A developmental plan was organized and presented for a comprehensive study of all aspects of technical innovations which could constitute a communication-linked system for off-campus vocational and technical education. A preliminary literature survey revealed several generic elements, both tangible and intangible, which constitute a communication-linked classroom system. The report described a hypothetical example of the communication-linked classroom-system concept for use as a tentative planning model. Other significant items presented in the report were (1) a bibliography of the books and articles reviewed during the preliminary survey, and (2) a descriptive listing of some of the established, communication-linked, instructional systems worthy of study during a recommended, comprehensive survey. The procedure for such a survey was evolved, centering on a questionnaire that was designed to elicit in detail the description, purpose, cost factors, research aspects, and personnel specifications of each system to be studied. Development of a catalog of system characteristics for institutional use was suggested. A sample entry for such a catalog included such characteristics as the home institution, form of curriculum, communication vehicle, numbers of students involved, success achieved, ability for system replication, and particular economic advantages. (JH)
PROJECT TITLE
Preliminary Investigation of Communication-Linked Techniques for Off-Campus Teaching of Vocational and Technical Subjects

AUTHORS
E. F. Shelley, T. K. Steele, and M. J. Thomas

PRINCIPAL INVESTIGATOR
Alexander Schure

OFFICE OF EDUCATION GRANT NUMBER OEG-1-6-08254-0819
THE VOCATIONAL EDUCATION ACT OF 1963, P.L. 88-210, SECTION 4(C)

THE NEW YORK INSTITUTE OF TECHNOLOGY

DATE
JULY 31, 1966

THE PROJECT REPORTED HEREIN WAS SUPPORTED BY A GRANT FROM THE
U. S. DEPARTMENT OF HEALTH, EDUCATION AND WELFARE
OFFICE OF EDUCATION
BUREAU OF RESEARCH
DIVISION OF ADULT AND VOCATIONAL RESEARCH
SUMMARY OF PROJECT

GRANT NUMBER: OEG-1-6-08254-0819

TITLE: Preliminary Investigation of Communication-Linked Techniques for Off-Campus Teaching of Vocational and Technical Subjects

INVESTIGATOR: Alexander Schure

INSTITUTION: The New York Institute of Technology

OBJECTIVES:

1. To perform the preliminary literature survey on the various elements of the Communication Linked Classroom System, including methodology, equipment, physical facilities, economics, programmed and other curricular material, psychological factors, student population and academic organization.

2. To organize a comprehensive survey and evaluation of actual experience in the United States in the operation of various elements of the Communication Linked Classroom System in academic institutions, in industrial and commercial organizations, and in government agencies including DOD and NASA, with particular regard for the implications for technical and vocational education.

3. To prepare a detailed plan for the execution of such a comprehensive survey and evaluation.
PROCEDURE:

During the course of this investigation, a major effort was expended on the review of the available literature concerned with the myriad factors affecting the elements of Communication Linked Classroom Systems. Several hundred books and articles were reviewed, abstracted, and categorized into the elements pertinent to the Communication Linked Classroom System. These elements include the classroom, the academic center, curricular material, presentation devices, remote communication devices, computer equipment as well as intangible elements including academic organization, course methodology, psychological factors and the economics of the various systems. Appendix A lists the bibliography of those books and articles reviewed during the course of this study.

In addition to a preliminary survey of the pertinent literature, various schools and organizations pursuing some aspect of programmed instruction were also listed as Appendix B with the intent being to visit the more promising ones during a subsequent evaluation program. In order to aid the initial survey of such institutions, a comprehensive questionnaire was prepared to effect rapid response from them. The sample questionnaire is presented in the body of this report.

The information received from the questionnaire would be supplemented by follow-up mail on specific areas of interest, telephone interviews, area conferences, and direct visitations to those centers deemed to be productively engaged in these endeavors.
The results of the wide variety of survey activities eventually would take the form of a catalog incorporating the various communication linked techniques being employed; the academic institutions, industrial and commercial organizations, and government agencies employing such techniques; as well as an evaluation of the effectiveness of such techniques weighed against the economic factors. In the body of this report, sample documents are presented to suggest future format. The utilitarian value of such a compact catalog consolidating all such information is obvious.

Our investigation indicates that the procedural basis for the comprehensive survey should center about the following generic questions:

(1) What is it we want to know?
(2) Where and how are we going to find it out?
(3) After we find it out, what are we going to do with it?
(4) To whom and how are we going to disseminate the pertinent information?

Considering the last question, sample films, sound-slides and sample demonstration lectures could be evolved in follow-up programs to this preliminary investigation to supplement the suggested catalog.

Considering the potential impact of the scope of this program on a wide spectrum of academic institutions from elementary schools through graduate schools, industrial and commercial organizations, and virtually all the government agencies, it follows that it would be most advantageous to
assemble an advisory panel consisting of qualified specialists drawn from these functional activities. This special panel would include personnel well versed in the fields of programmed instruction, psychology, education evaluation, engineering systems, and vocational education and would supplement the like activities of staff members of the New York Institute of Technology.

In line with this reasoning, the services of such a group of specialists was sought and the tentative list of those who have been contacted is presented in the body of this report. Their primary function would be to provide constructive criticism of the various methods, materials, and conclusions drawn during the conduct of the comprehensive survey. In some instances, certain members might contribute original thoughts to the study especially in the area of their specialization.

RESULTS AND CONCLUSIONS:

It must be recognized that the current ferment in our society in general, and in education in particular, has revealed three great unmet needs:

(1) Vastly increased education and training for all members of our society.

(2) Truly individualized attention to each student to permit him to realize his full potential and to eliminate the present waste of human resources with its attendant misery and social disruption.

(3) Higher productivity in the teaching and learning process to eliminate the economic barriers to universal education and training and to insure a continuing improvement in the quality of our society.

- 5 -
Considering the limited facilities available and potentially available even after allowing for the frenetic growth plans of our colleges, junior colleges, and vocational schools, it is clear that nowhere near the needed classroom space will exist to accommodate the ever burgeoning population of high school graduates and part time students engaged in full time employment during normal working hours. The above listed needs are applicable to all forms of academic classrooms and campuses, and to the growing array of off-campus training and educational activities designed to reach every segment of the community and every age level of the citizenry.

Recognizing the severe limitations which prevents bringing this student mass to the campus, perhaps an approach might be to bring the campus to the students. Essentially, this preliminary investigation focused on exploring the ways and means to best effect the implementation of "Communication-Linked Techniques for Off-Campus Teaching of Vocational and Technical Subjects." The Communication Linked Classroom might be likened to a modern version of the ancient Socratic system which employed the method of individualizing questions and answers and thus establish an intimate and fruitful teaching relationship between the learned teacher and a small group of "privileged" students. This Communication Linked Classroom would be designed to bring large numbers of students into intimate relationship with the learned teacher and his knowledge, and to provide individualized communication between student and teacher whenever required. It would use modern curricular materials and modern communication technology to provide individually tailored education which is both effective and economical.
In the course of our preliminary investigation, it became clear that there are literally thousands of activities closely related to some segment of Communication Linked Classroom Techniques currently employed in our schools, industries and government agencies. It would seem to be a logical first step to categorize these activities by type of institution, form of curriculum, communication vehicle, numbers of students involved, success achieved, ability to replicate system used, as well as the economic advantages of each system.

A direct result of this preliminary literature survey points to the crying need for a catalog summarizing the factors mentioned above in one consolidated volume. A sample page of such a catalog is presented in the body of this report. The existence of such an opus would prove to be invaluable to existing schools at all levels, new schools currently in the drawing board phase of development, industrial and commercial organizations, and last but certainly not least, government agencies particularly the U. S. Office of Education, the Department of Defense, and the National Aeronautical and Space Administration. The utilitarian value of such a catalog is self-evident, but the single most important element is for a pertinent institution to be able to correlate the various factors involved in a decision of how to teach or train a specific group of students in the most successful and most economical manner.

To best effect such a catalog, a comprehensive survey is envisioned which would allow for a deeper penetration into the available literature and ongoing activities including the most necessary site visits to those institutions deemed to have made substantial progress toward the realization of their specific objectives.
An additional conclusion of this preliminary report is the need to organize a team of New York Institute of Technology staff personnel supplemented by outside consultants in the areas of programmed instruction, psychology, educational evaluation, engineering systems and vocational education to constitute an "advisory panel" for the recommended supplementary investigation. This panel would be chaired by Dr. Alexander Schure, President of the New York Institute of Technology, and in addition to N.Y.I.T. staff personnel, it would include recognized specialists drawn from other academic institutions, government agencies, industrial organizations, and research institutes. As mentioned above, inquiries were made of about twenty such specialists and several acceptances have already been received. The tentative list is included as Appendix C of this report.

The principal function of this advisory panel would be to pass on the effectiveness of any of the specific Communication Linked Techniques, again considering the realization of teaching objective weighed against the economic factors. The panel may be convened as a single group or may work as individuals to perform a designated function. In certain specific instances, a panel member might contribute to the innovative aspect of such an investigation depending on his own specific background and research activities.

The need for a comprehensive study of the application of Communication-Linked Classroom Techniques is clear. It is our conclusion that the evolution of a catalog summarizing and evaluating the critical factors involved in communication-linked techniques including their implications for vocational and technical education would constitute a major contribution to the increased education and training for all members of our society.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>1</td>
</tr>
<tr>
<td>Summary of Project</td>
<td>2</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>9</td>
</tr>
<tr>
<td>Tables and Illustrations</td>
<td>10</td>
</tr>
<tr>
<td>Statement of Problem</td>
<td>11</td>
</tr>
<tr>
<td>Objectives and Hypotheses</td>
<td>20</td>
</tr>
<tr>
<td>Description of Elements of System</td>
<td>23</td>
</tr>
<tr>
<td>The Hypothetical Communication-Linked Classroom System</td>
<td>27</td>
</tr>
<tr>
<td>The Classroom</td>
<td>33</td>
</tr>
<tr>
<td>The Academic Center</td>
<td>35</td>
</tr>
<tr>
<td>Analysis</td>
<td>36</td>
</tr>
<tr>
<td>Sample Catalog Entry</td>
<td>38</td>
</tr>
<tr>
<td>Questionnaire</td>
<td>42</td>
</tr>
<tr>
<td>Conclusion and Recommendations</td>
<td>45</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>Appendix A - Bibliography</td>
<td>47</td>
</tr>
<tr>
<td>Appendix B - List of Activities Engaged in Some Aspect of Communication-Linked Techniques</td>
<td>142</td>
</tr>
<tr>
<td>Appendix C - Tentative Make-up of Advisory Panel</td>
<td>149</td>
</tr>
</tbody>
</table>
TABLES AND ILLUSTRATIONS

Page

The Hypothetical Communication-Linked Classroom System.................. 27

The Classroom.. 33

The Academic Center.. 35

Sample Catalog Entry... 38

Questionnaire... 42
STATEMENT OF PROBLEM

The 20th Century has witnessed a burst of scientific discovery that has revolutionized man's working life. The introduction of automation and computer technology into industry and government has radically altered the nature of work. As a consequence, more is being demanded of man in terms of his mental prowess rather than manual labor. Therefore the increasing need for adequate personnel to maintain the new technologies and to further research is most felt in educational circles where educators are hard put to train enough people to meet this need.

Coupled with this, the democratic spirit of the American people has traditionally fostered education as the path to increased opportunity and prosperity. America has espoused the principle of education for all, and as work is being upgraded by technology, favoring the educated, more citizens are clamoring for learning for themselves and their children.

In view of these pressures for quality education, more educational institutions are turning to technical innovations in order to produce an expansion of educational opportunities.

Science and technology, steadily developing since the Industrial Revolution, changed many aspects of American society. Medicine, transportation, communication, modes of production and consumption are just a few of the areas which have been radically altered in the process. It is ironical that education and methods of learning should be one of the last institutions to benefit by the direct application of science and technology.
However, education could not escape the critical eye of science. Educational psychology put to the test many of the old theories of learning. Many myths about how people learn are now being questioned. For instance, many feel that the doctrine of formal discipline*, one of the first theories to be questioned has been proven unsound, and in some cases shown to impede the learning process.

Rewards for learning were demonstrated to be more beneficial than punishment. The principle of reinforcement in learning was thus developed; a principle now indispensable in all segments of instructional technology from programmed learning to C.A.I. (Computer Assisted Instruction).

