EIGHT WEEK SUMMER INSTITUTE TRAINING PROGRAM

TO TRAIN

INSTRUCTORS OF INSTRUMENTATION TECHNOLOGY

Professor Frank J. Ziol, Director

Grant OE 4-6-062142 VEA '63, P. L. 88-210, Section 4 (C)

Pasadena City College
1570 East Colorado Boulevard
Pasadena, California, 91106

December 1, 1966

The Project Reported Herein was
Supported by a Grant from the
U.S. Department of Health, Education, and Welfare
Office of Education
Bureau of Research
Division of Adult and Vocational Research
An Eight Week Summer Institute Training Program to Train Instructors of Instrumentation Technology

Professor Frank J. Ziol, Principal Investigator

Pasadena City College, 1750 East Colorado Blvd., Pasadena, California 91106

July 5 to August 26, 1966

Purpose

The major purpose of the program was to assist in the development of knowledges and skills essential for teaching specialized courses in Instrumentation Technology. The Office of Education had recognized the importance of this area of instruction by developing a curriculum guide, Instrumentation Technology, OE 80033, and by support of a developmental program in the summer of 1965 to train teachers in this area. The 1965 program was presented to only a limited number of participants and could therefore not hope to alleviate the whole country's need for competent teachers in the technical-vocational area of instrumentation. Therefore, it appeared to be expedient to further enhance the implementation of the ideas presented in Instrumentation Technology by continuing and even expanding the training of teachers in this area. The summer 1965 experience suggested that teacher preparation in this area may best be accomplished by a two-summer program. The first summer would emphasize the material contained in the first two semesters of Instrumentation Technology and the second summer would prepare the teacher to undertake the courses offered in the last two semesters outlined in the curriculum guide.

The program was one of two such proposals submitted under the sponsorship of the Instrument Society of America. The other program was offered by State University of New York, Agricultural and Technical College at Morrisville.

Procedure

The Institute solicited applicants by brochure (Appendix A) and announcements in professional publications. The sixteen participants (Appendix B) spent seven hours per day, except one-half day on Friday, for the eight week period. The activity included lecture and discussion, demonstration, laboratory work and field trips.
The scope of the training program included the mathematics, physics, and electronics related to Instrumentation work; mechanical measuring principles and instrument shop practices.

Daily critiques of the program's conduct were utilized to convey the group's reaction and success to the staff. A similar critique of the experiments served additionally to evaluate the laboratory equipment available.

Results and Conclusions

The desired result of the program would be a motivation and confidence on the part of the participants to teach instrumentation.

This accomplishment is reflected in the report (Appendix C) tendered directly to the U.S.O.E. by a committee composed of F. Parker Wilber, President, Los Angeles Trade Technical College; J.C. Groenewegen, Consultant, Crawford Fitting Company and Past I.S.A. District XI Vice-President and; Robert Messamer, Manager, Data-Graph Engineering Department, Consolidated Electrodynamics Corporation.

A personal evaluation form submitted by each participant at the conclusion of the eight week period indicates the relative merits of each specific contribution and procedure. See Summary - Appendix D

The daily critique forms provide an illuminating exposure of the individual's acclimation to the program as well as the sensitive response of the staff to expressed concerns. See Summary - Appendix E

Conclusions as drawn by the principal investigator are:

1. The selection of candidates was validated by the effective rapport established between themselves and the staff. The deliberate inclusion of two high school teachers vitally interested in instrumentation was appreciated by their enthusiastic participation. They are and others may well be a source of post-high instrumentation instructors. The candidate from the industrial training scene gave considerable of industry's dynamic viewpoint.

2. The distribution of the training program over a two summer period is confirmed. Even more time seems desirable as the participants and the evaluation team call for more "skull" sessions. A repeat of this session "as is" would be desirable for another first year group.
3. The integrated teaching method so effectively presented by Professor Austin Fribance, found popular acceptance with the participants. Additional efforts and certainly a continued application to the next summer's program is indicated.

4. The lectures, demonstrations, and field trips adequately met the needs. In the area of laboratory equipment and experiments, there is much work to be done. The available items vary in quality, durability, and effectiveness. The participants suggested a period of time for development and construction of individual teaching aids. It is suggested that the supplies needed be included in the proposal funding and the participants transport the finished goods to their respective institutions. Some of the participants and staff members are enthusiastic about sharing their successful aids with the group.

5. Courtesy loans of equipment and the rental provision of the contract represent as effective way of dealing with the equipment problem.

6. An earlier contract award is essential to secure a full complement of participants. Institutional planning and support is difficult at the last moment.

7. Participants remain interested and desirous of credit for their efforts, but not necessarily at the expense of tuition fees to some other institution of record. Credit from the two-year institution conducting the program does not have particular significance.

8. A Summer 1967 Proposal will be submitted because:
 a. Eleven of the participants have firmly and enthusiastically indicated a desire to complete the second year portion of the U.S.O.E. Guide.
 b. The evaluation team clearly recommended a follow-on program.
 c. The initial and urgent need for Instrumentation teachers persists and the participants need to be brought to full degree of preparedness.

9. The grant will be concluded at an amount approximately $8,000 less than had been approved.
SCHEDULE
Students will attend class, lectures, and seminars for approximately four hours per day and have two and a half hours per day in laboratory sessions. The following tentative daily schedule will be followed:

8:30 - 10:30—Class on topic for day
10:30 - 10:45—Break
10:45 - 12:00—Seminar, individual study on special topics (math review), or guest lecture
12:00 - 1:00—Lunch
1:00 - 2:15—Continuation of class topic or guest lecture
2:15 - 2:30—Break
2:30 - 4:30—Laboratory

Two to three hours per day of outside study and homework will be required of each participant. Saturdays and Sundays will be free (as well as one afternoon per week). The total class, seminar, and lecture time will be 156 hours; laboratory time will amount to 79 hours (based on seven weeks and four days with one afternoon a week off, except for the first week).

STIPENDS AND ALLOWANCES
Participants will receive a stipend of $75 per week. Allowance for dependents accompanying the participant are available on a limited basis at $15 per dependent per week. Travel allowance for one round trip (maximum 1000 miles) will be granted at 8 cents per mile.

