CONCEPT LEARNING AND PROBLEM SOLVING--A BIBLIOGRAPHY, 1950-64.
KLAUSMEIER, HERBERT J. * AND OTHERS
UO81702 UNIV. OF WIS., MADISON CAMP., RES. AND DEV. CTR.
CRP-2850-TR-1
BR-5-0216-TR-1
TR-1
- 65 OEC-5-10-154
EDRS PRICE MF-$0.16 HC-$3.48 87p.

*CONCEPT FORMATION, LEARNING PROCESSES, CONCEPT TEACHING,
FUNDAMENTAL CONCEPTS, *TAXONOMY, *PROBLEM SOLVING,
TEACHING TECHNIQUES, *BIBLIOGRAPHY, PUBLICATIONS, PERIODICALS,
*RESEARCH AND DEVELOPMENT CENTERS, MADISON, WISCONSIN

THIS TECHNICAL REPORT PRESENTS A DEFINITION OF CONCEPT, A TAXONOMY
OF VARIABLES SIGNIFICANT IN CONCEPT LEARNING, AND A BIBLIOGRAPHY OF
ARTICLES DEALING WITH CONCEPT LEARNING AND PROBLEM SOLVING. A TOTAL
OF 46 PERIODICALS SELECTED FOR SCANNING WERE THOSE KNOWN TO CONTAIN
ARTICLES CONCERNED WITH PROBLEM SOLVING AND CONCEPT FORMATION. THE
TEXT OF THESE ARTICLES IN ALL ISSUES FROM 1950 TO 1964 WAS EXAMINED
TO DETERMINE WHETHER THE ARTICLE MET ALL OF THE ESTABLISHED CRITERIA
FOR INCLUSION IN THE BIBLIOGRAPHY. THE BIBLIOGRAPHY WAS PRESENTED IN
THREE SECTIONS--(1) CONCEPT-LEARNING ARTICLES, ALPHABETICALLY BY
AUTHOR, (2) PROBLEM-SOLVING ARTICLES, ALPHABETICALLY BY AUTHOR, AND
(3) ALL ARTICLES BY JOURNAL AND YEAR. RESPONSES TO THE DEFINITION,
TAXONOMY, AND LIST OF ARTICLES WERE INVITED. (JC)
Technical Report No. 1

CONCEPT LEARNING AND PROBLEM SOLVING
A BIBLIOGRAPHY, 1950-1964

by Herbert J. Klausmeier,
J. Kent Davis, James G. Ramsay,
Wayne C. Fredrick, and Mary H. Davies

with the assistance of
Carin Cooper, William L. Goodwin, Daniel Lynch,
Deborah M. Stewart, Suzanne Wiviott, and Daniel G. Woolpert

Research and Development Center
for Learning and Re-Education
University of Wisconsin
Madison, Wisconsin

ED010201

1965

The research and development reported herein was performed pursuant to a contract with the United States Office of Education, Department of Health, Education, and Welfare, under the provisions of the Cooperative Research Program.

Center No. C-03 / Contract OE 5-10-154
POLICY BOARD OF THE CENTER

Max R. Goodson, Professor of Educational Policy Studies
Co-Director, Administration

Herbert J. Klausmeier, Professor of Educational Psychology
Co-Director, Research

Lee S. Dreyfus, Professor of Speech and Radio-TV Education
Coordinator of Television Activities

John Guy Fowlkes, Professor of Educational Administration
Advisor on Local School Relationships

Chester W. Harris, Professor and Chairman of Educational Psychology
Associate Director, Research

Burton W. Kreitlow, Professor of Agricultural and Extension Education
Coordinator of Adult Re-Education Activities

Julian C. Stanley, Professor of Educational Psychology
(on leave September 1, 1965 - August 31, 1966)

Lindley J. Atkin, Dean of the School of Education
Advisor on Policy

Henry Van Engen, Professor of Mathematics and Curriculum & Instruction
Associate Director, Development
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Journals Scanned</td>
<td>v</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Definition of a Concept</td>
<td>3</td>
</tr>
<tr>
<td>III. Taxonomy of Variables in Concept Learning</td>
<td>7</td>
</tr>
<tr>
<td>IV. Concept-Learning Bibliography</td>
<td>9</td>
</tr>
<tr>
<td>V. Problem-Solving Bibliography</td>
<td>29</td>
</tr>
<tr>
<td>VI. Combined Bibliography by Journal by Year</td>
<td>41</td>
</tr>
<tr>
<td>Author Index</td>
<td>75</td>
</tr>
</tbody>
</table>
LIST OF JOURNALS SCANNED

Acta Psychologica
American Journal of Mental Deficiency
American Journal of Psychology
American Psychologist
American Sociological Review
Annual Review of Psychology
Behavioral Science
British Journal of Educational Psychology
British Journal of Psychology
Canadian Journal of Psychology
Child Development
Childhood Education
Education
Educational and Psychological Measurement
Elementary School Journal
Genetic Psychology Monographs
Harvard Educational Review
Journal of Abnormal and Social Psychology
Journal of Applied Psychology
Journal of Clinical Psychology
Journal of Comparative and Physiological Psychology
Journal of Consulting Psychology
Journal of Educational Psychology
Journal of Educational Research
Journal of Experimental Child Psychology
Journal of Experimental Education
Journal of Experimental Psychology
Journal of General Psychology
Journal of Genetic Psychology
Journal of Nervous and Mental Disease
Journal of Personality
Journal of Psychology
Journal of Research in Science Teaching
Journal of Social Psychology
Journal of Verbal Learning and Verbal Behavior
Perceptual and Motor Skills
Psychological Bulletin
Psychological Monographs: General and Applied
Psychological Records
Psychological Reports
Psychological Review
Psychonomic Science
Quarterly Journal of Experimental Psychology
Review of Educational Research
Scandinavian Journal of Psychology
Science Education

1 Vols. 22-24 not available
2 Vol. 29 not available
INTRODUCTION

The main purpose of this technical report is to present a definition of concept, a taxonomy of variables significant in concept learning, and a bibliography of articles dealing with concept learning and problem solving. We hope that other researchers in the area of concept learning and problem solving will inform us concerning the usefulness and completeness of this material.

One primary interest of the Center is to extend knowledge about the learning and teaching of concepts. One step in achieving this goal is to catalog and abstract the literature which is concerned with concept learning and problem solving. This cataloging and abstracting began immediately after the Center was established in September, 1964.

As the task of cataloging and abstracting progressed\(^1\) it became apparent that a definition of concept was needed in order to specify more exactly what is to be included in this domain. No definition of concept appeared adequate as a basis for organizing present knowledge and starting new experiments. An attempt was made, therefore, to define concept in terms of attributes. The definition of concept according to attributes, which is still in a formative stage, may be used by the psychological experimenter or the educational researcher to gain perspective for his own definition. Our definition according to attributes may also be helpful in delimiting a highly significant field of investigation which is now characterized by semantic confusion. The following section of this report is devoted to the analysis of concepts in this way.

Concurrently with the preceding activity, the development of a taxonomy of variables in concept learning was begun. The identification of these variables is essential as a framework for conducting long-term, programmatic research on concept learning and for organizing what is already known. Only as the relevant variables are identified can experiments be conducted to find functional relationships among the variables.

In setting up the taxonomy of variables we have drawn from our own experimentation, the research reports of others, and the attempts of others to classify variables in concept identification. In the Annual Review of Psychology of 1961, Tracy S. Kendler reviewed research under four main headings: stimulus factors, motivation and reward factors, response factors, and genetic factors. In 1961, this system of factors or variables appeared reasonably adequate. However, it will be noted in the subsequent section that we have departed considerably from this 1961 arrangement.

Since any taxonomy is subject to revision as experimentation progresses, we continuously check our taxonomy of variables against the review of research. This enables us to determine the extent to which the taxonomy is sufficiently specific and complete. We are continuously adding to the list of variables and reorganizing the taxonomy. The taxonomy may help the researcher determine where his research fits into a larger pattern.

In our search of the literature, articles pertaining to problem solving and concept formation were first identified through examining Psychological Abstracts and Education Index. Because

\(^1\)At this time approximately 80% of the articles dealing with concepts are abstracted, and we are relating these articles to the taxonomy. Decisions are yet to be made about producing other technical publications based on these abstracts.
spot checks of these extensive lists indicated that some relevant articles were not included, a systematic and comprehensive search of the journals was deemed necessary.

The 46 periodicals selected for scanning (see page v) were those known to contain articles concerned with problem solving or concept formation. The text of each article in all issues from 1950 through 1964 was examined to determine whether the article met all of the established criteria. For inclusion in the bibliography, the article was to (1) include the term(s) "concept," "concept formation," "concept identification," "concept attainment," "conceptual learning," or "problem solving" in either (a) the title, (b) a subheading, (c) an abstract of the article, or (d) the summary or conclusion; (2) be a controlled experiment or a theoretical article discussing an integrating empirical research; (3) use human subjects only.

One difficulty encountered in working with any system of established criteria is that strict adherence to definite standards presents problems of judgment. Much time was spent considering the final acceptance of the entries which appear here.

The list of articles on concept learning and problem solving which have appeared in the specified journals during the period 1950-1964 should be helpful to anyone who wishes to estimate the scope of the entire field. Also, since this list is more easily used than are most library reference works, including Psychological Abstracts, it is an efficient guide for the experimenter's library search.

The bibliography is presented in three sections: concept-learning articles alphabetically by author; problem-solving articles alphabetically by author; and all articles by journal by year. Articles in journals having more than one volume per year are arranged by volume within year. In the last section the letters C and P identify the classification of each article.

Since we are interested in securing feedback from users of this report, we invite responses to the following:

A. Definition of concept.
1. What are the possible revisions in our definition of a concept in terms of its attributes?
2. Can individuals who agree upon the attributes identify concepts reliably in subject matter fields such as mathematics, biology, history, and English?

