset{\sim}{\tilde{\sim}}$	$\begin{aligned} & \dot{0} \\ & \dot{\sim} \end{aligned}$	$\sqrt[7]{7}$	$\stackrel{\mathbf{N}}{\stackrel{\infty}{\infty}}$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & 0 \\ & \dot{j} \end{aligned}$	－	$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \dot{\sim} \end{aligned}$	$\stackrel{7}{7}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\text { I }}{\text {－}}$	ल
$\begin{aligned} & \dot{\text { Ĺ }} \\ & \dot{\theta} \end{aligned}$	4	$\underset{\sim}{n}$	$\begin{aligned} & \dot{m} \\ & \dot{m} \\ & \hline \end{aligned}$	$\underset{\sim}{N}$	$\begin{aligned} & 0 \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	O	$\begin{aligned} & \dot{+} \\ & i \end{aligned}$	$\underset{\sim}{7}$		$\underset{\sim}{\sim}$	$\begin{aligned} & \dot{0} \\ & \dot{N} \end{aligned}$	$\underset{\sim}{\sim}$	$\begin{gathered} \stackrel{\rightharpoonup}{n} \\ \text { Ni } \end{gathered}$	$\stackrel{n}{7}$	$\begin{aligned} & \text { n } \\ & \text { in } \\ & \hline \end{aligned}$	－	$\begin{aligned} & 0 \\ & \infty \\ & \sim \\ & \hline \end{aligned}$	ก	べ
	\pm	$\stackrel{\infty}{n}_{n}^{\infty}$	$\begin{aligned} & \dot{9} \\ & \dot{\infty} \\ & \end{aligned}$	NO	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{0}} \\ & \stackrel{\rightharpoonup}{\mathrm{o}} \end{aligned}$	9	$\begin{gathered} \pm \\ 0 \\ -1 \\ \hline \end{gathered}$	$\stackrel{\tilde{\sim}}{\boldsymbol{\sim}}$	$\begin{aligned} & 0 \\ & \dot{\sim} \end{aligned}$	ñ	\dot{i}	$\stackrel{\infty}{\underset{\sim}{n}}$	$\overrightarrow{\text { N் }}$	N	$\begin{aligned} & \infty \\ & \dot{N} \end{aligned}$	－	$\begin{aligned} & \text { n} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\stackrel{\text { N }}{ }$	N
$\dot{~}$	4	$\underset{A}{N}$	$\begin{aligned} & \text { N } \\ & \\ & \hline \end{aligned}$	$\underset{\sim}{N}$	$\begin{aligned} & n \\ & \dot{0} \\ & \hline \end{aligned}$	O	$\begin{aligned} & 0 \\ & \dot{N} \end{aligned}$	永	Nín	$\underset{\sim}{\sim}$	$\begin{array}{r} \dot{H} \\ \end{array}$	$\underset{\sim}{\circ}$	$\stackrel{\rightharpoonup}{n}$	$\stackrel{n}{7}$	$\stackrel{+}{\dot{N}}$	\bigcirc	$\begin{aligned} & \bullet \\ & \dot{n} \end{aligned}$	へ	－
	E	$\stackrel{\infty}{n}_{n}^{n}$	$\begin{aligned} & \stackrel{5}{\circ} \\ & \stackrel{0}{\circ} \end{aligned}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \hat{i} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \overrightarrow{-1} \\ & \stackrel{0}{\circ} \end{aligned}$	$\underset{\sim}{\tilde{\sim}}$	$\begin{aligned} & 7 \\ & \dot{0} \end{aligned}$	ñ	$\begin{aligned} & \sigma \\ & i \\ & i \end{aligned}$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & 0 \\ & \text { in } \end{aligned}$	$\stackrel{\text { N }}{ }$	$\begin{aligned} & \bullet \\ & \dot{n} \end{aligned}$	$\stackrel{\sim}{7}$	$\begin{aligned} & \text { n } \\ & \end{aligned}$	끅	へ
		z	$1 \times$	z	$1 \times$	z	$1 \times$	z	$1 \times$	z	$1 \times$	z	$1 \times$	z	$1 \times$	z	1x	z	$1 \times$
													๗				$\stackrel{\text { ® }}{\stackrel{\omega}{x}}$		
aパの		ェ○がットゥ				二ロヵが						二 H い い の							

P			C.A.		D.Ph.		D.L.N.		D.L.R.		D.Pat.		T.Id.F.		Met. Word		Met. List.	
			M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F
R	1. English Program Based on Communication Skills	N	30	24	30	24	30	24	30	24	30	24	30	24	30	24	30	24
		\bar{X}	78.3	76.0	13.3	17.5	26.5	25.4	7.7	8.1	6.5	5.6	11.0	11.7	7.8	7.2	11.4	8.1
	2. Textbook Readiness Developing Auditory \& Visual Discrimination		27	23	29	25	29	25	29	25	29	25	29	25	29	25	29	25
E		$\bar{\chi}$	77.2	77.3	16.7	18.5	25.7	22.7	8.0	8..		. 9	10.7	11.4	8.0	7.4	9.2	9.1
	3. Functional Readiness with Easy to Read Books	N	28	30	28	31	28	31	28	31	28	31	28	31	28	31	28	31
I		$\overline{\mathbf{x}}$	77.5	79.5	13.4	13.7	20.6	25.3	7.6	8.6	8.2	7.2	15.2	14.4	7.4	6.5	8.8	9.5
D	4. Direct Teaching of Skills with Non-Word-Reading Activities	N	44	23	44	24	44	24	44	24	44	24	44	24	44	24	44	24
		$\overline{\mathrm{X}}$	78.1	79.3	15.2	15.5	24.5	23.8	7.5	8.9	7.3	7.4	16.8	15.2	7.8	6.9	8.9	9.1
	5. Combination \#i \& \#2 with 15	N	28	21	28	22	28	22	28	22	28	22	28	22	28	22	28	22
	minutes English Program	X	78.4	77.1	11.4	15.0	22.4	24.7	8.2	8.5	7.8	7.6	11.6	10.7	7.9	6.7	9.5	9.3
D	minutes Easy to Readn \& 20 minutes English Program	N	33	21	34	21	34	21	34	21	34	21	34	21	34	21	34	21
		$\overline{\mathrm{X}}$	77.2	77.0	21.8	19.4	26.8	28.3	7.0	8.4	6.9	9.5	9.9	14.9	7.9	8.2	9.0	9.2
	minutes Readiness Book \& 20 minutes English Program	N	33	27	33	27	33	27	33	27	33	27	33	27	33	27	33	27
		$\overline{\mathrm{x}}$	78.3	76.2	14.5	21.2	22.9	27.6	6.5	8.1	8.0	6.3	11.0	10.7	7.0	7.3	9.0	9.0
		$\frac{N}{\bar{X}}$																
			-															
		N																
		$\overline{\mathrm{X}}$																

P R 0			C.A.		D. Ph.		D.L.N.		D.L.R.		D.Pat.		T.Id.F.		Met. Word		Met. List.	
J			M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F
R	Basal - Allyn-Bacon	N	59	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60
U		$\bar{\chi}$	76.4	75.3	22.2	24.7	30.8	31.7	11.7	11.7	14.5	13.9	15.8	14.1	9.3	8.7	9.6	9.5
D	Programmed - McGraw-Hill	N	51	45	51	46	51	46	51	46	51	46	51	46	51	46	51	46
D		\bar{X}	77.3	76.5	20.6	18.7	30.8	32.2	9.6	9.7	12.4	11.5	14.5	18.0	7.5	6.5	8.0	7.5
E	Basal - Allyn-Bacon + Language Structure Training (blocks)	N	44	67	44	67	44	67	44	67	44	67	44	67	44	67	44	67
L		\bar{X}	75.8	75.5	19.1	22.1	34.4	34.6	11.5	10.3	10.9	10.4	14.9	15.7	10.0	7.4	9.5	8.5
L	Programmed - McGraw-Hill + Language Structure Training	N	44	47	44	49	44	49	44	49	44	49	44	<9	44	49	44	49
		\bar{X}	76.1	76.9	22.0	23.1	32.3	30.2	9.2	9.2	11.4	8.1	13.3	10. ${ }^{\text {a }}$	8.3	6.8	8.3	7.6
S	Bascl - Scott-Foresman	N	170	164	170	164	170	164	170	164	170	164	170	164	170	164	170	164
H N		$\overline{\mathrm{X}}$	75.0	74.0	18.3	22.8	30.3	32.7	9.0	9.6	12.0	13.2	12.5	13.7	7.9	7.7	8.1	8.5
E Y	Linguistic - Fries	N	179	168	179	168	179	168	179	168	179	168	179	168	179	168	179	168
$\begin{array}{\|l\|} \mathrm{E} \\ \mathrm{R} \\ \hline \end{array}$		$\overline{\mathbf{X}}$	74.7	74.3	15.9	17.2	28.1	28.3	9.1	8.6	11.4	10.2	14.2	16.0	7.8	7.1	7.8	7.7
S	Basal - Ginn	N	73	70	73	70	73	70	73	70	73	70	73	70	73	70	73	70
		X	75.2	75.2	34.0	34.9	33.2	40.1	10.3	11.0	10.2	10.3	16,5	19.0	10.9	10.9	10.3	1). 4
L	Modified Linguistic - L.W. Singer Co.	N	72	78	72	78	72	78	72	78	72	78	72	78	72	78	72	78
D		\bar{X}	75.2	7.5 .2	26.1	27.3	30.2	32.5	9.4	9.6	7.6	7.8	15.6	17.0	10.0	9.9	9.7	9.6
N	Linguistic - Barnhart-Bloomfield	N	82	83	82	83	82	83	82	83	82	83	82	83	82	83	82	83
		$\overline{\mathrm{X}}$	76.5	76.3	26.7	31.6	33.1	35.5	9.8	10.7	9.7	11.2	13.5	15.5	9.4	9.0	9.0	9.8

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline P \& \& \& \multicolumn{2}{|l|}{Met. Matching} \& \multicolumn{2}{|l|}{Met. Numbers} \& \multicolumn{2}{|l|}{Met. Copying} \& \multicolumn{2}{|l|}{Met. Alphabet} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Met. \\
Total
\end{tabular}} \& \multicolumn{2}{|l|}{PintnerCunningham} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Class \\
Size
\end{tabular}} \& \multicolumn{2}{|l|}{Attitude Inventory} \\
\hline J \& \& \& M \& F \& M \& \(F\) \& M \& \(F\) \& M \& \(F\) \& M \& \(F\) \& \(M\) \& \(F\) \& M \& \(F\) \& M \& \(F\) \\
\hline \multirow[t]{2}{*}{H} \& \multirow[t]{2}{*}{Initiai Teaching Alphabet} \& \(N\) \& 132 \& 123 \& 132 \& 123 \& 132 \& 123 \& 132 \& 123 \& 13\% \& 123 \& 132 \& 123 \& 132 \& 123 \& 12.2 \& 117 \\
\hline \& \& X \& 7.7 \& 8.3 \& 13.6 \& 13.6 \& 8.2 \& 8.4 \& 10.3 \& 11.1 \& 59.4 \& 61.2 \& 39.3 \& 40.7 \& 26.8 \& 27.2 \& 17.7 \& 18.9 \\
\hline \multirow[t]{2}{*}{A

H} \& \multirow[t]{2}{*}{Language Experience} \& N \& 135 \& 134 \& 135 \& 134 \& 135 \& 134 \& 135 \& 134 \& 135 \& 134 \& 135 \& 134 \& 135 \& 134 \& 130 \& 129

\hline \& \& \bar{X} \& 7.4 \& 7.9 \& 12.6 \& 13.1 \& 7.9 \& 8.1 \& 10.5 \& 11.6 \& 57.8 \& 60.1 \& 39.4 \& 41.0 \& 28.1 \& 27.6 \& 16.9 \& 18.8

\hline H \& \multirow[t]{2}{*}{Basal} \& N \& 148 \& 128 \& 148 \& 128 \& 148 \& 128 \& 148 \& 128 \& 148 \& 128 \& 148 \& 128 \& 148 \& 128 \& 143 \& 121

\hline N \& \& X \& 7.8 \& 8.1 \& 13.0 \& 12.9 \& 8.0 \& 8. 5 \& 10.6 \& 11.4 \& 58.7 \& 60.1 \& 39.6 \& 39.9 \& 28.6 \& 28.6 \& 16.6 \& 19.3

\hline \multirow[t]{2}{*}{H} \& \multirow[t]{2}{*}{Language Experience} \& \mathbf{N} \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& 178 \& 179 \& 140 \& 336

\hline \& \& \bar{X} \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& 30.9 \& 30.4 \& 15.6 \& 16.1

\hline \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{Language Experience + AudioVisua].} \& N \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& 170 \& 173 \& 126 \& 132

\hline \& \& X \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& 30.0 \& 29.7 \& 15.2 \& 16.6

\hline K \& \multirow[t]{2}{*}{Skills Centered Basal} \& N \& - \& -- \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& 170 \& 162 \& 133 \& 14%

\hline \multirow[t]{2}{*}{R} \& \& \bar{X} \& - \& - \& - \& \sim \& - \& - \& - \& - \& - \& - \& - \& - \& 27.7 \& 27.9 \& 14.5 5 \& 15.5

\hline \& \multirow[t]{2}{*}{Skiils Centered Basal witn Phonovisual Word Attack} \& N \& -- \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& 164 \& 180 \& 137 \& 14C

\hline S \& \& \bar{X} \& - \& - \& - \& - \& ar \& - \& - \& - \& - \& - \& - \& - \& 29.2 \& 29.0 \& 17.2 \& 17.2

\hline \& \& N \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \bar{X} \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& N \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \bar{X} \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

P R			Met. Matching		Met. Numbers		Met. Copying		Met. Alfhabet		Met. Total		PintnerCunningham		$\begin{aligned} & \text { Class } \\ & \text { Size } \end{aligned}$		Attitude Inventory	
J			M	F	$\cdot{ }^{\prime}$	F	M	F	M	F	M	F	M	F	M	F	M	F
K \therefore N D R I C C K	Language Experience	N	332	305	332	305	332	305	332	305	332	305	332	305	332	305	330	303
		\bar{X}	6.9	7.6	12.9	12.7	6.4	0.5	0.3	10.9	55.9	56.0	39.2	40.4	29.4	29.4	16.5	18.6
	Basal - Ginn	N	354	298	3.4	298	354	298	354	298	, 54	298	354	298	354	298	349	293
		\bar{X}	7.9	8.5	12.6	13.2	7.8	8.4	2.6	10.6	5.5 .9	58.3	36.5	38.7	30.8	31.1	16.8	18.3
M	Basal - Ability Group:ing	N	99	85	99	85	99	85	99	85	102	88	100	85	102	88	-	-
C		\bar{X}	9.2	10.0	12.9	12.8	7.3	7.5	8.6	9.8	55.4	56.3	38.	39.4	24.2	24.3	-	-
0	Basal - One-to-cine	N	77	83	77	83	77	83	77	93	80	83	81	80	81	83	-	-
$\stackrel{\text { a }}{\text { L }}$		\cdots	8.8	10.0	13.2	14.1	7.9	7.4	9.9	11.1	57.7	61.5	38.8	39.1	27.5	26.9	-	-
ANNNLNNG	Basal - Ginn	N	158	152	158	152	158	152	158	152	158	152	158	152	158	1.50	130	133
		\bar{X}	8.2	8.9	11.7	12.3	8.6	9.1	8.0	9.0	53.3	55.5	31.8	33.5	29.5	29.7	17.1	17.6
	Visual \& Auditory + Ginn	N	134	126	134	126	134	1.26	134	126	134	126	134	126	134	126	115	106
		\bar{X}	8.8	9.5	11.3	12.2	8.5	9.0	11.4	12.2	57.5	59.7	32.3	34.9	28.1	28.2	16.0	16.3
	Written Language + VisualAuditory + Gi: ?	N	128	130	128	130	128	130	128	130	128	130	128	13.1	128	130	123	126
		\bar{X}	9.6	9.7	12.9	12.8	9.3	9.6	12.8	1.2 .9	63.1	62.6	33.9	34.6	28.1	28.2	16.3	16.0
		N																
		\bar{X}																
		N																
		\bar{X}																