APPLICATION PROCEDURE
Qualified applicants will be considered in order of application received. Address your request to:

Professor Frank J. Ziol, Director
Institute in Instrumentation Technology
Pasadena City College
1570 E. Colorado Blvd.
Pasadena, California 91106

The application shall set forth:
1. Vital data (name, age, address, etc.)
2. Present teaching assignment (subjects, location)
3. Educational and employment history
4. Reason for participation in this institute
OBJECTIVES

The primary objectives of the Institute are:

1. To assist present and future faculty members of technical institutes and junior colleges in preparing themselves to teach Physics for Instrumentation, Mathematics, Measuring Principles (Mechanical), and Electrical Circuits, AC and DC, from the first year of the Instrumentation Technology Curriculum as suggested in the presently available guide. (U.S. Office of Education OE 80033.)

2. To assist in the effective utilization of the Guide.

ELIGIBILITY

The participants will be selected from those now employed (or who expect to be employed in September, 1966) as teachers of Instrumentation or Automatic Control at technical institutes or junior colleges where it is expected that preparatory curricula will be given in instrumentation and automatic control. All participants should hold at least a B.S. degree or the equivalent. Selection will be made on the basis of the needs of the school. Those schools having no teachers would be given a preference. Teachers in schools which need to expand their staffs would also be considered most favorably. The remaining class openings will be filled by persons with an adequate background and who are currently involved in teaching instrumentation in technical or vocational schools.

PROCEDURE

This program will consist of courses with content designed to meet the needs of the teachers for the first two semesters outlined in the Instrumentation Technology Guide. Topics to be considered include the mathematics, physics, and electronics related to instrumentation; mechanical measuring principles; and instrument shop practices. The program will feature lecture, seminar, and laboratory sessions. Outside guest lecturers will be employed to present special topics of interest and field trips to observe instrument manufacture and use will be made.

Effective methods of teaching will be emphasized as consideration is given to subject matter. Attention will be given to the philosophy and principles of technical education. All participants will attend the same core of classes. A brief description and tentative outline of these courses follows:

Mathematics

Primary focus in mathematics for the participants of the first summer's program will be an attempt to identify the essential skills and level of achievement in mathematics required by students of Instrumentation Technology. Several seminars will be devoted to these discussions. The participants will be encouraged to examine their own weaknesses in mathematics as well as to express their feelings on the best ways to present the subject in an applied manner to students.

Physics for Instrumentation

A study of the basic principles of physics emphasizing mechanics, heat, light, sound, and electricity, with particular emphasis on the principles embodied in the design of indicating and sensing devices. Emphasis will be upon developing a grasp and effective technique of teaching applied physics.

Mechanical Measuring Principles

A study of the more common sensing devices and components employed for the measurement of temperature, pressure, flow, and related phenomena. The laboratory portion of the course would provide practical information and experience with the application of basic theories to commercial instruments. Major concern will be given to instructional aids necessary for the participant to implement his future teaching assignment.

Instrument Shop Practices

A laboratory course designed to provide practical information on the application of basic theories to commercial instruments; instrument construction, tests, and accepted test procedures; and safety precautions which must be observed when working on instruments.

Electrical Circuits—AC and DC

A study of the basic laws pertaining to series and parallel circuits, reactance, impedance, and polyphase systems.

COURSE CONTENT

Outline of Program

First Week

Careers in Instrumentation
Teaching Instrumentation
Diagnosing Basic Skills
Classification of Instruments
Organization of an Instrument Shop

Second Week

Engineering Characteristics of Common Materials
Review of Mechanics

Third Week

Pressure Measurement

Fourth Week

Temperature Measurement

Fifth Week

Mathematics of Instrumentation
Thermal Properties of Materials
Instrument Installation

Sixth Week

Liquid and Flow Measurement

Seventh Week

Level, Humidity, Specific Gravity, and Viscosity Measurement
Instrument Maintenance
Review of Basic Electricity

Eighth Week

Electrochemistry and Thermoelectricity
Sound Instrumentation
Optical Instrumentation

TUITION, FEES, AND HOUSING

No tuition or fees will be charged by Pasadena City College. Books will be available for loan. Living accommodations may be secured at an adjacent motel ($12 per day, two persons per room) or more modestly in the dormitories of the Fuller Seminary ($50 per month, two persons per room) located two miles away. Public transportation is available.

Eating facilities are available on the campus and immediately off campus. The cafeteria of the Fuller Seminary will be available after August 1.
Students will attend class, lectures, and seminars for approximately four hours per day and have two and a half hours per day in laboratory sessions. The following tentative daily schedule will be followed:

8:30 - 10:30 - Class on topic for day
10:45 - Break
12:00 - Seminar, individual study on special topics (math review), or guest lecture
1:00 - Lunch
2:15 - Continuation of class topic or guest lecture
2:30 - Break
4:30 - Laboratory

Two to three hours per day of outside study and homework will be required of each participant. Saturdays and Sundays will be free (as well as one afternoon per week). The total class, seminar, and lecture time will be 156 hours; laboratory time will amount to 79 hours (based on seven weeks and four days with one afternoon a week off, except for the first week).

STIPENDS AND ALLOWANCES

Participants will receive a stipend of $75 per week. Allowance for dependents accompanying the participant are available on a limited basis at $15 per dependent per week. Travel allowance for one round trip (maximum 1000 miles) will be granted at 11 cents per mile.

APPLICATION PROCEDURE

Qualified applicants will be considered in order of application received. Address your request to:

Professor Frank J. Ziol, Director
Institute in Instrumentation Technology
Pasadena City College
1570 E. Colorado Blvd.
Pasadena, California 91106

The application shall set forth:
1. Vital data (name, age, address, etc.)
2. Present teaching assignment (subject, grade level, etc.)
3. Previous teaching assignments (subject, etc.)
4. Educational and employment history
5. Reason for participation in this institute

The application should be returned by July 1, 1966.