B. Taxonomy of variables.
1. What specific variables should be added to or deleted from the list?
2. Are the main variables the most critical and powerful in concept learning?
3. Can some other system be devised which will indicate more clearly relationships among the sets of variables?

C. List of articles.
1. In view of the working criteria, what additions or omissions of articles can be made?
2. What advantages are there in providing a cross-reference of articles according to journals?

The preceding questions indicate the complexities of the problem which arise when one attempts to determine what is known in a field such as concept learning and to organize it into a meaningful pattern. (It suggests also the possibility of cooperative efforts. In this connection, a project of the U.S. Office of Education is to develop a thesaurus of educational terminology. Also, a national system of information storage and retrieval is being developed by the U.S. Office of Education.) At present, we are unaware that an attempt such as this has been made to list the variables and to identify terminology by which knowledge about concept learning may be classified. Anyone who wishes to cooperate with the Research and Development Center in this effort is cordially invited to do so.
DEFINITION OF A CONCEPT

In the psychological and educational literature one finds such definitions of concept as:

"The concept deals with the meaning an individual attaches to a word or other symbol, rather than with the mere fact that any given symbol is associated with any given object." (Woodruff, A. D. The psychology of teaching. New York: Longmans, Green, 1951, 285.)

"Concept is... a common response to dissimilar stimuli." (Kendler, Tracy S. Concept formation. In Annual review of psychology. Stanford: Stanford University Press, 1961, 447.)

"A concept may be regarded as a verbal habit-family formed usually on the basis of a class of stimulus objects having identical elements." (Staats, A. W. Verbal habit-families, concepts, and the operant conditioning of word classes. Psychol. Rev., 1961, 68, 195.)

A concept is the recognition of "a group of situations which have a resemblance or common element. We usually give a name or label to the group." (Cronbach, L. J. Educational psychology. New York: Harcourt, 1954, 281.)

These excerpts of definitions indicate why one may become confused when first attempting to delimit what is meant by concept. Let us introduce our definition by re-emphasizing that the term concept means many different things to many different individuals. We recognize the complex nature of concepts and have attempted to define a concept in terms of its attributes. (Some may prefer the term dimensions.) Anything that is a concept has the following attributes:

I. Psychological meaningfulness
II. Intrinsic, functional, or formal properties
III. Abstractness
IV. Inclusiveness
V. Generality
VI. Structure
VII. Function

I. PSYCHOLOGICAL MEANINGFULNESS

An individual's concept of anything is a product of his thought. It is a construct somewhat unique to him. Thus, the concept of animals is very different for a child of 5 from what it is later at age 10 or again at age 25 when he completes his Ph. D. in zoology. From the standpoint of psychological meaningfulness, a concept is the meaningful associations that the individual has formed about objects or events that enable him to categorize these objects or events as belonging to the same class and to associate relevant observable and unobservable attributes to them. Psychologically, a concept that the individual possesses is a network of inferences or meaningful associations rather than merely the responses that are common to otherwise dissimilar objects or events.

Here we may distinguish between concepts and pre-concepts. A child may observe objects and may be able to classify them properly without being able to state the word which represents the concept. For example, a child puts triangular, circular, and square objects into proper groups but does not say the words triangle, circle or square. The child has a pre-concept of circle, square, and triangle. The distinction between pre-concept and concept is one of preference. However, much confusion can probably be avoided by specifying that the individual must be able to use the vocabulary appropriate for the concept.

II. INTRINSIC, FUNCTIONAL, AND FORMAL PROPERTIES

Many properties of objects can be experienced directly through the sensory organs; others can be experienced with instruments of various types. Observable properties which allow otherwise dissimilar objects or events to be put into one category might be called intrinsic properties. For example, all animals having backbones belong to the sub-phylum vertebrata. Similarly, animals that are warm-bloced, have mammary glands, and have hair are mammals. A liquid possessing certain properties is called water, regardless of where it is found. In the physical world these intrinsic properties of objects provide one basis for categorizing and relating. These are the so-called common elements or qualities, abstracted from the exemplars, that comprise the concept.

Man invents many means of classifying things as similar. For example, strawberries, bread, and ice cream are all called food. Although they do not have perceptually common properties, they serve a similar function. (The intrinsic properties of each, of course, can be specified.) A nail, a metal clamp, and a piece of card can be used to hold two pieces of wood together. Basing the classification of objects on the function or use of the objects is widespread.

Man has, however, invented systems (having no intrinsic properties) such as the number system and the alphabet. Both the Arabic and the binary system have properties, but these are the products of man's inventiveness. Yet the concepts in the Arabic number system do have formal properties that are agreed upon by mathematicians. As a matter of fact, there is probably more agreement concerning the properties of concepts in mathematics than there is in botany or zoology. These man-made formal properties are as usable as intrinsic properties in determining class inclusion.

At this point, it is apparent that there is some overlap between the attribute of psychological meaningfulness and the attribute of intrinsic, functional, or formal properties. The primary distinction is this. The latter can be defined by individuals who know most about the concept. We have a clearly defined concept to the extent that the men who know most about something can agree on its properties. Others who know very little about the specific properties do have a concept, but it is incomplete and inadequate in terms of expert knowledge. The properties, then, are objective while meaningfulness is subjective.

In connection with the intrinsic, functional, and formal properties of concepts, we can observe that nouns in the English language represent concepts. In mathematics, for example, nouns such as one, two, number, fraction, addition, and multiplication represent concepts. Many adjectives also embody concepts. In general the adjectives related to the various sensory modalities embody concepts. Green, yellow, noisy, musical, bitter, sweet, hot, cold, rough, and smooth represent adjectival concepts. Concepts are also embodied in other parts of speech including some verbs, prepositions, and pronouns.

III. ABSTRACTNESS

Concepts range on a continuum from concrete to abstract. On the more concrete end are the concepts for which examples are readily available to the senses. Towards the abstract are concepts represented in purely verbal terms, completely removed from any actual definite referents. For example, one has a concept of plant based on many experiences with many individual plants, whereas, the concept eternity has no similar concrete referents. Concepts in the plant and animal kingdom generally have exemplars; that is, one can find examples of the concept. In mathematics one can create representations of a concept such as point but cannot provide an observable exemplar of it.
IV. INCLUSIVENESS

Concepts range in inclusiveness from one member or exemplar to an unspecified number of exemplars. The identity concept includes one exemplar only. Each person is an identity concept because he is unique; a person, though changing in some characteristics with age, is still recognized as the same individual. Though the exemplars differ, they are classed as the same thing. On the other hand, there are countless grains of sand, blades of grass, drops of water.

V. GENERALITY

The most specific concepts include exemplars of one class only; general concepts include exemplars drawn from higher superordinate classes embodying many subordinate classes. Living things and inanimate objects are two highly general concepts. The concept dog has exemplars of the dog category only, whereas, the concept vertebrate applies to many lower-order categories.

Concepts are arranged hierarchically into conceptual schemes. Within the same conceptual scheme, the more general the concept, the more inclusive it is. However, the most general concept in one hierarchical arrangement may include fewer exemplars than the least general in another hierarchy.

VI. STRUCTURE

The properties of a concept are related to one another in some fashion. This relationship may be designated as the structure of the concept. Bruner, for example, classifies concepts as conjunctive, disjunctive, and relational. Synonyms to conjunctive are joining and connective. A conjunctive concept is one in which all the values of the attributes are present at the same time. For example, a sentence has a subject and a predicate. If either is missing, the group of words is not a sentence. Similarly, some of the attributes of mammal are warm-blooded, having mammary glands, and possessing hair. If any one of these is not present, an animal is not a mammal. Many concepts which constitute classification or categorizing schemes are of the conjunctive type.

Disjunction implies separation, not joining. A disjunctive concept is one in which the attributes are not present in all exemplars. For example, a strike in baseball is a type of disjunctive concept because it can occur in a number of different ways, yet each is called a strike. A strike may be a ball thrown in the strike zone and called by the umpire. It may be a foul tip, or it may be a ball swung at but missed. At a more abstract level, Hindus, Moslems, Jews, and Christians are included in the concept religion although they differ markedly in their conceptions of the deity and worship.

Relational concepts, the third type, involve dependencies and are embodied in words such as taller, older, wider, between, and down. For example, a person at age 40 is older than another at 30 but younger than one at 50. Geographic concepts such as south and north are relational. Relational concepts are difficult to acquire, in part because the intrinsic attributes cannot be specified independently. We cannot give the attributes of south and younger except in terms of north and older.

VII. FUNCTION

Concepts serve two main functions in human behavior: as responses to objects and events by which they are classified or categorized, and as mediators between stimulating events and subsequent behavior. Thus far, we have been concerned mainly with specifying attributes of concepts that clarify the response function. Consider the mediation function of concepts.

Assume that one has already developed some concepts. Having concepts enables the individual to deal more effectively with the physical and social world by simplifying it. For example, if a person has the concept book then he treats all objects which fit his concept of book as belonging to the same classification or set. All other objects may be treated as non-books. This simplifies the environment in that one no longer has to treat each book object as a specific new entity. Instead, one deals with entire classes of objects and events. In other words, concepts serve to mediate between

stimulating events and subsequent behavior.

Concepts mediate in other ways. Knowing the attribute of a class concept facilitates recognizing other exemplars of the same class when they are encountered for the first time. For example, if one knows the attributes of a noun and has specified some examples of nouns he will have little difficulty in properly classifying words in a sentence as noun or not-noun. The mediation aspect of concepts thus enables the individual to learn more efficiently.

Concepts serve as mediators, in another way. Some concepts involve values and thus influence our behavior towards the exemplars of the concept. For example, murderer and thief have at least one attribute involving a value, namely, violation of the laws of society. Our understanding of these concepts affects our behavior, specifically our reactions to those who fit the category. When we know that a murderer is at large, we do not pick up a hitchhiker. These few examples show how concepts mediate the physical and social world, helping to make it less complex, enabling us to learn more efficiently, and affecting our behavior where values are concerned.