The implications of computer development for education and communication were quickly realized. Thus the computer has the potential of becoming involved in all aspects of the educational process. A computer can solve problems and it can also teach. Linear computer assisted instruction has developed into the highly refined branched computer assisted instruction. The computer can present programmed material in sequence from least difficult to most difficult or it can branch off into specific areas in a sequence, to suit the individual's needs. In addition, computers have begun to be used in educationally related areas such as registration, grading, presentation and scoring of exams, class scheduling and attendance. At Harvard University there is a project currently under study which is attempting to computerize their library system.

* Theory of Formal Discipline: Justifying the study of a subject not for its own sake but for the training it supposedly gives the mental faculties.

Example: Studying Latin not to learn Latin but to improve the mental faculties.
The ramifications of these computer research innovations into education will tend to drastically alter the methods of instruction in the near future.

Other significant innovations include educational T.V., films, slides, taped lectures, language laboratories, programmed texts, teaching machines, slide and movie projectors, telephones, picture phones, telautograph machines, and teletypewriters. Many more technical devices have been produced, all for the purported purpose of facilitating the learning process.

In order to make optimum use of all of these technical innovations, it is necessary to apply a systems approach. Isolated and individual uses of any of these technical innovations, although helpful in certain situations, would lack the planning and integration necessary in order to approach optimum efficiency at realistic cost. In addition, many of the technical innovations cited above are interdependent, and consequently work best when used in conjunction with one another. What is desired then is a Communication-Linked Classroom System, implying as it does advanced facilities planning as well as integration of curricular materials, presentation devices, communication systems information retrieval equipment and computer equipment.

In order to develop the basis for an effective Communication Linked Classroom System, it is desirable to survey and evaluate the considerable body of experience available to date in the techniques and practices pertinent to the Communication-Linked Classroom System.
It is the purpose of this preliminary study to present a detailed plan of a project to assemble and evaluate information on all aspects of the Communication-Linked Classroom System.

The information assembled will include virtually all aspects of instructional media innovations from their physical characteristics to research results on their effectiveness.

The project proposed is one of assembling and evaluating data. All of the technical innovations, including all of their diversified uses results in an overwhelming amount of information to be surveyed and evaluated.

At present there is no available comprehensive survey and study of all aspects of technical innovations which could constitute a communication-linked system. There have been listings of various techniques in instructional media, a government sponsored survey of programmed instruction and its specific applications in public schools throughout the nation*, various reviews and/or abstracts of new research within the instructional media area published in most of the professional journals and reviews in the field**. All of these are important and helpful, but are limited in scope and applicability, especially where the non-media-specialist is concerned.

A definitive compendium of information on techniques and innovations in this field would represent a significant contribution as a source book for individuals in schools, industrial and vocational training institutions, and government and military agencies.

* Center for Programmed Instruction 1962, 1963
 1962 = Programs '62: A Guide to Programmed Instructional Materials
 1963 = The Use of Programmed Instruction in U. S. Schools

** Most notably Audiovisual Instruction and AV Communication Review
As a point of comparison, in the 1940's, the field of psychological testing became burdened with a variety of psychological and educational tests. It was extremely difficult for educators and administrators to cope with the plurality of tests available and their appropriateness for individual use. Accordingly, the Buros' Mental Measurements Yearbook* was developed to describe and evaluate tests in the field. It is a source book widely used by psychologists and educators today.

In much the same way, a source book is needed in educational technology as an aid to professionals and non-professionals in determining the feasibility of various techniques for systems incorporation in a particular setting. Keeping up-to-date about new innovations constitutes a tremendous problem, even for the specialist. The difficulties are compounded when laymen are not only expected to be aware of these innovations, but also to pass judgment on their present and future usefulness and applicability.

Such a situation need not continue to exist. Means are available to alleviate the problem. The plan suggested here for this purpose is an ambitious one, but well within the scope of the available resources, materials and personnel to insure successful completion.

Under this plan, a comprehensive survey of communication-linked techniques would provide the basis for a definitive catalog and evaluation.

* Buros, Oscar K., Sixth V. Mental Measurements Yearbook
 New Brunswick: Rutgers University Press, 1963
 Published 6 times (6th Yr. Bk.)
The catalog will include the various elements of the Communication-Linked Classroom System, including methodology, equipment, physical facilities, economics, programmed and other curricula materials, psychological factors, student population and academic organization.

Any thorough catalog of this nature demands an equally comprehensive method of evaluating the material contained therein. At this stage in the development of instructional media, coming to terms with the problem of evaluation from both a methodological and procedural standpoint is essential.

Where required, on-site investigations will be made. If on-site inquiries are not required, a detailed questionnaire (copy enclosed) requesting information about the innovation will be sent to those institutions where the techniques are being utilized or demonstrated.

A special panel of consultants will be organized, including specialists in programmed instruction, audio-visual techniques, psychology, engineering systems, and vocational and technical education. Individuals comprising the panel will make critical comments and recommendations on the techniques being reviewed. This procedure should insure as comprehensive an evaluation as possible. The evaluation will be constructed so as to be easily understood by the non-media-specialist, including any individuals who could benefit by its use. It will provide them with pertinent information concerning procedures for implementation. Recommendations concerning methods of such innovations will also be included.
In addition to a description of the nature and purpose of the technique being considered, the evaluation described in this proposal will include detailed information on research, cost factors, and personnel specifications.

Refined methods of evaluating the effectiveness and applicability of technical innovations in education are essential to insure the validity of any results obtained. Any technical innovation introduced into any aspect of the educational process must have at the outset some detailed procedure for testing its effectiveness as compared to some criterion measure, such as the conventional method of instruction.

The evaluation proposed here, including on-site or questionnaire inquiry in addition to critical comments provided by leading authorities, will devote extensive time and space to obtaining and listing accurate information concerning relevant research.

An important aspect of this evaluation is that in considering specific innovations, it will emphasize the unique experience of the particular institution to which the innovation was adapted. When a technique is developed it is usually perfected and tested under as ideal conditions as possible. But when other institutions wish to adopt the technique to their facilities, conditions often fall short of this ideal. Therefore, a critique of the setting in which the technique was developed will be valuable in determining its potential usefulness in different situations.
For the school administrator, industrial training administrator, government or military agency director, specific information concerning many and diverse uses of technical innovations is most useful. These individuals, perhaps not media specialists, want and need these kinds of data, which are not readily available to them. In all probability they would lack the time and technical ability to effectively research and understand journal abstracts for technical information. In addition, they would not be in a position to evaluate such data. The evaluation proposed here would provide such persons with a perceptive overview of the many technical developments and their potential uses.

The catalog and evaluation will also provide valuable information on cost factors. Cost is one of the most substantial obstacles to implementation of new techniques in education. The problem is compounded by the lack of information available in this area. With current demands for more and better education, the question of increased efficiency at realistic cost becomes crucial. Accurate cost estimates of various aspects of developing and implementing new methods and techniques must be made accessible to institutions and agencies desiring them.

Some of the problems of cost which will be dealt with in the evaluation are:

a) the relevant costs of the innovation;

b) the approximate cost "curve" of expanding the use of the validated techniques and methodologies developed;
c) the hardware costs and software costs considered separately;

d) the general availability of replacement parts and components; and

e) the institution or agency responsible for funding the project.

In addition to relevant research and cost factors, the catalog and evaluation will contain significant data on personnel specifications. Information about technical personnel needed to effectively implement and follow through with new innovations in education is extremely important. The essential nature of such information should be obvious. Lacking personnel specifications, and more importantly, personnel to fill those specifications, any systematic attempt to introduce any new technique into any type of curriculum might result in decreased efficiency, effectiveness and possible failure. Because the evaluation proposed here will include pertinent information on personnel specifications, in many instances such difficulties could be alleviated.
OBJECTIVES AND HYPOTHESES

It is reasonable to accept the hypothesis that our nation is feeling the intense pressure to provide some form of post-high school education to a major portion of our high school graduates, as well as an opportunity for those workers engaged in non-skilled or semi-skilled occupations to escalate their skills and consequently improve their earning positions. It is also reasonable to assume that if every institution of higher learning were to miraculously double their faculties, their facilities, their laboratories and capital expenditures overnight, they would merely begin to satisfy the educational needs of this potential hoard of students.

The make-up of this swelling student population can be established first by analyzing the needs of high school graduates. Some 25 years ago, something of the order of 10% of the graduating high school students sought some form of higher education. This figure has swelled to more than 50% this year, and may grow to some 65% before 1980. Secondly, those workers engaged in marginally skilled occupations are vulnerable to the ever increasing threat posed by the inevitable growth of "automation" which has become an economic necessity for the survival of most of our industries. Their plight might best be summarized succinctly by a recent statement made by one of our investigators, Edwin F. Shelley, who said at a speech at New Paltz, New York, "Within our lifetime, there will be no jobs for people who cannot perform more creatively than machines."
Thus, accepting the hypothesis that the existing campuses are not in a position to accept the numbers of potential students desiring higher educational opportunities, the logical course is for the campuses to reach many of these students at their homes, places of work, or community centers.

The fantastic growth of technology in communications enlivens the prospect of linking the campus to these potential students at the above noted places. The means for such communication are varied and include such vehicles as teaching machines; written programmed instruction with referrals to texts along with diagnostic tests; closed circuit television; audio and video tapes; telephones and tele-writers, in addition to formal lectures and tutorial sessions. As far as laboratory experience is concerned, this might be done at a suitably equipped industrial organization, or where not feasible, students could achieve such experiences at odd hours at an appropriate institute of higher education. The experimental procedures and requirements could be organized in such a manner as to permit the students to complete their required laboratory work during evenings, afternoons, weekends or in concentrated doses during summer months.

The need for communication linked classrooms is a direct result of the ferment in our society in general, and in education in particular. The need may be summarized as follows:
(1) Vastly increased education and training for all members of our society.

(2) Truly individualized attention to each student to permit him to realize his full potential and to eliminate the present waste of human resources with its attendant misery and social disruption.

(3) Higher productivity in the teaching and learning process to eliminate the economic barriers to universal education and training and to insure a continuing improvement in the quality of our society.

These requirements apply to all academic classrooms and campuses, and to the growing array of off-campus training and educational activities designed to reach every segment of the community and every age level of the citizenry.

It is toward these objectives that this preliminary investigation of communication-linked techniques for off-campus teaching of vocational and technical subjects was directed. The objectives bounded these specific tasks:

(1) To perform the preliminary survey on the various elements of the communication-linked classroom system including methodology, equipment, physical facilities, economics, programmed and other curricular material, psychological factors, student population, and academic organization.

(2) To organize a comprehensive survey and evaluation of actual experience in the United States in the operation of various elements of the communication-linked classroom system in academic institutions, in industrial and commercial organizations, and in governmental agencies, including the Department of Defense and the National Aeronautical and Space Agency with particular attention to the implications for technical and vocational education.

(3) To prepare a detailed plan for the execution of such a comprehensive survey and evaluation.
DESCRIPTION OF ELEMENTS OF THE SYSTEM

The preliminary literature survey conducted revealed several generic elements which constitute a Communication-Linked Classroom System. They may be characterized as tangible elements and intangible elements.