This institute is supported by the United States Office of Education and sponsored by the Instrument Society of America.
INSTITUTE FOR INSTRUCTORS OF
INDUSTRIAL INSTRUMENTATION TECHNOLOGY

Pasadena City College
July 5 - August 26, 1966

PARTICIPANTS

AYLER, Donald
Oklahoma State U. Technical Institute '64
Oklahoma City, Okla.
Instructor, Electronics

ALLEN, George
Mt. San Antonio C. '56
Walnut, Calif.
Chairman, Eng. Dept.
Instructor, Eng., Phys, Math

ANDERSON, Oliver
Santa Monica City C. '39
Santa Monica, Calif.
Chairman, Elec. Eng., Tech.
Instructor, Ind. Electronics
Automatic Controls

ANDRE, Louis
Spokane Community C. '64
Spokane, Wash.
Instructor, Instrumentation

BROWN, Roger
Dow Chemical Company '66
Midland, Mich.
Instructor, Electronics

COCKS, III, Orrin
Allan Hancock College '56
Santa Maria, Calif.
Chairman, Eng., Math, Phys.
Instructor, Math, Calculus
Appendix B (Continued)

Age 48
BS Math, Idaho State U. '66
BA Education, Idaho State U. '64

Idaho State U.
Trade & Technology '55
Pocatello, Idaho
Instructor, Electricity
Ind. Electronics, Math

Age 46
BA Math, Drake U. '65

Casper College '61
Casper, Wyoming
Instructor, Electronics

Age 35
BA Phys. Science, U. of Iowa '62

Municipal U. of Omaha '65
Omaha, Nebraska
Instructor, Electronics

Age 34
BS Chem. Engr., U. of New Mex. '53
MS Chem. Engr., Carnegie Inst. of Tech. '56

San Jose City C. '61
San Jose, Calif.
Instructor, Eng. Draw, Math
Str. of Materials, Statics

Age 43
BS Ind. Ed., Stout State U. '51

Hawaii Technical School '64
Hilo, Hawaii
Instructor, Physics, Math.
Blueprint Reading

Age 37

Lincoln Senior High '65
Sioux Falls, So. Dakota
Instructor, Instrumentation

Age 50
Voc. Ed. Credential

Idaho State U.
Trade & Tech. Dept. '60
Pocatello, Idaho
Instructor, Instrumentation
Appendix B (Continued)

Age 36

La Puente High School '65
LA Puente, Calif.

PIERCE, Kenneth

BA Sociology, Whittier C '52
MA Ind. Ed., Cal. State et L. A. '62

Instructor, Ind. Ed.

Age 34

Emily Griffith Opportunity Sch. SIDES, Denver, Colorado

Robert

Instructor, Electronics

Age 47

Fullerton Junior College '65 SMITH, Fullerton, Calif.

Robert

BS Chem., Indiana Central C. '47
M3 Educ., Butler U. '48

Instructor, Metallurgy, Math.
Dr. Robert Knoebel
Department of Health, Education, and Welfare
Office of Education
Washington, D. C. 20202

Dear Dr. Knoebel:

The volunteer evaluation committee has completed its evaluation report of the Summer Institute in Instrumentation Technology. The evaluation findings are based primarily on first-hand observations at different intervals throughout the summer session.

Our report includes (a) summary (b) evaluation of the institute and (c) suggestions regarding courses covering instrumentation technology.

I hope the enclosed evaluation report may be of value to you or your staff in appraising the value and usefulness of the Instrumentation Technology Institute conducted at Pasadena City College. Our committee unanimously felt that the program was very effective and recommends the continuation of this type project for the summer session period, 1967.

Sincerely,

F. Parker Wilber
President

Enclosure - Evaluation Report

cc: Dr. A. Sarafian
 Dr. F. Ziol
EVALUATION REPORT

Summer Institute in Instrumentation Technology

Conducted at Pasadena City College

Summer, 1966

A. Summary Recommendations

B. Evaluation of the Institute

C. Suggestions Regarding Courses Covering Instrumentation Technology

Prepared by the Volunteer Evaluation Committee

J. C. Groenewegen, Consultant, Crawford Fitting Company
Past District XI Vice-President, Instrument Society of America
Residence - 2229 Guadalana, Palos Verdes Estates, California

Robert Messamer, Manager, Data-Graph Engineering Department
Consolidated Electrodynamics Corporation
360 Sierra Madre Villa, Pasadena, California

F. Parker Wilber, President
Los Angeles Trade-Technical College
400 West Washington Boulevard, Los Angeles, California
A. Summary Recommendations

The committee is certain that the institute program is well-organized, conducted to the specifications of the contract, of high quality as a technician educational project, and provides essential instruction for post-high school technology in instrumentation.

Based on our findings, the committee unanimously supports the general objectives of the institute; it further recommends the extension of this program into a second phase institute session for summer period 1967. The 1967 summer institute is needed in order to provide the present participants (or others) the advanced instruction they will need to teach specialized courses in technology at the post-high school level.

Recommendations:

(1) The Summer Institute in Instrumentation Technology offered at Pasadena City College through the grant provided by H.E.W. is commended for conducting a program of educational quality, and one that meets the objectives of the grant (contract). The Institute should be continued in Summer, 1967, as a Phase II of the present program for those candidates who completed Summer School, 1966, and for the benefit of other candidates who may qualify.

(2) The Pasadena City College Board of Trustees and the administration of the college are encouraged to approve and appropriately support the 1967 Institute proposal. The Institute is an excellent example of a program achieved through proper cooperation of community Education-Industry relationships and by assistance of government.

(3) The attendance to the Institute should be broadened without additional financial costs. A selected and limited number of Southern California Junior College technician instructors should be allowed to audit the lecture periods and observe the industry equipment presentations. This procedure would neither dilute the quality of the instructional presentation nor overcrowd the facility. There are ample empty seats in both the lecture periods and in the equipment presentation periods. Such an added group would live at home and entail no cost to the program.

The inclusion of qualified "observers" or "auditors" would contribute to further implement the objectives of the Institute and also publicize the field of instrumentation technology within the Southern California area.
The Institute, if conducted in Summer 1967, should attempt to widen the representation of industrial concerns and equipment to assure that the candidates are exposed to the fullest variety of modern equipment possible in the scheduled time. Repetition of equipment procedures should be avoided whenever feasible.

Signed:

J. C. Groenewegen

Robert Messamer

F. Parker Wilber
B. Evaluation of the Institute

I. Evaluation Committee Activity

The approved volunteer team accepted responsibility for evaluation of the Summer Institute in Instrumentation Technology. The committee agreed upon an outline for observing program characteristics and specific activities conducted in the Institute.

The committee met upon three stated occasions. Thereafter, each member individually visited the Institute upon several occasions and personally inspected the program at first-hand. The evaluation observations were made at different intervals during the Institute. The findings of the three committee members are substantially in agreement.

II. Meeting Objectives

The announced purpose of the program is "to assist in the development of knowledges and skills essential for teaching specialized course in Instrumentation Technology." This has been successfully accomplished. The enrollees were well chosen in both background and geographical spread. The instructional staff was effective as well as very competent. Objectives of the course were clarified on the opening day and were agreed to by all. At least ninety per cent of the objectives were attained. At the conclusion of the Institute eleven of those who had participated indicated their desire for the opportunity to attend a similar course covering the third and fourth semesters of the curriculum (OE-80033)

The instruction conducted by Professor Ziol and the other instructors encompassed (1) demonstrations of effective teaching, (2) applied and theoretical mathematics, (3) physics for instrumentation, (4) mechanical measuring principles, (5) basic electrical circuits. The program schedule was reasonably divided in time allotments between lecture, demonstration seminars and laboratory periods, and essentially as outlined in the proposal. Some prescribed outside study was required of the participants.