OTHER WAYS FOR ORGANIZING CONCEPTS

This definition of concepts in terms of specified attributes is, to the best of our knowledge, a first attempt in this direction. There have been many attempts to organize and classify concepts according to subject matter. For example, one system puts all concepts in five classes according to content—events, processes, and behavior; people; sensory substances; dimensions and spatial and quantitative relationships; and personal feelings within persons. In the recent Roget's Thesaurus, the eight main classes for organizing more discrete information are abstract relations, space, physics, matter, sensations, intellect, volition, and affections. At present we are unable to offer a better classification of concepts according to content. However, a better content classification is urgently needed, especially to identify related concepts and conceptual schemes in school subject matter.
TAXONOMY OF VARIABLES IN CONCEPT LEARNING

I. Stimulus Variables Related to:
 A. Concepts
 1. Number of concepts to be learned per trial or block
 2. Time per concept
 3. Order of difficulty of concepts
 4. Level of concepts in hierarchy
 5. Perceptual obviousness of concepts
 6. Structure of concepts
 7. Meaningfulness of concepts
 8. Affective content of concepts
 9. Novelty of concepts
 10. Similarity of concepts
 B. Dimensions
 1. Number of values per dimension
 2. Discriminability of values
 3. Number of relevant dimensions
 4. Number of irrelevant dimensions
 5. Sense modality by which dimensions are perceived
 6. Relative salience of dimensions
 7. Subjectivity of dimensions
 C. Instances
 1. Time per instance
 2. Order of instances
 3. Physical location of instances
 4. Number of instances presented
 5. Homogeneity of instances
 6. Associative rank of instances
 7. Number of dimensions varied from instance to instance
 8. Ratio of positive to negative instances
 9. Discriminability of positive from negative instances
 D. Presentation of information
 1. Gross method of instance presentation
 2. Material used to portray stimulus information
 3. Stimulus labelability
 4. Availability of previously presented information
 5. Redundancy of information

II. Instruction Variables Related to:
 A. General purpose of instructions
 1. Recall of relevant subordinate abilities
 2. Provide advance organizers
 3. Guide thought process
 4. Incorporate an instructional set
 5. Arouse searching orientation
 6. Provide mediators
 B. Specific information in instructions
 1. Number of examples used
 2. Homogeneity of examples
 3. Amount of explanation of stimulus materials
 4. Amount of explanation of principles
 5. Amount of irrelevant information
 6. Information about type of concept
 7. Information about number of relevant dimensions
 8. Information about performance measure(s)
 C. Presentation
 1. Type of exposition
 2. Type of program
 3. Mode of presentation
 4. Time allotted

III. Response Variables Related to:
 A. Overt responses
 1. Mode of response
 2. Delay of response
 3. Time for response
 4. Activity level of responder
 5. Variance of response dominance
 6. Number of sorting categories
 B. Inferred responses
 1. Use of mediators
 2. Type of mediators
 3. Use of strategies
 4. Type of strategies
 5. Level of awareness
 6. Type of hypotheses formed
 7. Level of cognitive functioning
C. Assessment of responses
 1. Measure of learning and retention
 2. Types of errors
 3. Transfer tasks

IV. Organismic Characteristics
 A. Cognitive
 1. Previous achievement or experience
 2. General intellectual ability
 3. Specific abilities
 4. Cognitive style
 B. Psychomotor
 C. Affective
 1. Interests
 2. Attitudes
 3. Values
 4. Emotional state
 5. Need states
 6. Personality integration
 D. Physical
 1. Age
 2. Sex
 3. Handicaps
 E. Socio-cultural
 1. Ethnic group
 2. Socio-economic level
 3. Occupational group
 4. Neighborhood
 5. Family setting

V. Conditions of Learning Related to:
 A. Practice
 1. Distribution of practice
 2. Amount of pretraining
 3. Amount of practice in mastering task
 4. Amount of overlearning
 5. Prompting on practice trials
 B. Feedback
 1. Delay of feedback
 2. Intensity of feedback
 3. Probability of feedback
 4. Probability of misinformative feedback
 5. Post feedback interval
 C. Experimenter-subject interaction, teacher-pupil interaction
 D. Motivation
 1. Peer-group influence
 2. Aroused value of task
 3. Solubility of task
 4. Competition
 5. Cooperation
 6. Reward and punishment
 7. Set to learn
 E. Sequence
 1. Interpolated activities
 2. Induction-deduction
 3. Retroactive-proactive inhibition models
CONCEPT-LEARNING BIBLIOGRAPHY

Beach, L. R. Cue probabilism and inference behavior. Psychol. Monogr., 1964, 78, No. 5 (Whole No. 582).

Beach, L. R. Recognition, assimilation, and identification of objects. Psychol. Monogr., 1964, 78, No. 6 (Whole No. 583).

Braine, M. D. S. The ontogeny of certain logical operations: Piaget's formulation examined by nonverbal methods. *Psychol. Monogr.*, 1959, 73, No. 5 (Whole No. 475).

Braun, Jean S. Relation between concept formation ability and reading achievement at three developmental levels. *Child Develop.*, 1963, 34, 675-682.

Butts, D. P. The degree to which children conceptualize from science experience. *J. Res. sci. Teach.*, 1963, 1, 135-143.

Feldman, S. E. Probabilistic hierarchies to

Harrow, M., & Friedman, G. B. Comparing re-
versal and nonreversal shifts in concept formation with partial reinforcement controlled. J. exp. Psychol., 1958, 55, 592-598.

Issacs, I. D., & Duncan, C. P. Reversal and nonreversal shifts within and between dimensions in concept formation. J. exp. Psychol., 1962, 64, 580-583.

Johannsen, W. J. Concept identification under misinformation and subsequent informative feedback conditions. J. exp. Psychol., 1962, 64, 631-635.

Johnson, E. S. An information-processing model of one kind of problem solving. Psychol. Monogr., 1964, 78, No. 4 (Whole No. 581).

Kaplan, R. J. A study of semantic generalization through the use of established conceptual mediations. J. exp. Psychol., 1959, 57, 288-293.

Laughlin, P. R. Speed versus minimum-choice instructions in concept attainment. *J. exp. Psychol.*, 1964, 67, 596.

Levite, M. Mediating processes in humans at the outset of discrimination learning.

Mayzner, M. S. Verbal concept attainment: A function of the number of positive and negative instances presented. J. exp. Psychol., 1962, 63, 314-319.

Podell, Harriet A. Two processes of concept formation. Psychol. Monogr., 1958, 72, No. 15 (Whole No. 468).

Postman, L. Learned principles of organization in memory. Psychol. Monogr., 1954, 68, No. 3 (Whole No. 374).

Rhine, R. J., & Silun, Betsy A. Acquisition and change of a concept attitude as a function of consistency of reinforcement. J. exp. Psychol., 1958, 55, 524-529.

Richardson, J., & Bergum, B. Distributed practice and rote learning in concept formation. J. exp. Psychol., 1954, 47, 442-446.

Smith, Nila B. Reading: Concept development. Education, 1950, 70, 548-553.

Smith, T. A., Jones, L. V., & Thomas, S. Effects upon verbal learning of stimulus similarity, number of stimuli per response, and concept formation. J. verbal Learn. verbal Behav., 1963, 1, 470-476.

Springer, Doris V. Development of concepts related to the clock as shown in young children's drawing. J. genet. Psychol., 1951, 72, 47-54.

Stollberg, R. J. Some concepts basic to an understanding of electricity and electronics. Sci. Educ., 1951, 35, 3-16.

Suppes, P., & Ginsberg, Rose. A fundamental property of all-or-none models, binomial distribution of responses prior to conditioning, with application to concept formation in children. Psychol. Rev., 1963, 70, 139-161.

Tresselt, M. E., & Mayzner, M. S. A further study in the consistency of judgments in categorizing verbal material. *J. Psychol.*, 1959, **47**, 337-341.

Underwood, B. J., & Richardson, J. Verbal concept learning as a function of instructions and dominance level. *J. exp. Psychol.*, 1956, **51**, 229-238.

Wallace, J. Concept dominance, type of feedback, and intensity of feedback as related to concept attainment. *J. educ. Psychol.*, 1964, 55, 159-166.

Wallach, M. A. The influence of classification requirements on gradients of response. *Psychol. Monogr.*, 1959, 73, No. 8 (Whole No. 478).

Wason, P. C. The processing of positive and negative information. *Quart. J. exp. Psychol.*, 1959, 12, 129-140.

Wallach, M. A. The influence of classification requirements on gradients of response. *Psychol. Monogr.*, 1959, 73, No. 8 (Whole No. 478).

Wason, P. C. The processing of positive and negative information. *Quart. J. exp. Psychol.*, 1959, 12, 129-140.

Zaslow, R. W. A study of concept formation in normals, mental defectives, and brain-dam-

BARRATT, E. S. An analysis of verbal reports of solving spatial problems as aid in defining factors. J. Psychol., 1953, 38, 17-25.

BECKMAN, F. H., & STEIN, M. I. A note on the

Burack, B. The nature and efficacy of methods of attack on reasoning problems. Psychol. Monogr., 1950, 64, No. 7 (Whole No. 313).

Cofer, C. N. Reasoning as an associative process: III. The role of verbal responses

Exline, R. V. Effects of need for affiliation, sex, and the sight of others upon initial communications in problem-solving groups. J. Pers., 1963, 31, 541-556.

Fattu, N. A., Mech, E. V., & Kapos, E. Some statistical relationships between selected response dimensions and problem-solving proficiency. Psychol. Monogr., 1954, 68, No. 6 (Whole No. 377).

Fox, D. J., & Lorge, I. The relative quality of decisions written by individuals and by groups as the available time for problem solving is increased. J. soc. Psychol., 1962, 52, 227-242.