I. TANGIBLE ELEMENTS

(A) Classroom Location and Size

1. On Campus
 a) Academic Buildings
 b) Dormitories

2. Off-Campus
 a) Industrial Plants
 b) Department Stores
 c) Banks
 d) Union Halls
 e) Community Centers
 f) Evening Schools

(B) Curricular Material

1. Programmed Material
 a) Branching
 b) Linear

2. Standard Textbooks

3. Audiovisual Material
 a) Slides
 b) Movies
 c) TV Taped Lectures
 d) Taped Lectures
 e) Sound Slide Lectures
 f) CCTV Lectures
 g) Language Laboratory Material

4. Dial Access Information Retrieval Material

5. Computer Assisted Instruction Material

6. Miscellaneous Experimental Demonstration Material

- 23 -
(C) **Presentation Devices**

1. Teaching Machines
 a) Branching
 b) Linear
2. Reading Practice Machines
3. Matched Pair Devices
4. Audiovisual Equipment
 a) Slide Projectors
 b) Movie Projectors
 c) TV
 d) Tape Players
5. Dial Access Information Retrieval System
6. Information Retrieval Material For Use With Central Library

(D) **Remote Communication Devices**

1. Telephone, Picturephone, Telautograph
 a) 2-Way for Individual Communication
 b) 1-Way for Illustrated Lectures to Large Groups
2. Card Readers for Diagnostic Examinations
3. Teletypewriters
 a) For Examination Replies
 b) For Computer Assisted Instruction Terminals

(E) **Computer Equipment**

1. Record Keeping
2. Diagnostic Examinations
3. Direct Instruction of Student Via CAI Programs

(F) **Academic Center Design and Staffing**

II. **INTANGIBLE ELEMENTS**

(A) **Academic Organization**

(B) **Methodology for Various Types and Levels of Students and Courses**

(C) **Psychological Factors**

1. Learner Motivation
2. Frustration
3. Interplay Between Student and Teacher
4. Interplay Between Student and Student

(D) **Economics of Various Systems**
A glance through the bibliography, included in this report as Appendix A, will reveal several hundred books, articles and other references relating to ongoing activities encompassing one or more of the above listed elements of a Communication-Linked Classroom System. Some 150 publications were abstracted and close to another thousand were cursorily reviewed and listed for future study in detail. On the basis of this limited literature survey, it is reasonably safe to presume that many of the ongoing activities will have a relatively brief half-life and will be superseded by more promising and/or economical system elements.

As Dr. Davis* points out "...On the assumption that the process of learning and applying new techniques and theories has not changed over the years, it is probable that most of the state-of-the-art techniques and immediately available skills now utilized in system design are interim measures and that a basic theory covering the varied aspects of system design is already evolving and will supplant many of the mispractices and misuses of system design now tolerated and condoned." Although Dr. Davis' remarks were concerned primarily with military control systems, they are generic enough to include the specific application to Communication-Linked Classroom Systems.

In order to illustrate the elements of such a Communication-Linked Classroom System without introducing the thousands of available examples drawn from the literature, let us hypothesize such a system.

- 25 -
The Hypothetical Communication-Linked Classroom System (Figure 1.)

The Classroom

Consider a new type of classroom located on a college or high school campus, or off-campus in an industrial plant, a bank, a department store, a union hall, or a community center. Twenty or thirty students of various ages, interests and accomplishments are in attendance at any given time, but they are all learning different things. They are sharing the same classroom because of the special facilities and services available.

Also in attendance in this special classroom is a pleasant and helpful teacher-aide who assists each student to understand the various facilities, schedules their assignment, adjusts the equipment, distributes individual materials and establishes communication via telephone and other lines with the specially staffed academic center which this classroom shares with a score of other classrooms. Before discussing the special academic center, let us explore a bit further the activity and facilities in the new type of classroom which we have been describing.

Upon enarking on his chosen course of study, each student is assigned by the aide to his own study carrel -- desk, chair, bookcase, cabinet and cartridge loading tape machine. He is provided with an appropriate study syllabus, programmed and regular text books, initial material for study and for supplementary reading, and instruction by the aide in the use of the equipment and services of the classroom. He is particularly advised that he can speak with his teacher at any time by requesting the use of a communication desk.
In addition to the individual study carrels, the classroom is equipped with one or more units of each of the following:

1) A communication desk from which a student may converse individually with his teacher at the academic center. This desk is shielded from sounds in the other parts of the classroom and contains a two-way hands-free telephone, a two-way teletypewriter (remotely operated pen) which serves as a blackboard on which the student and teacher may sketch and write while both observe simultaneously, and a two-way picture-phone (closed circuit television) in those instances where the cost of coaxial or micro-wave connection between classroom and academic center is justified. Either the student or the teacher may request a conference, and the scheduling is arranged by the aide.

2) An examination scoring station in which the student may insert an IBM card on which he has entered the answers to short-answer, diagnostic examination questions. The station reads and transmits the answers to a computer at the academic center, and the computer instantly tells the student at the scoring station what his grade is, what questions he answered incorrectly,
and what study material he should consult in order to remedy his lack of knowledge on these questions. All of this information is provided to the student instantly, in printed form for his own use, on a standard computer print-out unit. The central computer retains a record of the student's examination performance for diagnostic purposes.

3) A self-contained, cartridge loading sound motion picture projector for individual student viewing of single concept films, demonstrations, lectures and study material which is best illustrated with the aid of motion pictures. Alternatively, video tape presentation on a television screen can be used where the cost of this technique is justified by the materials available.

4) A self-contained, cartridge loading film strip projector, with sound, for individual student viewing of material with high visual content but little need for motion.

5) A teaching machine of the AutoTutor type for individual study of material which is available in adequately validated programmed form.
6) A sound-shielded audio tape recorder station for individual practice in connection with the study of speech and languages.

7) An automatic library request desk at which the student or the aide may teletype a request to the academic center for any material -- printed, taped or audio-visual -- which will be required for future study or for remedial work. The request is immediately acknowledged by the academic center and is filled by mail or by direct (overnight) print-out on the library teletypewriter or on the print-out unit in the examination scoring station.

The Academic Center

The academic center controls the quality of the education and training offered by the system. It provides direction to the student in his self-paced studies, it provides the books and other materials required by the curriculum, it provides tests and examinations and appropriate remedial material and assistance. And most important, it provides constant consultation and supervision for each student by a staff of competent and sympathetic teachers.

Each teacher is responsible for 3 or 4 courses in his field, and supervises every student taking one of his courses. The courses are organized to encourage student self-pacing, and to provide automatic test scoring and computer-directed remedial assignments.
Hence the teacher can provide (via the communication channels outlined above) his personal consultation and assistance to each student whenever it is required desirable, and can supervise several times the number of students ordinarily supervised by one teacher in the standard classroom format.

Orientation lectures may be taped by the teachers, and provided to each student for use at appropriate stages in his self-paced course of study. The student can then converse with the teacher in person (via the communication desk) to clarify or discuss the lecture, and of course a student may arrange to speak with his teacher at any time that he feels the need for explanation, assistance or confirmation in the course of his study. The teacher may, of course, initiate communication with the student for examination or tutorial purposes.

The academic center is the teachers' base of operation. It houses his office and his clerical assistance. It houses his special communication desk, similar to the one in each classroom but with provision for recording and editing lectures. It houses the central library service which provides all of the study materials and supplementary matter to the students, either by mail or by direct teletype or print-out. It houses administrative personnel and appropriate material production facilities.

The academic center also houses a most important tool for minimizing the teacher's drudgery and maximizing the teachers' effectiveness — namely, the central academic computer. This computer maintains each student's records, charts his progress, scores his routine tests and examinations, diagnoses his difficulties, provides remedial material and references, and advises the teacher — periodically or on command — of his student's problems, progress and status.
With the continuing trend toward lower costs in the storing and processing of large amounts of data, it will become economically feasible to provide more and more course material directly from the central computer, and to allow the student further access to the computer for help in programming his studies, and in obtaining reference, remedial and supplementary material.

The Classroom (Figure 2.)

A) Students at their desks -- reading, writing and listening (through earphones) to lecture material reproduced on their individual tape machines.

B) Student at Communication Desk speaking by hand-off telephone with teacher at Academic Center, and simultaneously writing on Teleautograph "blackboard." Writing is reproduced at teacher's desk simultaneously. Closed circuit TV camera and screen are also indicated.

C) Student at Library Request Desk teleotyping a request to the Academic Center for materials needed for future study.

D) Student at Examination Scoring Station about to insert IBM card on which he has answered examination questions. Correct answers, examination score and references for further study will appear on print-out machine to his left.

E) Teacher-Aide

F) Student at Language Laboratory Station for speech work.

G) Student using cartridge slide projector.

H) Student at cartridge motion picture projector station.

I) Student using AutoTutor programmed instruction machine.

- 32 -
The Academic Center (Figure 3.)

A) Teachers using Telautograph "blackboards" at their Communication Desks while speaking with students via hands-off telephone. Tape equipment for recording lectures, and closed circuit TV equipment also indicated.

B) Faculty lounge.

C) Teacher requesting student record from Computer Center.

D) Teacher requesting curricular material from Library/Production Center.

E) Clerk preparing material at Library/Production Center.

F) Clerk answering teletyped classroom request for library material.

G) Computer operator working at desk in Computer Center.

The Communication-Linked Classroom System described and illustrated is included to serve the purpose of vividly tying together the manifold elements constituting the system. When the comprehensive survey outlined in this report is completed, it should be possible to design specific Communication-Linked Classroom Systems to meet specific educational and training requirements.
ANALYSIS

The literature reviewed during the course of this preliminary investigation of communication-linked techniques for off-campus teaching of vocational and technical subjects centered about the use of new educational media techniques toward the solution of the crucial problem of how our society is going to provide quality education to the masses currently shut out of institutes of higher education.

Some 150 articles were abstracted and some 900 other books and articles were cursorily reviewed with the thought of delving into them more deeply in a follow-up program. These references are included as Appendix A of this report.

A limited number of activities engaged in some aspect of Communication-Linked Classroom Techniques is listed under Appendix B.

It is patently beyond the scope of this preliminary study to perform the essential evaluation of the referenced techniques as this would require considerably more funds and time to do so. However, the procedure for such an evaluation has been evolved and centers primarily on a detailed questionnaire which is included herein. The questionnaire considers in some detail the description, purpose, cost factors, research aspects, and personnel specifications of each innovative technique and the institution pursuing it.

It is accepted that the information culled from the questionnaire would frequently be insufficient to make a proper evaluation. In many instances site visits, follow-up mail, telephone interviews and area conferences may be required to determine the full significance of the technique being pursued.

- 36 -
For the purpose of this report, a single innovative technique has been chosen to illustrate the format of a page of the proposed catalog of communication-linked classroom techniques. To simplify problems of geography for so short a time period as covered in this report, an activity in metropolitan New York was chosen.

The Catholic Diocese of Brooklyn and the International Business Machines Corporation have joined together on a telephone linked computer experiment designed to make homework easier. Six high school students were selected for this experiment. Each student had a push button phone linked to the computer. By pushing suitable buttons, the student would instruct the computer to add, subtract, multiply, divide or perform a square root operation. The computer gives the answer by voice using the voice answer-back control.

The computer is located at the IBM Center in Yorktown, New York some fifty miles from the students' homes in Brooklyn, New York. In effect, the computer provides each student with the equivalent of a versatile desk calculator in his own home.

This innovation is presented in the form of an item in the proposed catalog of communication-linked classroom techniques.

The reader can extrapolate this single entry into a full catalog encompassing all the elements of the communication-linked classroom system.
The Catholic Schools Diocese of Brooklyn and the International Business Machines Corporation have undertaken a project to test the feasibility of having students use audio response or "voice-answerback" systems in their home to assist them with their homework. Six students participated in this joint project to see how well they could communicate with a computer from their homes using a push-button telephone. The IBM 1710 computer located at the company's Mohanac Systems Laboratory in Yorktown Heights, New York, responded by voice.

It is hoped that by employing the audio-response system, routine but time consuming operations like multiplying numbers or finding a square root can be taken care of by the computer, thus freeing the students to be able to do more problems and getting more practice in setting them up.

The audio response units operate much like phonograph records in that what the questioner hears is the playback of a pre-recorded voice. Words and sounds are magnetically recorded and stored on drums or on disks and are played back in a sequence directed by instructions from the computer. The computer can assemble a wide variety of different messages.

One unit being used in the joint home computing experiment being conducted by IBM and the Catholic Schools Diocese of Brooklyn is a modified version of the first commercially available audio response unit -- The IBM 7770 announced in January 1964. The 7770 puts answers together from individual words recorded on a magnetic drum.

The second audio response unit is an experimental device that stores complete phrases up to 12 seconds long on magnetic disks. This unit allows the computer to select a complete message in a single operation.
Another specially developed audio response unit is a basic element of the New York Stock Exchange's quotation service. A member broker can ask for market data on a particular stock by dialing a series of numbers on his telephone. After finding the answer in its files, the computer will respond by assembling a message from its pre-recorded vocabulary.

The six students involved in this project put the computer to work on problems in algebra, chemistry, physics, trigonometry, bookkeeping and accounting. During February of 1966, the students received several hours of classroom instruction on how to use the service.