P			Met. Matching		Met. Numbers		Met. Copying		Met. Alphabet		Met. Total		PintnexCunningham		$\begin{aligned} & \text { Class } \\ & \text { Size } \end{aligned}$		Attitude Inventory	
J			M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F
5 1		N	108	99	108	99	108	99	108	99	108	99	108	99	108	99	106	95
S		$\overline{\mathrm{X}}$	9.0	9.4	14.6	13.9	7.6	7.7	9.1	10.4	60.2	60.4	39.6	39.7	25.9	26.1	16.8	17.8
E R		N	127	108	127	108	127	108	127	108	127	108	127	108	127	108	116	100
M		\bar{X}	6.2	7.1	11.1	11.9	6.6	7.4	8.5	9.2	54.2	52.8	36.7	38.6	30.9	31.7	16.5	18.1
R		N	118	142	118	142	118	142	1.8	142	118	142	118	142	118	142	108	131
T A		$\overline{\mathbf{X}}$	7.1	7.5	12.7	12.7	7.6	7.1	8.. 8	9.8	55.8	56.2	40.5	40.8	26.5	25.7	16.0	17.7
M	Co-Basal + Writing	N	-	-	-	-	-	-	-	-	-	-	169	148	169	148	157	141
Z		\bar{X}	-	-	\cdots	-	-	-	-	-	-	-	39.7	41.6	27.9	27.8	16.9	18.4
R K	Initial Teaching Alphabet \&	N	-	-	-	-	-	-	-	-	-	-	180	1.50	180	150	165	137
	Writing	\bar{X}	-	-	-	-	-	-	-	-	-	-	39.4	40.0	30.9	31.4	17.1	19.1
M		N	47	41	47	41	47	41	47	41	47	41	47	41	47	41	47	40
	sal - American Book Co.	\bar{X}	6.7	6.4	10.5	9.5	4.6	5.5	6.1	5.6	42.1	40.1	31.6	32.0	25.6	25.9	18.9	19.4
A	Teaching English as a Second	N	52	37	53	37	53	37	53	37	52	37	53	37	53	37	52	37
N	Language	\bar{X}	7.1	7.2	10.0	10.8	5.2	4.8	6.4	7.3	43.4	44.0	32.7	34.6	24.4	26.3	17.1	18.0
E	nguage Experience	N	40	47	40	47	40	4?	40	47	40	47	40	47	35	44	4)	47
		\bar{X}	7.1	8.0	10.6	11.5	5.6	6.3	7.3	7.1	44.1	48.1	32.2	34.5	25.3	26.7	17.9	18.1
		N																
		$\overline{\mathbf{X}}$																