The morale of the participants was good generally, and much enthusiasm for the Institute program was observable and noted in personal interviews with the students. Complaints were minor and generally seldom related to class instruction or projects; suggestions made by the participants were identified and responded to by the faculty and Professor Ziol. Daily critiques of instruction were made by the students and handed in daily to the teaching staff.
III. Curriculum

The instructional content of the course avoided narrow specialization and was held to a level consistent with that for training technicians. Course materials were up to date in all respects. In a few cases some revision of the allocated time was found to be necessary. This was done at no sacrifice to the program.

Some additional opportunity for "skull sessions" would be helpful.

Lectures, laboratory problems and outside study of given reference books were the basis of the course. The opportunity to observe the varied skills needed by the Instrument Technician was provided by field trips to industrial facilities employing that end product. Qualified guest speakers from local industries presented some of the material.

IV. Facilities

The air conditioned classrooms and laboratories are modern and excellent in every way. While Pasadena City College does own a considerable number of instruments and related equipment, this was supplemented by items loaned by local firms and some rented items which a commercial firm had produced for the educational field. These last mentioned items were not of a quality or design suitable for the intended usage. The laboratory tool room was well equipped and met all needs.

The college library made special arrangements, which made a wide assortment of text and reference books available in one of the rooms used for this course. Library cards had been provided for each enrollee, and the self-service principle applied. Guest presenters presented the principles of their products and not the proprietary aspects. Each had actual items along for study by the group.

V. Support By Local Sections of the Instrument Society

The District Vice-President of the Instrument Society Association participated in one session and audited a second. Other members participated in other ways. One section provided the coffee for the duration of the course.

Further, the welcome extended to the group by local hosting firms; during the field trips indicated the general and complete support by the industrial community.
VI. Evaluation by the Participants

Student instructional project and subject matter evaluation was encouraged by the professors: An Experiment Critique Form was utilized and gave the participants the opportunity to not only check the on-going experiments/projects, but to measure the potential usefulness of the experiment or project in their own school programs.

Also employed was a Daily Critique Form that was filled out by one student who was chairman and whose duty it was to obtain typical viewpoints of the class to the various instructors, presentations or projects. The Daily Critique Form requests from the students their "constructive assessments and suggestions", and further, they delineate their ideas in the columns "positive factors" and "negative factors".

A perusal of these daily reports was made by the committee, and it is noted that the class members actively participated in improving instruction and in measuring the worth of various instructional activities. Professor Ziol and the staff took these student reactions seriously.

VII. Candidates for the Institute

The participants were representative of potential instrumentation teachers or teachers currently assigned teaching instrumentation in post-high school programs at area vocational schools, private institutes or junior colleges. They varied considerably in educational background and actual industrial experience. Many of them had limited or no exposure to some of the modern equipment that was demonstrated in presentations or utilized laboratory projects.

As a group, they represented a superior level of technical instructors. They are bright, eager, enthusiastic and generally well-selected for the program. They were not just "summer scholars" chasing a few college units.

VIII. The Faculty

The instructional staff included both professional and industrial members. The staff was well selected and presented specialized units that as a total institute session comprised an appropriate, well-balanced curriculum for meeting the objectives of the contract project. The presentations made by industry representatives were objective, and equipment sales promotion was not condoned.

The instruction and leadership provided by Austin E. Fibance, Professor, Rochester Institute of Technology, was of exceptional value and a great contribution to the effectiveness of the Institute.
C. Suggestions Regarding Courses Covering Instrumentation Technology

Re: OE-80033 Instrument Technology - A suggested Two Year Post High School Curriculum.

Page 9, upper half, summarizes the four semesters and the subjects to be covered. It should prove to be helpful if several of the subjects were presented by faculty members other than the instructor in Instrumentation. While the summary shows an average of just over 3½ hours per week of combined classroom, laboratory and outside study, this should be considered as the absolute minimum. Increasing this to 15 hours per week would be more realistic. This is based on the need for a broad and complete training.

Page 96, Basic Equipment. This listing is very comprehensive in its suggestions for items related to the electric/electronic part of the training. That same listing is woefully short of suggestions for equipment to be used for training on pneumatics.

Page 27, Sequence of Division VI and Division VII. Instructors, in developing their own schedules, will most likely find it desirable to reverse the order of these suggestions. This order of study is also the logical approach.

Additional items. Proper documentation of all moves made during calibration of the various items should be stressed. Along with this comes the need for emphasis on the proper sequence of the steps taken. The effect of angularity and multiplication in link and lever is an example. The plotting of "S" curves during calibration of such mechanisms can be very helpful.

Soldering - both soft and silver, light welding and the fabrication of various items which will become a part of the student's personal tool kit should be a requisite.

The skills required for trouble shooting should be developed through practice on items which have previously been incapacitated. Again the desirability of making notes on each move, and at the successful completion of the project a review of those notes as a means of determining incorrect moves, should be stressed.

Another item which could well be covered would be the use of a multi-channel recorder to plot the related changes in process control. An example would be a pressure transmitter connected to a vessel, and receiver-controller and its output to a control valve and the movement of the stem of that control valve. This might be a simple "homemade" device as well as a commercial item.

The above leads to the study of responses of components and systems using pneumatic signals as well as step and frequency changes.
Acquisition of equipment for use in training technicians.

Frequently, local industry is able to donate items no longer needed after plant changes have been made. These may not be the most modern, but they do represent the basics. It has been said that it takes a far better qualified technician to maintain an old plant than a new installation. Also, the older employees are usually assigned to the newer equipment. Government surplus lists often lead to useful items which can be acquired. At a recent government surplus auction there were many lots of items which contained articles which could well have been used by technical school courses in Instrumentation. Shipping and crating costs can become a problem with such items.

Most instrument producing firms are reluctant to contribute obsolete models, for fear that they might be considered as current items. They do in many cases offer a "educational institution discount". Those same firms can be a source of information as to where plant changes may be releasing components which would be of use in training activities. Occasionally, the ads of auctioneering firms will reveal items of possible value in training. These recently, in one community, ranged from balances to zero cold environmental chambers.