In those areas where push-button telephone service is not yet available, the telephone company connected accessory push-button "pads" to dial phones in the students' homes for the test period. The dial phone is used to call the computer, and the pad is used to enter problems. With 12 buttons instead of the usual 10, the pad serves for entering both numbers and a range of commands.

In addition to the operation commands — add, subtract, multiply, divide and square root — half a dozen other instructions were available to the students.

By pressing the right buttons, a student could verify what numbers he had entered, correct a number, cause a number or an answer to be stored in the computer for use in future problems, or ask for a message to be repeated.

 Besides the usual 10 push-buttons for numerals 0 through 9, the 12-key version has an asterisk, or star, key and a plus key.

Numbers are entered by keying them in the usual way, as if "dialing" a phone number. Each key also has a second meaning, either an operation such as "multiply" or an instruction such as "keep". A plastic card or "overlay" fits over the keyboard to show the special meanings for each key.

To enter an operation or an instruction, the user presses the appropriate key and then presses the star key. For example, to say "multiply" the user presses the multiply key and then the star key. To store a number for later use, the user presses the "keep" key, the start key, and then the single digit designating the location where the number is to be stored.

The keep instruction is very useful where numbers will be used repeatedly or where the answer to one calculation is to be used in a following calculation.
COST FACTORS:

This being a limited demonstration program (ended June 30, 1966) actual cost factors are different from those that would be encountered in practical use. The program was funded by IBM and an approximate budget including programming, machine time, personnel, etc. was $100,000.

In calculating costs for replication, the number of students must be divided into the sum of the costs for the following:

1. Touchtone Pad
2. Extra Telephone Charge
3. Time on 7770 Computer
4. Audio Response Unit
5. Data Set
6. Personnel Costs

RESEARCH:

Six students in the Catholic Schools Diocese of Brooklyn took part in the project which terminated on June 30, 1966.

Three girls and three boys took part in the project. The students were screened and selected on the basis of diversity of backgrounds, family income, neighborhood location, age and academic achievement.

The project represented a "Feasibility Study" and not an experimental study as such. Consequently no experimental results will be published. Extensive records were kept however, and according to Brother Austin David, F.S.C., "All indications are that the project was successful. The project has demonstrated that a form of computing service can be provided anywhere through an inexpensive push-button telephone."

Publications dealing generally with the feasibility of this use of the audio response unit will be forthcoming now that most of the data analysis is being completed.

PERSONNEL SPECIFICATIONS:

To set up this project, it was necessary to utilize the skills of specialists in computer programming, human factors engineering, psychology, and education. Mr. Roger C. Greenhalgh, manager of technical planning for IBM's Advanced Systems Development Division, headed the project for IBM. Brother Austin David F.S.C., Data Processing Consultant for the Roman Catholic Diocese of Brooklyn, directed the project for the Catholic Schools Diocese of Brooklyn.

Generally, once the materials have been programmed and equipment purchased or rented, the cost for transmission and maintenance is minimal.
FUTURE OF TECHNIQUE:

According to IBM News (Vol. 3, No. 8, April 25, 1966) there are wide applications for the new system as described above.

A sampling of the services such a system might offer to consumers includes:

- Automatic maintenance and balancing of the family checkbook and instant information on the status of financial obligations.

- Home selection and purchasing of goods shown in a catalog or displayed on the TV screen with costs automatically charged to the buyer's account.

- A storehouse of historical and current information on every imaginable subject -- an automated encyclopedia, dictionary, almanac, library and shelf of catalogs rolled into one.

- Education -- youth and adult courses on all conceivable subjects in pictures and sound.
QUESTIONNAIRE

Title of Innovation:

Name of Institution where Innovation is being used or tested:

Name(s) of individual(s) responsible for the management of the project; including, the nature of their responsibility, their qualifications and specific functions in relation to the technique being surveyed:

Date Started/Date Ended:

I. PURPOSE
 a) Why was the technique or method instituted?
 b) Is the project unique? If so, explain how, why and to what extent?
 c) Does the innovation purport to increase the performance and the efficiency of existing and/or new educational procedures? How?
 d) What are the explicit and implicit anticipated results?
 e) Is this a demonstration project? What is being demonstrated? Provide a short description.

II. DESCRIPTION
 a) Description of the specific technique, method, process or technology being used or tested.
 b) Description of institution where the technique is being used or tested.
 c) Description of physical facilities into which the technique is being incorporated.
III. COST FACTORS

a) What are the relevant costs?

b) What are the present alternative uses of equipment and programs which are already developed?

c) To what extent are the dollar costs allocated to actual functions?

d) What is the approximate cost "curve" of expanding the use of the validated techniques and methodologies developed in the project?

e) How are the hardware costs separated from the software costs?

f) What is the general availability of replacement parts and components?

g) To what extent can the validated process be economically replicated?

h) To what extent can parts of the process be replicated without the use of sophisticated equipment and/or the use of highly skilled personnel?

i) Describe how and under what circumstances the software materials can be adapted to other educational equipment, media and situations?

IV. RESEARCH

a) Is the innovation part of any research project, or is any research being conducted on the new technique at the institution in question?

b) If so, what is the purpose of the research being done?

c) What specific hypothesis or hypotheses are being tested?

d) What kind of experimental design has been worked out to test the hypothesis(es)? Please elaborate.

e) How can the effectiveness of the technique be measured?

f) What are the goals of the innovation which are specifically related to evaluating the process?

g) Has the effectiveness of the innovation been systematically compared with conventional techniques or methodologies?
V. PERSONNEL SPECIFICATIONS

a) What are the special qualifications and capabilities of the personnel involved in the project, and what allocation of their professional time is devoted to this particular innovation?

b) What specific specialties are required to maintain this project?

c) What is the general availability of such specialists?

d) How is a new institution proposing to duplicate a particular innovation going to obtain specialists and talents which they presently may not have?

e) What levels of skills will be required of the institutional participants not directly involved in managing the innovation? How easily can the necessary skills be taught?
CONCLUSIONS AND RECOMMENDATIONS

As a result of this Preliminary Investigation of Communication-Linked Techniques for Off-Campus Teaching of Vocational and Technical Subjects, it can be concluded that there exists a pressing need on the part of our nation to:

(1) Vastly increase the education and training for all members of our society.

(2) Provide truly individualized attention to each student to permit him to realize his full potential and to eliminate the present waste of human resources with its attendant misery and social disruption.

(3) To realize higher productivity in the teaching and learning process to eliminate the economic barriers to universal education and training and to insure a continuing improvement in the quality of our society.

In order to realize these goals in the face of an admitted critical shortage of classroom facilities, qualified teachers and laboratory equipment at our institutes of higher education, an innovative form of communication between the institution and the student must be evolved.

The Communication-Linked Classroom System concept, one example of which is described in the body of this report, can be an answer to this problem. The hundreds of activities culled from the preliminary literature search indicate the extent of interest already existing in our nation. The problem remains to put these myriad elements of the system into a form useful to schools, industrial organizations, and governmental agencies.
Therefore, we recommend the conduct of a comprehensive survey and evaluation of actual experience in the United States in the operation of various elements of the Communication-Linked Classroom System in academic institutions, in industrial and commercial organizations, and in government agencies including DOD and NASA, with particular regard for the implications for technical and vocational education.

The value of such a survey is self-evident and would provide a most useful tool for existing schools at all levels, new schools currently in the drawing board phase of development, industrial and commercial organizations, and government agencies, particularly the U. S. Office of Education, the Department of Defense, and the National Aeronautical and Space Administration.
APPENDIX A

LIST OF PUBLICATIONS ABSTRACTED

1. AID. Published monthly by The Institute of International Research and Development, Inc., Educational and Training Methods Division, P. O. Box 4456, Lubbock, Texas.

Presents industry-wide news and research reports in the field of automated instruction.

Discusses a research project conducted with fundamental mathematics students at the George Peabody College for Teachers to determine if there is a significant difference between learning of fundamental mathematics concepts at the college level via closed circuit TV as opposed to conventional teaching. The study concluded that there was no difference in mean achievement between the sections receiving TV lectures and those receiving classroom instruction.

This report presents a detailed evaluation of the factors contributing to the design and evaluation of the feasibility of a multi-purpose TV system for direct instruction, transmitting instructional materials, and fulfilling administrative input-storage-retrieval requirements of a group of St. Louis School Districts.

4. Audiovisual Instruction. Published monthly except July and August by the Department of Audiovisual Instruction, NEA, 1201 16th St., N.W., Washington 6, D. C.

This is the official Journal of the Department of Audiovisual Instruction. Reports on the latest trends and developments in the educational media field including programmed instruction, language laboratories, new uses of Ed. TV, etc. Prints special issues on the application of these media to subject-matter areas.
5. **AV Communication Review.** Published quarterly with two supplements by the Department of Audiovisual Instruction, NEA, 1201 16th Street, N.W., Washington 6, D. C.

Reports on research, experiments and studies in the communications field. Includes regularly a department on Programmed Instruction, Ed. by A. A. Lumsdaine.

Presents research results and discusses techniques and procedures regarding the development of the Educational Media Research Information Center by the Center for Documentation and Communication Research of the School of Library Science of Western Reserve University.

The article describes how the Michigan State University Study has designed a means to bring the cumulative knowledge of professors and specialists to bear on instructional problems, *A System For Producing Systems.*

This developmental system is designed to serve as a prototype set of procedures for other institutions to examine, adopt, and refine in light of their human and learning resources.

This study attempted to compare and evaluate the effectiveness of a counselor training program using a simulated counseling interview (tape recording of a client's response) versus conventional counseling interviews employing role playing techniques.

The purpose of this project was to discover if programmed materials not specifically designed for the deaf could be used to teach reading to deaf children who are retarded in their reading by one or more years.

Describes the use of a rear projection screen in the teaching of science. The unique feature of the setup described in this article is that it allows the classroom to be lighted while the picture is shown, which cannot be done with a front-projection screen. In addition, the short-projection-distance lens permits the use of a large screen without mirrors or an involved optical system. Finally, the screen can be designed so that it will not interfere with room working areas when it is not in use.

Describes PLATO, the automated teaching system developed by the Coordinated Science Laboratory at the University of Illinois. The PLATO system utilizes a high-speed digital computer as the central control element for teaching a number of students simultaneously, while still allowing each student to proceed independently through the lesson material.

The purpose of this study was to investigate the effectiveness of self-instructional devices in the teaching of educable mentally retarded young adolescents in primary reading and arithmetic. The results of the study were essentially negative.

This paper reports on the use of the computer-based PLATO II system to teach a group of undergraduates some topics in computer programming. Examples of how data can be sorted, processed, and interpreted are given. Economic feasibility and future plans are discussed.

Provides general background information on the need for new and better materials for adult education and a description of some of the materials available as well as guidelines for evaluating materials.

The purpose of this project was to utilize programmed instruction to stimulate increased thinking activity on the part of the student and, in addition, to gain information concerning the nature of thought process and how they might be stimulated.

The purpose of this project is to explore and evaluate the potential of closed-circuit television for instruction on a countywide basis. The project is funded by the Fund For The Advancement Of Education and The Ford Foundation, with equipment provided by the Electronic Industries Association.

A general introduction to the field of administration and supervision of the New Media. Contains in its 16 Chapters details about facilities planning, current trends in the planning of learning spaces, as well as additional resources to consult for further data.

In this article the author describes several efforts to develop workable procedures and devices within the Student Response Systems area. In addition, he describes the characteristics of several Student Response Systems now in production. Among those considered are the SDC (System Development Corporation) Computer-Based Class; Unit: The Student Response Monitor; The Tele-Quest or TV Intercommunication System; The Tele-Test Communication System; The Tele-Prompter Classroom Responder; and, The Edex Teaching System.

A text designed to help prospective and practicing teachers become properly acquainted with the broad range and interrelated uses of instructional materials and techniques.

This work contains a comprehensive survey of the present character of the uses now being made of the New Media by colleges and universities throughout the nation. Reports and findings on 90 outstanding undertakings from over 40 colleges and universities are included. In addition, a general rationale of the new media in education is offered. Also, critical questions are posed on the relationships of audiovisual practices to aims and purposes of higher education.

This report surveys and evaluates technical equipment and facilities used in television installations established by selected public school systems, colleges and universities.

Describes the systems approach to instruction instituted at Southern Connecticut State College.

A collection of papers dealing with a wide range of computer applications to instruction and administration.