PROJ			Met． Matching		Met． Numbers		Met． Copying		Met． Alphabet		Met． Total		Pintner－ Cunningham		$\begin{aligned} & \text { Class } \\ & \text { Size } \end{aligned}$		Attitude Inventory	
			M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F
MOKRLILL	Consultant Working with Teachers One－to－One Basis	H	158	173	155	171	155	170	158	172	155	170	158	173	158	1.3	134	151
		$\bar{\chi}$	10.1	10.3	14.2	13.8	7.2	7.6	12.8	13.4	64.3	64.6	39.3	40.5	23.9	24.0	17.3	18.8
	Consultant Working with Teachers Group Situation	N	202	172	202	172	202	172	202	172	202	172	202	172	202	172	186	150
		\bar{X}	9.8	11.0	13.8	14.4	7.0	7.1	12.5	13.6	62.1	64.7	39.0	41.5	24.4	24.2	16.0	18.4
MURPHY	Basal－Scott－Foresman	N	100	96	100	96	100	96	100	96	100	96	110	104	110	104	110	104
		\bar{X}	6.1	5.7	9.6	9.8	4.0	4.2	8.0	8.1	42.3	42.6	32.8	33.5	26.2	27.7	16.5	18.0
	Scott－Foresman＋Speech to Print Phonics＋Visual	N	123	107	123	107	123	107	123	107	123	107	132	112	132	112	132	112
		\bar{X}	7.0	7.8	11.3	11.3	4.8	5.6	10.0	10.6	49.2	50.2	32.4	34.9	27.0	26.8	15.9	18.2
	```Scott-Foresman + Speech to Pirint Phonics + Writing```	N	114	102	114	102	114	102	114	102	151	123	151	123	151	123	151	123
		$\overline{\mathrm{X}}$	6.1	6.6	10.7	11.2	6.6	7.3	9.0	10.0	46.0	50.0	33.7	36.6	30.2	31.1	17.1	17.9
N	Basal	N	138	126	－	－	－	－	－	－	－	－	138	126	138	126	137	126
		$\bar{X}$	8.3	8.9	－	－	－	－	－	－	－	－	34.4	36.3	30.4	30.4	16.4	17.6
I	Basal＋Supplementary Remedial Teasher	N	124	115	－	－	－	－	－	－	－	－	124	115	124	115	123	114
E   S		$\bar{X}$	8.3	8.8	－	－	－	－	－	－	－	－	36.0	36.5	29.3	29.6	16.3	18.5
	Readiness \＆Trade Books （Special Make）	N	136	108	－	－	－	－	－	－	－	－	136	108	136	108	136	105
		$\bar{X}$	8.3	3.9	－	－	－	－	－	－	－	－	36.7	36.8	29.1	28.8	16.9	18.3
	$\begin{aligned} & \text { Remedial Teacher + Materials } \\ & \text { in } ⿰ ⿰ 三 丨 ⿰ 丨 三 \end{aligned} \text { above }$	N	126	125	－	－	－	－	－	－	－	－	126	125	126	125	125	125
		$\bar{\chi}$	8.4	8.1	－	－	－	－	－	－	－	－	33.3	34.1	30.2	30.1	17.2	17.7






P   R			Stanford Word Readg		Stanford Parag Mean		Stanford Vocabulary		Stanford Spelling		Stanford Word Study		Stanford Arithmetic		$\begin{gathered} \text { Class } \\ \text { Size--End } \end{gathered}$		Pupil Attendenc $\epsilon$	
			M	F	M	F	M	F	M	F	M	F	M	$F$	M	F	M	F
B	Basal - Scott-Foresman	$N$	114	118	114	118	114	118	114	118	114	118	-	-	1.14	118	108	116
0		$\overline{\mathbf{X}}$	15.3	16.6	15.6	18.1	16.7	16.8	8.6	9.9	29.1	30.4	-	-	30.5	30.8	6.2	6.9
D	Intensified Phonics	$N$	115	108	115	108	115	108	115	108	115	108	-	-	115	108	113	108
E		$\bar{\chi}$	15.9	16.9	15.2	18.2	18.2	18.1	8.7	9.3	30.1	30.2	-	-	31.3	31.2	7.8	7.1
A	Phonics with Sensory Experience	N	114	109	114	109	114	109	114	109	114	109	-	-	114	109	113	108
X		$\bar{X}$	17.6	20.0	16.7	20.1	19.7	19.9	9.2	12.6	30.0	33.1	-	-	31.4	31.1	7.2	7.7
C   H   A   L		$N$	88	100	88	100	88	100	88	100	88	100	-	-	88	100	85	96
		$\overline{\mathbf{X}}$	13.9	15.0	10.8	13.2	14.1	14.1	6.8	7.9	23.7	26.4	-	-	25.4	25.7	12.6	15.7
C	Coordinated Language Experience	$N$	131	156	131	156	131	156	131	156	131	156	131	156	131	156	131	156
L		$\bar{X}$	23.3	25.3	24.6	28.8	24.4	24.8	14.0	16.2	39.4	41.9	-	. 6	28.1	28.3	14.4	i5.3
A	Basal - Scott-Foresman	$N$	192	184	192	184	192	184	192	184	$19 ?$	184	192	184	192	184	192	184
$\stackrel{\text { N }}{ }$		$\overline{\mathrm{X}}$	22.1	22.9	24.2	26.1	23.1	22.7	15.1	16.6	38.2	40.0	-	-	35.2	34.5	12.8	14.0
F	Diacritical Marking System	$N$	70	62	70	62	70	62	70	62	70	62	-	-	70	62	70	62
		$\bar{X}$	17.9	19.7	15.7	19.1	22.2	20.6	8.1	9.8	33.4	35.1	-	-	24.1	23.9	9.9	10.5
R	Initial Teaching Alphabet	N	71	63	71	63	71	63	71	63	71	63	-	-	71	63	71	73
		$\overline{\mathrm{X}}$	20.6	21.7	16.8	19.7	23.5	22.0	7.0	8.6	35.2	36.5	-	-	25.0	24.9	7.5	8.9
Y	Basal - Sheldon Readers	N	55	55	55	55	55	55	55	55	55	55	-	-	55	55	55	55
		$\overline{\mathrm{X}}$	19.0	22.0	18.2	22.6	21.8	25.5	9.8	12.7	32.4	37.0	-	-	2.4 .6	24.3	10.1	10.1




P R O			Stanford Word Readg		Stanford Parag Mean		Stanford Vocabulary		Stanford Spelling		Stanford Word Study		Stanford Arithmetic		$\begin{gathered} \text { Class } \\ \text { Size--End } \end{gathered}$		Pupil Attendence	
J			M	$F$	$M$	F	M	F	M	$F$	M	F	M	F	M	$F$	M	$F$
K	Language Experience	N	332	305	332	305	332	305	332	305	332	305	332	305	332	305	332	305
L		X	18.3	19.7	14.8	17.6	21.8	21.7	9.1	10.6	32.6	34.8	39.0	33.7	25.2	25.3	25.1	23.3
I	Basal - Ginn	$N$	354	298	354	298	354	298	354	298	354	298	354	298	354	298	354	298
K		$\bar{X}$	18.4	21.1	18.1	21.1	21.2	21.8	9.2	10.8	33.9	35.6	36.6	37.4	26.0	25.9	36.3	37.0
M	Basal - Ability Grouping	$N$	102	88	102	88	102	88	102	88	102	88	102	88	102	88	86	80
D		X	21.7	24.0	22.3	26.5	2]. 8	21.2	13.6	16.0	35.5	38.6	42.0	43.0	23.9	23.9	6.8	9.3
N	Basal - One-to-One	N	81	83	81	83	81	83	81	82	81	83	69	73	81	83	71.	71
L		$\bar{\chi}$	22.3	24.8	21.9	25.5	21.9	22.5	12.8	15.3	35.7	38.9	43.2	44.3	23.1	2.7 .7	10.?	10.2
M	Basal - Ginn	N	158	152	158	152	158	152	158	152	158	152	-	-	158	152	156	151
A		X	15.1	17.5	13.4	16.7	17.1	18.4	4.1	6.1.	27.1	28.9	-	-	30.7	31.1	9.4	8.9
N	V	N	134	126	134	125	134	126	134	126	134	126	1	-	134	126	134	126
N		X	20.0	20.1	17:2	20.0	21.0	20.6	8.8	10.2	32.4	34.1	18.0	-	28.3	2.8 .4	8.0	9.3
I	Written Language + Visual-	N	128	130	128	130	128	130	128	J 30	128	130	-	-	128	130	128	199
G		$\bar{\chi}$	$2 \because .4$	20.2	19.5	21.6	21.8	20.6	10.4	11.5	33.6	-35.0	-	$\cdots$	29.5	28.9	7.8	7.4
		N																
		$\bar{X}$																
		N																
		$\overline{\mathrm{X}}$																



P R			Stanford Word Reade		Stanford Parag Mear		Stanford Vocabular		Stanford Spelling		Stanford Word Study		Stanford Arithmetic		$\begin{gathered} \text { Class } \\ \text { Size--End } \end{gathered}$		Pupil Attendence	
J			M	F	M	F	M	$F$	M	$F$	M	F	M	F	M	F	M	$F$
M 0	Consultant Working with Teachers One-to-One Besis	$N$	158	173	158	173	158	173	158	173	158	173	157	172	158	173	158	173
R		$\bar{X}$	22.3	22.9	20.6	24.7	23.3	23.0	12.2	13.5	39.0	40.7	40.0	40.3	23.5	23.7	9.5	10.
L	Consultant Woriking with Tcachers Group Situation	$N$	202	172	202	172	202	172	202	172	202	172	201	171	202	172	201	172
		$\bar{X}$	21.4	24.5	13.4	24.4	21.9	22.4	12.1	15.0	37.7	42.7	37.8	39.7	25.0	24.7	9.9	9.8
$\begin{aligned} & \mathrm{M} \\ & \mathrm{U} \\ & \mathrm{R} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{Y} \end{aligned}$	Basal - Scott-Fcresman	N	. 110	104	110	104	110	104	110	104	110	104	-	-	110	104	110	104
		X	22.2	23.0	20.3	20.9	22.5	20.9	11.3	12.1	36.2	38.9	-	-	25.0	25.9	8.7	11.1
	Scott-Foresman + Speech to Print Phonics + Visual	$N$	132	112	132	112	132	112	i32	112	132	112	-	-	132	112	132	112
		$\bar{X}$	24.6	26.9	23.8	26.5	22.9	24.5	10.3	11.3	37.6	39.0	-	-	25.9	26.1	8.9	9.2
	Scott-Foresman + Speech to Print Phonics + Writ:.ng	$N$	151	123	151	123	15!	123	151	123	151	123	-	-	1.51	123	151	123
		$\bar{X}$	21.2	23.9	18.7	24.7	23.3	24.6	12.3	15.1	39.4	43.9	-	-	29.7	30.5	13.9	15.5
N	Basal	$N$	1.38	126	138	126	138	126	138	126	138	126	138	125	138	1. 6	138	126
		$\bar{X}$	18.7	18.4	18.0́	20.3	20.8	20.6	11.2	11.6	35.2	35.6	32.6	30.7	29.9	30.1	11.0	11.3
I	Basal + Supplementary Panedial Teachır	$N$	124	115	124	115	124	115	124	115	124	115	123	115	124	115	124	115
L		X	18.3	20.4	17.3	21.6	21.5	22.2	10.4	12.8	34.9	37.6	32.7	34.6	28.4	28.6	9.1	10.6
	Readiness \& Trade Books (Special Make)	$N$	136	108	136	108	136	108	136	108	1.36	108	135	107	136	108	136	108
		$\bar{X}$	18.6	20.3	18.7	22.3	21.9	21.4	9.8	12.0	35.6	37.4	37.1	36.2	29.8	29.5	11.4	12.0
S	Remedial Teacher + Materials in 非 3 above	$N$	126	125	126	125	126	125	126	125	125	125	126	125	i26	125	126	125
		$\bar{X}$	19.3	20.6	18.7	22.5	20.2	19.9	9.8	12.0	36.1	38.2	34.6	33.4	29.7	29.2	11.4	11.5



P			Stanford Word Readg		Stanford Parag Mean		Stanford Vocabular:		Stanford Spelling		Stanford Word Study		Stanford Arithmetic		$\begin{gathered} \text { Class } \\ \text { Size--End } \end{gathered}$		Pupil   Attendence	
			M	$F$	M	F	M	F	M	F	M	F	M	F	M	F	M	F
R	Basa.l - Allyn-Bacon	N	60	60	60	60	60	60	60	60	60	60	60	58	60	50	60	60
U		$\overline{\mathrm{X}}$	18.1	18.4	17.4	18.2	20.1	20.0	8.0	9.5	33.1	33.8	36.0	31.5	32.8	25.4	10.6	10.6
1)	Programmed - McGraw-Hill	N	51.	46	51	46	51	46	51	46	51	46	50	45	51	40	50	46
D		$\overline{\mathrm{X}}$	20.5	20.9	14.8	16.6	19.1	18.6	8.7	9.7	32.6	32.9	30.4	30.7	33.3	33.7	10.2	12.3
E:	Basal - Allyn-Bacon + Lanzuage Structure Training (blocks)	N	44	67	44	67	44	67	44	67	44	67	42	66	44	67	44	67
L		$\bar{\chi}$	10.6	16.0	12.9	13.5	18.5	16.5	6.9	8.1	29.2	30.6	33.5	29.8	38.2	39.3	8.1	10.8
2	Programmed - McGraw-Hill + Language Structure Training	N	44	49	44	49	44	49	44	49	44	49	44	48	44	49	43	47
		$\bar{X}$	19.0	18.6	15.7	16.8	20.4	17.3	10.0	8.4	35.3	32.7	32.0	28.3	32.7	35.9	7.7	9.9
C	Basal - Scott-Foresman	$N$	170	1.64	170)	164	170	164	170	164	170	164	-	-	170	1.64	170	104
is		$\overline{\mathrm{X}}$	18.1	19.8	17.3	20.2	20.3	21.6	10.1	12.3	34.5	37.5	-	-	31.7	31.9	12.0	10.5
Y	Linguistic - Fries	N	179	1.68	179	168	179	168	179	168	179	168	-	-	179	168	179	168
R		$\overline{\mathrm{X}}$	16.8	17.1	15.3	16.5	18.8	18.1	8.	8.8	31.8	32.7	-	-	31.8	31.4	11.0	10.9
:	Basal - Ginn	$N$	73	70	73	70	73	70	73	70	73	70	73	70	73	70	73	69
H		$\overline{\mathrm{X}}$	20.3	22.1	21.4	23.6	25.8	24.3	13.1	14.3	40.0	42.5	46.0	45.3	24.2	23.7	9.1	8.4
	Modified Linguistic L. W. Singer Co.	N	72	78	72	78	72	78	72	78	72	78	72	78	72	78	72	78
D		$\overline{\mathrm{X}}$	22.0	20.9	17.9	18.2	22.7	21.6	11.0	10.8	38.4	38.9	42.9	38.3	23.7	23.5	7.5	9.3
0	Linguistic - Barnhart-Blcomfield	N	82	83	82	83	82	83	82	83	82	83	82	83	82	83	82	83
N		$\overline{\mathrm{X}}$	17.4	19.7	14.1	17.2	21.1	22.9	8.9	11.2	33.6	38.1	39.7	42.7	24.8	25.3	9.9	4.1






P R			Teacher C.A.		Years Tchg Exper		lst Grade Tchg Exper		Attitude Basic		Attitude Individual		Attitude Language		No. Rooms n Building		Teacher Attendence	
\%			M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	$F$
H	Basal - Scott-Foresman	$N$	45	42	45	$\div 2$	45	42	-	-	-	-	-	-	45	42	45	42
		$\overline{\mathrm{X}}$	31.0	31.2	9.2	9.3	5.8	6.0	$\cdots$	-	-	-	-	-	3.0	3.0	9.3	10.5
A	Lippincott Basal with Filmstrips	$N$	53	46	53	46	53	46	-	-	-	-	-	-	53	46	53	46
		$\bar{X}$	34.3	32.6	6.5	6.0	4.6	4.2	-	-	-	-	-	-	3.0	3.0	5.2	5.4
Y	Scott-Foresman with Phonics and Word Power	N	50	53	50	53	50	53	-	-	-	-	-	-	50	53	50	53
		$\overline{\mathrm{X}}$	42.4	42.5	15.6	15.2	11.8	11.7	-	-	-	-	-	-	2.4	2.4	3.6	3.7
E	Initial Teaching Alphabet	N	44	52	44	52	44	52	-	-	-	-	-	-	44	52	44	52
S		$\overline{\mathbf{X}}$	31.0	30.4	7.7	7.2	7.0	6.6	-	-	-	-	-	-	2.7	2.8	2.5	2.5
H	Il:-Service Teaching Program	N	157	144	157	144	157	144	-	-	-	-	-	-	157	144	J. 57	144
I		$\bar{X}$	44.6	45.1	15.0	13.9	8.9	8.6	-	-	-	-	-	-	3.0	2.7	4.7	3.8
M	Control	$N$	141	137	141	137	141	137	-	-	-	-	-	-	141	137	141	127
is		$\bar{X}$	45.5	43.8	15.0	16.2	12.7	13.6	-	-	-	-	-	-	2.8	2.6	8.5	8.8
H	Oral - Aural English	$N$	85	79	85	79	85	79	-	-	-	-	-	-	85	79	85	79
		$\bar{X}$	55.3	54.4	26.9	26.0	22.0	2]. 6	-	-	-	-	-	-	5.0	5.5	6.1	6.3
R	Oral - Aural Spanish	N	96	73	96	73	96	73	-	-	-	-	-	-	96	73	96	73
		$\bar{X}$	48.3	46.7	19.2	17.8	13.3	12.2	-	-	-	-	-	-	5.7	6.0	5.6	6.1
N	No Oral - Aural Spanish	N	85	84	85	84	85	84	-	-	-	-	-	-	85	84	85	84
		$\overline{\mathbf{X}}$	56.8	56.9	28.5	29.6	21.9	22.2	-	-	-	-	-	-	4.6	4.8	6.0	5.3


	4	$\begin{aligned} & \text { O} \\ & \text { O-1 } \end{aligned}$	$\stackrel{n}{i}$	$\begin{aligned} & \infty \\ & \underset{\sim}{N} \end{aligned}$	$\dot{\sim}$	－	$\underset{i}{\infty}$	\％	$\stackrel{O}{0}$	$\underset{\sim}{i r}$	$\begin{aligned} & \because \\ & -i \end{aligned}$	$\begin{gathered} s \\ \underset{\sim}{3} \end{gathered}$	$\underset{+}{0}$	$\stackrel{0}{\mathrm{M}}$	$\stackrel{Q}{9}$				
	$\pm$	N্N	$\stackrel{\rightharpoonup}{v}$	- ज	$\begin{aligned} & \pm \\ & \dot{寸} \mid \end{aligned}$	$\underset{\sim}{\mathrm{N}}$	$\begin{gathered} 0 \\ \text { in } \end{gathered}$	$\infty$	$\cdots$	$\stackrel{\infty}{\sim}$	$\stackrel{n}{n}$	$\stackrel{ \pm}{\sim}$	$\begin{aligned} & 0 \\ & \dot{9} \end{aligned}$	$\stackrel{\infty}{\underset{\sim}{N}}$	$\underset{\sim}{\sim}$				
	4	ñ	$\stackrel{n}{n}$	$\stackrel{\infty}{\underset{N}{N}}$	$\stackrel{\rightharpoonup}{\dot{n}}$	$\infty$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\sim}{\infty}$	$\stackrel{\infty}{\stackrel{\infty}{N}}$		$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \end{aligned}$	$\stackrel{-}{n}$	$\underset{\sim}{\circ}$	$\begin{gathered} 0 \\ \text { लं } \end{gathered}$				
	F	$\stackrel{\sim}{\sim}$	$\stackrel{\rightharpoonup}{\dot{n}}$	N゙N	$\dot{m}$	No	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{-}{\infty}$	$\stackrel{9}{\sim}$	$\underset{\sim}{\infty}$	$\begin{gathered} \dot{m} \\ \stackrel{i}{2} \end{gathered}$	$\stackrel{\rightharpoonup}{7}$	$\stackrel{-}{\sim}$	$\stackrel{\infty}{\underset{\sim}{\sim}}$	$\begin{aligned} & 9 \\ & \sigma i \end{aligned}$				
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned} 0$	4	no	$\begin{aligned} & n \\ & 0 \\ & q \end{aligned}$	$\stackrel{\infty}{N}$	$\begin{gathered} N \\ \stackrel{N}{N} \end{gathered}$	$\infty$	$\begin{gathered} n \\ \stackrel{n}{4} \\ m \end{gathered}$	$\infty$	$\stackrel{n}{n}$	$\begin{gathered} \mathrm{N} \\ \underset{\sim}{c} \end{gathered}$	$\begin{aligned} & n \\ & \dot{0} \\ & \end{aligned}$	$\underset{\underset{\sim}{N}}{\stackrel{\rightharpoonup}{n}}$	$\begin{gathered} m \\ \dot{n} \\ \hline \end{gathered}$	$\stackrel{\text { On }}{\substack{n \\ i-1}}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{n} \end{aligned}$				