Frederiksen, N. Factors in In-basket performance. Psychol. Monogr., 1962, 76, No. 22 (Whole No. 541).

Kettner, N. W., Guilford, J. P., & Christensen, P. R. A factor-analytic study across the domains of reasoning, creativity, and evaluation. Psychol. Monogr., 1959, 73, No. 9 (Whole No. 479).

Linker, E., & Ross, B. M. Memory and hypothesis in solving alternation problems with random competition. Psychol. Rep., 1963, 12, 783-797.

Meadow, A., Parnes, S. J., & Reese, H. W. Influence of brainstorming instructions and problem sequences on a creative prob-

Merrifield, P. R., Guilford, J. P., Christensen, P. R., & Frick, J. W. The role of intellectual factors in problem solving. Psychol. Monogr., 1962, 76, No. 10 (Whole No. 529).

Rhine, R. J. The relation of achievement in problem solving to rate and kind of hypotheses produced. J. exp. Psychol., 1959, 57, 253-256.

Safren, Miriam A. Associations, sets, and the solution of word problems. J. exp. Psychol., 1962, 64, 40-45.

Smith, Dorothy B., & Roth, R. M. Problem solving behavior of preschool children in a spontaneous setting. *J. genet. Psychol.*, 1960, 87, 139-143.

Solley, C. M. Problem solving difficulty as a function of deviation of "meaning" of physical cues from expected "meaning." *J. gen. Psychol.*, 1957, 57, 165-171.

Stone, D. R. Competitive and cooperative set

COMBINED BIBLIOGRAPHY
BY JOURNAL BY YEAR

Acta Psychologica

<1950
Szekely, L. Knowledge and thinking. 7, 1-24. P*

<1954
vanParreren, C. F. A viewpoint in theory and experimentation on human learning and thinking. 10, 351-380. C**

<1957
Saugstad, P., & Raaheim, K. Problem solving and availability of functions. 13, 263-278. P

<1958
Saugstad, P. Availability of functions: A discussion of some theoretical aspects. 14, 384-400. P

<1959
Raaheim, K. The ability to name functions for common objects. 16, 267-276. P

<1961
Price-Williams, D. R. A study concerning concepts of conservation of quantities among primitive children. 18, 297-305. C

Rommetveit, R. Perceptual, behavioral and ideational components of discriminatory and conceptual activities. 18, 201-217. C

*In "Problem-Solving Bibliography"

American Journal of Mental Deficiency

<1951
Dolphin, Jane, Cruickshank, W. M. Pathology of concept formation in children with cerebral palsy. 56, 386-392. C

Stacey, C. L., Portnoy,B. A study of concept formation by means of the object sorting test with subnormals. 56, 169-173. C

<1954

<1957

Weatherwax, Joy, Benoit, E. P. Concrete and abstract thinking in organic and non-organic mentally retarded children. 62, 548-553. C

<1958

**In "Concept-Learning Bibliography"
American Journal of Mental Deficiency, 1959

Cutts, R. A. The evaluation of conceptual ability as related to the academic achievement of the educable mentally handicapped. 63, 317-319.

Griffith, B. C., & Spitz, H. H. Some relationships between abstraction and word meaning in retarded adolescents. 62, 247-251.

Iscoe, I., & Giller, D. Areas of concept formation in the mentally retarded. 64, 112-116.

American Journal of Psychology

Hovland, C. I. A set of flower designs for experiments in concept-formation. 66, 140-142.

Frick, J. W., & Guilford, J. P. An analysis of a form of the water jar test. 70, 437-431.

Kolers, P. A. Subliminal stimulation in problem solving. 70, 437-441.

Ray, W. S. Verbal compared with manipulative solution of an apparatus-problem. 70, 289-290.

Solley, C. M., & Messick, S. J. Probability, learning, the statistical structure of concepts, and the measurement of meaning. 70, 161-173.

Staats, A. W. Verbal and instrumental response-hierarchies and their relationship to problem-solving. 70, 442-446.

Talland, G. A. Criteria in conceptual transposition. 70, 263-267.

Adams, Pauline A., & Haire, M. Structural and conceptual factors in the perception of double-cube figures. 71, 548-556.

McGuigan, F. J. Incidental learning in the formation of concepts. 71, 539-547.

Ray, W. S. Generalization among meaningful relations in problem-solving. 71, 737-741.

Royer, P. L. The formation of concepts with non-verbal auditory stimuli. 72, 17-31.

Gerard, E. D. Subliminal stimulation in problem-solving. 72, 121-126.

Osier, Sonia F., & Powell, M. G. Apparatus for the study of discrimination and concept-formation. 73, 627-629.

Johnson, D. M. Formulation and reformulation of figure-concepts. 74, 418-424.

Minis, M., & Barnes, E. J. Learning without awareness and mediated generalization. 74, 425-432.

Walker, C. M., & Bourne, L. E., Jr. The identification of concepts as a function of amount of relevant and irrelevant information. 74, 410-417.

Bourke, L. E., Jr. Factors affecting strategies used in problems of concept formation. 76, 229-238.

Dick, R. D. Formation and generalization of concepts as a function of similarity and amount of training. 76, 607-615.

American Sociological Review

Schuessler, K., & Strauss, A. L. A study of concept learning by scale analysis. 13, 752-762.

Strauss, A. L. The development and transformation of monetary meanings in the child. 17, 275-286.

Moore, O. K., & Anderson, S. B. Search behavior in individual and group problem solving. 19, 702-714.

American Psychologist

Kendler, Tracy S. Concept formation. 12, 447-472.
Behavioral Science

1957

1960
Gyr, J. W. An investigation into, and speculations about, the formal nature of a problem-solving process. 5, 39-59.

Lorge, I., & Solomon, H. Group and individual performance in problem solving related to previous exposure to problem, level of aspiration, and group size. 5, 28-38.

1962
Allen, M. A concept attainment program that simulates a simultaneous-scanning strategy. 7, 247-250.

Wickelgren, W. A. A simulation program for concept attainment by conservative focusing. 7, 243-247.

1963
Travis, L. E. The value of introspection to the designer of mechanical problem solvers. 8, 227-233.

1964
Davis, J. H. The solution of simple and compound word problems. 2, 359-370.

British Journal of Educational Psychology

1957
Berlyne, D. E. Recent developments in Piaget's work. 27, 1-12.

Miller, K. M. Einstellung rigidity, intelligence and teaching methods. 27, 127-134.

1959
Annett, Marian. The classification of instances of four common class concepts by children and adults. 29, 223-236.

Lovell, K. A follow-up study of some aspects of the work of Piaget and Inhelder on the child's conception of space. 29, 104-117.

1960

1961

Lovell, K., & Ogilvie, E. A study of the conservation of weight in the junior school child. 31, 138-144.

Skemp, R. R. Reflective intelligence and mathematics. 31, 45-55.

1962

1963
Jahoda, G. The development of children's ideas about country and nationality. Part I: The conceptual framework. 33, 47-60.

1964
Wittrock, M. C., & Twelker, P. A. Prompting and feedback in the learning, retention and transfer of concepts. 34, 10-18.

British Journal of Psychology

1952
Semeonoff, B., & Laird, A. J. The Vigotsky test as a measure of intelligence. 43, 94-102.
Clay, Hilary M. Changes of performance with age on similar tasks of varying complexity. 45, 7-13.

Hearnshaw, L. S. The psychological study of conceptual thinking. 45, 1-6.

Saugstad, P. Problem-solving as dependent upon availability of functions. 46, 191-198.

Vernon, M. D. Cognitive inference in perceptual activity. 48, 35-47.

Donaldson, Margaret. Positive and negative information in matching problems. 50, 253-262.

Hunter, I. M. L. The solving of five-letter anagram problems. 50, 193-206.

Parsons, C. Inhelder and Piaget's The Growth of Logical Thinking: II. A logician's viewpoint. 51, 75-84.

Saugstad, P., & Raaheim, K. Problem-solving, past experience and availability of functions. 51, 97-104.

Hunter, I. M. L. Further studies on anagram solving. 52, 161-165.

Lovei, L. A follow-up study of Inhelder and Piaget's The Growth of Logical Thinking. 52, 143-154.

Shaffer, L. H. Concept formation in an ordering task. 52, 361-369.

Lovell, K., Mitchell, B., & Everett, I. R. An experimental study of the growth of some logical structures. 53, 175-188.

Wickelgren, W. A. Cues that elicit analytic-deductive methods in concept attainment. 55, 143-154.

Coons, W. H. Abstract ability in schizophrenia and the organic psychoses. 10, 43-50.

Dodwell, P. C. Children's understanding of number and related concepts. 14, 191-205.

Dodwell, P. C. Children's understanding of number concepts: Characteristics of an individual and of a group test. 15, 29-76.

Freibergs, V., & Tulving, E. The effect of practice on utilization of information from positive and negative instances in concept identification. 15, 101-106.

Dodwell, P. C. Relations between the understanding of the logic of classes and of cardinal number in children. 16, 152-160.

Dodwell, P. C. Children's understanding of spatial concepts. 17, 141-161.

Fryatt, M. J., & Tulving, E. Interproblem transfer in identification of concepts involving positive and negative instances. 17, 106-117.

1953

Sigel, I. E. Developmental trends in the abstraction ability of children. 24, 131-144.