Deals with computer fundamentals, computer-based teaching machines and simulation, and in addition, a look to the future of such techniques.

Using the test anxiety scale for children. This study sought to evaluate the effects of anxiety level on learning and to measure the effect of presence or absence of feedback in programmed instruction on learning and retention level.

Describes the results of a research project conducted at the Pennsylvania State University, the purpose of which was to explore possibilities for using closed-circuit television as a main component in a teaching machine system for mediating programmed learning.

27. Carter, Roy E., Jr. and Clarke, P. *A Field-Experimental Study of the Functions of Educational Television For Its Audiences With Special Reference to the Potential Role of Children in Stimulating Family Use of This Medium*. Minneapolis: Communication Research Division, School of Journalism, University of Minnesota, June, 1964 (NDEA Title VII Project No. 891).

This study attempted to discover if children will influence the family pattern of watching educational television programs. This study noted the degree of influence exerted on the child in the classroom, and this indirect influence of the school on family attitudes.

This project attempts to provide a comprehensive model of the generalized automated teaching system, to describe this model in mathematical terms and determine the magnitude of the constraints, and to explore the computer functions in an automated teaching system.

An annotated bibliography of programs with eight statistical summaries.

Abstracts as of June 30, 1962. The extramural research projects on programmed instruction and teaching machines, supported under the new educational media program, Title VII of the National Defense Education Act and the Cooperative Research Program, Public Law 531.

The author discusses the future prospects for a network of coaxial cables and amplifiers now being installed at Harvard University which will soon provide the university with a multichannel closed-circuit system capable of handling computer information, television signals, and other electronic data.

The author points out how such a system could revolutionize library systems all over the world. He points out that it will soon be possible to record half a million pages or documents on a single roll of video tape. Given the right command, a computer system can search that tape or any one of thousands of other tapes or rolls of microfilm and reproduce any given page on a television screen where it will remain as long as anyone wants to use it. If desired, the page can be photocopied in seconds. When the image is no longer needed, it vanishes on command. Nothing has been removed from the stacks or taken out of file. The same data is instantly available to the next seeker. A computer can handle hundreds of requests for information simultaneously.

Describes a study conducted at Indiana University where students taking elementary Spanish were equipped with small transistor radios which enabled them to receive language drills at almost any time or any place. The author hypothesized that because these students would be exposed to more hours of contact with the language materials, that this greater exposure would enable them to obtain a higher proficiency in the spoken language.

The purpose of this project was to assess the contribution of three non-programmed variables: Diagnostic Information, Student Control and Experimenter Augmentation.

A collection of papers presented at the Conference on Application of Digital Computers to Automated Instruction, held in Washington, D.C., on October 10-12, 1961, sponsored by the Personnel and Training Branch and the Information Systems Branch of the Office of Naval Research and System Development Corporation. In general, the papers deal with: (a) Theory and Experimentation in Programmed Learning (b) Computer Based Instruction Systems and (c) Computer Technology in Automated Teaching.

Discusses classroom communicator equipment installed and used in the East Greenbush Junior High School and the West Point Military Academy. Via individual consoles it was possible for each student to electrically respond to multiple choice items, etc. Also discusses the future of these innovations.

Describes a study, the purpose of which was to prepare, administer, and evaluate an automated mode of presenting training materials for low altitude aerial observers. A series of programmed texts was developed to teach the aerial observers knowledge and skills in four areas of low altitude aerial observation.
Points out that the planning and remodeling of schools must make allowances for new developments in Instructional Media. In addition, the school instructional materials center should be an important aspect of this future development. It should be designed to facilitate the quick and inexpensive incorporation of new developments in technology and media.

Presents essential information for planning schools to utilize modern teaching technology. Includes special recommendations and specifications for instructional materials centers, classrooms, language laboratories, auditoriums, multipurpose rooms, intercommunication systems, and radio and television installations.

According to the editor, "The purpose of this collection of readings is to bring together research reports and theoretical discussions of psychologists and educators who have contributed to the knowledge about educational technology, programmed learning, and the psychology of learning."

This report presents the proceedings of a three-day seminar on media research representing 12 States in the Rocky Mountain-Plains Region.

Abstracts of the completed projects supported under the New Educational Media Program, Title VII, NDEA.

Discussing programming in relation to learning theory, the historical development of programmed instruction, and the methods of programming.

The purpose of this study was to determine whether specially selected and designed audiovisual materials could help facilitate discussion in a seminar situation.

Educators actively employing the medium of instructional television illustrate specifically how TV may be used effectively in numerous areas of the curriculum, such as typing, art, anatomy, etc. The book covers nearly all phases of educational television from problems of selections of systems through possible applications.

Describes how the Canton, Ohio, Public School System cooperated with the media (T.V., Radio, Newspapers), in promoting and selling adult education, and in addition, how the media contribute to the actual teaching-learning process.

A general introduction which covers the whole range of teaching machine innovations, from complex teaching machines with built-in computers to a simple textbook of unusual layout.

A selective bibliography on new media and instructional technology containing 584 references. Included are references to publications of the Technological Development Project of the National Education Association (1960-63).

A directory of teaching machines, (illustrations of programs), publishers, and manufacturers.

Includes a summary of teaching machine devices, an annotated bibliography, and a listing of commercially developed teaching machines.

Describes the various kinds of teaching machines, and how to write and use programs. Includes samples of programming with comments from authorities in the field.

An excellent introduction to programmed learning. The author discusses such questions as, basic considerations in programmed instruction; methods of presenting programmes; methods of writing programmes. In addition, Skinner and Holland’s approach is given in detail, and the various systems which have developed from this such as the RULEG, frame classification and chaining are described. A further section illustrates the multiple choice programming of Crowder. Dr. Fry also considers the problems involved in defining educational objectives and their evaluation.

This book is a detailed report of a workshop conducted in May, 1963 at the University of Illinois by the Media Research and Development Committee of the Library Education Division, American Library Association.

Discusses the role and future of the new teaching machines or what the author calls the "second machine revolution." The critical issue now is that of programming. According to the author, "if the teaching machines of the 'second machine revolution' are valid and exciting teachers, it will be because those who have programmed them have given them interesting personalities and made use of their unique attributes in unique ways."

Describes the use of the language laboratory at Michigan State University for training students studying to be announcers.

Describes how Robert K. Jackson, an industrial arts teacher at Tamanend Junior High School, Central Bucks School District, Warrington, Pennsylvania, uses machines as teacher assistants, ascribing to them duties which aid the teacher, enhance his program, and make learning more interesting and effective.

Discusses general notions about ed. systems. Describes the systems approach in Livonia, Michigan. The author points out the system approach, offers educators a logical (and a psychological) technique for analyzing, coordinating, and controlling the complex of inter-related factors which contribute to the output - the educated people.

Using an industrial setting this study compared the efficiency of the learning process of clerical trainees by means of two different methods of programmed instruction (textbook and teaching machine). The study compared these methods with each other and with conventional classroom technique; noting immediate and delayed recall, time required to learn, and the learners attitude toward the instructional method.

This project attempted to investigate the advantages of presenting basic foreign language materials by means of television lectures and also to identify student attitudes toward the television procedures.

59. Grant, Theodore S. and Merrill, Irving R. Television in Health Sciences Education. San Francisco: San Francisco Medical Center, University of California, September, 1963. (NDEA Title VII Project No. 064).

The purpose of this project was to experiment with and develop new and more effective techniques for training teachers in and presenting academic subject matter through the special media of TV and video tapes in health science.

Discusses programming techniques and learning principles, including definitions, basic conditioning processes, motivation, programmed instruction, teaching machines, techniques of programming, evaluation and problems.

The author points to the possibility of effectively combining instructional television and programmed materials.

The purpose of this study was to develop an experimental system for recording of eye movement data, to collect and analyze these data in order to identify relevant variables and to develop hypotheses about eye movement responses. And finally, to relate these variables and patterns to specific stimulus and subject characteristics.

This article describes a project underway in the Instructional Systems Development Department at IBM Thomas J. Watson Research Center, Yorktown Heights, New York. The purpose of the project is to develop, implement, and evaluate new techniques to allow the utilization of digital computers in the instructional process.

Using a multistation motion picture electronic driving trainer which provided immediate standardized feedback this study sought to evaluate its educational effects on student drivers compared to conventional driver education. Their experimental design was unique in that it provided for an experimental group using a combined programmed and conventional ("integrated") training.

Describes a project conducted during the spring of 1964 by the Purdue University Television Unit, in which, in addition to conventional instructional TV, a method was devised for recording student performances. The term "Mirror TV" adequately describes how this method simply reflects or mirrors the student's performance via an accurate videotape recording.

Describes educational television today, future prospects for ETV, and new directions for educational radio.

This study sought to identify by means of questionnaire method some variables associated with persistent enrollment in telecast courses and to identify attitudes associated with preferences for on-campus courses as opposed to telecast courses.

This monograph is a definitive review of the place of the language laboratory in language teaching. It is a non-technical report, concerned more with the educational functions of the language laboratory, rather than its mechanical aspects.

Presents two viewpoints on the criteria for evaluating programs and self-instructional devices.

This work consists of a collection of 17 published and unpublished papers dealing with teaching of young and retarded children, rationale for the need for teaching machines, new teaching machine research, and use of prompting and repetition in the teaching-machine program.

Describes a study conducted by the University of Southern California concerned with the evaluation of a closed-circuit TV project at the Anaheim City School District, in California.

The purposes of the study were to compare the achievement and long-term retention of elementary school pupils taught conventionally and with TV.

Describes programmed instruction, its uses in business and industrial training, and the methods of writing programs.

This report describes the results of an investigation of automatic computer techniques for determining the patterns of human pilot models in tasks where the pilot's performance can be described by a linear, time-invariant model.

This study attempted to investigate the relationship between relevant and irrelevant course content in using the teaching machine and programmed textbook method of presentation.

Describes the Learning and Instructional Resources Center of the University of Miami at Coral Gables, Florida. The center was designed to ensure utilization of every aural and visual aid to instruction in an effort to maximize the impact of quality teaching through imaginative use of audio and video illustration.

A study concerned with the use of auditory feedback in tasks requiring simple remote handling.

The author of ETV station WNDT in New York City, traces the historical development of ETV from 1956 when the City of Pittsburgh Schools pioneered school TV of the 1st community-sponsored ETV Station, WQED. The author concludes that the role of ETV will be extremely important in the future.

Describes a workshop, conducted in order to develop teams prepared to give visualized presentations demonstrating the applications of the new educational media. The purpose was to plan and produce a kit of materials suitable for presentation throughout the U. S.

A general text, offering an overview of materials and utilization techniques.

A brief description of a demonstration project now underway at the Institute of Educational Technology, Teachers College, Columbia University, dealing with the application of self-instructional programming principles to the production of TV lessons.

Various research papers dealing with aspects of teaching machine innovations and programmed learning are presented in this volume.

The report describes the Chelsea Closed Circuit TV Project, which was able to teach conversational Spanish and English to both children and adults. The feasibility of low-cost CCTV was established, and the Chelsea project has evolved into an active program after initial foundation funding.

Discusses the possible applications of programmed instruction to the mass media.

The author describes the uses of the "Audio Multiplexed TV Teaching System," a new technique whereby latent levels of intelligence are overlayed on the communication signal in the form of multiplexed voices. In the employment of this technique, the student's response to the visual presentation excites one of a multiplicity of audio channels of communication, providing a somewhat individualized answer suited to the student's need.

A review of studies dealing with programmed instruction with and without teaching machines. It was found that programmed instruction in general brings about as much or more learning as conventional instruction.

86. Levens, A. S. Teaching the Fundamentals of Orthogonal Projection: A Study In The Film Presentation Of The Thought Model Method, Berkeley: College of Engineering, University of California (NDEA Title VII Project No. 686).

The purpose of this study was to investigate students' and teachers' use of films which present a method of teaching visualization and manipulation of three-dimensional mental concepts to college engineering students.

Discusses communications systems planning as it applies to instruction and administration. Stressess the necessity of planning the total system at the outset in order to eliminate rapid obsolescence and to permit progressive expansion of the system.

Covers the field of educational and instructional television, particularly from the system, equipment, and educational point of view.