	IE	$\stackrel{\sim}{\sim}$	$$	$\underset{\sim}{\text { N }}$	$\begin{aligned} & \stackrel{n}{n} \\ & \stackrel{n}{N} \end{aligned}$	응	$\begin{aligned} & \text { N } \\ & \dot{\sim} \end{aligned}$	$\cdots$	$\begin{aligned} & \hline 0 \\ & \text { N } \end{aligned}$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & \text { @ } \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\stackrel{\rightharpoonup}{\text { N}}$	$\begin{aligned} & \text { n } \\ & \text { N } \end{aligned}$	$\underset{\underset{\sim}{\infty}}{\underset{\sim}{\infty}}$	$\begin{aligned} & \text { ㄱ } \\ & \underset{\sim}{2} \end{aligned}$				
	4	$\begin{aligned} & \text { no } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{+}{+} \\ & \hline \end{aligned}$	$\stackrel{\infty}{N}$	$\begin{gathered} 9 \\ \dot{4} \\ \hline \end{gathered}$	$\infty$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{m} \end{aligned}$	¢	$\begin{aligned} & \text { in } \\ & \dot{0} \\ & \hline \end{aligned}$	$\underset{\sim}{\mathrm{N}}$	$\begin{aligned} & \stackrel{+}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\underset{\underset{\sim}{*}}{\stackrel{\circ}{+}}$	$\begin{aligned} & \text { r } \\ & \underset{\sim}{n} \end{aligned}$	O	$\begin{aligned} & \text { in } \\ & i \end{aligned}$				
	F	$\underset{\sim}{\sim}$	$\begin{aligned} & 0 \\ & \dot{寸} \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{N}$	$\begin{aligned} & \dot{9} \\ & \dot{4} \end{aligned}$	앙	$\stackrel{\rightharpoonup}{\mathrm{n}}$	${ }_{\infty}{ }^{-1}$	$\begin{aligned} & \infty \\ & \dot{0} \\ & \hline \end{aligned}$	$\stackrel{\infty}{n}$	$\begin{aligned} & 0 \\ & \dot{m} \end{aligned}$	$\stackrel{\rightharpoonup}{N}$	$\underset{\sim}{\sim}$	$\stackrel{\infty}{\underset{\sim}{N}}$	$\begin{aligned} & N \\ & \dot{O} \\ & \hline \end{aligned}$				
	L	$\begin{aligned} & \text { in } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{N}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \underline{n} \\ & \dot{0} \\ & 寸 \end{aligned}$	$\cdots$	$\begin{gathered} \text { N } \\ \underset{寸}{\prime} \end{gathered}$	$\cdots$	$\begin{aligned} & 6 \\ & \dot{v} \end{aligned}$	$\underset{\sim}{\mathrm{N}}$	$\begin{aligned} & 0 \\ & 0 \\ & \dot{n} \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{N} \\ & \hline \end{aligned}$	$\stackrel{?}{i}$	$\stackrel{\stackrel{\rightharpoonup}{7}}{ }$	$\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$				
	$E$	N্ল゙	$\begin{aligned} & \sigma \\ & \infty \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \text { N } \\ & n \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \dot{0} \end{aligned}$	\％	$\stackrel{9}{\infty}$	$\cdots$	$\begin{aligned} & \text { N } \\ & \text { j } \end{aligned}$	$$	$\begin{aligned} & \infty \\ & \dot{\gamma} \\ & \underset{寸}{ } \end{aligned}$	$\stackrel{\rightharpoonup}{n}$	－	$\stackrel{\infty}{\underset{\sim}{\sim}}$	$\begin{aligned} & \mathbf{M} \\ & \dot{0} \end{aligned}$				
	U	$\begin{aligned} & \text { no } \\ & \text { On } \end{aligned}$	$\stackrel{0}{\infty}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & 0 \\ & -i \\ & - \end{aligned}$	$\infty$	$\xrightarrow{-}$	๓	$\stackrel{\cap}{n}$	$\underset{\sim}{\mathrm{N}}$	$\stackrel{7}{\square}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \hline \end{aligned}$	$\stackrel{0}{\infty}$	$\stackrel{\stackrel{\rightharpoonup}{7}}{ }$	$\begin{aligned} & 0 \\ & i n \end{aligned}$				
	$\pm E$	$\underset{\sim}{\sim}$	$\stackrel{\sim}{n}$	$\stackrel{T}{N}$	$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \dot{\sim} \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { r- } \\ & 0 \\ & 0 \end{aligned}$	$\cdots$	$\begin{aligned} & \infty \\ & \dot{0} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \infty \\ & \sim \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bullet} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \text { N゙ } \end{aligned}$	$\underset{\sim}{r}$	$\begin{aligned} & \text { } \\ & \underset{\sim}{\sim} \end{aligned}$	$\stackrel{\sim}{n}$				
	4.	no	$\begin{aligned} & \infty \\ & \dot{-} \\ & \underset{\sim}{1} \end{aligned}$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & \stackrel{9}{4} \\ & \underset{\sim}{n} \end{aligned}$	$\infty$	$\begin{aligned} & \text { n } \\ & \stackrel{\rightharpoonup}{n} \\ & \hline \end{aligned}$	¢	$\stackrel{+}{\stackrel{\rightharpoonup}{N}}$	$\underset{\sim}{\mathrm{N}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\bullet}{\underset{\sim}{N}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\text { 윽 }}{ }$	$\underset{\infty}{0}$				
	$E$	Nָ	$\begin{aligned} & \stackrel{\rightharpoonup}{i} \\ & \underset{\sim}{1} \end{aligned}$	$\stackrel{ \pm}{N}$	$\begin{aligned} & \infty \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	No	$\stackrel{\rightharpoonup}{-}$	$\cdots$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{N}} \\ & \stackrel{y}{n} \end{aligned}$	$\stackrel{\infty}{\sim}$	?	$\stackrel{\stackrel{\rightharpoonup}{n}}{\stackrel{\rightharpoonup}{n}}$	$\stackrel{\uparrow}{\circ}$	$\underset{\underset{\sim}{N}}{\infty}$	$\begin{aligned} & \text { N } \\ & \dot{0} \end{aligned}$				
	U	$\stackrel{n}{\mathrm{n}}$	$\begin{aligned} & \text { n } \\ & \underset{i}{\prime} \end{aligned}$	$\stackrel{\infty}{N}$	$\begin{aligned} & \text { o } \\ & \dot{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\infty$	$\circ$ $\sim$ $\sim$	$\infty$	$\begin{gathered} \text { N. } \\ \text { Nin } \end{gathered}$	$\begin{gathered} \text { N } \\ \text { N } \end{gathered}$	$\begin{aligned} & a \\ & \infty \\ & \infty \\ & n \end{aligned}$	$\stackrel{\bullet}{\underset{\sim}{\sim}}$	$\begin{aligned} & 0 \\ & \underset{\sim}{\mathbf{n}} \end{aligned}$	$\stackrel{\ominus}{\mathrm{M}}$	$\begin{aligned} & \text { r. } \\ & \dot{m} \\ & \hline \end{aligned}$				
	$E$	$\underset{\sim}{\sim}$	$\begin{aligned} & 0 \\ & 0 \\ & \dot{寸} \end{aligned}$	$\stackrel{t}{N}$	$\begin{aligned} & 0 \\ & \dot{v} \\ & \underset{v}{ } \end{aligned}$	$\underset{\sim}{\mathrm{O}}$	$\stackrel{+}{\text {－}}$	$\stackrel{-}{\infty}$	$\begin{gathered} \pm \\ \infty \\ \underset{寸}{0} \end{gathered}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\stackrel{\infty}{n}}$	$\stackrel{\rightharpoonup}{\sim}$	$\begin{aligned} & 0 \\ & \vdots \\ & \end{aligned}$	$\stackrel{\underset{\sim}{\sim}}{ }$	$\begin{aligned} & \text { N } \\ & -i \end{aligned}$				
		z	$1 \times$	z	$1 \times$	$\pi$	$1 \times$	z	1×	z	1×	z	$1 \times$	z	$1 \times$	$z$	1x	z	$1 \times$
				E .7 0 1 1 -7 0 0 0							$\begin{gathered} \text { ci } \\ .-1 \\ 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{gathered}$								
～か	$0 \cdot$										$\varangle$	7	z	$z$					





	4	8	$\stackrel{\infty}{\infty}$	$\stackrel{5}{5}$	$\stackrel{\rightharpoonup}{\sim}$	$\bigcirc$	$\stackrel{+}{\dot{G}}$	コ	$\stackrel{+}{9}$	$\xrightarrow{*}$	$\cdots$	$\infty$   $\sim$   $\sim$	？	只	$\stackrel{7}{4}$	$\stackrel{\sim}{\sim}$	$\bigcirc$	¢	$\stackrel{\square}{i}$
	E	8	$\stackrel{9}{9}$	$\cdots$	$\stackrel{\rightharpoonup}{\text { n }}$	$\stackrel{\text { v }}{ }$	$\stackrel{3}{9}$	$\cdots$	$\begin{aligned} & \text { n } \\ & \text { in } \end{aligned}$	$\stackrel{\circ}{\stackrel{\circ}{-}}$	$\begin{aligned} & n \\ & n \end{aligned}$	$\begin{aligned} & 9 \\ & \end{aligned}$	$\stackrel{+}{\circ}$	$\cdots$	$\stackrel{9}{*}$	N	？	$\underset{\sim}{\sim}$	$\stackrel{\sim}{\sim}$
	4	$\bigcirc$	$\stackrel{\bullet}{\sim}$	$\stackrel{\leftarrow}{*}$	$\stackrel{\rightharpoonup}{\sim}$	$\bigcirc$	$\begin{aligned} & \dot{a} \\ & \dot{\sim} \end{aligned}$	$\stackrel{\square}{\text { or }}$	$\begin{aligned} & \infty \\ & \dot{N} \end{aligned}$	$\underset{\substack{t \\ \hline \\ \hline}}{ }$	$\hat{\mathrm{n}}$	$\begin{aligned} & \infty \\ & \underset{-1}{\infty} \end{aligned}$	$\stackrel{?}{8}$	$\gtrsim$	n	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\infty}$	$\cdots$	N
	$\Sigma$	$\bigcirc$	$\stackrel{\rightharpoonup}{\sim}$	n	$\stackrel{0}{\dot{\sim}}$	¢	$\begin{aligned} & 0 \\ & \dot{n} \end{aligned}$	寸	$\begin{aligned} & 0 \\ & \dot{\sim} \end{aligned}$	$\stackrel{\circ}{\underset{\sim}{-}}$	$\stackrel{\rightharpoonup}{\mathrm{m}}$	$\begin{aligned} & \stackrel{9}{\top} \\ & \end{aligned}$	$\stackrel{n}{i}$	$\stackrel{n}{\sim}$	$\vec{m}$	N	$\stackrel{r}{n}$	－	$\stackrel{\rightharpoonup}{*}$
	4.	N	$\begin{aligned} & 0 \\ & \dot{0} \\ & \text { N } \end{aligned}$	1	1	a	$\begin{aligned} & \infty \\ & \dot{0} \end{aligned}$	N	$\stackrel{0}{-}$	$\begin{aligned} & \underset{\sim}{T} \\ & \end{aligned}$	$\begin{aligned} & p \\ & \dot{n} \\ & \hline \end{aligned}$	$\begin{aligned} & \alpha \\ & \underset{\sim}{0} \end{aligned}$	$\stackrel{0}{\stackrel{0}{m}}$	$\xlongequal{\sim}$	$\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & \stackrel{\text { N }}{2} \end{aligned}$	$\stackrel{\infty}{\sim}$	$\xrightarrow{ \pm}$	$\infty$	$\infty$ 0 0 + 0
	$E$	$\cdots$	$\begin{aligned} & 0 \\ & \dot{N} \end{aligned}$	m	$\begin{aligned} & \text { n } \\ & \stackrel{\circ}{2} \end{aligned}$	$\checkmark$	$\begin{aligned} & \infty \\ & \dot{m} \end{aligned}$	$\checkmark$	$\begin{aligned} & n \\ & \sim \end{aligned}$	$\stackrel{0}{i}$	$\begin{array}{r} \text { N } \\ \end{array}$	$\underset{\sim}{9}$	$\begin{aligned} & n \\ & \dot{m} \end{aligned}$	$\cdots$	$\begin{aligned} & \text { D} \\ & \stackrel{+}{n} \end{aligned}$	N	N	－	－
	4	N	$\begin{aligned} & \text { n } \\ & \dot{\sim} \\ & \hline \end{aligned}$	$\cdots$	$\begin{aligned} & \text { n } \\ & \underset{N}{n} \end{aligned}$	n	$\begin{aligned} & \text { N } \\ & \underset{i}{2} \end{aligned}$	N	$\begin{aligned} & 0 \\ & \dot{1} \\ & 1 \end{aligned}$	$\begin{gathered} \text { V } \\ \underset{-}{2} \end{gathered}$	$\begin{aligned} & n \\ & \text { m } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 葺 } \\ & \hline 1 \end{aligned}$	$\stackrel{\bullet}{\stackrel{\bullet}{n}}$	$\bigcirc$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\infty}{\sim}$	$\stackrel{ \pm}{\text { N }}$	$\infty$	n
	$\Sigma$	in	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\infty}{\sim}$	$\xrightarrow{-}$	n	$\begin{array}{r} \text { N } \\ \dot{\circ} \end{array}$	$\stackrel{\sim}{N}$	$\begin{aligned} & n \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{0}{7}$	$\begin{aligned} & \sigma \\ & \stackrel{n}{m} \end{aligned}$	$\stackrel{9}{7}$	$\stackrel{\sim}{n}$	$\cdots$	$\begin{aligned} & \bullet \\ & \infty \\ & \infty \end{aligned}$	N	¢	$\infty$	－
	4	1	1	$\checkmark$	$\stackrel{\sim}{\sim}$	1	：	1	1	$$	－	$\begin{aligned} & \hline \infty \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{+}{2}$	¢	$\stackrel{\infty}{\sim}$	¢	$\cdots$	n N
	$E$	1	1	in	$\stackrel{ \pm}{\square}$	1	1	1	1	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~A} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\square}{9}$	$\begin{aligned} & \underset{\sim}{n} \\ & \sim \end{aligned}$	$\cdots$	$\begin{aligned} & \stackrel{\rightharpoonup}{*} \\ & \underset{\sim}{2} \end{aligned}$	N	J   0   0	－	$\xrightarrow[\sim]{\text { N }}$
$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & x \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ & 0 \end{array}$	4	$\bigcirc$	$\underset{\sim}{7}$	$\stackrel{c}{\top}$	${ }_{c}^{\infty}$	$\hat{6}$	$\stackrel{\rightharpoonup}{\bullet}$	$\stackrel{9}{9}$	$\begin{aligned} & \text { a } \\ & \text { in } \end{aligned}$	$\underset{\substack{T \\ \hline \\ \hline}}{ }$	$\xrightarrow{-1}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\sim}{r}$	$\bigcirc$	¢ $\stackrel{1}{1}$ $\sim$	$\stackrel{\infty}{\sim}$	$\stackrel{\square}{n}$	$\infty$	$\stackrel{\square}{\circ}$
	E	8	$$	$\cdots$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { v }}{\text { ¢ }}$	$\stackrel{\rightharpoonup}{\sim}$	寸	$\begin{aligned} & 9 \\ & i n \end{aligned}$	$\begin{aligned} & \sigma \\ & \underset{\sim}{1} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\Omega}{\Gamma}$	$\begin{aligned} & \boldsymbol{n} \\ & \dot{x} \end{aligned}$	$\cdots$	9 $\pm$ $\pm$	N	$\bigcirc$	$\underset{\infty}{\sim}$	$\sim$
	4	$\bigcirc$	$\begin{gathered} \text { N } \\ \underset{\sim}{4} \end{gathered}$	$\stackrel{c}{\top}$	$0$	$\hat{0}$	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{9}{7}$	$\begin{aligned} & 0 \\ & \dot{0} \end{aligned}$	－   $\substack{\text {－}}$	n   $\vdots$   $\square$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	N $\vdots$ －	$\bigcirc$	$\cdots$	$\stackrel{\infty}{\sim}$	$\stackrel{\bigcirc}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\square}{\circ}$
	$E$	$\bigcirc$	$\xrightarrow{\sim}$	$\cdots$	$\cdots$	さ	$\xrightarrow{\sim}$	v	N：	$\stackrel{\circ}{\mathrm{O}}$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\square$ $\vdots$ $\cdots$	$\stackrel{n}{n}$	$\stackrel{-}{\circ}$	N	$\cdots$	$\stackrel{\sim}{\infty}$	0 -1 -1
	4	$\bigcirc$	$\underset{\sim}{\infty}$	$\stackrel{\square}{9}$	$\begin{aligned} & \text { o } \\ & -i \end{aligned}$	$\hat{0}$	$\begin{aligned} & \text { N } \\ & \cdots \\ & \end{aligned}$	g	$\begin{aligned} & \infty \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \text { T } \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \sim \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$n$   $\sim$   ¢  	$\bigcirc$	$\xrightarrow{\circ}$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{0}$	$\underset{\infty}{\infty}$	$\stackrel{\sim}{\sim}$
	$E$	$\bigcirc$	$\begin{aligned} & \stackrel{\rightharpoonup}{9} \\ & \underset{寸}{ } \end{aligned}$	$\cdots$	$\begin{aligned} & \underset{0}{0} \\ & \dot{\gamma} \end{aligned}$	$\stackrel{J}{\text { v }}$	$\stackrel{m}{\text { m }}$	寸	$\begin{aligned} & 0 \\ & \text { nे } \end{aligned}$	$\stackrel{\circ}{7}$	$\infty$ $\sim$ $\sim$ $\sim$	$\stackrel{9}{7}$	$\stackrel{\sim}{\sim}$	$\stackrel{n}{\sim}$	n $\sim$ $\sim$	N	－	～	0 $\sim$ y