1954
Hodges, A. A developmental study of symbolic behavior. 25, 277-280. P

Mott, Sina M. Concept of mother--a study of four- and five-year-old children. 25, 99-106. C

1956

1957
Weinstein, E. A. Development of the concept of flag and the sense of national identity. 28, 167-174. C

1959

Gratch, G. The development of the expectation of the nonindependence of random events in children. 30, 217-227. C

1960
Ervin, Susan M. Training and a logical operation by children. 31, 555-563. C

Griffith, B. C. The use of verbal mediators in concept formation by retarded subjects at different intelligence levels. 31, 633-641. C

Meyer, W. J., & Seidman, S. B. Age differences in the effectiveness of different reinforcement combinations on the acquisition and extinction of a simple concept learning problem. 31, 419-429. C

Mogar, Mariannina. Children's causal reasoning about natural phenomena. 31, 59-65. C

1961
Elkind, D. Quantity conceptions in junior and senior high school students. 32, 551-560. C

Meyer, W. J., & Seidman, S. B. Relative effectiveness of different reinforcement combinations on concept learning at two developmental levels. 32, 117-127. C

1962
Beilin, H., & Franklin, Irene C. Logical operations in area and length measurement: Age and training effects. 33, 607-618. C

Wohlwill, J. F., & Lowe, R. C. Experimental analysis of the development of the conservation of number. 33, 153-167. C

1963
Braun, Jean S. Relation between concept formation ability and reading achievement at three developmental levels. 34, 675-682. C

Feigenbaum, K. D. Task complexity and IQ as variables in Piaget's problem of conservation. 34, 423-432. C

Goldman, A. E., & Levine, M. A developmental study of object sorting. 34, 649-666. C

Lipsitt, L. P., & Serunjian, Sally A. Oddity-problem learning in young children. 34, 201-206. P

Maltz, H. Ontogenetic change in the meaning of concepts as measured by the semantic differential. 34, 667-674. C

Phillips, B. N. Age changes in accuracy of self-perceptions. 34, 1041-1046. C

Smedslund, J. Development of concrete transitivity of length in children. 34, 389-405. C

Weinberg, N. H. Relativism, self-centering, and conceptual level. 34, 433-450. C

Zimiles, H. A note on Piaget's concept of conservation. 34, 691-695. C

1964
Braine, M. D. S. Development of a grasp of transitivity of length: A reply to Smedslund. 35, 799-810. C

Huttenlocher, Janelle. Development of formal reasoning on concept formation problems. 35, 1233-1242. C

Jahoda, G. Children's concepts of nationality: A critical study of Piaget's stages. 35, 1081-1092. C

McConnell, O. L. Perceptual versus verbal mediation in the concept learning of children. 35, 1373-1383. C

Rossi, E. Development of classificatory behavior. 35, 137-142. C

Wallach, Lise, & Sprott, R. Inducing number conservation in children. 35, 1057-1071. C

Youniss, J. Concept transfer as a function of shifts, age, and deafness. 35, 695-700. C

Childhood Education

1950
McSwain, E. T. Discovering meanings in arithmetic. 26, 267-271. C

1953

Martin, W. E. The child in a world of number. 29, 325-327. C

Sherer, Lorraine. Some implications from research in arithmetic. 29, 320-324. C

1954
Lansdown, Brenda. There's more to mathematics than the reckoning. 30, 272-279. C

Nulton, Lucy. Continuing curiosity develops concepts. 31, 179-182. C

Educational and Psychological Measurement, 1960

1957
Schatz, Esther. Arithmetic. 34, 127-131. C

1958

Bingham, A. Problem-solving in all areas of learning. 35, 152-156. P

1961
Trovato, Louise M. Developing number concepts. 37, 226-229. C

1964
Darrow, Helen F. Research: Children's concepts. 40, 247-254. C

Education

1950
Smith, Nila B. Reading: Concept development. 70, 548-558. C

1954
Vinacke, W. E. Concept formation in children of school ages. 74, 527-534. C

1955
Vinacke, W. E. Concepts and attitudes in the perception of words. 75, 571-576. C

1959
Buswell, G. T. Solving problems in arithmetic. 79, 287-290. P

1963
Brady, J. B. Acquiring concepts: A goal of science education. 83, 341-343. C

Educational and Psychological Measurement

1954

1955
Rimoldi, H. J. A technique for the study of problem solving. 15, 450-461. P

1957

1960
Rimoldi, H. J. A. Problem solving as a process. 20, 449-460. P

Baker, F. B. An IPR program for concept attainment. 29, 119-127.

Vanderlinde, L. Does the study of quantitative vocabulary improve problem-solving? 65, 143-152.

Hoffman, H. N. A study in an aspect of concept formation, with subnormal, average, and superior adolescents. 52, 191-239.

Friedman, Gloria. Conceptual thinking in schizophrenic children. 63, 149-196.

Gellert, Elizabeth. Children's conceptions of the content and functions of the human body. 65, 293-405.

Gilbert, J. Conceptual preferences associated with choice of quantitative and nonquantitative college majors. 67, 219-274.

Gellert, Elizabeth. Children's conceptions of the content and functions of the human body. 65, 293-405.

Schulz, R. W. Problem solving behavior and transfer. 30, 61-77.

Cowen, E. L., & Thompson, G. C. Problem solving rigidity and personality structure. 46, 165-176.

Heise, G. A., & Miller, G. A. Problem solving by small groups using various communication nets. 46, 327-335.

Cowen, E. L., & Thompson, G. C. Problem solving rigidity and personality structure. 46, 165-176.

Ross, B. M., Rupel, J. W., & Grant, D. A. Effects of personal, impersonal, and physical stress upon cognitive behavior in a card sorting task. 47, 546-551.

Wesley, Elizabeth L. Perseverative behavior in a concept-formation task as a function of manifest anxiety and rigidity. 48, 129-134.
1954

McGaughran, L. S. Predicting language behavior from object sorting. 49, 183-195. C

Mohsin, S. M. Effect of frustration on problem-solving behavior. 49, 152-155. P

1955

Eisman, Bernice S. Attitude formation: The development of a color-preference response through mediated generalization. 50, 321-326.

Forster, Nora C., Vinacke, W. E., & Digman, J. M. Flexibility and rigidity in a variety of problem situations. 50, 211-216. P

Harway, N. I. Einstellung effect and goal-setting behavior. 50, 339-342. P

Levine, D. Problem-solving rigidity and decision time. 50, 343-344. P

Webb, W. W. Conceptual ability of schizophrenics as a function of threat of failure. 50, 221-224. C

Rokeach, M., McGovney, W. C., & Denny, M. R. A distinction between dogmatic and rigid thinking. 51, 87-93. P

1956

Back, K. W. The Einstellung test and performance in factual interviewing. 52, 28-32. P

Gollin, E. S., & Rosenberg, S. Concept formation and impressions of personality. 52, 39-42. C

Raush, H. L. Object constancy in schizophrenia: The enhancement of symbolic objects and conceptual stability. 52, 231-234. C

Chapman, L. J. Distractibility in the conceptual performance of schizophrenics. 53, 286-291. C

Nass, M. L. The effects of three variables on children's concepts of physical causality. 53, 191-196. C

1957

Chapman, L. J., & Taylor, Janet A. Breadth of deviate concepts used by schizophrenics. 54, 118-123. C

Davis, R. H., & Harrington, R. W. The effect of stimulus class on the problem-solving behavior of schizophrenics and normals. 54, 126-128. P

1958

Ainsworth, L. H. Rigidity, insecurity, and stress. 56, 67-74. P

Chapman, L. J. Intrusion of associative responses into schizophrenic conceptual performance. 56, 374-379. C

Cavanaugh, D. K. Improvement in the performance of schizophrenics on concept formation tasks as a function of motivational change. 57, 8-12. C

1959

Gewirtz, Hava B. Generalization of children's preferences as a function of reinforcement and task similarity. 58, 111-118. P

Hoffman, L. R. Homogeneity of member personality and its effect on group problem-solving. 58, 27-32. P

Burstein, A. G. Primary process in children as a function of age. 59, 284-286. C
Faust, W. L. Group versus individual problem-solving. 59, 68-72.

Shaw, M. E. A note concerning homogeneity of membership and group problem solving. 60, 448-450.

Hoffman, L. R., & Maier, N. R. F. Quality and acceptance of problem solutions by members of homogeneous and heterogeneous groups. 62, 401-407.

Sarason, I. G. The effects of anxiety and threat on the solution of a difficult task. 62, 165-168.

Feffer, M. H. The influence of affective factors on conceptualization in schizophrenia. 63, 588-596.

Moss, H. ... The influences of personality and situational cautiousness on conceptual behavior. 63, 629-635.

Hoffman, L. R., Harburg, E., & Maier, N. R. F. Differences and disagreement as factors in creative group problem solving. 64, 206-214.

Silverman, L. H., & Silverman, Doris K. Ego impairment in schizophrenia as reflected in the object sorting test. 64, 381-385.

Moriarty, D., & Katz, S. L. Concept attainment of schizophrenics on materials involving social approval and disapproval. 65, 355-364.

Knight, K. E. Effect of effort on behavioral rigidity in a Luchins water jar task. 66, 190-192.

Pishkin, V., & Blanchard, R. J. Stimulus and social cues in concept identification of schizophrenics and normals. 67, 454-463.

Podell, Harriet A., & Podell, J. E. Quantitative connotation of a concept. 67, 509-513.

Hoffman, L. R., & Maier, N. R. F. Valence in the adoption of solutions by problem-solving groups: Concept, method, and results. 69, 264-271.

Nass, M. L. The deaf child's conception of physical causality. 69, 669-673.

Turnure, J., & Zigler, E. Outer-directedness in the problem solving of normal and retarded children. 69, 427-436.

Journal of Applied Psychology

1953
Torrance, E. P. Methods of conducting critiques of group problem-solving performance. 37, 394-398.

Gaier, E. L. Technique of problem solving as a predictor of achievement in a mechanics course. 39, 416-418.

Smith, E. E., & Kight, S. S. Effects of feedback on insight and problem solving efficiency in training groups. 43, 209-211.

1960

1961

1964
Brilhart, J. K., & Jochem, Lucrene M. Effects of different patterns on outcomes of problem-solving discussion. 48, 175-179.

Journal of Clinical Psychology

1950
Norman, R. D., Baker, C. A., & Doehring, D. G.
Brownfield, C. A. Formation and dissolution of the Einstellung phenomenon in a delinquent population. 20, 74-79.