Describes Operation Alphabet, which consists of 100 half-hour television programs, designed to help the functional illiterate learn basic reading and writing skills. Operation Alphabet was developed by the Philadelphia Public Schools, School Extension Division, in conjunction with Philadelphia's television station, WPHL.

Describes briefly the historical development of teaching machines and the characteristics of programming of verbal subject-matter. Some of the topics discussed include: the construction of programs; automated teaching of non-verbal skills; the use of small steps in teaching procedural skills, etc.

A collection of papers on self-instructional devices and programs grouped as follows: Frensey's Self-Instructional Test-Scoring Devices, Skinner's Teaching Machines and Programming Concepts, Contributions from Military and other Sources, and recent work. The appendices abstract research reports and other papers concerned with teaching machines and self-instructional concepts or programs.

The purpose of this project was to investigate the extent to which sound film recordings of pupils in teacher-learning situations could be used as a basis for training teachers to improve their accuracy in interpreting non-verbal communications from students.

A description of Advanced Educational Systems, Inc., new AID system. The basic equipment consists of a teacher's console, a remote control unit, student response units for each student, and a low voltage power supply. A brief description of its operation is also contained.

The purpose of this study was to evaluate the usefulness of linear programming methods and automated typewriter keyboard method for helping mentally retarded children to acquire and retain word recognition, reading, and spelling.

A collection of articles which focus for the most part on the practical rather than the theoretical aspects of programmed instruction. Descriptions of program users, sources of programs, feasibility of internal production, difficulties of utilization, and economic factors form the central topics of discussion, but the applicability of devices, or even computer-based teaching systems, is also covered in some detail.

The purpose of this study was to determine how to provide reliable information on the design of jobs and the education and training of personnel for instructional media services and programs.

- 66 -

Describes the use of the Edison Responsive Environment Instrument for reading instruction, by the Freeport Public School System. The Edison Responsive Environment Instrument is a computerized typewriter that reproduces several of the sensory responses of a human being. It talks, listens, accepts, responds, presents pictorial or graphic material, comments or explains, presents information, and responds to being touched. Twenty kindergarten children, five years old, were taught to read on the Edison Responsive Environment Machines over a period of 5 months at the Atkinson School in Freeport, Long Island, New York.

Describes the functioning of the (MIL), Multimedia Instructional Laboratory at the University of Wisconsin.

The primary activities of the laboratory include: a) producing automated lecture presentations for use in regularly scheduled university classes, and b) conducting research projects related to variations in material and lecture productions, variations in the learning situation, effects of unique or cross-media utilization, analysis of student attitudes toward multiscreen presentations, variations in learning acquisition and retention, and concept identification.

Describes the procedure and results of a study, the purpose of which was to evaluate the effectiveness of an auto-instructional program in basic electronics.

Two separate evaluations of the program were undertaken. In the first study, specific daily assignments were given, and students unable to complete the assignment were required to complete the program in the evening. In the second study, each student was instructed to proceed at his own rate, with no evening study required. It was generally concluded that self-pacing yielded higher performance than limited self-pacing, although procedural differences could have contaminated the results.

Considers four major types of activity that must be provided for a functioning instructional materials center: (1) reading, listening to recorded materials, and viewing of projected pictures and films by students and faculty members; (2) acquiring, organizing, and housing materials for ready accessibility; (3) service and repair of materials and equipment; and (4) teacher and pupil production of locally made teaching aids.

The purpose of this project was to develop a method of using data processing techniques for rapid identification of barriers to optimum utilization of audiovisual materials.

Points out that ideally educational media must be thought of as environment, and not as a static "center" somewhere. "System," is the only appropriate name for this environment. In this article the author suggests one useful classification for an educational media service system. He divides his classification into Technical Services, including Materials Production Services, Resource Services and Distribution Services, and Professional Services.

The purpose of this project was to evaluate a series of telecasts intended to instruct elementary school teachers in some of the newer mathematical concepts for use in revision of final telecast scripts.

Describes Project Discovery sponsored by Encyclopedia Britannica Films and Bell and Howell, in cooperation with four school districts across the country. Project Discovery is designed to test the effect of maximum availability of instructional materials on curriculum, on pupil attitudes, achievement, creativity and motivation, and on teaching methods and techniques.

This article contains a definition of materials systems, a method of evaluating materials systems, a description of a field test in North Carolina, and the pros and cons of learning systems.

This study measured the longitudinal changes in attitudes toward formal learning experiences involving various instructional media.

The author, manager of the Switching Systems Design Division of the North Electric Company, discusses some new developments in the program distribution systems used in educational settings.

108. NSPI Newsletter. Published Monthly by the National Society For Programmed Instruction. Box 222, Trinity University, 715 Stadium Drive, San Antonio 12, Texas.

Reports on the articles of the society and its chapters. Also carries articles and papers of general interest to programers.

A collection of 82 papers dealing with the role of the teacher, experimentation, and the programming process, and its application to industry, government, defense, and health.
For the first time, a computer processor is being utilized to allow random selection of a large number of programs by all students at the college.

The new learning center at OCC provides each, and every one of the colleges 720 students with a private, permanently-assigned study center - complete with book locker, desk, typing table and electronic student learning position. By donning a headset and dialing three digits, each of the 720 students can hear any of 136 taped instructional programs keyed to the daily curriculum.

To demonstrate the trainability of comprehension of speeded speech by using a paced reading method. The study sought to define and explore in a preliminary fashion research problems related to speeded speech.

Ohio State University students can gain access to their lessons by dialing three digits from any of 269 student positions in 9 different locations on campus. They can select from any one of sixty audio programs ranging from daily oral exercises in elementary Chinese ... to Chaucer ... to Chopin.

A compilation of various publications related to all aspects of human factors engineering.

A bibliography which abstracts the ASTIA projects concerned with self-instruction, and lists the books, dissertations, patents, periodicals, and Office of Education Research grants relating to programmed instruction and self-instructional devices.

The purpose of the Oberlin study was to determine if it is possible to double the number of students taught by one instructor in an Elementary German course, without impairing the quality of student achievement, by making extensive use of the magnetic tape recording laboratory and other electro-mechanical equipment.

The purpose of this project was to test the effectiveness of the field extension service concept as a method for disseminating information concerning educational innovations.

Reports programming techniques and samples 81 programs to illustrate the variety in subject matter and styles of programming available.

The authors demonstrated that the speaking and understanding of a foreign language (Russian) can be effectively taught without benefit of a human instructor.

The purpose of this study was to investigate methods for increasing the development of language skills in the deaf child, using the typewriter as the instrument for instruction with the linear teaching program as the method. The study concluded that young deaf children can learn to use the typewriter in a short period of time and that such use can contribute to language understanding.

- 71 -

Discusses the results of a study of self-instructional, programmed foreign language courses conducted by the University of Washington, under its informal courses section of the Division of Continuing Education.

The Division of Continuing Education made available to members of the university community and to residents of the Seattle area its modern language-laboratory facility so that they could take beginning, noncredit courses in German and Spanish by means of self-instructional, programmed courses. Both programs were commercially prepared by Encyclopedia Britannica Press (TEMAC).

The purpose of this project was to determine what combinations of related activities with TV make for most efficient learning; what kind of teaching and learning content will make for maximum learning from instructional TV; and how to build TV into a total learning situation.

Considers the contribution that information and mass communications may make to the laborious process required for the social and economic transformation of primitive economics into modern nations.

This study reports on the results of the application of a systems analysis to the problem of exploiting auto-instructional methodologies as they affect scheduling and other logistical administrative problems.

Describes how the Des Moines, Iowa, Public Schools have made extensive use of both films for discussion, and television in adult education programs.

The purpose of this study was to determine the effectiveness of employing mock-ups in developing electronic trouble-shooting techniques, as a substitute for real equipment.

The mock-ups proved effective, the mock-up group obtaining higher proficiency in trouble-shooting.

Reviews the literature on programmed instruction. Materials discussed include general discussion papers, programming experiments, and studies comparing conventional and programmed instruction.

The purpose of this study was to determine whether materials constructed according to linear programming principles contributed significantly to more efficient and effective learning in a correspondence study setting.

This work is divided into three parts which are concerned with: a) the development and an overview of the field of programmed learning with some of the relevant psychological theory are presented in Part I; b) the method - programming - is presented in Part II and c) samples of research based on the methods of programming are presented in Part III.

The article describes the Articulated Instructional Media (AIM) Program at the University of Wisconsin. The AIM Program is a four-year experimental program designed to explore ways of extending higher education to more people through new patterns of teaching and learning. It will be experimenting with the articulation of a number of media and methods: independent study; regional seminars, institutes, and workshops; radio and telephone lectures; TV instruction (both regular ETV and "slow scan" TV); programmed instruction and programmed learning devices, winter short courses; off-campus classes; traveling libraries; field laboratories; etc. Through its experimentation, AIM will encourage the creation of more meaningful patterns of learning and curricula by finding ways of removing restrictions derived from the reliance on a single approach to learning - the conventional classroom method.

The purpose of this study was to review the different kinds of research being done in the use of programmed learning for educable mentally retarded children.

A comprehensive description of the development, status, and potential of teaching machines. Topics include: (1) Current instructional problems; (2) A systems approach to instruction; (3) Teaching machines; (4) The learner; (5) Program and Programming process; (6) Concepts and techniques; (7) Research findings; (8) Implications for education.

Describes how CATV Systems - which receive television signals by master antennas and distribute them via coaxial cable to homes and schools - are playing an increasingly important role in making ETV available to schools within local communities all over the country. The author points out that "today, more than 100 CATV Systems provide cable facilities to 292 elementary schools, 85 junior high schools, 41 senior high schools, and 17 colleges and universities located in 170 communities."

A verbatim report of a conference on programmed instruction held at Stanford in 1961 and organized by the Public Service Research, Inc. It was attended by people almost entirely from industrial organizations who were concerned with training. The five-day course reported in this book consisted of talks on learning theory, principles involved in program writing, cost and possible uses of programs in industrial training, and finally, sessions on program writing.

Among the topics discussed are: (A) Cybernetics; (B) Automated machines; (C) Feedback; and (D) Information Accumulation.

This volume contains the results of the second half of the two part survey dealing with (A) available programmed instructional materials, and (B) the use of these materials in schools. Both parts have been carried out by the Center for Programmed Instruction, Inc.

The purpose of this experiment was to determine whether the normally observed slump in the creative thinking of fourth grade children can be counteracted through planned experiences in terms of specially prepared audio tapes.

The purpose of this project was to bring together available knowledge about psychological principles involving the transmission through the visual and auditory channels which may be of value in the design of audiovisual teaching materials.

138. Twyford, Loran C. Jr., et al. *New Media for Improvement of Science Instruction*. Albany: Bureau of Classroom Communications, The State Education Department, the University of the State of New York, April, 1964 (NDEA Title VII Project No. 283).

The purpose of this study was to determine the extent to which the learning of ninth grade science students increased through lessons improved by various audiovisual techniques.

Summarizes 43 selected research papers and demonstrations presented at a New York State Convocation held in late 1963. It covers the latest developments in such diverse audiovisual fields as appraisal of media and materials, educational television, electronic classrooms, instructional films, and programmed instruction and teaching machines.

Describes an experimental system, instituted at the University Adult High School, Los Angeles, California, a system of programmed instruction which was influenced by U. S. Air Force and industrial programmed instruction in which successful and practicable learning is essential and cost, thoroughness, and time are important factors.

The article contains a description of the methods used in selecting students, instructors, and materials; a description of the initial class and a review of the outcomes.

Describes a project, completed in September 1965 at Michigan State University, East Lansing. The purposes of the project were: (a) "to determine the effectiveness of a classroom simulator in providing teacher-trainees with experience in identifying and solving classroom problems prior to their actual student teaching; (b) to determine if the knowledge learned as a result of the classroom simulator experience would be transferable to student teaching practice; and (c) to determine if through classroom simulator experience a teacher-trainee's self-confidence in his ability to teach could be elevated."

Describes a project conducted with 4th grade students at the Frederic Burk School at San Francisco State College in which the students were taught the basic skills for musical listening. To implement the project, the Redex Teaching System was used in the preparation and presentation of tapes which contained all desired verbal and musical material on one track. Signals were placed on a 2nd track for automatically activating such auxiliary devices as overhead, slide, and motion picture projectors at any desired point in the sequence of instruction.