		2	1×	z	$1 \times$	z	！$\times$	$z$	$\times$	$z$	$1 \times$	z	$1 \times$	z	1x	z	$\times$	$z$	$1 \times$
						suet＋uoveg－uktty－teseg											0   0   4   0   C   C		
$0 \sim$			$\times$		－		$\pm$			のUエス吅》以乐				のエ吅い口○て					









\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline P
R

J \& \& \& \multicolumn{2}{|l|}{Gilmore Accuracy} \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& \text { Gilmoro } \\
& \text { Rate }
\end{aligned}
$$} \& \multicolumn{2}{|l|}{Fry} \& \multicolumn{2}{|l|}{Gates} \& \multicolumn{2}{|l|}{Karlsen} \& \multicolumn{2}{|l|}{Mechanics Ratio Scale} \& \multicolumn{2}{|l|}{Words Spelled Correctly} \& \multicolumn{2}{|l|}{Running Words} <br>

\hline \& \& \& M \& $F$ \& M \& F \& M \& F \& M \& F \& M \& F \& M \& F \& M \& F \& M \& $F$ <br>
\hline M \& \multirow[t]{2}{*}{Consultant Working with Teachers One-to-One Basis} \& N \& 28 \& 9 \& 28 \& 9 \& 28 \& 10 \& 28 \& 10 \& 28 \& 10 \& 27 \& 10 \& 27 \& 10 \& 27 \& 10 <br>
\hline R \& \& $\bar{X}$ \& 29.9 \& 30.9 \& 75.1 \& 82.0 \& 12.2 \& 14.3 \& 19.7 \& 18.4 \& 18.6 \& 19.0 \& 51.8 \& 44.0 \& 21.7 \& 26.4 \& 29.7 \& 35.7 <br>
\hline I \& \multirow[t]{2}{*}{Consultant Working with Teachers Group Situation} \& N \& 20 \& 25 \& 21 \& 26 \& 21 \& 28 \& 21 \& 27 \& 21 \& 28 \& 21 \& 28 \& 21 \& 28 \& 21 \& 28 <br>

\hline \multirow[t]{7}{*}{| M U |
| :--- |
| U |
| R |
| P |
| H |
| Y |} \& \& X \& 23.1 \& 32.1 \& 57.9 \& 87.0 \& 9.7 \& 15.5 \& 13.1 \& 18.7 \& 12.9 \& 20.5 \& 41.2 \& 52.8 \& 17.6 \& 23.9 \& 24,4 \& 28.7 <br>

\hline \& \multirow[t]{2}{*}{Basal - Scutt-Foresman} \& N \& 26 \& 22 \& 26 \& 22 \& 26 \& 22 \& 26 \& 22 \& 16 \& 14 \& 106 \& 102 \& 106 \& 102 \& 106 \& 102 <br>
\hline \& \& $\bar{X}$ \& 30.5 \& 31.3 \& 57.3 \& 66.0 \& 14.3 \& 13.0 \& 18.3 \& 16.1 \& 15.1 \& 13.1 \& 61.3 \& 62.0 \& 18.3 \& 19.1 \& 23.1 \& 23.9 <br>
\hline \& \multirow[t]{2}{*}{Scott-Foresman + Speech to Print Phonics + Visual} \& N \& 29 \& 20 \& 29 \& 20 \& 29 \& 20 \& 29 \& 20 \& 28 \& 20 \& 131 \& 109 \& 131 \& 109 \& 131 \& 109 <br>
\hline \& \& $\overline{\text { X }}$ \& 32. 5 \& 33.7 \& 57.4 \& 60.6 \& 22.2 \& 21.7 \& 23.7 \& 22.9 \& 24.8 \& 24.1 \& 54.9 \& 64.8 \& 16.7 \& 22.4 \& 22.0 \& 28.2 <br>
\hline \& \multirow[t]{2}{*}{Scott-Foresman + Speech to Print Phonics + Wrising} \& N \& 29 \& 21 \& 29 \& 21 \& 29 \& 21 \& 29 \& 21 \& 29 \& 21 \& 132 \& 108 \& 132 \& 108 \& 132 \& 108 <br>
\hline \& \& X \& 23.9 \& 27.6 \& 54.2 \& 56.2 \& 18.9 \& 20.6 \& 9.7 \& 22.6 \& 22.6 \& 25.1 \& 49.1 \& 57.8 \& 18.7 \& 24.4 \& 24.7 \& 30.7 <br>
\hline \multirow[t]{2}{*}{N} \& \multirow[t]{2}{*}{Basal} \& N \& 23 \& 29 \& 23 \& 29 \& 64 \& 66 \& 64 \& 66 \& 23 \& 29 \& 21 \& 29 \& 21 \& 29 \& 21 \& $\therefore 9$ <br>
\hline \& \& X \& 20.9 \& 24.0 \& 45.1 \& 52.2 \& 2.1 \& 2.7 \& 7.7 \& 9.3 \& 9.0 \& 8.7 \& 57.2 \& 57.1 \& 21.3 \& 28.4 \& 24.2 \& 33.8 <br>
\hline 1 \& \multirow[t]{2}{*}{Basal + Supplementary Remedial Teacher} \& $N$ \& 26 \& 29 \& 26 \& 20 \& 66 \& 54 \& 66 \& 55 \& 26 \& 29 \& 23 \& 27 \& 23 \& 27 \& 23 \& 27 <br>

\hline \multirow[t]{5}{*}{$$
\begin{gathered}
\mathrm{E} \\
\mathrm{~S}
\end{gathered}
$$} \& \& X \& 19.6 \& 23.9 \& 47.3 \& 55.1 \& 1.9 \& 2.8 \& 7.9 \& 9.4 \& 5.9 \& 8.4 \& 48.6 \& 61.7 \& 20.1 \& 32.0 \& 25.0 \& 35.6 <br>

\hline \& \multirow[t]{2}{*}{Readiness \& Trade Books (Special Make)} \& N \& 24 \& 26 \& 24 \& 26 \& 71 \& 48 \& 71 \& 48 \& 24 \& 26 \& 28 \& 22 \& 28 \& 22 \& 28 \& 22 <br>
\hline \& \& $\bar{X}$ \& 25.0 \& 28.3 \& 47.7 \& 59.0 \& 3.3 \& 5.5 \& 8.5 \& 10.5 \& 9.4 \& 12.3 \& 63.5 \& 62.5 \& 30.5 \& 23.6 \& 26.9 \& 28.7 <br>

\hline \& \multirow[t]{2}{*}{| Kemedial Teacher + |
| :--- |
| Materials in 非3 above |} \& N \& 25 \& 27 \& 25 \& 28 \& 67 \& 56 \& 67 \& 56 \& 25 \& 27 \& 23 \& 27 \& 23 \& 27 \& 23 \& 27 <br>

\hline \& \& $\overline{\mathrm{X}}$ \& 22.8 \& 25.8 \& 50.2 \& 58.1 \& 4.4 \& 5.1 \& 9.9 \& 10.7 \& 9.4 \& 12.3 \& 51.1 \& 62.9 \& 22.7 \& 32.3 \& 26.7 \& 37.3 <br>
\hline
\end{tabular}



P $R$ 0			Gilmore Accuracy		Gilmore Rate		Fry		(iates		Karlsen		Mecinanics   Ratio Scale		Words Spelled Correctly		Running Words	
J			$M$	$F$	M	$F$	M	$F$	$M$	$F$	M	$F$	M	$F$	M	$F$	M	$F$
R	Basal - Allyn-Bacon	$N$	21	20	21	20	21	20	21	20	-	-	55	53	55	53	55	53
		$\bar{X}$	19.0	19.2	52.5	55.5	6.9	5.5	13.0	10.0	-	-	52.8	62.5	14.8	16.5	16.7	19.2
D	Programmed - McGraw-Hill	$N$	20	14	20	14	20	14	20	14	-	-	46	43	46	43	46	43
D		$\bar{X}$	15.5	14.2	41.7	43.3	8.4	7.4	10.6	10.1	-	-	55.9	56.9	14.8	18.6	17.4	20.6
E	Basal - Allyn-Bacon + Language Structure Training (blocks)	$N$	14	18	14	18	14	18	13	16	44	67	39	63	39	63	39	63
L		$\bar{X}$	14.6	15.1	48.4	51.8	1.7	2.0	9.9	9.4	10.2	10.2	59.9	58.9	14.5	18.7	16.5	20.4
L	Programmed - McGraw-Hill + Language Structure Training	N	15	19	15	19	15	19	14	19	44	49	40	43	40	43	40	43
		$\bar{X}$	13.6	17.8	38.1	62.6	9.1	10.2	11.4	13.2	16.1	12.0	56.7	50.6	20.0	18.5	21.5	19.7
S	Basal - Scott-Foresman	N	2.1	24	21	24	21	24	21	23	$2 i$	24	20	23	20	23	20	23
H		$\bar{X}$	20.2	28.0	54.0	66.7	4.9	8.9	9.9	13.1	8.6	12.8	60.8	58.7	17.9	26.2	19.9	31.2
E Y	Linguistic - Fries	N	16	29	16	29	16	29	16	? 29	16	- 29	16	26	16	26	16	26
E   R		$\bar{X}$	13.6	21.8	30.4	53.4	3.0	6.9	5.7	10.4	3.8	0.7	70.3	66.0	24.1	38.6	27.1	43.0
S	Basal - Ginn	N	1.5	20	15	20	15	20	15	20	15	20	15	20	15	20	15	20
H		$\bar{X}$	25.2	27.7	61.2	64.2	6.5	6.6	12.6	13.4	11.7	12.3	53.1	63.9	19.0	21.2	23.7	26.5
L	Modified Linguistic L. W. Singer Co.	$N$	13	21	13	21	13	20	13	20	13	20	14	20	13	20	13	20
D		$\bar{X}$	21.6	23.5	32.9	42.1	10.4	10.6	12.5	12.9	11.6	13.2	46.3	57.4	23.5	30.9	29.9	39.0
0	Linguistic - Barnhart-Bloomfield	N	17	19	17	19	17	19	17	19	17	19	17	19	17	19	17	19
N		$\bar{X}$	14.9	18.1	42.7	51.2	8.9	8.4	11.3	11.2	8.9	10.0	55.5	61.8	22.9	16.9	28.6	21.5


P R R			Bilmore Accuracy		Gilmore Rate		Fry		Gates		Karlsen		Mech "isRatio inale		Words Spelled Correctly		Running Words	
J			M	F	M	F	M	F	M	F	M	F	M	F	M	F	$M$	$F$
SPACH		$N$	31	26	31	26	-	-	47	43	47	4.3	14	8	14	8	14	8
		$\overline{\mathrm{X}}$	20.6	21.2	43.5	51.7	-	-	9.1	10.6	5.2	7.9	59.5	63.6	15.0	15.5	18.3	20.5
		N	35	20	35	20	-	-	43	34	4.3	34	10	7	10	7	10	7
		$\overline{\mathrm{X}}$	20.3	24.6	52.7	51.9	-	-	10.4	11.0	7.1	8.3	45.0	60.7	14.5	15.4	12.5	21.3
SPENCFR		N	95	121	95	121	22	27	91	121	22	27	21	24	21	24	20	24
		$\bar{X}$	32.3	34.3	56.4	62.4	17.6	16.4	34.2	37.2	19.9	20.5	59.8	68.9	32.0	41.6	38.8	31.6
		N	82	85	82	85	20	20	83	87	20	20	19	21	19	21	19	21
	Basal - Sco	$\bar{X}$	20.7	24.7	57.5	65.5	8.0	10.8	22.9	24.6	12.7	15.5	66.9	60.6	22.8	34.3	28.9	27.3
STAUFFER	Language Experimence	N	19	15	19	15	19	15	19	15	19	15	20	14	20	14	20	14
		$\overline{\mathrm{X}}$	20.8	29.5	54.3	62.5	9.4	14.2	13.6	19.1	1.5 .6	22.1	107.2	72.4	35.1	38.1	32.4	44.9
		$N$	20	19	20	1.9	20	19	20	19	20	19	20	19	20	19	20	19
	al	$\bar{X}$	14.4	19.3	45.1	. 58.4	2.3	2.6	9.1	11.0	6.0	6.3	54.0	45.7	21.4	16.1	24.7	17.9
T	Lippincott	N	8	6	8	6	8	6	8	6	8	6	8	4	8	4	8	4
		$\overline{\mathrm{X}}$	29.4	34.3	68.9	7. 0	19.4	20.5	19.1	22.2	22.5	27.5	63.5	63.7	29.9	32.2	37.0	38.2
Early to Read - Initial Teaching Alphabet		$N$	8	10	8	10	8	10	8	10	8	10	8	9	7	9	7	9
		$\bar{\chi}$	35.9	36.5	53.5	51.0	19.1	29.4	22.9	24.6	24.1	28.1	49.2	60.2	53.3	31.9	57.0	41.7
E Basal - Scott-Foresman		N	9	8	9	8	9	8	9	8	9	8	8	8	8	8	8	8
		$\bar{X}$	13.1	29.4	36.6	56.4	2.2	5.6	8.0	$1: 3.0$	4.8	1.1 .1	66.0	71.6	17.1	24.9	19.0	28.6


$P$$R$0			Gilmure Accuracy		$\begin{aligned} & \text { Gilmore } \\ & \text { Rate } \end{aligned}$		Fry		Gates		Karisen		Mechanics Ratio Scale		Words Speiled Correctly		Running Words	
			M	$F$	M	$F$	M	$F$	M	$F$	in	$F$	M	$F$	M	$F$	$M$	$F$
W$\mathbf{Y}$$\mathbf{A}$TT	Lippincott - Chatto \& Wirdus	$N$	25	25	25	25	25	25	25	25	-	-	25	25	25	25	25	25
		$X$	30.6	37.2	53.3	57.6	18.1	19.2	19.2	21.8	-	-	71.9	70.4	31.6	33.2	39.3	39.9
	Basal - Ability Grouping by Sex	N	25	25	25	25	25	25	25	25	-	-	25	25	25	25	25	25
		X	29.3	31.2	57.4	53.3	10.0	10.7	15. 5	16.0	-	-	66.3	67.4	30.0	26.5	37.3	32.6
	Basal - No Control Over Sex in Ability Grouping	N	25	25	2.5	25	25	25	25	25	-	-	25	25	25	25	25	25
		$\bar{X}$	29.9	31.1	53.8	61.2	9.0	11.6	14.4	16.6	-	-	73.4	72.7	27.7	29.7	31.8	37.1
		N																
		$\overline{3}$																
		N																
		$\bar{X}$																
		N																
		$\bar{X}$																
		N																
		$\bar{X}$																
		N																
		$\bar{X}$																
		N																
		$\bar{X}$																

## APPENDIX B

analysis of differential treatment effects for subjects OF VARYIING LEVELS OF LETTER KNONLEDGE AND AUDITORY DISCRIMINATION
Treatment by Project Interactions on Stanford Measures for Basal vs Non-Basal Treatment Comparisons (Blocking on Phonemes)

Comparisons	Word Reading   A   C	Paragraph MeaningA		Vocabulary		Spelling		$\underset{\mathrm{A}}{\text { Word Study }} \underset{\mathrm{C}}{ }$	
				A	C	A	C		
I.T.A. vs Basal   Degrees of Freedom	$\begin{gathered} 16.51 * * \quad 22.30 * * \\ (4,2013)(4,2006) \end{gathered}$	9.75**	15.24**	1.77	. 74	36.87**	40.10**	16.06**	18.63**
Basal. plus Phonics vs Basal Degrees of Freedom	$\begin{array}{cc} 1.40 & 1.89 \\ (3,1674)(3,1667) \end{array}$	2.65**	1.15	7.78**	7.98**	5.32**	9.18**	2.93*	2.29
Lauguage Experience vs Basal Degrees of Freedom	$\begin{array}{cc} 1.98 & 14.11 * * \\ (3,2906) & (3,2899) \end{array}$	8.53**	31.52**	8.07**	10.35**	. 75	4.82**	5.05**	10.30**
Linguistic vs Basal Degrees of Freedom	$\begin{gathered} 5.37 * * \quad 18.04 * * \\ (2,1321)(2,1314) \end{gathered}$	5.25**	7.65**	. 40	5.94**	6.08**	13.64**	1.42	5.60**
Phonic/Linguistic vs Basal lugrees of Freedom	$\begin{gathered} 3.02 * * 10.99 * * \\ (2,977)(2,970) \end{gathered}$	2.42	9.48**	1.51	2.56	4.8i**	7.15**	6.13**	6.80**

[^14]B-2

Cell Frequencies for Each Level of Phonemes for the Basal vs I.T.A. Treatments

Project	Sex	Trt.	Low   (20 or less)	$\begin{aligned} & \text { Middle } \\ & (21-31) \end{aligned}$	$\begin{aligned} & \text { High } \\ & \text { (32 or more) } \end{aligned}$
Fry	Male	Basal	30	13	12
		ITA	35	19	17
	Female	Basal	20	12	23
		ITA	23	23	17
Hahn	Male	Basal	52	49	47
		ITA	40	30	62
	Female	Basal	37	36	55
		ITA	38	23	62
Hayes	Male	Basal	32	7	6
		ITA	26	8	10
	Female	Basal	28	9	5
		ITA	26	15	11
Mazurkiewicz	Male	Basal	47	34	88
		ITA	49	31	100
	Female	Basal	25	16	107
		ITA	34	19	97
Tanyzer	Male	Basal	55	31	32
		ITA	24	38	62
	Fenale	Basal	44	24	42
		in	;	19	80



Project	Cell Frequencies for Each Level of Phonemes for the Basal vs Basal pluș Phonics Treatments				
	Sex	Trt.	Low   (20 or less)	$\begin{aligned} & \text { Middle } \\ & (21-31) \end{aligned}$	$\begin{aligned} & \text { High } \\ & \text { (32 or more) } \end{aligned}$
Bordeaux	Maje	Basal	36	15	12
		B+P	31	13	21
	Female	Basal	20	13	15
		b+P	23	16	15
Hayes	Male	Basal	32	7	6
		B+P	39	6	5
	Female	Basal	28	9	5
		B+P	36	8	9
Manning	Male	Basal	68	35	55
		B+P	41	34	59
	Female	Basal	49	35	68
		B+P	33	21	72
Murphy	Male	Basal	57	27	26
		B+P	157	61	65
	Female	Basal	51	24	29
		B+P	98	61	76


Effect	Word Reading   A   C		$\underset{A}{\text { Paragraph }}$	$\begin{aligned} & \text { Meaning } \\ & \mathrm{C} \end{aligned}$	Vocabulary		Spelling		Word Study A	Skills   C	
			A		C	A	C				
1 Treatment	. 53	1.45		. 76	. 08	1.00	. 19	. 11	1.73	. 26	. 06
Treatment x M-D Phonemes	. 33		. 82		. 06		. 28		. 08		
2 Treatment	. 83	8.24N	. 01	3.52	10.79B	5.08b	$5.84 n$	14.92N	. 86	$6.50 n$	
Treatment x M-D Phonemes	. 35		. 16		. 23		. 04		. 10		
3 Treatment	31.44 N	17.39N	14.00 N	$5.72 n$	23.18N	17.0.3N	70.91N	52.06N	29.98N	22.44 N	
Treatment x M-D Phonemes	1.20		. 24		2.92		1.60		2.29		
4 Treatment	$6.24 n$	1.59	13.95N	7.30N	17.82N	21.41N	1.53	. 01	10.13N	5.23n	
Treatment x M-D Phonemes	. 32		. 68		. 36		. 54		. 38		

NOTE: Projects in numerical order are Bordeaux, Hayes, Manning, and Murphy. Column A reports analysis of variance; Column C, covariance with all seven premeasures as covariates. Significant treatment
difference favoring basal plus phonics indicated by N or n , basal by B or b . Capital letter in
each case inficates . 01 level of significance; lower case letter, . 05 level. Treatment effects in
Column A based on 1 and 1674 d.f.; those in Colunn C, 1 and 1667 d.f.; interactions in Column A,
2 and 1674 d.f.
9-q

Selected Treatment Effects From Within Projects Analysis of Variance
and Covariance on Stanford Measures for Basal vs Language Experience Comparison (Blocking on Phonemes)

Effect	$\underset{\mathrm{A}}{\text { Word Reading }}$		$\underset{A}{\text { Paragraph }}$	$\begin{gathered} \text { Meaning } \\ \mathrm{C} \end{gathered}$	Vocabulary		Spelling		$\underset{A}{\text { Word Study }}$	Skills$\mathrm{C}$	
			A		c	A	C				
1 Treatment   Treatment x M-D Phonemes	$\begin{gathered} 28.06 \mathrm{~N} \\ 1.18 \end{gathered}$	38.35N		$\begin{gathered} 15.20 \mathrm{~N} \\ 1.43 \end{gathered}$	19.28N	$\begin{gathered} 26 \cdot \cdot 3 \mathrm{~N} \\ .15 \end{gathered}$	39.09N	$\begin{array}{r} .29 \\ 2.17 \end{array}$	. 17	$\begin{gathered} 14.54 \mathrm{~N} \\ .90 \end{gathered}$	19.39N
2 Treatment   Treatment x M-D Phonemes	$\begin{gathered} 6.01 \mathrm{n} \\ .45 \end{gathered}$	5.59n	$\begin{aligned} & .40 \\ & .34 \end{aligned}$	. 10	$\begin{array}{r} 1.17 \\ .03 \end{array}$	. 75	$1.32$	. 91	$\begin{array}{r} 1.03 \\ .62 \end{array}$	. 66	
3 Treatment   Treatment x M-D Phonemes	$\begin{array}{r} 18.66 \mathrm{~B} \\ 3.28 * \end{array}$	1.19	$\begin{aligned} & 9.05 \mathrm{~B} \\ & 1.94 \end{aligned}$	67.34B	$\begin{gathered} 22.73 \mathrm{~N} \\ 9.20 * * \end{gathered}$	. 57	$\begin{aligned} & 6.93 \mathrm{~B} \\ & 2.39 \end{aligned}$	1.50	$\begin{aligned} & 5.92 \mathrm{~b} \\ & 5.21 * * \end{aligned}$	7.31B	