Perhaps the area of equipment provides an opportunity for the student to apply through troubleshooting or systems "check-out" during his last semester, the principles he has learned through theoretical projects. A term project involving a hardware output might be beneficial as a means of developing fundamental occupational skills.
Appendix D

INSTRUMENTATION INSTITUTE EVALUATION

As a participant you have conveyed your daily reactions to one of your associates who summarized the key points and thereby influenced the activity of the following day. Now you are asked to review the entire period and make relative comparisons. We also ask your guidance for a follow-on program next summer. Thank you.

1. Please rate the following persons who made presentations as indicated. Use the scale (1) low to (5) high.

<table>
<thead>
<tr>
<th>Date</th>
<th>Presenters</th>
<th>Session Topics</th>
<th>Rating</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/5-8</td>
<td>F. J. Ziol</td>
<td>Introduction, Technician, Standards, Linear Measurement, Instrument Factors</td>
<td>1 8 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/5</td>
<td>George Morrow</td>
<td>Employment Opportunities</td>
<td>2 3 9 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/6</td>
<td>Joe Huffman</td>
<td>Instrument Society of America Opportunities for the Technician</td>
<td>9 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/7</td>
<td>Gordon Stuart</td>
<td>NOTS - Standards Laboratories</td>
<td>2 7 6 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/11-15</td>
<td>Alec Ball</td>
<td>Mechanics and Materials</td>
<td>2 12 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/13</td>
<td>Howard Martens</td>
<td>JPL Materials Problems</td>
<td>3 11 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marty Liepold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dave Fishbach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bill Carrol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bob Bounty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bob Freeland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/13</td>
<td>Phil Carpenter</td>
<td>JPL - The Technician</td>
<td>7 7 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18</td>
<td>Larry Johnnson</td>
<td>Nuclear Instrumentation</td>
<td>1 4 7 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/19</td>
<td>Wes Towner</td>
<td>Shell Chemical - Instrument Shops & Maintenance Problems</td>
<td>3 6 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/20-21</td>
<td>Vern Spaulding</td>
<td>Basics of Electricity</td>
<td>2 7 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/22</td>
<td>Warren Root</td>
<td>Fluidics</td>
<td>3 11 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/25</td>
<td>Austin Fribance</td>
<td>Pressure, Temperature and Flow</td>
<td>1 3 4 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/3</td>
<td>Bert Biles</td>
<td>Barton - Measuring Instruments</td>
<td>9 6 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/11</td>
<td>Chuck Gardner</td>
<td>Electrical Power Plant Instrumentation</td>
<td>1 4 7 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/15</td>
<td>F. J. Ziol</td>
<td>Vacuum Production & Measurement</td>
<td>1 7 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/16</td>
<td>Steve Kerstner</td>
<td>Pneumatic Instrumentation</td>
<td>1 6 5 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Instructor</td>
<td>Course</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>8/17</td>
<td>Dan MacGilvary</td>
<td>Fluid Power</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bob Wilsher</td>
<td>Fluid Connections</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/17</td>
<td>Ted Garrett</td>
<td>Mass Spectrometry</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jonas Saunderson</td>
<td>Spectro Photometry</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ed Escher</td>
<td>Chromatography</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/19</td>
<td>Pete Perino</td>
<td>Introduction to Transducers</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ken Pinkham</td>
<td>Universal Strain Gage</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/22</td>
<td>Emery Ferree</td>
<td>Thermo Electricity &</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resistance Thermometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/23</td>
<td>Tony Schneider</td>
<td>Sound Instrumentation</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/24</td>
<td>Tom Kehoe</td>
<td>Analytical Instrumentation</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bill Ulrich</td>
<td>Spectro Photometry</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bob Villalobos</td>
<td>Chromatography</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bob Jones</td>
<td>Electrochemistry</td>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. Houser</td>
<td>Sample Handling</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T. Przysiecki</td>
<td>In-House Training</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. Serne</td>
<td>Technician Needs</td>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Please rate the teaching equipment available to the Institute

<table>
<thead>
<tr>
<th>Course</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Measurement (PCC)</td>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Materials Testing (Scott)</td>
<td></td>
<td>1</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Materials Testing (PCC)</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear (PCC)</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Electrical Basics (PCC)</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluidics (Imperial-Eastman)</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure, Temperature, Flow (PCC)</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(Scott)</td>
<td></td>
<td>1</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>(Hickok)</td>
<td></td>
<td>6</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(Brodhead-Garrett)</td>
<td></td>
<td>2</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Pneumatics (PCC)</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Foxboro)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

3. Field Trips

<table>
<thead>
<tr>
<th>Number</th>
<th>Too Many</th>
<th>15 Adequate</th>
<th>1 Insufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Best Trip

Overall Rating

4 7 1
Appendix D (Continued)

4. Library Facilities

5. Institute Management

6. Constructive Suggestions

Split pay sessions up into four periods. Keep dependent stipend. Provide some means to make speaker's voice heard in plant tour. It is discouraging to race through a plant area and not be able to hear what is being said about the area.

I would like to see more of the plant or facility when we go on field trips. I feel it to actually see instrumentation in use & explained as did the Forman for S G Edison in the afternoon tour, so that we may keep up with actual changes and new techniques in the industry, would be helpful. I wish to say many thanks to Professor Frank J. Ziol for a job well done in planning and directing this institute, for a most enjoyable eight weeks and for a wealth of information I am taking with me to upgrade our program at Idaho State University.

I would suggest more lab equipment with the opportunity to do more experiments. This summer's work was well worth while. I am glad I did not miss it. Thanks to all for their great effort in carrying on the Institute.

Perhaps 4 more during 3 weeks period. A full day allotted to the Wescon show plus perhaps another half day for discussion would have been valuable.

Think "How to's" good, but how about 10-25 per week instead of 2 large blocks? My participation this summer may be unique in that I seriously doubt that I will be called upon to teach any instrumentation. I do feel, however, I will have a great deal to say as far as establishing curriculum - which this summer certainly gave me much foundation for, and in the selection of the teacher. I do not think that I could have possibly gathered so much information that will benefit our school and students in a short weekend seminar. I appreciate much more the whole instrumentation picture, thanks to your institute, and feel confident that within a few years we will have a going program at Allan Hancock College.

Might be interesting to tour another educational facility that offers instrumentation to check curriculum, laboratory facilities, etc. Would require no more than a half day.

I honestly feel that a six hour per day session would be sufficient time to cover the essential material. I am basing this remark on the experience of this institute.

Bus had a square wheel. Put round one on. Institute was very good. It is the best one that I have attended.