The authors describe an approach to programmed instruction for student education at the Medical College of Georgia. The approach, for clinical teaching, has been a dual one. The first, which was initiated in 1963 consists of development of content-oriented, linear programs which present a subject from a standpoint similar to that of a conventional series of lectures. The second approach, which is currently being developed, consists of the development of patient-oriented branching programs to provide the students with experience in patient management and clinical problem solving.

This report is an account of a survey conducted by the University Film Foundation during the Spring and Fall of 1960 in order to arrive at an overall picture of the competencies and production potential of university film units by investigating their staff resources, equipment, physical facilities, services, administrative support, and record of performance.

Describes the work of the Educational Communications System, a project of the National Association of Educational Broadcasters under a contract with the U.S. Office of Education. The project is concerned about such problems as, "What do computers and TV cameras have in common? and, What has radio to do with facsimile reproduction of graphic material?"

Describes the nature and use of audiovisual materials in addition to sections on the teacher and communications, and how people learn.

Reports on a project undertaken to determine whether or not learning could be increased during a TV lecture by using a student feedback system to teach a social science course. The experiment did not support the hypothesis that concepts presented in a feedback system will be learned significantly better than concepts not so presented.

Report on a project undertaken to determine the effects upon learning of providing immediate feedback to instructors of the amount of learning taking place during a TV lecture. A General Electric feedback system was used.

A review of the development of airborne TV, covering the past twenty years, and focusing on the role of the Federal Communications Commission in the development of airborne telecasting.
LIST OF PUBLICATIONS CURSORILY REVIEWED

Books

Periodicals

AID - Auto-instructional devices, Published monthly by INRAD, Educational & Training Methods Division, P. O. Box 4456, Lubbock, Texas.

Automated Teaching Bulletin, Published four times a year by Rheem Califone Corporation, 1020 North LaBrea Avenue, Los Angeles 38, California.

CPI Newsletter, Center for Programmed Instruction, 365 West End Avenue, New York 24, New York.

Articles

- 81 -

34. Banghart, Frank W. "An Experiment with Teaching Machines and Programmed Textbooks," University of Virginia, Mimeo, Undated.

41. Barlow, John A. "The Impact of Teaching Machines on Educational Philosophy; From 'Sponge and Sieve' to Self-Serve Spoon Feeding," (Based on a paper read at the Ohio Psychological Association, November, 1960, Earlham College, Richmond, Indiana.

43. Barlow, John A. "New Instruction Media: Self Instruction, Guided Instruction, and the Role of the Teacher," Project Description: HEW Project No. 7-12-026.00, 1959.

113. Chavez, Simon. "Why Not Rig Your Classroom Quiz?" Audiovisual Instruction, 1961, 6, 139-139.

114. "Choosing a Program," Programmed Instruction, October, 1961, Bulletin 2, 4, 6, Center for Programmed Instruction, 365 West End Avenue at 77th Street, New York 24, N. Y.

119. Conley, Colleen; King, F. J.; and Reid, Jacon B. "An Evaluation of Two Principles Involved in Programmed Learning Devices: University of Texas, Austin.

- 91 -

- 92 -

172. Decker, Bert J. "Teaching Machines and Creative Behavior," (Based on slide briefing presented to Seventh Creative Problem-Solving Institute, June, 1961) University of Buffalo, New York.

175. Deterline, William A. "Response Mode: Different Effect or Different Purpose?" Aid, September, 1961.

190. Eigen, Lewis D. "Technology and Educational Practice," Center for Programmed Instruction, New York, Monograph No. 106.

303. Gotkin, Lassar G. and Goldstein, Leo S. "Programmed Instruction for the Younger Learner: A Comparison of Two Presentation Modes in Two Environments." Center for Programmed Instruction, New York, Monograph No. 111.

322. Here is a deluxe version of a computer-type teaching machine.
 Mid-Hudson Channel, 1961, 10, No. 2, 21.

 Teaching Aids for the American Classroom. Stanford University,
 California: The Institute for Communication Research, 1960,

324. Hilgard, Ernest R. What support from the psychology of learning?

 Port Washington, New York, Special Devices Center, Office of
 Naval Research, September-October, 1955, Special Devices
 Center Bimonthly Report, U.

326. Hirsch, R. S. The Effects of Knowledge of Test Results on Learning
 of Meaningful Material. (The Pennsylvania State University)
 Fort Washington, New York: Special Devices Center, Office
 of Naval Research, September, 1952, Technical Report SDC
 269-7-30.

327. Hively, W. "An Exploratory Investigation of an Apparatus for
 Studying and Teaching Visual Discrimination, Using Pre-School

328. Hively, W. "Implications for the Classroom of B. F. Skinner's
 Analysis of Behavior," Harvard Education Review 29: 37-42,
 Winter 1959.

 Read at the APA meeting, New York, 1961.

331. Holland, J. G. Practical Methods of Evaluating Teaching Machines
 and Programs, 1960, Harvard University, Cambridge, Mass.

332. Holland, James G. "The Psychological Bases for Teaching Machines."
 Unpublished paper presented before the American Institute

 from the Laboratory," 1960, pp. 215-28. Also published
 in Proceedings of the Educational Testing Service
 Invitational Conference, October, 1959, on "The Impact
 of Testing on the Educational Process." Princeton, N. J.:

334. Holland, James G. Teaching Psychology by a Teaching-Machine
 Program. Harvard University, Cambridge, Mass.

373. Keislar, Evan R. "Theoretical Aspects of Automated Teaching." Paper read at the annual convention of the Western Psychological Association, San Diego, California, April, 1959, U (b).

403. Komoski, P. Kenneth. *Programmed Instruction -- Expandable or
 Expandable? Programmed Instruction,* October, 1961, 1,
 Bulletin No. 2, 3, 6. Center for Programmed Instruction,
 365 West End Avenue, at 77th Street, New York 24, New
 York.

 Schools,* February, 1961.

405. Komoski, P. Kenneth. "Programming by Teachers for the School

 Instruction." Center for Programmed Instruction: New
 York, Monograph No. 106.

 many questions by one of the country's leading

408. Komoski, P. Kenneth. "What are the Schools Doing?" *NEA

409. Kopstein, F. F. and Roshal, S. M. "Learning Foreign Vocabulary
 from Pictures Versus Words." Unpublished Staff Research
 Memorandum, Training Aids Research Laboratory, AFTRC,
 Air Research and Development Command, Chanute Air Force
 Base, Ill., November, 1954, U.

 Pairs as a Factor in Foreign Vocabulary Learning." Paper
 read at the annual convention of the American
 Psychological Association, San Francisco, California,
 September, 1955, U.

411. Kopstein, F. F. and Rockway, M. "Self-Tutoring and Problems in
 Training." Paper read at the Air Force Office of
 Scientific Research and the University of Pennsylvania
 Conference on the Automated Teaching of Verbal and
 Symbolic Skills, Philadelphia, December, 1950, U.

412. Koronakos, C. "A Comparison of Five Methods of Teaching Basic
 Reading Skills to the Mentally Retarded." Unpublished
 Study presented at the Allerton Park Conference on

413. Kormondy, E. J. *Earlham Experiment in Self-Instruction in
 General Zoology: Preliminary Analyses.* Oberlin, Ohio,
 February, 1960.

414. Kormondy, E. J. *Oberlin Experiment in Self-Instruction in
 General Zoology: Preliminary Analyses.* Oberlin College,
 Oberlin, Ohio, December, 1959.

- 113 -

443. Lumsdaine, A. A. "Response Cueing and 'Size-of-Step' in Automated Learning Programs." Paper read at Symposium on Research Issues in the Study of Human Learning Raised by Developments in Automated Teaching Methods, American Psychological Association Convention, Cincinnati, Ohio, September, 1959, U (b).

477. Markle, Susan; Meyer, Imoski; and Kosmoski, Kenneth F. A Programmed Primer on Programming. Available from the Center for Programmed Instruction, 365 West End Avenue, at 77th Street, New York, New York 10014.

495. Melaragno, R. J. "Results of Experiment on Negative Reinforcement in Automated Teaching," System Development Corporation, Santa Monica, California, April, 1960.

- 124 -

569. Pressey, S. L. "Further Attempts to Develop a 'Mechanical Teacher'." Paper read at the annual convention of the American Psychological Association, Philadelphia, September, 1946, U. (Abstracts in the American Psychologist 1 (No. 7); July, 1946.)

- 128 -

- 129 -

655. Silberman, H. F. "Introductory Description of Teaching Machines (Physical Characteristics)." Paper read at Symposium on Automated Teaching, Western Psychological Association Convention, San Diego, California, April, 1959.

664. Silvern, Leonard C. "Are We Ready for Teaching Machine Curriculums Yes!" Hughes Aircraft Company, Culver City, California, 5, 1.2.

669. Silvern, Leonard C. "Methods and Devices for Putting an In-Service Training Program in Effect." (Outline of a presentation to the Institute on In-Service Training and Intramural Communication for Supervisors, School of Library Science, University of Southern California, December, 1960) No. 5, 6, 8, Industrial Systems Division, Hughes Aircraft Co., Box 90904, Int. Airport Station, Los Angeles 45, California.

- 133 -

- 135 -

750. Tutor Text, Sample Sequence; Western Design, Santa Barbara, Calif.

780. Willey, Clarence F. "Classroom Scoring of Tests," Psychological Reports, 4: 611-17; December, 1958.

782. Willey, Clarence F. "IBM Punchboard Response Coding." (Read at Vermont Psychological Association Annual Meeting, Windham College, April, 1961.) Department of Psychology and Education, Norwich University.

- 140 -

Partial Listing of Schools and Organizations Pursuing Some Aspect of Communication-Linked Classroom Techniques Deemed Worthy of Site Visit During Evaluation Program.

1) The Catholic Diocese of Brooklyn and the International Business Machines Corporation have joined together and are cooperating on a telephone link computer experiment designed to make homework easier. Six high school students have been selected for the experiment. They have their push button phones linked to the computer. By pushing buttons the students can tell the computer to add, subtract, multiply divide or do the square root. The computer gives the answer by voice using voice answer-back control. The answer-back operates much like a phonograph record or pre-recorded tape.

The computer is located at the IBM Center in Yorktown, New York, fifty miles away from the student's home. The computer, in effect, gives each student an equivalent of a versatile desk calculator in his own home.

Brother Austin David, FSC, is the data processing consultant for the Diocese. He sees computers as a vital educational tool for reviewing class work of the day, aiding teachers in expanding horizons of their courses and even for teaching complete courses on their own when linked to push button phones.

2) The IBM 7090 Computer is being used in a Yorktown experiment with two dozen sixth grade children. The children are completing the experiment in computerized learning that began in October, 1965. The computer is linked with a special typewriter keyboard and has been successful in teaching economics to a sixth grader, the report indicates. Lessons are supervised by Northern Westchester County's Board of Cooperative Educational Services, a federation of school boards. Dr. Richard L. Wing, Project Director, calls the experiment a means of showing "that you really can teach children this way, even though field of computer teaching is just at its very beginning." The project is financed by funds provided by O.E.

3) Computers are being used in the Palo Alto, California school system at the Brentwood School starting this next fall. The 170 first graders are to be taught by computers in an experiment directed by Dr. Suppes at Stanford University's Institute for Mathematics. The Palo Alto experiment is of special significance since eighty percent of Brentwood School pupils are negro, mostly from deprived homes.
The experiment will use 16 consoles connected to a computer. Four modes of teacher-student response will be built into each console - a TV screen, typewriter, screen and headset. The child will receive spoken instructions via the headset, will be told by pre-recorded voice when the answers are correct and will be guided to correct answers. The system also will flash slides on the screen while voices ask their meaning. The child will be able to communicate with the computer through a beam of light flashed on a TV screen, Penlight, by microphone and typewriter, although use of the typewriter is limited by the age of the learners. The computer to be used here is the IBM 1500.

In another development, the Systems Development Corporation of Santa Monica, California has been awarded a $26,000 grant by the State of Kentucky to provide technical assistance in establishing vocational education data-processing center. Computer base system will furnish officials, the State Bureau of Vocational Education, with information needed to plan and monitor comprehensive vocational education programs.

Oakland Community College, Bloomfield Hills, Michigan. The Oakland Community College effort began on September 7, 1965, on two campuses located in Oakland County, Michigan, with an enrollment of approximately 3800 full-time students.