4 Treatment ${ }_{\text {Treatment }} \times$ M-D Phonemes	$\begin{aligned} & 1.99 \\ & 7.63 * * \end{aligned}$	22.36N	$\begin{gathered} .07 \\ 13.46 * * \end{gathered}$	9.15 N	$\begin{gathered} 2.60 \\ 14.16 * * \end{gathered}$	2.00	$\begin{gathered} .04 \\ 11.98 * * \end{gathered}$	7.79N	$\begin{gathered} 4.23 n \\ 14.00 * * \end{gathered}$	. 53	

[^15] variance; Column C, covariance with all seven premeasures as covariates. Significant treatment difference favoring language experience indicated by $N$ or $n$, basal by $B$ or $b$. Capital letter in each case indicates . 01 level of significance; lowar case letter, . 05 level. One asterisk signifies interaction significant at . 05 level; two asterisks, . 01 level. Treatment effects in Column A based on 1 and 2906 d.f.; those in Column C, 1 and 2899 d.f.; interactions in Column A, 2 and 2906 d.f.

Unad $s$ ted Stanford Mears ior Project Four in Basal vs Language Experience Comparison

Level	Word Reading		Paragraph Meaning		Spelling		Word Study Skills	
	Easal	LE	Basal	LE	Basal.	LE	Basai	LE
High Phonemes   32 or more	21.0	27.0	21.6	29.9	11.3	17.3	40.1	46.8
Average Phonemes $21-31$	19.3	21.2	18.9	23.0	10.9	12.9	36.4	39.1
Low Phonemes 20 or less	14.6	14.0	14.4	11.8	8.1	6.4	31.9	27.1

Cell Frequencies for Each Level of Phonemes for the Basal vs Linguistic Treatments

Project	Sex	Trt.	Low   (20 or less)	$\begin{aligned} & \text { Middle } \\ & (21-31) \end{aligned}$	High   (32 or more)
Ruddel1	Male	Basal	33	$\varepsilon$	19
		Ling	26	12	13
	Female	Basal	28	9	23
		Ling	29	5	12
Schneyer	Maie	Basa?	101	30	39
		Ling	128	24	27
	Female	Basal	75	38	51
		Ling	109	27	32
Sheldon	Male	Basal	7	- 22	44
		Ling	61	21	72
	Female	Basal	11	9	50
		Ling	49	30	83

$$
\text { B - } 11
$$



## Ce11 Frequencies for Each Level of Phonemes

for the Basal vs Phonic/Iinguistic Treatments

Project	Sex	Tre.	$\begin{gathered} \text { Low } \\ (20 \text { or less) } \end{gathered}$	$\begin{aligned} & \text { Middle } \\ & (21-31) \end{aligned}$	High   (32 or more)
Hayes	Male	Basal	32	7	6
		P/L	43	5	5
	Female	Basal	28	9	5
		P/L	28	11	7
Tanyzer	Male	Basal	55	31	32
		P/L	20	16	70
	Female	Basal	44	24	42
		P/L	10	10	60
Wyatt	Male	Basal	26	22	39
		P/L	24	20	45
	Female	Basal	26	30	67
		F/L	20	27	67

Selected Treatment Effects from Within Projects Analysis of Variance
and Covariance on Stanford Measures for Basal vs Phonic/Linguistic Comparison


Comparisons	$\underset{\mathrm{A}}{\text { Word Reading }}$	$\underset{\text { A }}{\text { Paragraph }}$	$\begin{aligned} & \text { Meaning } \\ & \quad \mathrm{C} \end{aligned}$	VocabularyAC		Speliing		$\underset{A}{\text { Word Study }}$	dy Skills
I.T.A. vs Basal Degrees of Freedom	$\begin{gathered} 26.89 * * \\ (4,1993)(4,1986) \end{gathered}$	19.95**	14.75**	3.56**	. 46	43.78**	46,34**	22.31**	20.18**
Basal plus Phonics vs Basal Degrees of Freedom	$\begin{array}{cc} .57 & 2.09 \\ (3,1658)(3,1651) \end{array}$	1.58	1.09	4.92**	6.92**	5.26**	8.40**	. 64	1.91
Language Experience vs Basal Degrees of Freedom	$\begin{gathered} 15.02 * * 10.12 * * \\ (3,2890)(3,2883) \end{gathered}$	34.12**	26.52**	5.69**	9.57**	5.26**	2.87*	10.44**	7.80**
Linguistic vs Basal Degrees of Freedom	$\begin{gathered} 3.96 * * 19.78 * * \\ (2,1309)(2,1302) \end{gathered}$	7.71**	6.41**	. 62	6.10**	5.37**	12.13**	. 91	6.91**
Phonic/Linguistic vs Basal Degrees of Freedom	$\begin{array}{r} 9.35 * * \\ (2,965) \end{array} \quad \begin{gathered} 9.50 * * \\ (2,958) \end{gathered}$	6.06**	7.71**	2.90*	1.66	4.66**	6.64**	5.77**	5.80**

NOTE: Column A reports analysis of variance; Column C, analysis of covariance with all seven premeasures as

Ce11 Frequencies for Each Level of Letter Knowledge for the Basal vs I.T.A. Treatments

Project	Sex	Trt.	$\begin{gathered} \mathrm{L} \\ \text { (21 or less) } \end{gathered}$	$\begin{gathered} \text { LM } \\ (22-34) \end{gathered}$	$\begin{gathered} H M \\ (35-43) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { (44 or more) } \end{gathered}$
Fry	Male	Basal	16	17	7	15
		ITA	30	17	14	10
	Female	Basal	9	8	14	24
		ITA	17	15	11	20
Hahn	Male	Basal	36	32	33	$4 ?$
		ITA	26	33	29	44
	Female	Basal	17	30	25	56
		ITA	18	29	21	55
Hayes	Male	Basal	21	14	6	4
		ITA	22	11	3	8
	Female	Basal	17	11	7	7
		I'CA	16	14	9	13
Mazurkiewicz	Male	Basal	29	47	31	62
		ITA	69	49	33	29
	Female	Basal	14	28	35	71
		ITA	38	50	24	38
Tanyzer	Male	Basal	20	39	27	32
		ITA	33	35	33	23
	Cemale	Basal	10	23	20	57
		ITA	18	25	23	50

Cell Frequencies for Each Level of Letter Knowledge for the Basal vs Basal plus Phonics Treatments

Project	Sex	Trt.	$\left(\begin{array}{c} \mathrm{L} \\ \text { (21 or less) } \end{array}\right.$	$\begin{gathered} \mathrm{LM} \\ (22-34) \end{gathered}$	$\begin{gathered} \text { HM } \\ (35-43) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { (44 or more) } \end{gathered}$
Bordeaux	Male	Basal	21	11	11	20
		$\mathrm{B}+\mathrm{P}$	21	18	10	16
	Female	Basal	13	14	4	17
		$B+P$	13	15	9	17
Hayes	Male	Basal	21	14	6	4
		$B+P$	30	10	5	5
	Female	Basal	17	11	7	7
		$B+P$	30	12	2	9
Manning	Male	Basal	69	41	22	26
		B+P	27	19	31	57
	Female	Basal	48	144	20	40
		B+P	17	20	22	67
Murphy	Male	Basal	43	15	20	32
		B+P	101	34	54	74
	Female	Basal	38	20	19	27
		$B+P$	54	35	65	81

Selected Treatment Effects irom Within Projects Analysis of Variance (Blocking on Letter Names)
Selected Treatment Effects irom Within Projects Analysis of Variance
and Covariance on Stanford Measures for Basal vs Basal plus Phonics Comparison


[^16]Cell Frequencies for Each Level of Letter Knowledge
for the Basal vs Language Experience Treatments

Pruject.	Sex	Trt.	$\begin{gathered} \mathrm{L} \\ (21 \text { oí less) } \end{gathered}$	$\begin{gathered} \text { LMi } \\ (22-34) \end{gathered}$	$\begin{gathered} H M \\ (35-43) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { (44 or more) } \end{gathered}$
Cleland	Male	Basal	46	46	29	71
		LE	47	23	24	37
	Female	Basal	32	41	34	77
		LE	24	38	35	59
Hahn	Male	Basal	36	32.	33	47
		LE	29	32	36	38
	Female	Basal	17	30	25	56
		LE	12	28	27	67
Kendrick	Male	Basal	93	93	48	120
		LE	52	94	58	128
	Female	Basal	59	77	50	112
		LE	41	73	53	138
Stauffer	Male	Basal	70	29	12	16
		LE	62	16	22	21.
	Female	Basal	40	13	19	20
		LE	45	18	2?	32

Selected Treatment Effects From Within Projects Analysis of Variance
and Covariance on Stanford Measures for Basal vs Language Experience Comparison

Projects in numerical order are Cleland, Hahn, Kendrick, and Stauffer. Column A reports analysis of (Blocking on Letter Names)

$$
\begin{aligned}
& \text { variance; Column } C, ~ c o v a r i a n c e ~ w i t h ~ a l l ~ s e v e n ~ p r e m e a s u r e s ~ a c ~ c o v a r i a t e s . ~ S i g n i f i c a n t ~ t r e a t m e n t ~ \\
& \text { difforence favoring lanowage experience indicated by } N \text { or } n \text {. basal bv } B \text { or b. Capital letter ir }
\end{aligned}
$$

$$
\text { case indicates . } 01 \text { level of signi£icance; lower case letter, . } 05 \text { level. One asterisk signifies interaction }
$$

$$
\text { significant at } .05 \text { level; two asterisks, } .01 \text { level. Treatment effects in Cclumn } A \text { based on } 1 \text { and } 2890 \text { d.f.; }
$$

$$
\text { those in Column C, land } 2883 \text { d.f.; interactions in Column A, } 3 \text { and } 2890 \text { d.f. }
$$

Unadjusted Stanford Mears for Project Four in Basal vs Language Experic: ve Comparison by Treatment and Level of Letter Knowledge

Level	Word Reading,		Paragraph Meaning		Spelling		Word Study Skills	
	Basal	LE	Basal	LE	Basal	LE	Basal	LE
High Let:ter Knowledge 44 or more	21.1	27.9	19.8	30.7	13.2	17.4	38.2	46.9
Higli•"iddle Letter Knowledge $35 \therefore 43$	18.3	24.6	18.1	26.3	11.0	15.8	37.0	43.3
i.ow-Midille Letter Knowledge $22 \text {.. } 34$	17.7	19.3	19.0	1ช. 8	10.2	11.6	36.8	36.7
Low Lerter Knowledge 21 ur less	12.8	12.7	12.5	10.9	6.3	5.4	29.4	25.6

Unadjusted Premeasure Means for Project Four in Basal vs Lenguage Experieince Comparison by Treatment and Level of Letter Knowledge

	Murphy-Durrell Phonemes		Murphy-Vurrell   Learring Rate		PintnerCunningham	
Level	Basal	LE	Basal	LE	Basal	LE
High Letter Knowledge   44 or more	22.5	36.0	10.9	12.1	42.3	45.0
High-Middle Letter Knowledge $35-43$	16.7	28.3	8.5	10.4	38.8	41.2
Low-Middle Letter Knowledge $22-34$	14.9	21.8	7.1	8.3	38.5	39.7
Low Letter Knowledge 21 oi less	9.5	9.6	5.4	4.7	29.0	25.5

## Cell Frequencies for Each Level of Letter Knowledge for the Basal vs Linguistic Treatments

Project	Sex	Trt.	$\begin{gathered} \mathrm{L} \\ (21 \text { or less) } \end{gathered}$	$\begin{gathered} \text { LM } \\ (22-34) \end{gathered}$	$\begin{gathered} \mathrm{HM} \\ (35-43) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { (44 or more) } \end{gathered}$
Ruddell	Maie	Basal	20	12	11	17
		Ling	18	9	8	16
	Female	Basal	18	17	6	19
		Ling	14	9	9	14
Scinneyer	Mal-	Basal	62	31	19	58
		Ling	76	33	27	43
	Female	Basal	52	23	24	65
		Ling	72	24	35	37
Sheidon	Male	Basai	14	23	18	18
		Ling	46	39	28	41
	Female	Basal	9	8	18	35
		Ling	38	37	29	58

B - 24
Selected Treatment Effects from Nithin Projects Analysis of Variance and Covariance on Stanford Measures for Basal vs Linguistic Comparison

Effect	Word Reading		$\begin{array}{cc}\text { Paragraph Meaning } \\ \text { A } & \text { C }\end{array}$		Vocabulary		Spelling		$\begin{aligned} & \text { Word Study } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { Skills } \\ & \text { C } \end{aligned}$		
			A	C	A	C						
1 Treatment Treatment $\times$ M-D Letter Names	$\begin{aligned} & 8.41 \mathrm{~N} \\ & 7.53 \% ; k \end{aligned}$	48.55 N			$\begin{aligned} & 5.85 b \\ & 1.17 \end{aligned}$	. 75	$\begin{aligned} & 2.69 \\ & 1.12 \end{aligned}$	4.30 n	$\begin{array}{r} .13 \\ 2.18 \end{array}$	9.66N	$\begin{array}{r} .57 \\ 1.77 \end{array}$	
2 Treatment ${ }^{\text {Treatment }} \mathrm{x}$ M-D Letier Names	$\begin{aligned} & .10 \\ & .21 \end{aligned}$	. 16	$\begin{array}{r} .99 \\ 1.11 \end{array}$	1.49	$\begin{aligned} & 7.49 B \\ & 2.01 \end{aligned}$	9.70 B	$\begin{gathered} 11.38 \mathrm{~B} \\ .25 \end{gathered}$	13.44B	$\begin{gathered} 4.20 \mathrm{~b} \\ .37 \end{gathered}$	5.49b		
3 Treatment Treatment $\times \mathrm{M}-\mathrm{D}$ Letter Nanies	$\begin{gathered} .14 \\ 3.26 \% \end{gathered}$	$6.12 n$	$\begin{gathered} 39.36 B \\ 1.74 \end{gathered}$	23.02B	$\begin{gathered} 14.83 B \\ 2.01 \end{gathered}$	2.27	$\begin{gathered} 25.19 B \\ .61 \end{gathered}$	12.23B	$\begin{array}{r} 10.0 .1 \mathrm{~B} \\ 3.49 * \end{array}$	1.08		

[^17]
## Ce11 Frequencies for Each Level of Letter Knowledge

 for the Basal vs Phonic/Linguistic Treatments| Project | Sex | Trt. | $\begin{gathered} \mathrm{L} \\ \text { (21 or less) } \end{gathered}$ | $\begin{gathered} \text { LM } \\ (22-34) \end{gathered}$ | $\begin{gathered} \text { HM } \\ (35-43) \end{gathered}$ | $\stackrel{\mathrm{H}}{\text { (44 or more) }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hayes | Male | Basal | 21 | 14 | 6 | 4 |
|  |  | P/L | 33 | 14 | 3 | 3 |
|  | Female | Basal | 17 | 11 | 7 | 7 |
|  |  | P/L | 24 | 8 | 6 | 8 |
| Tanyzer | Male | Basal | 20 | 39 | 27 | 32 |
|  |  | P/L | 9 | 20 | 19 | 58 |
|  | Female | Basal | 10 | 23 | 20 | 57 |
|  |  | P/L | 7 | 5 | 11 | 57 |
| Wyatt | Male | Basal | 14 | 18 | 22 | 33 |
|  |  | P/L | 15 | 19 | 18 | 37 |
|  | Female | Basal | 15 | 20 | 32 | 56 |
|  |  | P/L | 16 | 20 | 23 | 55 |

Selected Treatment Effects from Within Projects Analysis of Variance and Covariance on Stanford Measures for Basal vs Phonic/Linguistic Comparison (Blocking on Letter Names)

	Word Reading   A   C		Pagraph MeaningA		VocabularyA$\mathrm{C}$		Spelling		$\begin{array}{r} \text { Word Study Skills } \\ A \end{array}$			
Effect			A	C								
1 Treatment   Treatment x M-D Letter Names	$\begin{gathered} 81.00 \mathrm{~N} \\ 1.35 \end{gathered}$	96.62N			$\begin{gathered} 21.33 \mathrm{~N} \\ 2.13 \end{gathered}$	24.79N	$\begin{array}{r} .13 \\ .83 \end{array}$	1.12	$\begin{gathered} 35.15 \mathrm{~N} \\ .94 \end{gathered}$	40.34N	$\begin{gathered} 23.24 N \\ .50 \end{gathered}$	35.18N
2 Treatment ${ }^{\text {Treatment }}$ x M-D Letter Names	$\begin{gathered} 174.26 \mathrm{~N} \\ 1.61 \end{gathered}$	135.12N	$\begin{gathered} 37.43 \mathrm{~N} \\ 2.11 \end{gathered}$	20.22N	$\begin{gathered} 27.67 \mathrm{~N} \\ .87 \end{gathered}$	9.11N	$\begin{gathered} 27.81 \mathrm{~N} \\ .70 \end{gathered}$	12.54N	$\begin{gathered} 54.49 \mathrm{~N} \\ 2.72 \end{gathered}$	24.86 N		
3 Treatment Treatment $\times \mathrm{M}-\mathrm{D}$ Letter Names	$\begin{gathered} 63.06 \mathrm{~N} \\ 1.06 \end{gathered}$	61.89N	$\begin{gathered} 5.87 n \\ .98 \end{gathered}$	2.68	$\begin{aligned} & 2.06 \\ & 2.63 * \end{aligned}$	. 11	$\begin{gathered} 12.96 \mathrm{~N} \\ .19 \end{gathered}$	10.44N	$\begin{aligned} & 9.28 \mathrm{~N} \\ & 1.54 \end{aligned}$	7.54N		

[^18]APPENDIX C

## CATEGORICAL DATA BY PROJECT AND TREATMENT

FOR THE FIfTEEN PhoJects INCLUDED IN THE MAIN ANALYSIS

Rating	Overall Teacher Competence																	
	Bordeaux		Manning		Murphy		Cleland		Kendrick		Stauffer		Ruddeil		Schneyer		Sheldcn	
	B	$B+P$	B	B+P	B	$B+$ P	B	LE	B	LE	E	LE	B	LING	B	LING:	B	LING
Incompetent						1	2											1
Poor	1	1	10	6				2	8	7			4	$\sim$	2	1	2	
Adequate	2		3	4	2	2		1	15	13	3	1	2	1	1	6	1	5
Good	2	1		2	3	9	4	3	4	7	3	2		1	1	4	2	6
Excellent		3			5	8	6	5			4	7			8	1	2	2

Overall Teacher Competence

	Fry		Mazurkiewicz		Hahn			Tanyzer			Hayes				Wyatt	
Rating	B	ITA	B	ITA	B	ITA	LE	B	ITA	P/L	B	ITA	$B+P$	P/L	B	P/L