More formalized or structured labs. Much more efficient use of everyone's time would be to split participants into at least two groups with each group having labs on two afternoons (or parts of afternoons) a week, with the other groups having free time of some sort. Shorter doses of everything. Most field trips were too long with a tendency for the oral presentations to drag on and on. Shorter "doses" of everything. Very difficult for both teachers and especially participants to keep up interest on one relatively small area for a whole day. If possible try to have at least two different subjects or main areas in any one day, even if they have to be continued for several days. Arrange for housing possibilities for families with children. Furnished housing for children is very difficult to obtain on the open market. Easiest way might be to arrange for participants to be able to use the housing office facilities of, say, Cal. Tech.
Appendix D (Continued)

The magnitude of task you set for yourself this summer could only be appreciated by one who attended this institute. As with many efforts, there were high lights and low spots. I think however, that the overall program was well conceived and executed. The results of your efforts on our behalf were obvious time after time. This summer you had your "shake-down" cruise. I predict smoother sailing with each passing summer. Thank you for inviting me to attend, and a special vote of thanks to you and your charming wife for the consideration and kindness extended to ourselves and our families.

Have a personnel man to question on field trips assign experiments to be followed to completion so a quantitative evaluation can be made of procedure and equipment. Preview more educational films. More student participation in classroom. Introduce concepts and equipment used in PSSC Physics. Keep up the flow of instrumental aids, charts, films, etc. Keep visiting lecturers to one half day.

Lab organization, procedure and follow up can be improved. When equipment is limited, participants could stage a formal lab demonstration with all members of the class situated so they have an optimum view of the action, we should be involved in recording and evaluating the experiment. A P.A. system should be provided for speakers with small voices who do not respond to a request to speak louder.

Consider visiting Autometics Metrology Installation during the physical measurements presentation.

Laboratory activities could be better planned; where possible have eight specific experiments to be done (groups of two); list of equipment, price, and catalog identification supplied for each. If possible get Austin Fribance for next year again.

Would like to have had a more structured laboratory.

7. Count me in for a "follow-on" second year Institute - June 28 - August 22, 1967

11 Yes 3 No 2 Undecided
DAILY CRITIQUE

ACTIVITY (Lecture) (Demonstration) (Laboratory) (Field Trip)

Briefly Describe ——

Names of Contributors ——

CONSTRUCTIVE ASSESSMENTS AND SUGGESTIONS

<table>
<thead>
<tr>
<th>Positive Factors</th>
<th>Negative Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
</tr>
</tbody>
</table>

[Blank space for additional comments or assessments]
DAILY CRITIQUE

July 5, 1966

Positive Factors

1. Air Conditioning Wonderful!
2. Orientation, Dr. Ziel, Excellent information given and questions answered completely.
3. Dr. Sarafian, background and history of school well covered. Interesting and informative.
4. Tour, adequate, but not too lengthy.
5. Program outline satisfactory. (Most of us were uncertain as to what to expect or what was expected.
6. Informal atmosphere appreciated.

Negative Factors

1. Self introduction of participants, should have been requested, many not heard.
2. Mr. Morrow, material too general, vague presentation. (Questions answered very well however, and as accurately as possible).
3. Seats in lecture room, not as comfortable as those in many other rooms.

July 6, 1966

1. The morning session was good. The prepared transparencies helped to maintain interest.
2. Mr. Huffman's talk was a great deal more interesting than Tuesday's speaker. His candid remarks enabled us to see more behind the scenes, than did Tuesday's speaker. The question and answer period provided us with much needed information on at least one industry's needs. His enthusiasm made it much easier to communicate with him.

Negative Factors

1. A five minute break each hour, would soften the chairs and would allow us to stimulate our circulatory systems.
2. The transparencies were slightly out of focus.
3. A little more instruction could have been used on the measuring instruments in the lab downstairs.

July 7, 1966

1. The division of health facilities motivated a break at 10:15.
2. Several of us at the break decided we might be training and not really educating. Some of us teach WHY

Negative Factors

1. Several fellows feel we're moving too slowly, (I'm one of them) because, apparently, we have had some of this before.
2. A suggestion - Permit the teachers to
July 8, 1966
1. All contributors felt that the speed with which the subjects were covered was much better. None wanted to slow down, feeling that questions would slow down the lecture when the going gets tough. This was about the only comment received.
2. Field trip very well coordinated with the daily unit.

July 11, 1966
1. More student participation than (yesterday), before. Both in lecture room and lab.
2. Best day of six.
3. Day well spent

July 12, 1966
1. Some participants welcomed the more frequent breaks so they could stand up.
2. Some felt that the class work was proceeding at just the right pace. The ABC approach (to quote the instructor) to the properties of materials seemed to be a good review for some.
3. Everyone seemed quite interested in the Scott equipment and glad of the opportunity to evaluate it for use in his school.
4. Could have expanded on Bosco School somewhat.
5. Prefer to view Engineering-Aid in action, rather than assembly and fabrication people.

July 13, 1966
1. Well planned
2. Hit our needs very closely, moved along rapidly, questions answered expertly.
3. All contributors displayed assurance and confidence.
4. Personally, I think this was one of the best tours I have ever been on.

July 14, 1966
1. Good idea to intersperse talks by participants with the lecture. Better than all lecture and then all talks.
2. Good coverage in lecture material. Interesting and moved fairly well.
1. Some talks by participants were too long. Only way to limit teachers to five minutes is probably with a timer and bell. Average for five people was fifteen minutes each.

Appendix E (Continued)

submit additional material that may be covered along with the objectives of the institute.

3. Possible for us to have an upright ashtray in aisle outside of lecture room?

One or two members still think the seats are too hard.
July 17, 1966

COMMENTS FOR THE DAILY CRITIQUE SHEET

1. First morning session too detailed—the rest, (the other thirty minutes), good.

2. If you can't say something good, don't say anything.

3. Introduction to some good slides to be used in Physics class as well as fluids.

4. I think the two days did a sincere job in presenting what they think (or thought) was important.

5. I feel this a lot of help in seeing the actual mechanics of the fluid power field as an aid to teaching hydraulics and pneumatics.

6. Good practical info., too much detail in the various "hook-ups"

7. Stimulated an awareness for the importance of fluid-power instructions.

8. Too much repetitive detail, but this is sometimes unavoidable with company men making a presentation. At times it was difficult to hear.

9. Interesting, but sometimes difficult to connect to instrumentations.

10. Somewhat too much of a company-customer oriented development, but probably unavoidable.

11. When men making presentation have to principally face this type problem, when developing their presentations.

12. Men presenting material should talk louder.

13. Probably should have allotted about half as much time to this company as a few key items well covered would have given a good picture of fluid power for our purposes.
Brought up topics that could be further studied by those interested but not in such detail to bore those not so interested.