The objective of the college was to begin, simultaneously, a multitract, academic and technical educational program accommodating the needs of individual students with unique educational objectives and different pre-requisite skills. OCC has attempted to develop an instructional approach which is primarily learner centered. Although, at present, there is not a computer, their plans are to install one. They have drawn heavily on the work of Dr. S. N. Postlethwaite of the Botany Department of Purdue who has developed what he calls the Audio-Pictorial Method and the instructional systems approach which has been developed by the Litton Industries and the group pictorial methods of Dr. Robert Corrigan.

There are no formal classrooms at OCC and, therefore, no live assemblages of any scope or extent. They have developed learning laboratories which house study carrels rather than traditional student chair-desks. The students never do assemble in a lock step manner. While in the learning laboratories itself tutors are available to answer questions and offer other help on a one-to-one basis. Plans are being made for the extensive use of a variety of media. At present the dependence is largely on audio tapes, although there is not a dial access system as there is at Oklahoma Christian College.
6) University of Wisconsin's Articulated Instructional Media Program, Madison, Wisconsin. This program is keeping close tabs on dial access information retrieval systems. AIM has been publishing a Dial Access Information Retrieval System Bulletin. The first issue was published in July 1965.

7) A Dial Access System has been installed at Punahou School, Honolulu, Hawaii, for 3400 students, Grade K through 12. This is the largest private college preparatory school in the United States. The school also contains a visual production center which is available with equipment for teachers to produce or have produced for them overhead transparencies, 35 mm slides, graphs, charts plus posters, dry mounts, color lifts, laminations, duplicate and facsimile reproductions, copies of anything - 1 to 1,000, filmstrips, 16 mm motion pictures, enlargements or reductions from books or magazines, duplicates, slides, etc. The media learning center, adjacent to the library stacks provides eight visually and acoustically-treated carrels for student use. The carrels are equipped for use with non-book materials including record player, slide or filmstrip projector, audio-type recorder, 16 mm film projector, microfilm reader and a reader printer. Each of these carrels is also equipped with Dial Access and three sets of earphones. The listening center with 38 individual student carrels provides random access, digital dialing to anyone of the 30 audio program sources. This particular center is NOT used for foreign language drills. There are two other language laboratories located in another building for that purpose. The listening center is designed to be used for supplementary and assigned learning in all areas of the curriculum. The greatest utilization has been in the areas of foreign languages (not drill), social studies, English and music.

8) Dial access system at Oklahoma University is one put in there by North Electric at Galion, Ohio. Each student has his own carrel during the semester for which he pays $30 rent. There are 606 carrels presently assigned for the students during the present. The students average four hours per day in the carrel. This indicates that most of the day the carrels are not being used and, therefore, one would want to question the desirability of assigning one student per carrel even at a rental fee of $30 per semester. The system at Ohio State has 267 carrels for 35,000 students.

The system indicated there was an increase of 75% of library usage over last year which they attribute largely to the dial access system. The dial is largely to tape recorded materials which include recorded lectures prepared by teachers along with workbooks which;
A. The teacher prepares to include visuals so the system is looked upon as a tape-workbook method. The vision is made in the workbooks for encouraging students to take notes.

B. The materials also include recorded programmed instruction materials.

C. Recorded exercises.

D. Recorded source materials, for example, music, drama, etc.

9) Oral Roberts College at Tulsa, Oklahoma, has 130 carrels, one half of which are wired already for video outlets and plan to use the slow scan system - this is all dial access.

10) The cost per booth at Oklahoma Christian College is $1,000 which includes the central computer. A plan for this program was under Title VII, Part B. Under this particular title the Oklahoma Christian College has been given a Grant to disseminate information regarding dial access.

11) The Bedford Public Schools, Bedford, New York, are working on a project concerning the definition of the processes necessary to develop the independent learner and also the processes necessary to bring about the desired changes in teacher roles and strategies to assure the appropriate use of a dial access video system.

12) Oak Park and River Forest High School, Oak Park, Illinois, will be working on a project that will investigate the feasibility of a library-located Instructional Resource Center which will be capable of electronically storing vast amounts of information (audio and visual) and making that information instantly retrievable for individual or small group instruction, at a cost which will permit public and private schools to develop centers on their own.

13) The Pennsylvania State University has had a project approved to expand its system from a language laboratory to a listening center which will serve all subject areas. This will be similar to the Listening Center at Ohio State University.

This particular set-up permits two-way transmission between FM stations and a special, small receiving unit without interfering with regular station programming.

15) International Correspondence Schools, Inc. of Scranton, Pa, which is programming instructional materials, has joined forces with Educasting. The present Educasting system utilizes a small receiver equipped with four stations (A-B-C-D). A student equipped with a receiver may push a button permitting him to communicate verbally with the transmitter. This system is adaptable with TV as well as FM radio.

16) The President of International Correspondence Schools, John C. Villihune, sees a need to produce textual materials which will probably be workbooks to go with the courses. The receiving unit, which will be given to each one enrolling in the course, is developed by Sylvania Electric Products, Inc. The FM stations will broadcast the courses under a lease arrangement.

17) The Oakleaf Elementary School, Pittsburgh, Pa., project going on for two years, was developed under an Office of Education grant, University of Pittsburgh laboratory under Robert Glaser. There are no grades, lectures, or textbooks used in this school, in the usual sense, and children work at their own pace with the aid of tape recorders, special worksheets and there are plans for the installation of a computer-assisted instruction facility.

18) University Adult High School, Los Angeles, California. Here an experimental system is being followed offering students who are willing to work an opportunity to obtain an adequate education in a minimum time and at a minimum cost through programmed materials. The Principal of the school, at the time when programmed education was being introduced into the system, was William R. Hathaway. The present Principal is Abram Friedman.

19) Ball Hall, New Academic Bldg; Location: USAC & GSC, Ft. Leavenworth, Kansas; Contacts: Major Robert M. Olsen, Supply Officer - Dr. Ivan J. Birrer, Educational Advisor.
20) SCSD Modular Bldg., (flexible - adaptable), Team Teaching, Team Administration, Acoustical Floor Treatment, Operable Partitions, Demountable Interior Walls; Location: Barrington Middle School, District 4 and District 224, Admin. Offices: 820 South Northwest Highway, Barrington, Illinois 60010; Contacts: Dr. Robert M. Finley, Superintendent - Mr. Walter M. Pagels, Principal - Mrs. Eldred O. Gough, Tour Hostess.

21) New Academic Bldg., Instructor-Controlled CCTV; Location: U. S. Air Force Academy, Colorado Springs, Colorado; Contacts: Major H. Be Hitchins, Director, Audio-Visual Dept., Captain Michael Brooks, Liaison Officer, Expansion Program.

22) SCSD Prototype Modular Bldg.; Location: School Construction Systems Development, 770 Pampas Lane, Stanford, California; Contacts: Mr. Ezra D. Ehrenkrantz, Project Architect - Mr. John Boyce - Mr. Carl Bryant.

23) Modular Bldgs., Acoustical Floor Treatment; Location: Bertha Ronzone Elementary School, Southern Nevada Vocational Technical Center, A. U. Clark High School, Clark County School District, Las Vegas, Nevada 89101; Contacts: Dr. Marvin B. Wampler, Director, Dept. of School Facilities - Mr. Kenneth Guinn.

24) Underground Bldg.; Location: Robert H. Goddard High School, Roswell, New Mexico; Contacts: Mr. H. F. Allred, Superintendent - Mr. Ernest Traylor, Principal.

25) Underground Bldgs.; Location: Abo Elementary School, Park Junior High School, Artesia, New Mexico; Contacts: Dr. L. R. Westfall, Superintendent - Mr. Dean Robinson, Principal, Abo Elementary School - Mr. John Daugherty, Principal, Park Junior High School.

26) Electronic Classrooms, CCTV, Large-Group Instruction, Student Response System; Location: Learning & Instructional Resources Center, University of Miami, Coral Gables, Florida; Contact: Mr. Roy J. Johnson, Director.

27) New University, Electronic Classrooms, Language Laboratory, Elaborate CCTV Facility, Computer-Based Library, Individualized Instruction, Large-Group Instruction; Location: Florida Atlantic University, Boca Raton, Florida; Contact: Dr. Myron R. Bice, Associate Dean of Academic Affairs.

APPENDIX C

LIST OF CANDIDATES FOR ADVISORY PANEL

<table>
<thead>
<tr>
<th>NAME</th>
<th>AFFILIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Luke</td>
<td>National Adult Education Association</td>
</tr>
<tr>
<td>Dr. Al Canfield</td>
<td>Oakland Community College</td>
</tr>
<tr>
<td>Dr. Sam Baskin</td>
<td>Antioch College</td>
</tr>
<tr>
<td>Dr. Robert Glaser</td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td>Dean Roy Woolridge</td>
<td>Northeastern University</td>
</tr>
<tr>
<td>Dr. Alexander Schure</td>
<td>N.Y.I.T. (Chairman)</td>
</tr>
<tr>
<td>Dr. Gabriel Ofiesh</td>
<td>Catholic University</td>
</tr>
<tr>
<td>Dr. David Salten</td>
<td>Federation of Jewish Philanthropies</td>
</tr>
<tr>
<td>Dr. Gerald Somers</td>
<td>University of Wisconsin</td>
</tr>
<tr>
<td>Dean Lindley Styles</td>
<td>Northwestern University</td>
</tr>
<tr>
<td>Dr. Joseph Weil</td>
<td>University of Florida</td>
</tr>
<tr>
<td>Dr. C. Ray Carpenter</td>
<td>Pennsylvania State University</td>
</tr>
<tr>
<td>Dr. Donald Stewert</td>
<td>Texas A & M College</td>
</tr>
<tr>
<td>Dr. Lester Greenhill</td>
<td>Pennsylvania State University</td>
</tr>
<tr>
<td>Dr. Robert Snider</td>
<td>DAVI - NEA</td>
</tr>
<tr>
<td>Rt. Rev. Msgr. Eugene Kevane</td>
<td>Catholic University</td>
</tr>
<tr>
<td>Dr. Anna Heyer</td>
<td>DAVI - NEA</td>
</tr>
<tr>
<td>Dr. Desmond Wedburg</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>Dr. William Deterline</td>
<td>General Program Teaching, Inc.</td>
</tr>
<tr>
<td>Dr. James D. Finn</td>
<td>University of Southern California</td>
</tr>
<tr>
<td>Roger C. Greenhalgh</td>
<td>IBM</td>
</tr>
</tbody>
</table>
Subject: Preliminary Investigation of Communication-Linked Techniques for Off-Campus Teaching of Vocational and Technical Subjects. U.S. Office of Education Grant No. OEG-1-6-08254-0819

Dear

Under the subject grant we have prepared a detailed plan for a nation-wide survey of advanced educational techniques in experimental or regular use in schools, colleges, universities, industrial organizations and government agencies. A draft copy of this plan is enclosed.

As noted in the plan, we propose to catalogue the techniques and equipment encountered in the survey and we propose to summarize such reports of findings as may be available in connection with experimental or regular programs utilizing these techniques and equipment. We would hope to evaluate the significance of the various techniques with particular attention to the implications for vocational and technical education.

When and if the U.S. Office of Education approves the plan and authorizes the survey, we should like to establish a panel of expert consultants who would assist in the evaluation and interpretation of the findings of the survey. Panel members would counsel with us on various aspects of the work but the panel would not necessarily have to convene as a body. Appropriate remuneration and expense reimbursement would be provided for all consulting services in connection with this project.

I should like to invite you cordially to serve on this panel of consultants and to participate in this significant survey of the state of the art of modern educational technology. A list of the invitees is enclosed for your information. I shall look forward with pleasure to your reply and I hope that you will find it possible to serve on the panel.

Cordially,

Alexander Schure
President

AS:MO
Encl.
APPENDIX B

Location and Type of Schools Visited

The five schools visited were all two-year post high school institutions offering technical programs. One was in Massachusetts, two in New York State, one in Wisconsin and one in California. One was private, four were public, three had sharply defined admission policies and two were open to all high school graduates. The smallest had fewer than five hundred students and the larger ones had enrollments over 2,000. Two had about 1,000 students.

Three of the institutions offered trade curriculums in addition to the technical. Technical programs offered included health, business and engineering related curriculums.