Incompetent																
Poor		2	2	6	3	1					1		1			
Adequate	2		10	8	1	1	3	3		2		3	1		$?$	2
Good	2	2	4	1.	4	7	4	4	2	2		1	2	3	8	5
Excellent	2	3	1		4	3	5	2	7	4	4	1	1	2		3


Awareness of and Attention Paid to Individual Needs of Pupils

	Fry		Mazurkiewicz		Hahn			Tanyzer			Hayes				Wyatt	
Rating	B	ITA	B	ITA	B	J.TA	LE	B	ITA	P/L	B	ITA	$B+P$	P/L	E	P/L
Total lack						1					1		1			
Limited awareness	1			5	1							1	1			1
Moderate awareness	2	2	9	10	3	2	5	3		1		3	1	1	4	3
Gezterally aware and adjusts	2	4	7		2	3		3	6	3			2	4	5	4
Exceptionally aware and effective adjustment	1	1	1		6	6	7	3	3	4	4	1			1	2


Highest Degree Held by Teacher

	F'ry		Mazurkiewicz		Hahn			'tanyzer			Hayes				Wyatt	
Degree	B	ITA	B	TTA	B	ITA	LE	B	ITA	P/L	B	ITA	$B+P$	$r / L$	B	P/L
Less than bachelors		1	5	4												
More than bachelors less thin masters	1	2			8	7	5	6	8	6	3	1	4	3	5	7
Masters degree	2	1	1	2	1	1	2	1		1	1	2			2	1
Masters + additional graduate work		1		2	1	2		1	1	1					1	
Specialists or professional																
Doctors degr 20																
Bachelors degree	3	2	11	6	2	2	5				1	2	1	2	2	2


Certificate	Type of Teaching Certificate Held by Teacher																	
	Burdeaux		Manning		Murphy		Cleland		Kendrick		Stauffer		Ruddell		Schneyer		Sheldon	
	B	B+P	B	B+P	B	B+P	B	LE	B	LE	B	LE	B	LING	B	LING	13	LING
Uncertified																		
Lowest suij-standard																	1	1
Higher sub-standard		1								4		1			2	3	2	
Standard cype	5	3	13	12	10	20	1	1	25	21	10	9	6	5	2	2	2	13
Higner than standard type		1					11	10	2	2					8	7	2	
Other																		

Othe:
Total Number of Years of Teaching Experience
(exclusive of current year)

No. of Years	Bordeaux		Manning		Murphy		Cleland		Kendrick		Stauffer		Rudde11		Schneyer		Sheldon	
	B	$B+P$				$B+P$	B	LE	B	LE	B	LE	B	LING	B	LING	B	LING
0-4	3	1	6	5	1	6	1		5	7		2	1	1	2	3		3
$5-9$		1	3	1	3	1	3	3	6	6	2	2	2	3	1	2	3	3
10-14			2	1	2.	2	1	4	3	4	2		1		1	3	1	5
15-19	1	2	2	3	1	2		1	6	6	1	2	1	1	3	2	1	1
20-24				1		2	1		2	3	1				1			2
25-29	1				1	2	4	2	2		3				1	2	1	
30-34						3	1		3	1	1	2			1		1	
35-39				1	2		1						1		1			
40-44		1				2		1				2			1			
45-49																		

7•01 0•9T
$8.2 \quad 18.3 \quad 12.1 \quad 16.0$
$19.6 \quad 13.5$
18.5
$\sigma$

No. of Years				Total	$\begin{aligned} & \text { umber } \\ & \text { (ex } \end{aligned}$	of Ye   lusiv	$\begin{aligned} & \text { rs of } \\ & \text { of } c \end{aligned}$	$\begin{aligned} & \text { achir } \\ & \text { ent } \end{aligned}$	$\begin{aligned} & 3 \text { Exp } \\ & \text { ear) } \end{aligned}$	rienc						
	Fry		Mazurkiewicz		Hahn			Tanyzer			B	Hayes		P/L	Wyatt	
	B		B	ITA	B	ITA	LE	B	ITA	P/L		ITA	B+P		B	P/L
0-4	3	3	6	4	1	2	5	3	7	3	2	7	2	3	3	1
$5-9$	2	1	1	3	4	2	1	2	1	3	1	2			4	4
10-14	1	1	3		4	1	3	3	1		1		1	1	1	1
15 - 19		1	1	2	1	4	2			2			1	1	1	1
20-24			I	2	1			1		2		1				1
25-29			1	1			2				1					2
30-34			3	1	1	1							1		1	
35-39		1	1	2			1									
40-44																
4.5-49																
Means	5.8	10.7	14.1	15.5	12.6	15.8	10.1	8.3	3.8	10.3	9.4	6.6	13.2	6.6	9.9	13.3

Number of Years of First Grade Teaching Experience (exclusive of current year)

	Fry		Mazurkiewicz		Hahn			Tanyzer			Hayes				Wyatt	
No. of Years	B	ITA	B	ITA	B		LE	B	ITA	P/L	B	ITA	B+P	P/L	B	P/L
n-4	5	4	8	5	3	3	5	6	9	4	3	3	3	3	5	2
5-9	1	1	1	4	3	4	4	2		2	1	1		1	3	3
10-14		1	3	1	5	4	2	1		2			1	1		2
15-19			2	1						2	1				1	2
20-24			1	1			1					1			1	1
25-29				1	1	1							1			
30-34		1	1	1												
35-39			1	1												
40-44																
45-49																
Means	2.3	7.6	10.4	11.9	9.3	8.1	6.6	4.2	1.2	8.3	6.0	6.0	9.8	4.6	6.4	9.6


Days Absent							che	Absen										
	Bordeaux		Manning		Murphy		Cleland		Kendrick		Stauffer		Ruddell		Schneyer		Sheldon	
	B	$B+P$	B	$B+P$	B	$B+P$	B	LE	B	LE	B	LE	B	LING				
$0-4$	4	2	12	8	7	17	8	6	15	16	6	9	3	3	4	6	5	9
$5-9$	1	2	1	3	1	2	3	3	10	7	2	1	1	2	6	2	2	4
10-14		1			1	1		2	1	2	1		2		1	3		
15-19				1			1								1			1
20-24					1				1		1					1		
25-29										1								
$30-34$																		
35-39																		
40-44																		
45-49																		
Means	3.0	5.2	1.3	4.5	4.7	1.9	4.3	4.1	4.4	4.4	5.7	1.8	5.2	3.4	5.8	6.4	4.0	3.



Score		${ }_{\text {deaux }}^{\text {B+p }}$		$\begin{array}{\|} \operatorname{Manning} \\ \text { B+P } \end{array}$	$\underset{B}{\substack{\text { Murphy } \\ \text { B+P }}}$		${ }_{B}^{\text {cleland }} \underset{\text { LE }}{ }$		$\underset{L E}{\substack{\text { ndrick }}}$	$\begin{gathered} \text { Stauffer } \\ { }_{\text {BE }} \end{gathered}$		$\begin{aligned} & \text { Ruddel.1. } \\ & \text { LTNG } \end{aligned}$		$\begin{aligned} & \text { Schneyer } \\ & 8 \\ & \text { LING } \end{aligned}$		$\begin{aligned} & \text { Sheldon } \\ & \text { Ben } \\ & \text { LING } \end{aligned}$
					X X					8 X						
0-9											3					
10-19			1			2	2				2	3				
20-29			3	1		3	31	2					2	1		
30-39	3	3	5	2		5	5	22	4			1	5	6	4	
40-49	2	2	3	9		2	4	3	18				5	5	3	
50-59			1				3		5							
60-69																
70-79																
80-89																
90-99																
Means	35.4	39.6	35.5	41.3		30.8										
												16.3		37.8	38.3	39.4

X Information Unavailable
X Information Unavailable
C -17
X Information Unavailable
c - 18
X Information Unavailable
X. Information Unavailable
Class Structure

	Bordeaux		Manning		Murphy		Cleland		Kendrick		Stauffer		Ruddell		Schneyer		Sheldon	
Rating	B	$B+\underline{p}$	B	$B+P$	B	$B+P$	$B$	LE	B	LE	B	LE	B	LING	B	LING	B	LING
Vague \& confusing						1	2								1			1
More vague than clear, loose structure		1	10	5				2	13	9			5	3	1	2	1	
Moderate structure	2	1	3	6	1			1	12	10	2	1	1	1	1	4	1	5
Well organized \& clear	1	3		1	5	11		2	2	8	5	2		1	2	5	3	4
Highly structured	2				4	8	10	6			3	7			7	1	2	4


	Fry		Mazurkiewicz		Hahn			Tanyzer			Hayes				Wyatt	
Rating	B				B	ITA	LE	B	ITA	P/L	B	ITA	$B+P$	P/L	B	P/L
Vague \& confusing											1.					
More vague than clear, loose structure		1	2	6	2	1	1						1			
Moderate structure	1	1	10	9	3	2	1	4		2		3	1		4	3
Well organized \& clear	2	1	4		1	6	2	3	2	3		1	2	3	4	5
Highly structured	3	4	1		6	3	8	2	7	3	4	1	1.	2	2	2



	Fry		Mazurkiewicz		Hahn			Tanyzer			Hayes				Wyatt	
Rating	B	ITA	B	ITA	B	ITA	LE	B	ITA	P/L	B	ITA	$B+P$	P/L	B	P/L
Generally unresponsive																
Low participation	1		2	4	2						1	1	1			1
One group par_icipates	1	3	10	10	2	2	3	2	1	2		3	1	1	4	2
Moderately high participation	4	2	5	1	4	6	3	6	6	2	1		2	2	6	5
High participation		2			4	4	6	1	2	4	3	1	1	2	-	2



Class Size as of May 1, 1965

			Mazurkiewicz		Hahn			Tanyzer			Hayes				Wyatt	
No. of Pupils	B	ITA			B		LE	B	ITA	P/L	B	ITA	B+P	P/L	B	P/L
0-4																
5-9																
10-14			:													
15-19		1	1		1	1					2		1	1	2	3
20-24	3	2	3	3	2	1	4	3	1		2	4		3	5	6
25-29	3	4	6	5	6	0	6	2	5	8	1	1	3	1	3	1
30-34			4	5	$\alpha$	1	2	4	3				1			
35-39			2	2	1											
40-44																
45-49																
Means	24.2	24.1	26.9	29.6	27.3	25.7	26.1	27.1	26.8	26.3	20.2	21.8	26.2	24.4	22.3	21.0

Length of School Day


C - 31

	Bordeaux		Manning		Murphy		Cleland		Kendrick		Stauffer		Ruddell		Schneyer		Sheldon	
No. of Days	B	B+P	B	B+P	B	B+P	B	LE	B	LE	B	LE	B	LING	B	LING	is	LI.NG
Uess than 160 days																		
16.1-165																		
166-170																		
171-175				12														
176-180	5	5	13		5	15			27	27	10	10	6	5				
181-185					5	5									12	12	4	10
1.86-190																	3	4
191-195							12	11										
196-200																		
Jver 200 days																		


Average Cost Per Pupil in Daily Attendance

	Bordeaux		Manning		Murphy		Cleland		Kendrick		Stauffer		Rucdell		Schneyer		Sheldon	
Cost	B	$B+P$	B	$B+P$	B	$B+P$	B	LE	B	LE	B	LE	B	LING	B	LINJ	B	I.ING:
\$99 or less																		
§100-\$199																		
\$200 - \$299									1									
\$300-\$399					1	11	12	11	15	9								
\$400-\$499					9	9			11	17	10	10	6	5	12	12	2	5
\$500 - \$599										1							2	5
\$600 - \$699	5	5	13	12													3	4
\$700-\$799																		
\$800-\$899																		
\$900 or more																		




Ric


Type	Bordeaux		Manning		Murphy		Cleland		Kendrick		Stauffer		Ruddell		Schneyer		Sheldon	
	B	$B+P$	B	$B+P$	B	$B+P$	B	LE	B	LE	B	LE	B	LING	B	LING	B	LING
Rural or Farm			13	12					1	2								
Urban over 2,500	5	5			5	15	12	11				10	6	5	11	12	2	5
Suburban over 2,500					5	5			26	24							5	9
Incorporated less than 2,500											10							
Other															1			


	Type of Community															
	Fry		Mazurkiewicz		Hahn			Tanyzer			Hayes				Wyatt	
	B	ITA	B	ITA	B	ITA	LE	B	ITA	F/L	B	ITA	B+P	P/L	B	P/L
Rural or farm																
$\begin{aligned} & \text { Urban } \\ & \text { over } 2,500 \end{aligned}$			17	15	1	4	1								3	3
Surburan over 2,500	5	7			11	8	11	9	9	8	5	5	5	5	7	7
Incorporated   less than 2,400	1															
Other																

Hedian Number of Years Edincation Completed by Adults in Commity

	Bordeaux		Manning		Murphy		Cleland		Kendrick		Stauffer		P.uddell		Schneyer		Sheldon	
No. of Years	B	B+P	8	${ }_{\text {b }}+\mathrm{P}$	1	${ }^{1}+\mathrm{P}$	B	LE	B	LE	B	LE	B	ING	B	ING	B	
5																		
6																		
7												2						
8															3			1
9	5	5					1	2					2	1	2	6		
10			13	12		10	3	5		1	10			3		3		2
11					10	10	4	1	9	2			1		2	2	2	3
12							2	1	12	17		8	3	1	5	1	5	7
13							2	2	5	7								
14									1									1





Project	Director
01	Bordeaux
02	Chall
03	Cleland
04	Fry
05	Hahn
06	Harris
07	Hayes
08	Heilman
09	Horn
10	Kendrick
11	Macdonald
12	Manning
13	Marita
14	Mazurkiewicz
15	McCanne
16	Morri11
17	Murphy
18	Niles
19	Reid
20	Ruddell
21	Schneyer
22	Sheldon
23	Spache
24	Spencer
25	Stauffer
26	Tanyzer
27	Wyatt

D - 2

X Information Unavailable

D - 2


ERIC

Highest Degree Held by Teacher																											
Degree   Project	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Less than bachelor	1	3	2	2		3		5		3	2		5	1.5		2	8	1	3	1	6	5	1	9	1		1
More than bachelor less than masters	12	3	7	5	20	28	11	16		6	7	36	25	1	19	28	2	10	3	21	11	8	53	11	5	20	18
Masters degree	1	2	6	4	4	3	3	4	11	1			1	3	1	6	3	6	1		3	3	10	2	2	2	3
Masters + additional graduate work			5	1	3	4		2	8				1	2	3		1	3				2		1		3	1
Specialists or professional																											
Doctors degree																											
Bachelors degree	1	4	2	8	9	10	6		9	44	7			25	5	18	16	20	43		4	3			12		7

Number of Years of First Grade Teaching Experience
E

Means	10	11	13	5	8	4	7	11	18	9	11	6	10	11	12	6	13	6		7	11	9	8	13	14	3	8



X Iniormation Unavailable
X Information Unavailable
X Information Unavailable
X Information Unavailable

Project	01	02	03	04	05	06	07	Extent of Class Participation																			
								08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
						X					X								X								
Class generally unresponsive		1	2						1				1								3	1					
Participation variable, tends to be low	2	1	2	2	2		3	3	2	14		25	3	8	1	3	1	3		15	5	1	13				2
One group participates, most don't	4	2	4	5	7		5	22	7	29		10	15	31	5	4	4	10		5	4	5	24	4	4	5	9
Moderately high participation	4	5	5	iou	i3		5	1	7	11		1	6	9	19	18	16	19		2	7	12	19	14	11	14	16
High participation	5	3	10	3	14		7	1	11				7		3	9	9	8			4	2	8	5	5	7	3


Half Days Experience	Pre-First Grade School Experience													
	Project													
	01	02	03	04	05	06	07	08	09	10	11	12	13	14
None	160	23	34		3	459	202	159	427	59	1	23	27	232
Less than 20	131						65					1	1	
21-100	79	5	17	1	22	56	44	4	75	1	2	9	24	
101-200	144	158	259	369	752	795	62	413		1229	326	773	604	751
201-300	63		6		33	37	8					1	5	
301-400	51		25	3	25	2	4	2			1	21	23	
401-500	11				2									
501-600	17		1	2	11									
601-700	2			1										
701-800	15				1									

Pre-First Grade School Experience (continued)

Experience	15	16	17	18	19	20	21	22	23	24	25	26	27
None	120		247	35	2		171	1	753	37	217	2	8
Less than 20	2	1	4	3	1		3		147	80	114		2
21-100	25	9	32	19	9		182	5		127			3
101-200	82	672	448	907	338	421	312	368	421	166	125	643	559
201-300	7	2	1	6	6		3	48		1		6	20
301-400	24	5		25	14		10	21				1	26
401-500					1			6					5
501-600	1							5				1	7
601-700								1					2
701-800								1					1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\square \square
\] \& \& \& \& - \& 上 \& \& \& \& - \& \& \& \& c \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& cma \& \& \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
No. of Pupils \\
Project
\end{tabular}} \& \multirow[t]{2}{*}{01} \& \& \multirow[t]{2}{*}{203} \& \multirow[t]{2}{*}{04} \& \multirow[t]{2}{*}{05} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \multirow[t]{2}{*}{C1
07} \& \multirow[t]{2}{*}{ass Si

08} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ze at}} \& t \& egin \& ning \& of \& Sch \& 001 \& ear \& \& \multirow[t]{2}{*}{17} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1819}} \& \multirow[t]{2}{*}{92} \& \multirow[t]{2}{*}{2021} \& \multirow[t]{2}{*}{2122} \& \multirow[t]{2}{*}{22} \& \multirow[t]{2}{*}{24} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{$25 \quad 26$}} \& \multirow[t]{2}{*}{627} <br>
\hline \& \& 02 \& \& \& \& \& \& \& \& \& \& 10 \& \multicolumn{2}{|l|}{1112} \& 13 \& \multicolumn{2}{|l|}{14} \& 16 \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \& \& X \& \& X \& \& \& \& \& X \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline 0-4 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 1 \& \& \& <br>
\hline 5-9 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 2 \& \& \& <br>
\hline 10-14 \& \& \& \& \& \& \& \& \& \& 1 \& 1 \& \& \& \& \& 1 \& \& \& \& \& \& 1 \& 2 \& \& \& \& \& \& \& <br>
\hline 15-i9 \& \& \& \& \& 1 \& 1 \& \& 2 \& \& 3 \& 3 \& \& \& \& \& \& 4 \& 4 \& \& 4 \& \& 4 \& \& \& 4 \& \& 6 \& \& \& 4 <br>