3. Good laboratory demonstrations by Daniel Zicl.

July 15, 1966
1. A very good morning
2. He has good teaching methods.
 (Suggestions helpful)
3. Alec gave a good broad view of the picture — helpful.
4. Helped uncover "weaknesses" in this area.

July 16, 1966
1. Mr. Johannsen is a terrific instructor.
2. Mr. Johannsen always answered questions very well and completely.
4. Very efficient instructor to make such good use of limited time.
5. Termed a very valuable day in the course of the institute by most all participants.

July 19, 1966
1. Appreciate literature on shop instruments, tools etc.
2. Instrument course of plant gives good suggestion for upgrading course.
3. Trip through instrument shop very good.
4. A lot of work and effort was put forth to make this trip a success.
5. Appreciate the detail that instrument forman went into training schedule.
6. Over all, this field trip accomplished a great deal in giving us a picture of what our students need to be employable by such an industry.

July 20, 1966
1. Well organized.
2. Emphasized teaching techniques.
3. Emphasized advantages for understanding operations rather than memorizing formulas.
4. Maintained interest.

July 21, 1966
1. Dynamic personality of Mr. Spalding held the interest of the class.
2. Covered material that is considered essential to the Instrumentation Technician.

Appendix E (Continued)

1. A small number felt material was beyond them and too brief for their understanding.
2. Some people were interested in getting brief dittoed specification sheets with approximate cost for the various lab. instruments and equipment.

July 15, 1966
1. Material covered too rapidly for those with lesser backgrounds.
2. More time should be allowed for student reports - Countered by "some fellows take too much time."
3. We should've spent an hour at least "wrapping up" our JPL tour.
 (Numbers two and three were suggestions).

July 18, 1966
1. Would like to have had instructor spend more time demonstrating each piece of equipment before turning students "loose" on their own. (All participants did not concur on this).
2. Several participants disturbed by the discourtesies shown the instructor by a small fraction of the class.
3. Visual Aids might help to "spark up" presentation.

July 19, 1966
1. Perhaps too much time was spent reading lists given out.
2. Suggest a trip through part of plant to see instruments in operation would be helpful.
3. Visual Aids might help to "spark up" presentation.

July 20, 1966
1. Too brief and rapid for those with little or no background. Agreed that this could not be helped.

July 21, 1966
1. Could have had more demonstrations showing the application of principles, before turning class loose to flounder.
2. Could have mixed those members who are familiar with subject, with those who
3. Material was well planned and organized.
4. Caused class participation by solving problems on test.
5. Caused no embarrassment of those who were unfamiliar with the subject matter.
6. Showed valuable movie on pertinent subject.
7. Sprinkled humor in at the appropriate times.
E. Developed valuable and interesting laboratory experiment, which helped to tie principles together.

July 22, 1966
1. Mr. Root is a dynamic and personable speaker who quickly generates interest in his subject.
2. The use of slides and the chalkboard was effective in explaining new concepts.
3. The speaker was straightforward and honest in readily admitting when he did not have an answer to a question.
4. The session moved along briskly and the interest of the audience was maintained.
5. Everyone contacted was favorably impressed by both the speaker and the field of fluidics.

July 25, 1966
1. Challenging questions, "making one uncomfortable enough to think.
2. Unusual approach to gain attention, resistance concept.
3. Enthusiasm and humor appreciated.

July 26, 1966
1. Very informative and interesting, and thorough. A sincere and effective presentation of material with just the right amount of enthusiasm to keep the group's interest. A simple and effective presentation of essential and pertinent instrumentation information.
2. Excellent technique in obtaining class participation and involvement. Excellent and simplified development and verification of basic concepts and principles, patient and careful assessment of groups comprehension.
3. Dragged a little at times, (one comment); Two or three of group pushing development of material a bit too fast for adequate assimilation by majority of group.

Appendix E (Continued)
3. Could have recommended some more text books covering the subject of electronics and electricity as applies to the Instrumentation Technician.

The material was justifiably covered extremely fast. And under the circumstances involved, the class feels that Mr. Spalding did an outstanding job.
1. Only one minor negative factor was noted—the speaker had not brought along enough of some of the hand out material to supply the complete class.
2. Units of measurement needed clarification—"slug" was unknown to some.
2. "Stretch" needed about every hour—those chairs are non-human engineered, (or is it non-humanely?)
3. Pounds force and pounds mass used indiscriminately at times.

3. Could have recommended some more text books covering the subject of electronics and electricity as applies to the Instrumentation Technician.
July 27, 1966

1. Lecture very well done, informative. No hesitation about repeating answers, even tho it shouldn't be necessary with teachers.
2. Demonstration with new equipment was appreciated.
3. Consideration of Hickck to supply information and prices on equipment available in binder form, excellent. The projects outlined, at least as far as we went seemed good.

July 28, 1966

1. Data from sheet passed among the group indicates that today's work was well received.
 Mr. Fribence's enthusiasm has done much to keep up interest.
2. The student experiments, that Mr. Fritance has suggested have been well received. The group seems hungry for more such ideas.

July 29, 1966

1. All points were made in a neat, concise manner.
2. The rate of presentation was very good.
3. Use of visual-aids was helpful.
4. Lack of contributors to this critique indicates everyone was moderately happy with the days work.

August 1, 1966

1. Theory in lecture room and practice in lab, went together well.
2. Class was asked to look at equipment with a critical eye.

August 2, 1966

1. A lot of good material was presented both in lecture and lab.
2. Lab. was very worth while.
3. Appreciation was expressed on demonstration of Tech-Train'r equipment.

August 3, 1966

1. There was a general agreement among the participants that the work with temperature measuring devices was well worth while.
2. The afternoon visit to the Barton plant proved to be most interesting.

August 4, 1966

1. Good follow-up on field trip. Hands-on in lab good; Good flow discussion.

1. Demonstration of test equipment not adequate. Not enough material for a group of our size, too many lookers-not enough doers.

1. The only negative comment was upon the open lab door, letting in the smog and upsetting the airconditioning.
2. There seems to be a small uneasiness concerning the arrival of the checks.

1. Some of the fellows would like to see more of the actual hardware as the principles are discussed in class.
2. More lab. equipment is a must. Many of the fellows would like to work slower than is possible when groups rotate in the lab.