Pishkin, V., & Wolfgang, A. Electromyographic gradients in concept identification with numbers of irrelevant dimensions. 20, 61-67.

Zaslow, R. W. A new approach to the problem of convergent thinking in schizophrenia. 14, 335-339.

Fey, Elizabeth T. The performance of young schizophrenics and young normals on the Wisconsin Card Sorting Test. 15, 311-319.

Siegman, A. W. The effect of manifest anxiety on a concept formation task, a nondirected learning task, and on timed and untimed intelligence tests. 20, 176-178.

Tutko, T. A., & Sechrest, L. Conceptual performance and personality variables. 26, 481.

Ball, T. S. Perceptual concomitants of conceptual reorganization. 28, 523-528.

Howell, W. J. Concept formation of work-study skills by use of autobiographies in grade four. 44, 257-265.

Shores, J. H., & Saupe, J. L. Reading for problem-solving in science. 44, 149-158.

Cross, K. Patricia, & Gaier, E. L. Technique in problem-solving as a predictor of educational achievement. 46, 193-206.

Lorge, I., Tuckman, J., Aikman, L., Spiegel, J., & Moss, Gilda. Problem-solving by teams and by individuals in a field setting. 46, 160-166.

Lorge, I., Tuckman, J., Aikman, L., Spiegel, J., & Moss, Gilda. Solutions by teams and by individuals to a field problem at different levels of reality. 46, 17-24.

Maltzman, I., Eisman, E., & Brooks, L. O. Some relationships between methods of instruction, personality variables, and problem-solving behavior. 47, 71-78.

Della-Piana, G. M. Searching orientation and concept learning. 48, 245-253.

Ackerman, W. I., & Levin, H. Effects of training in alternative solutions on subsequent problem solving. 49, 239-244.

Bensberg, C. J., Jr. Concept learning in mental defectives as a function of appropriate and inappropriate "attention sets." 49, 137-143.

Tyler, Bonnie B. Expectancy for eventual success as a factor in problem solving behavior. 49, 166-172.
Parnes, S. J., & Meadow, A. Effects of "brainstorming" instructions on creative problem solving by trained and untrained subjects. 50, 171-176.

Harootunian, P & Tate, M. W. The relationship of certain selected variables to problem solving ability. 51, 326-333.

Hudgins, B. B. Effects of group experience on individual problem solving. 51, 37-42.

Sax, G. Concept acquisition as a function of differing schedules and delays of reinforcement. 51, 32-35.

Parnes, S. J. Effects of extended effort in creative problem solving. 52, 117-122.

Runquist, W. M., & Hutt, Valorie H. Verbal concept learning in high school students with pictorial and verbal representation of stimuli. 52, 108-111.

Shore, E., & Sechrest, L. Concept attainment as a function of number of positive instances presented. 52, 303-307.

Johnson, D. M. Serial analysis of verbal analogy problems. 52, 86-88.

Braley, L. S. Strategy selection and negative instances in concept learning. 54, 154-159.

Furth, H. G. Conceptual discovery and control on a pictorial part-whole task as a function of age, intelligence, and language. 54, 191-196.

Klausmeier, H. J., Wiersma, W., & Harris, C. W. Efficiency of initial learning and transfer by individuals, pairs, and quads. 54, 160-164.

Olson, L. A. Concept attainment of high school sophomores. 54, 213-216.

Wilder, Nancy E., & Green, D. R. Expression of concepts through writing and drawing and effects of shifting medium. 54, 202-207.

Wittrock, M. C. Response mode in the programming of kinetic molecular theory concepts. 54, 89-93.

Wittrock, M. C. Verbal stimuli in concept formation: Learning by discovery. 54, 183-190.

Yudin, L., & Kates, S. L. Concept attainment and adolescent development. 54, 177-182.

Johnson, P. E. Associative meaning of concepts in physics. 55, 84-88.

Kates, S. L., & Yudin, L. Concept attainment and memory. 55, 103-109.

Wallace, J. Concept dominance, type of feedback, and intensity of feedback as related to concept attainment. 55, 159-166.

Journal of Educational Research

1952

1953
White, H. D. The use of graphic representation in problem-solving at the college level. 47, 35-45.

1956
Burack, B., & Moos, D. Effect of knowing the principle basic to a solution of a problem. 50, 203-208.
Phillips, B. N. Effect of cohesion and intelligence on the problem solving efficiency of small face to face groups in cooperative and competitive situations. 50, 127-132.

1959
Durkin, Dolores. Children's concept of justice: A further comparison with the Piaget data. 52, 252-257.

1960
Chase, C. I. Position of certain variables in the prediction of problem solving in arithmetic. 54, 9-14.

1961
Bloomer, R. H. Concepts of meaning and the reading and spelling difficulty of words. 56, 176-182.
Chase, C. I. An application of levels of concept formation to measurement of vocabulary. 55, 75-78.

1962
Witt, Mary. A study of the effectiveness of certain techniques of reading instruction in developing the ability of junior high-school students to conceptualize social studies content. 56, 198-204.

1964
Barnes, D. L. Consistency of pictorial and multiple-choice responses to orally communicated concepts. 57, 382-383.
Johnson, R. E. Time concepts as related to sex, intelligence and academic performance. 57, 377-379.

Lindgren, H. C., Silva, Ina, Faraco, Itália, & da Rocha, M. S. Attitudes toward problem solving as a function of success in arithmetic in Brazilian elementary schools. 58, 44-45.

Journal of Experimental Child Psychology

1964
Beilin, H. Perceptual-cognitive conflict in the development of an invariant area concept. 1, 208-226.

Journal of Experimental Education

1959

1960

1964
Tate, M. W., & Stanier, Barbara. Errors in judgment of good and poor problem solvers. 33, 371-382.

1966
Scandura, J. M. An analysis of exposition and discovery modes of problem solving instruction. 33, 149-159.
Journal of Experimental Psychology

<>1950
Reed, H. B. The learning and retention of concepts. V. The influence of form of presentation. 40, 504-511.

<>1951
Birch, H. G., & Rabinowitz, H. S. The negative effect of previous experience on productive thinking. 41, 121-125.
Grant, D. A. Perceptual versus analytical responses to the number concept of a Weigl-type card sorting task. 41, 23-29.
Marks, M. R. Problem solving as a function of the situation. 41, 74-80.

<>1952
Grant, D. A., & Curran, Joan V. Relative difficulty of number, form, and color concepts of a Weigl-type problem using unsystematic number cards. 43, 408-413.
Davidson, R. S. The effects of symbols, shift, and manipulation upon the number of concepts attained. 44, 70-79.

<>1953
Hovland, C. I., & Weiss, W. Transmission of information concerning concepts through positive and negative instances. 45, 175-182.
Maltzman, I., & Morrisett, L., Jr. Effects of task instructions on solutions of different classes of anagrams. 45, 351-354.
Bendig, A. W. Twenty questions: An information analysis. 46, 345-348.
Maltzman, I., Fox, J., & Morrisett, L., Jr. Some effects of manifest anxiety on mental set. 46, 50-54.
Shaklee, A. B., & Jones, B. E. Distribution of practice prior to solution of a verbal reasoning problem. 46, 429-434.

<>1954
Baum, Marian H. Simple concept learning as a function of intralist generalization. 47, 89-94.
Richardson, J., & Bergum, B. Distributed practice and rote learning in concept formation. 47, 442-446.
Kendler, H. H., & Vineberg, R. The acquisition of compound concepts as a function of previous training. 48, 252-258.

<>1955
Archer, E. J., Bourne, L. E., Jr., & Brown, F. G. Concept identification as a function of irrelevant information and instructions. 49, 153-164.
Dietze, Doris. The facilitating effect of words on discrimination and generalization. 50, 255-260.
56 Journal of Experimental Psychology, 1956

Kendler, H. H., & Hayzner, M. S., Jr. Reversal and nonreversal shifts in card-sorting tests with two or four sorting categories. 51, 244-248.

Richardson, J. Retention of concepts as a function of the degree of original and interpolated learning. 51, 358-364.

Underwood, B. J., & Richardson, J. Verbal concept learning as a function of instructions and dominance level. 51, 229-238.

Buss, A. H. Reversal and nonreversal shifts in concept formation with partial reinforcements eliminated. 52, 162-166.

Newman, S. E. Effects of contiguity and similarity on the learning of concepts. 52, 349-353.

Rhine, R. J. The effect on problem solving of success or failure as a function of cue specificity. 53, 121-125.

Wohlwill, J. F. The abstraction and conceptualization of form, color and number. 53, 304-309.

Anderson, S. B. Problem solving in multiple goal situations. 54, 297-303.

Bourne, L. E., Jr. Effects of delay of information feedback and task complexity on the identification of concepts. 54, 201-207.

Saugstad, P. An analysis of Maier's pendulum problem. 54, 168-179.

Underwood, B. J. Studies of distributed practice: XV. Verbal concept learning as a function of intralist interference. 54, 32-40.

Faust, W. L. Factors in individual improvement in solving twenty-questions problems. 52, 39-44.

Gomezano, I., & Grant, D. A. Progressive ambiguity in the attainment of concepts on the Wisconsin Card Sorting Test. 55, 621-627.

Harron, M., & Friedman, G. B. Comparing reversal and nonreversal shifts in concept formation with partial reinforcement controlled. 55, 592-598.

Kendler, H. H., & Karasik, A. D. Concept formation as a function of competition between response produced cues. 55, 278-283.

Rhine, R. J., & Silun, Betsy A. Acquisition and change of a concept attitude as a function of consistency of reinforcement. 55, 524-529.

Bourne, L. E., Jr., & Pendleton, B. B. Concept identification as a function of completeness and probability of information feedback. 56, 413-419.

Maltzman, I., Brooks, L. O., Bogarty, W., & Summer, S. The facilitation of problem solving by prior exposure to uncommon responses. 56, 399-406.

Metzger, R. A comparison between rote learning and concept formation. 56, 226-251.