\hline 20-24 \& \& \& 3 \& \& 8 \& 2 \& \& 10 \& \& \& \& 4 \& 5 \& 2 \& 9 \& 3 \& 6 \& 14 \& \& 4 \& 2 \& 21 \& 1 \& 2 \& 8 \& 6 \& 9 \& 2 \& 4 \& <br>
\hline 25-29 \& 9 \& \& 1 \& \& 15 \& 27 \& \& 7 \& \& \& \& 21 \& 10 \& 21 \& 18 \& 19 \& 11 \& 14 \& \& 9 \& 14 \& 23 \& 9 \& 6 \& 8 \& 42 \& 5 \& 16 \& 16 \& 8 <br>
\hline 30-34 \& 6 \& \& 12 \& \& 11 \& 15 \& \& \& \& \& 3 \& 25 \& 1 \& 13 \& 3 \& 20 \& 6 \& 2 \& \& 0 \& 23 \& 2 \& 7 \& 8 \& 1 \& 16 \& \& 2 \& 6 \& <br>
\hline 35-39 \& \& \& 6 \& \& 1 \& 2 \& \& 1 \& \& \& \& 4 \& \& \& 1 \& \& \& \& \& 3 \& 1 \& \& \& 7 \& \& \& \& \& \& <br>
\hline 40-44 \& \& \& \& \& \& 1 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 3 \& 1 \& \& \& \& \& \& <br>
\hline 45-49 \& \& \& 1 \& \& \& \& \& \& \& \& \& \& \& \& 1 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline Means \& 29 \& \& 33 \& \& 27 \& 29 \& \& 24 \& \& 24 \& 4 \& 30 \& 25 \& 28 \& 27 \& 29 \& 26 \& 24 \& \& 7 \& 29 \& \& 29 \& 32 \& 23 \& 28 \& 20 \& 28 \& 27 \& <br>
\hline
\end{tabular}

X Information Unavailable





\footnotetext{
Teacher Attrition

	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Teacher not replaced	14	11	23	20	20	45	20	27	28																		
									28	50	16	36	29	44	28	34	29	38	47	21	24	21	63	22	20	21	29
Teacher replaced		1				3				2			2	3			1	1	4	1			1	1		5	,


$\square 5$			$\Gamma$		$\square$																		$\cdots$			$\cdots$		
											pe	of	omm	nity														
Type	01	02	03	04	05	06	07	08	0		10	11	12	13	14	15	1	17	18	19		21	22	23	24	25	26	2
Rural or farm											3	14	36	2		16									9			
Urban over 2,500	15	12	23		6	48		27	2			2		11	48	7	3	20	40	51		23	7		12	10		
Suburban over 2,500				18	30		20				50			18				10					14				26	21
Incorporated																												
				2												5								54	2	10		
Other 1																												

X Information Unavailable


## APPENDIX E

PHONETICALLY REGULAR WORDS ORAI READING TEST
and
gates word pronunciat ton rest

Chile's iame $\qquad$ Date $\qquad$
School $\qquad$ Roon $\qquad$ Code Nunber $\qquad$
Examiner $\qquad$ Number of i:ords read correctly $\qquad$

1. nap	16.	walk
2. pen	17.	haul
3. hid	18.	jaw
4. job	19.	soil
5. rug	20.	joy
6. shacie	21.	frown
7. drive	22.	trout
8. joke	23.	term
9. mule	24.	curl
10. plain	25.	birch
11. hay	26.	rare
12. keen	27.	star
13. least	28.	porch
14. loan	29.	smooth
15. show	30.	shook

Directions: Have pupil read words from one copy while examiner makes another copy. Do not give pupil a second chance but accept immediate self-correction. Let every student try the whole first column. If he gets two words correct from word number six on, let him try the whole second column.

## gates word pronunciation test

## EXAMINER'S COPY

Directions: Have the child read the words out loud. Tell him you would like him to read some words for you. If he fails the first time, ask him to try the word again. Continue until ten consecutive words have been missed. As the words become difficult, special care should be taken to encourage the child. The score is one point for each word correctly pronounced on the first trial, one-half point for each word correctly pronounced on the second trial. (Note: $91 / 2$ correct wouid be scored as 10.)

1. so		about	27.	conductor
2. we		paper	28.	brightness
3. as	16.	blind	29.	intelligent
4. go	17.	window	30.	construct position
5. the	18.	family	32.	profitable
6. not		perhaps	33.	irregular
7. how		plaster	34.	schoolmaster
8. may		passenger	35.	lamentation
9. king	22.	wander	36.	community
10. here		interest	37.	satisfactory
11. grow	24.	chocolate	38.	illustrious
12. late		dispute	39.	superstition
13. every	26.	portion	40.	affectionate

Child's name: $\qquad$
Examiner: $\qquad$ Birth date $\qquad$
Age: $\qquad$

E-3


[^0]:    of Reading, Fry Phonetically Regular Word List, and Ga+es Word Pronunciation Test. There was special interest in det armining the relationships among the Stanford Word Reading test, the Fry Word List, and the Gates Word List. The Stanford test differed from the other two in that it was administered to a group. The Fry test was unique in that it was designed to test children's recogrition of phoneticaliy regular words. The Gates list, on the other hand, consisted of high frequency words with no regard for regularity in sound-symbol relationships. The investigators were interested in assessing the degree of independence among these three measures of word recognition. Correlation coefficients computed for eacil treatment group are reported in Tatles $5: 09,5: 10,5: 11,5: 12,5: 13$, and 5:14. The correlations between the Stanford Word Reading test and the Fry test ranged from .69 to .83 for the six treatments. Correlations between the Word Reading test and the Gates test varied from .74 to .86. Furthermore, the Gates and Fry lists correlated between .75 and . 92 with each other. Evidently a child who can read phonetically regular words can also read high frequency words, and a child who can identify words in a group situation can do likewise on an individual test. In addition, the Gilmore Accuracy score correlated from . 81 to .90 with the Gates Word Pronunciation test for the various treatments. This would indicate that pronouncing a word in context is closely related to pronouncing a word in isolation. As a further indication of the interrelatedness of reading skills at the first-grade level it is interesting to note that correlations between rate of reading and the Gates Word Pronunciation test ranged from . 49 to .78 , certainly a substantial correlation.

    Relationships between Feacher, Pupil, and Class Characteristirs and Achievement

[^1]:    Column A summarizes analysis of variance; Column B, covariance using Phonemes and Letter Names as covariates: Column C, covariance using all seven premeasures as covariates.
    

    NOTE:

[^2]:    Column A reports unadjusted means; Column $B$, means adjusted for preneasure differences on Phonemea and Letter Names; Column C, adjusted for all seven cove:iates.

[^3]:    Projects in numerical order are Fry, Hahn, Hayes, Mazurkiewicz, and Tanyzer. Column A summarizes analysis of variance; Column B, crvariance using Phonemes, Pattern Copying, and Listening as covariares; Column C, covariance using all eight premeasures as covariates. All F ratios in Column A are based on 1 and 292
    degrees of freedom; Column $B, 1$ and $289 \mathrm{~d} . f . ;$ and Column $C, 1$ and 284 d.f. Significant difference favoring I.T.A. indicated by $N$ or $n$, Basal by $B$ or $b$, females by $F$ or $f$, males by M or m. Capital letter in each case signifies. 01 level of significance; lower case letter, . 05 level.

[^4]:    Column A summarizes analysis of variance; Column B, covariance using Letter Names and Listening as covariates;
    Column $C$, covariance using all seven premeasures as covariates. Significant difference favoring Basal plus Phonics indicated by $N$ or $n$, Basal by $B$ or $b$, females by $F$ or $f$, males by M or m. Capital letter in each case sirnifies . Ol level of significance; lower case letter; . 05 level. One asterisk indicates project difference all effects except those involving project which are based on $3 \mathrm{~d} . \mathrm{f}$. Denominator d.f. are 134 , 132 , and 127 for Columns A, B, and C respectively.

[^5]:    Projects in numerical order are Bordeaux, llaves, Manning, and Murphy. Column A sumarizes analysis of
    variance; Column B, covariance using Letter Names; Pattern Copying, and Meaning as covariat.es; Column C, 05 level. One asterisk signifies 05 level case signifies . 01 level of simificance; lowex case letter, . 05 level. of significance; two asterisks, .O1 level.

    NOTE:

[^6]:    Significant difference favoring Language Lxperience indicated by $N$ or $n$, Basal by $B$ or $b$, females by $F$ or $f$, males by $M$ or $m$. Capital letter in each sase signifies. 01 level of significance; lower case letter, . 05 level. One asterisk indicates project difference or interaction significant at . 05 level; two asterisks, 01 level. Numerator degrees cf freedom equal 1 except for all effects involving project in which numerator d.f. equal 3. Denominator d.f. equal 226.

    ## NOTE:

[^7]:    Column A summaxizes analysis of variance; Column B, covariance using Phonemes and Identical Forms as covariates; Column C, covariance using all seven premeasures as covariates. Significant difference favcring Language

    Experience ir ficated by $N$ or $n$, Basal by $B$ or $b$, Females by $F$ or $f$, Males by $M$ or m. Capital letter in each or interaction significant at . 05 level; two asterisks, . 01 level. Numerator degrees of freedom are 1 fur all effects except those involving project which are based on 3 d.f. Denominator d.f. are 226 , 224 , and 219 far Columns A, R, and $C$ respectively.

    NOTE:

[^8]:    Significant difference favoring Phonic/Linguistic indicated by $N$ or $n$, Basal by $B$ or $b$, females by $F$ or $f$, males by M or m. Capital letter in each case signifies . 01 level of significancf; lower case letter, . 05 level. One asterisk indicates project difference or interaction significant at .05 level; two asterisks, case numerator d.f. equals 2. Denominator d.f. equals 82 .

[^9]:    Projects in numerical order are Hayes, Tanyzer, and Wyatt. Column A summarizes analysis of variance; Column B covariance using Phonemes and Identical Forms as covariates; Column C, covariance using all seven premeasures as covariates. All F ratios in Column $A$ based on 1 and 82 d.f.; Column B, 1 and 82 d.f.; and Column C, 1 and 75 d.f. Significant difference favoring Phon/Ling indicated by $N$ or $n$, Basal by $B$ or $b$, Females by $F$ or $f$, Males by M or m. Capital letter in each case signifies . 01 level of significance, lower case letter, . 05 level.

[^10]:    Projects in numerical order are Cleland，Hahn，Kendri：k，and Stauffer．Column A reports analysis of variance；Column C，covariance with all seven premeasures as ccvarıates．Significant treatment difference favoring language exyerience indisated by $N$ or $n$ ，basal by $B$ or b．Capital letter an each case indicates．Oi level of significance；lower case letter，． 05 level，One asterisk signifies interaction signiticant at 0 levei；two asterisks， 01 level．Treatment effects in Column A based on 1 and 2350 d．f．；those in Column C， 1 and $2383 \mathrm{~d}, f . ;$ irteractions in Column $\Lambda, 3$ and 2890 d．f．

[^11]:    Projects in numerical order are Rudeil, Schneyer, and Sneldon. Column A reports analysis of variance; Column $C$, covariance with all seven premeasures as covariates. Significant treatment difference
    favoring linguistic indicated by $N$ or $n$; basal by $B$ or b. Capital letter in each case irdicates . 01 level of significance; lower case letter, . 05 level. One asterisk signifies interaction significant at ent effects in Colum d.f.

[^12]:    Projects in mumerical order are Hayes, Tanyzer, and Wyatt. Column A reports analysis of variance; favoring, phon . 01 level of significalcared by $N$ or $n$; tasal by $B$ or $b$. Capital letter in each case indicates
    significant at . 05 level; lower case letter, .OS level. One asterisk signifies interaction
    953 d. $\underset{\text {. }}{ }$; those in Column $C$, 1 and 951 ; . 01 level. Treatment effects in Column $A$ based on 1 and ...., those in Column $C$, 1 and 951; interactions in Column $A, 3$ and 958 d.f.

[^13]:    * Anslysis of covariance adjusted for Phonemes, Total Letters, Meaning, Listening, Intelligence, and Teachers' years of Experience

[^14]:    Column A reports analysis of variance; Column $C$, analysis of covariance with all seven premeasures as
    covariates. One asterisk signifies interaction is significant at . 05 level; two asterisks, . 01 level.

[^15]:    Projects in numerical order are Cleland, Hahn, Kendrick, and Stauffer. Column A reports analysis of

[^16]:    Projects in numerical order are Bordeaux, Hayes, Manning, and Murphy. Column A reports analysis of
    variance; Coiumn C, covariance with all seven premeasures as covariates. Significant treatment d-fference favoring basal plus phonics indicated by $N$ or $n$, basal by b or b. Capitai letter in each case indicates . 01 level of significance; Jower case letter, 05 leve]. One asterisk signifies interaction significant at . 05 level; two asterisks, . 01 level. Treatment effects in Column A based on 1 and 1658 d.f.; those in Column $C$, 1 and 1651 d.f.; interactions in Column $A, 3$ and 1658 d.f.

[^17]:    Projects in numerical order are Ruddell, Schneyer, and Sheldon. Column A reports analysis of variance; Column C, covariance with all seven premeasures as covariates. Significant treatment difference B or One astisk sigter in each case indicates .on at .05 level; two asterisks, . 01 level. Treatment effects in Column $A$ based on 1 and $1309 \mathrm{d.f.;} \mathrm{those} \mathrm{in}$ Column C, 1 and 1302 d.f.; interactions in Column A, 3 and 1309 d.f.

[^18]:    Projects in numerical order are Hayes, Tanyzer, and Wyatt. Column A reports analysis of variance;
    Column C, covariance with all seven premeasures as covariates. Significant treatment difference
    favoring phon/ling indicated by $N$ or $n$, basal by $B$ or b. Capitall letter in each case irdicates . 01 level of significance; lower case letter, . 05 level. Orie asterisk signifies interaction significant at . 05 level; two asterisks, .01 level. Treatment effects in Column $A$ based on 1 and $965 \mathrm{~d} . f$. ; those in Column C, 1 and 958 d.f.; intoractions in Column A, 3 and 965 d.f.