1. Debug demonstrations equipment before class observes.
2. Not enough lab. equipment for one-piece per student.

1. Lecture & Lab. were very disorganized.
2. Let's stay with the basic fundamentals of each topic.
3. It was suggested that lab. equipment should have been checked ahead of lab. time.

1. Some participants expressed the desire for a more extensive preview of the activities and equipment to be observed on a plant tour and the suggestion was made that a follow-up discussion session be held the day after the tour.

1. Problem solving largely wasted time as problem too far in advance of discussion. (AM)
2. Clear up board work by setting problems off by themselves and erasing that which does not apply. (PM)
Appendix E (Continued)

3. Incomplete solution of mornings fluid flow problem (by using data in the text) greatly reduced the value of the whole discussion on Fluid Flow.
4. Lab should be more "Goal-Oriented".
5. Let's have discussion of methods actually used in industry by Technicians to measure Flow and Calibration of equipment.
6. Hickock breadboard equip, poor craftsmanship- takes too long to set up.
7. Lab manual difficult to follow.

August 5, 1966
1. The initial discussion about aims and desires for the institute members at this time was very helpful and might have helped "clear the air". This type of discussion and follow-through should be repeated at least once or twice again during the last three weeks.

August 6, 1966
1. "Both instructor & class displayed new enthusiasm.
2. "Pressure group bull session beneficial. I'm grateful each day for the results of this institute.
3. "We need more of this way of going about the lab.
4. "This is one of the better labs." "We have improved participation in lab."
5. "Experiment Critique well "thought up."
6. "A good day" "A good discussion on level, likely breaking up into smaller groups for experiments."
7. "Lecture was straightforward and basic, lab, evaluating equipment worthwhile."

August 9, 1966
1. Very informative "Bull Session"
2. A welcome change-of-pace in the instructional pattern.
3. A highly-interesting and very valuable discussion about some of the common problems connected with teaching instrumentation other than Technical information.
4. A very successful exchange of ideas and information.
5. Laboratory work continued on in an interesting and informative procedure.

August 10, 1966
1. An interesting approach to the teaching of Flow was presented.
2. "I approve of this type of thing (reports) but more time is needed for preparation."
3. "Spent too much time in lab.
4. "More time is needed for preparation (pressure group member)
5. Three or four members expressed a desire to have the "panel discussion" or "report giving" limited to an hour and a half, rather than three hours.
6. Some felt the group discussion should have been limited and this time left be spent in instruction from Austin Frilance, as they stray too far from
2. I, for one, feel that any instruction we have received from Austin Fribance has been of the utmost value, as none of our backgrounds can even begin to compare to his in the field.

3. Group discussions are very beneficial as it gives all a chance to view different persons experience and understanding.

4. The opportunity to see and use Lab Equipment available to schools is appreciated. It gives those who who are starting in Instrumentation a place to start and those who have been teaching the course, a chance to enhance their existing course or program.

August 11, 1966
1. Training Facility A.M.
 Gained acquaintance with one industry's method of preparing technicians.
2. Steam Plant (P.M.)
 Valuable to see the high degree of instrumentation used in this process and the variety of devices used.

August 12, 1966
1. Block diagram & explanation of processes at Edison Power Plant was well taken by class; Involved good thinking on part of Prof. Fribance.
2. Presentation given by Panel members on subject of temperature measurement, seemed to be well taken by the rest of the class.
3. Summary of previous three weeks with Prof. Fribance was valuable to class as a brief review.
4. Class members indicated a friendly and grateful attitude towards Prof. Fribance.
5. It appears that majority of class members have a desire to continue institute next year.

August 15, 1966
1. Evaluation of Hickock material has value as to improvement of equipment and the lab manual.
2. The film presented the design of various compressors in a good straightforward manner.

August 16, 1966
1. Contributors not prepared to present material well. (A.M.)
 This was a valuable trip. Perhaps more time for tour of plant. (P.M.)

1. As admitted by Prof. Fribance, the explanation of the processes involved at the Edison Power Co. should have been given previous to the visit to the plant; particularly for those members who were not familiar with such a process.

2. If the main purpose of the visit by the gentlemen (Mr. Roenwagen, Mr. Messamer, Parker Wilber) was to make personal contact with each member in order to get members feelings & attitudes toward the institute, then it is felt that the purpose was not satisfactorily accomplished. Certain members were not contacted at all. Possibly this was the fault of the use of laboratory equipment during the time involved.

3. Possibly a more effective solution would have been to have a room where each member could have been asked a few pertinent questions with a resulting brief discussion.

The class should have been notified ahead and prepared for the session on The Hickock, material.

The sorting of "How To's" could have been done by student assistants.
3. The vacuum lecture was interesting and informative. Well illustrated with slides.

August 10, 1966
1. Explanations clear and well illustrated. (Good reinforcement).
2. Laboratory dissection of controls very good.
3. Very worth while for us.
4. Appreciate getting well-illustrated brochure on instruments' mechanisms.
5. Foxboro very helpful to instructors with brochures and large illustrated panels for those already teaching instrumentation.
6. Kerstner very knowledgeable.

August 16, 1966
1. Very interesting and useful
2. Literature and bibliography much appreciated.
3. Excellent exposure to more sophisticated aspects of instrumentation.
4. "Thank you" for lunch.
5. Very Comfortable Chairs
6. Descriptions on plant tour very audible.

August 19, 1966
1. This seems to be one of the best received lectures from industry yet. Class was very enthusiastic.
2. The presentation was much better organized than some of the previous industrial visitor presentations.

August 22, 1966
1. Helpful information
2. Knowledgeable speaker
3. Excellent presentation
4. Interesting
5. Good down to earth lecture
6. Answered many questions

The above items are quotes from the 'comment' sheet circulated through the class.

Comment: Some of the group is very interested in getting a transcript from PCC. They ask that you discuss this tomorrow morning.

August 23, 1966
1. Certainly an expert or specialist in his field.
2. An excellent presentation with a nice blending of technical and practical aspects of Acoustics.
3. Exposure to little known factor in instrumentation fine-------------
4. Interesting subject.
5. Literature rec'd and appreciated
6. High quality equipment demo. was beneficial
7. Good presentation

August 24, 1966
1. Excellent
2. Repetition of a great deal that had been covered in class by Friebane (not necessarily negative)
3. When material of day's work is covered class should be free to depart.
4. Lecturers on occasion could have spoken a little louder.
5. No negative factors
6. Too much circuitry
7. Most information was redundant
8. Too detailed
9. Poorly presented, not enough enthusiasm
11. Didn't have enough time