Romanow, Concetta V. Anxiety level and ego-involvement as factors in concept formation. 56, 166-173.

Kaplan, R. J. A study of semantic generalization through the use of established conceptual mediations. 27, 288-293.
Rhine, R. J. The relation of achievement in problem solving to rate and kind of hypotheses produced. 57, 253-256.

Adamson, R. E. Inhibitory set in problem solving as related to reinforcement learning. 58, 280-282.

Bourne, L. E., Jr., & Haygood, R. C. The role of stimulus redundancy in concept identification. 58, 232-238.

Goodnow, Jacqueline J., Rubinstein, I., & Shanks, Betty L. The role of past events in problem solving. 58, 456-461.

Griffith, B. C., Spitz, H. H., & Lipman, R. S. Verbal mediation and concept formation in retarded and normal subjects. 58, 247-251.

Kendler, Tracy S., & Kendler, H. H. Reversal and nonreversal shifts in kindergarten children. 58, 56-60.

Cahill, H. E., & Hovland, C. I. The role of memory in the acquisition of concepts. 59, 137-144.

Fishkin, V. Effects of probability of misinformation and number of irrelevant dimensions upon concept identification. 59, 371-378.

Bourne, L. E., Jr., & Haygood, R. C. Effects of intermittent reinforcement of an irrelevant dimension and task complexity upon concept identification. 60, 371-375.

Mednick, S. A., & Freedman, J. L. Facilitation of concept formation through mediated generalization. 60, 278-283.

Richardson, J. Association among stimuli and the learning of verbal concept lists. 60, 290-298.

Rasmussen, Elizabeth A., & Archer, E. J. Concept identification as a function of language pretraining and task complexity. 61, 437-441.

Runquist, W. N., & Sexton, B. Supplementary report: Spontaneous recovery of problem solving set. 61, 351-362.

Lordahl, D. S. Concept identification using simultaneous auditory and visual signals. 62, 283-290.

Osler, Sonia F., & Trautman, Grace E. Concept attainment: II. Effect of stimulus complexity upon concept attainment at two levels of intelligence. 62, 9-13.

Bulgarelle, Rosaria G., & Archer, E. J. Concept identification of auditory stimuli as a function of amount of relevant and irrelevant information. 63, 254-257.

Glucksberg, S. The influence of strength of drive on functional fixedness and perceptual recognition. 63, 36-41.

Mayzner, M. S. Verbal concept attainment: A function of the number of positive and negative instances presented. 63, 314-319.

Mayzner, M. S., & Tresselt, M. E. Anagram solution times: A function of word transition probabilities. 63, 510-513.

Usler, Sonia F., & Weiss, Sandra R. Studies in concept attainment: III. Effect of instructions at two levels of intelligence. 63, 528-533.

Braley, L. S. Some conditions influencing the acquisition and utilization of cues. 64, 62-66.

Harron, M., & Buchwald, A. M. Reversal and nonreversal shifts in concept formation using consistent and inconsistent responses. 64, 476-481.

Isaacs, I. D., & Duncan, C. P. Reversal and nonreversal shifts within and between dimensions in concept formation. 64, 580-585.

Johannsen, W. J. Concept identification under misinformation and subsequent informative feedback conditions. 64, 631-635.

Mednick, S. A., & Halpern, Sharon. Ease of concept attainment as a function of associative rank. 64, 628-630.

Neisser, U., & Weene, P. Hierarchies in concept attainment. 64, 640-645.

Peterson, Margaret J. Some effects of the percentage of relevant cues and presentation methods on concept identification. 64, 623-627.

Safren, Miriam A. Associations, sets, and the solution of word problems. 64, 40-45.
Harrow, M. Stimulus aspects responsible for the rapid acquisition of reversal shifts in concept formation. 67, 333-334. C

Haywood, R. C., & Bourne, L. R., Jr. Forms of relevant stimulus redundancy in concept identification. 67, 392-397. C

Kendler, H. H., & Woerner, Margaret. Nonreinforcements of perceptual and mediating responses in concept learning. 67, 591-592. C

Laughlin, P. R. Speed versus minimum-choice instructions in concept attainment. 67, 596. C

Petre, R. D. Concept acquisition as a function of stimulus-equivalence pretraining with identical and dissimilar stimuli. 67, 360-364. C

Trabasso, T. R., & Bower, G. Presolution reversal and dimensional shifts in concept identification. 67, 398-399. C

Coleman, E. B. Verbal concept learning as a function of instructions and dominance level. 68, 213-214. C

Fallon, D., & Battig, W. F. Role of difficulty in rote and concept learning. 68, 85-88. C

Ludvigson, H. W., & Caul, W. F. Relative effect of overlearning on reversal and nonreversal shifts with two and four sorting categories. 68, 301-306. C

Peterson, Margaret J., & Colavita, F. B. Strategies, type of solution, and stage of learning. 68, 578-587. C

Journal of General Psychology

Reid, J. W. An experimental study of "analysis of the goal" in problem-solving. 44, 51-69. P

Guetzko, H. An analysis of the operation of set in problem-solving behavior. 45, 219-244. P

Grant, D. A., & Cost, J. R. Continuities and discontinuities in conceptual behavior in a card sorting problem. 50, 237-244. C

Luchins, A. S., & Luchins, Edith H. The Einstellung phenomenon and effortlessness of task. 50, 15-27. P

Baggaley, A. R. Concept formation and its relation to cognitive variables. 52, 297-306. C

Schneiderman, L. Repression and concept formation. 53, 213-219. C

Benedetti, D. T. A situational determiner of the Einstellung-effect. 54, 271-278. P

Cranell, C. W. Transfer in problem solution as related to the type of training. 54, 3-14. P

Hillix, W. A., Lawson, R., & Marx, M. H. Reinforcement of components and of similar patterns as factors in determining hypothesis selection in problem solving. 54, 39-43. P

Mayzner, M. S., & Tresselt, M. E. The effect of the competition and generalization of sets with respect to manifest anxiety. 55, 241-247. P

Bendig, A. W. Practice effects in twenty questions. 56, 261-268. P

Forgus, R. H. The Einstellung effect and variability of behavior. 56, 213-218. P
Richman, J. The effect of the emotional tone of words upon the vocabulary responses of schizophrenics. 56, 95-119.

Cofcr, C. N. Reasoning as an associative process: III. The role of verbal responses in problem solving. 57, 55-68.

Grant, D. A., & Patel, A. S. Effect of an electric shock stimulus upon the concrete behavior of "anxious" and "non-anxious" subjects. 57, 247-256.

Solley, C. M. Problem solving difficulty as a function of deviation of "meaning" of physical cues from expected "meaning." 57, 165-171.

In 1958
Marx, M. H. Some suggestions for the conceptual and theoretical analysis of complex intervening variables in problem-solving behavior. 58, 115-128.

In 1960

Bernstein, L. The interaction of process and content on thought disorders of schizophrenic and brain-damaged patients. 63, 53-68.

In 1961

Griffin, Marie C., & Beier, E. G. "Subliminal" prior solution cues in problem solving. 65, 219-227.

In 1962

In 1963

Shaw, M. E. Some effects of varying amounts of information exclusively possessed by a group member upon his behavior in the group. 58, 71-79.

Beier, E. G., & Donoviel, S. J. Repeated exposure of subliminal stimuli to different age groups. 69, 181-186.

Beier, E. G., & Griffin, Marie C. Influence of subliminal cues in an incidental choice task. 69, 187-192.

Bourne, L. E., Jr., & Jennings, P. The relationship between response contiguity and classification learning. 69, 335-338.

Journal of Genetic Psychology

In 1950

In 1951
Springer, Doris V. Development of concepts related to the clock as shown in young children's drawing. 79, 47-54.

In 1954
Ausubel, D. P., & Schiff, H. M. The effect of incidental and experimentally induced experience in the learning of relevant and irrelevant causal relationships by children. 84, 109-123.

Sigel, I. E. The dominance of meaning. 85, 201-207.
Estes, Betsy W. Some mathematical and logical concepts in children. 88, 219-222. C

Strauss, A. L. The learning of roles and of concepts as twin processes. 38, 211-217. C

Fenn, J. D., & Goss, A. E. The role of mediating verbal responses in the conceptual sorting behavior of normals and schizophrenics. 90, 59-67. C

Lacey, H., & Goss, A. E. Conceptual block-sorting as a function of number, pattern of assignment, and strength of labeling responses. 94, 221-232. C

Davison, R. S., & Longo, N. Conceptual development reflected in age differences in associations to names and pictures of objects. 95, 85-92. C

Smith, A. J. Developmental study of group processes. 97, 29-39. P

Smith, Dorothy B., & Roth, R. N. Problem solving behavior of preschool children in a spontaneous setting. 97, 139-143. P

Wohlwill, J. F. A study of the developments of the number concept by scalogram analysis. 97, 345-377. C

Elkind, D. The development of the additive composition of classes in the child: Piaget Replication Study III. 99, 51-57. C

Elkind, D. Children's conceptions of brother and sister: Piaget Replication Study V. 100, 129-136. C

Elkind, D. The child's conception of his religious denomination: II. The Catholic child. 101, 185-193. C

Smedslund, J. The effect of observation on children's representation of the spatial orientation of a water surface. 102, 195-201. C

Elkind, D. The child's conception of his religious denomination: III. The Protestant child. 103, 291-304. C

Vaughan, G. M. Concept formation and the development of ethnic awareness. 103, 93-103. C

Journal of Nervous and Mental Disease

Elkind, D. Children's discovery of the conservation of mass, weight and volume: Piaget Replication Study II. 98, 219-227. C

Elkind, D. The development of quantitative thinking: A systematic replication of Piaget's studies. 98, 37-46. C

Elkind, D. Children's conceptions of right and left: Piaget Replication Study IV. 99, 269-276. C

Talland, G. A. Psychological studies of Koranoff's psychosis: III. Concept formation. 128, 216-226. C
62 Journal of Nervous and Mental Disease, 1963

1963
Pishkiu, V., Wolfgang, A., & Bradshaw, F. J. Hydroxyzine in concept identification under induced stress with chronic schizophrenics. 137, 322-328.

1964

Journal of Personality

1951
Rokeach, M. "Narrow-mindedness" and personality. 20, 234-251.

1952

1955
Mayzner, M. S., & Tresselt, M. E. Concept span as a composite function of personal values, anxiety, and rigidity. 32, 20-33.

1963
Exline, R. V. Effects of need for affiliation, sex, and the sight of others upon initial communications in problem-solving groups. 31, 541-556.
Harleston, B. Test anxiety and performance in problem-solving situations. 31, 557-573.
Harvey, O. J. Authoritarianism and conceptual functioning in varied conditions. 31, 462-470.
Wolfe, R. Role of conceptual systems in cognitive functioning at varying levels of age and intelligence. 31, 108-123.

1964
Perloe, S. I. The effects of attitudes and concepts on categorization. 32, 249-269.
Sieber, Joan E., & Lanzetta, J. T. Conflict and conceptual structure as determinants of decision-making behavior. 32, 622-641.

Journal of Psychology

1950
Jervis, F. M., & Haslerud, G. M. Quantitative and qualitative difference in frustration between blind and sighted adolescents. 29, 67-76.

1951
Dattman, Priscilla E., & Israel, H. E. The order of dominance among conceptual capacities: An experimental test of Heidbreder's hypothesis. 31, 147-160.

1952
Heidbreder, Edna. Experiments by Dattman and Israel on the attainment of concepts. 34, 115-136.

1953
Battersby, W. S., Teuber, H. L., & Bender, M. B. Problem solving behavior in men with frontal or occipital brain injuries. 35, 329-351.
Barrett, E. S. An analysis of verbal reports of solving spatial problems as an aid in defining factors. 36, 17-25.

1954

1955
Angelino, H., & Shedd, C. L. An initial report of a validation study of the Davis-Eells tests of general intelligence or problem-solving ability. 40, 35-38.

1957
Komachiya, M. A note on concept attainment. 53, 261-263.
Fergus, R. H., & Fowler, H. The order of dominance in concept attainment as affected by experience. 44, 105-108. C

\Rightarrow 1958

Dowis, J. L., & Diethelm, O. Anxiety, stress, and thinking: An experimental investigation. 45, 227-238. P

Honkavaara, Sylvia. The "dynamic-affective" phase in the development of concepts. 45, 11-23. C

Honkavaara, Sylvia. Organization process in perception as a measure of intelligence. 46, 3-12. C

\Rightarrow 1959

Tresselt, M. E., & Mayzner, M. S. A further study in the consistency of judgments in categorizing verbal material. 47, 337-341. C

Lorge, I., & Solomon, H. Individual performance and group performance in problem solving related to group size and previous exposure to the problem. 48, 107-114. P

Rokeach, M., Oram, A., & Marr, J. N. The effects of meprobamate on analysis and synthesis in thinking. 48, 359-366. P

\Rightarrow 1960

Maier, H. R. F. Screening solutions to upgrade quality: A new approach to problem solving under conditions of uncertainty. 49, 217-231. P

Tresselt, M. E., & Mayzner, M. S. A study of incidental learning. 50, 339-347. C

Tresselt, M. E., & Mayzner, M. S. Switching behavior in a problem solving task. 50, 349-354. P

\Rightarrow 1961

Mayzner, M. S., & Tresselt, M. E. A comparison of judgmental and associational techniques in developing verbal concept formation materials. 61, 331-342. C

Journal of Psychology, 1964 63

Hoffman, L. R. Conditions for creative problem solving. 52, 429-444. P

Johnson, D. M., & Hall, E. R. Organization of relevant and irrelevant words in the solution of verbal problems. 52, 99-104. P

\Rightarrow 1962

Hall, G. C. Conceptual attainment in schizophrenics and nonpsychotics as a function of task structure. 53, 3-13. C

Mayzner, M. S., & Tresselt, M. E. Verbal concept attainment: A function of the number and strength of positive instances presented. 53, 469-474. C

Sutton, Rachel S. Behavior in the attainment of economic concepts. 53, 37-46. C

\Rightarrow 1963

Furth, H. G. Classification transfer with disjunctive concepts as a function of verbal training and set. 55, 477-485. C

Lordehl, D. S. The effect of mediators in concept identification. 55, 337-344. C

Mayzner, M. S., & Tresselt, M. E. Anagram solution times: A function of word length and letter position variables. 55, 469-475. P

Stachnik, T. Transitional probability in anagram solution in a group setting. 55, 259-261. C

\Rightarrow 1964

Coleman, E. B. The association hierarchy as a measure of extraexperimental transfer. 57, 403-417. C

Sutton, Rachel S. Behavior in the attainment of economic concepts: II. 58, 407-412. C

Butts, D. P. The degree to which children conceptualize from science experience. 1, 135-143.

Thier, H. D., Powell, Conynthia A., & Karplus, R. A concept of matter for the first grade. 1, 315-318.

Ausubel, D. P. The transition from concrete to abstract cognitive functioning: Theoretical issues and implications for education. 2, 251-266.

Duckworth, Eleanor. Piaget rediscovered. 2, 172-175.

Scott, N. C., Jr. Science concept achievement and cognitive functions. 2, 7-16.

Sieber, Joan E. Problem solving behavior of teachers as a function of conceptual structure. 2, 64-68.

Wohlwill, J. F. Cognitive development and the learning of elementary concepts. 2, 222-226.

Journal of Social Psychology

Ekman, G. The four effects of cooperation. 41, 149-162.

Markovitz, Dorothy I. Group problem solving. 41, 103-113.

Dubno, P. Decision time characteristics of leaders and group problem-solving behavior. 59, 259-282.

Journal of Verbal Learning and Verbal Behavior

Richardson, J. The learning of concept names mediated by concept examples. 1, 281-288.

Schulz, R. W., Miller, R. L., & Radtke, R. C. The role of instance contiguity and dominance in concept attainment. 1, 432-433.

Smith, T. A., Jones, L. V., & Thomas, S. Effects upon verbal learning of stimulus similarity, number of stimuli per response, and concept formation. 1, 470-476.

Crouse, J. H., & Duncan, C. P. Verbal concept sorting as a function of response dominance and sorting method. 2, 480-484.

Pollack, I. Speed of classification of words into superordinate categories. 2, 159-165.

Chang, J., & Shepard, R. N. Meaningfulness in classification learning with pronounceable trigrams. 3, 85-90.

Kendler, Tracy S. Verbalization and optional reversal shifts among kindergarten children. 3, 428-436.

Levin, H., & Mearini, Maria C. The incidence of inflectional suffixes and the classification of word forms. 3, 176-181.

Perceptual and Motor Skills, 1963 65

Perceptual and Motor Skills

Davidson, R. S. Learning in an object-grouping experiment. 5, 241-244.

Essman, W. B. Temporal discrimination in problem solving. 8, 314.

Gilbert, J. Conceptualization of thought: Psychological assessment of a philosophical approach. 13, 139-150.

Fishkin, V. Stimulus and response tendencies in concept identification. 13, 295-304.

Hill, Suzanne D. Chronological age levels at which children solve three problems varying in complexity. 14, 254.

Wolfgang, A., Fishkin, V., & Lundy, R. M. Anxiety and misinformation feedback in concept identification. 14, 135-143.

Nassick, S. J., & Kogan, N. Differentiation and compartmentalization in object-sorting measures of categorizing style. 16, 47-51.

Fishkin, V. Experimenter variable in concept identification feedback of schizophrenics. 16, 921-922.

Psychological Bulletin

1951

1955
Ray, W. S. Complex tasks for use in human problem-solving research. 52, 134-149. P

1956

Underwood, B. J., & Richardson, J. Some verbal materials for the study of concept formation. 53, 84-95. C

1957
Flavell, J. H., & Draguns, J. A microgenetic approach to perception and thought. 54, 197-217. C

1958

1959
Chown, Sheila M. Rigidity--a flexible concept. 56, 195-223. P

Duncan, C. F. Recent research on human problem solving. 56, 397-429. P

1960

1962
Johnson, R. C. Linguistic structure as related to concept formation and to concept content. 59, 468-476. C

Kees, H. W. Verbal mediation as a function of age level. 59, 502-509. C

1963
Thomas, E. J., & Fink, C. F. Effects of group size. 60, 371-384. P

1964
Furth, H. G. Research with the deaf: Implications for language and cognition. 62, 145-164. C

Psychological Monographs

1950
Burack, R. The nature and efficacy of methods of attack on reasoning problems. 64, No. 7 (Whole No. 313). P

1952
Corter, H. M. Factor analysis of some reasoning tests. 66, No. 8 (Whole No. 340). C

1954
Fattu, N. A., Mech, E.V., & Kapos, E. Some statistical relationships between selected response dimensions and problem-solving proficiency. 68, No. 6 (Whole No. 377). P

Postman, L. Learned principles of organization in memory. 68, No. 3 (Whole No. 374). C

1956
Hemphill, J. K., Pepinsky, Pauline N., Shevitz, W. E., & Christner, Charlotte A. The relation between possession of task-relevant information and attempts to lead. 70, No. 7 (Whole No. 414). P

1957
Corman, B. R. The effect of varying amounts and kinds of information as guidance in problem solving. 71, No. 2 (Whole No. 431). P

Frideriksen, N., Saunders, D. R., & Wand, Barbara. The In-basket Test. 71, No. 9 (Whole No. 438). P

Goldner, R. H. Individual differences in whole-part approach and flexibility-rigidity in problem solving. 71, No. 21 (Whole No. 450). P

John, E. R. Contributions to the study of the problem-solving process. 71, No. 18 (Whole No. 447). P
Schroder, H. M., & Hunt, D. E. Failure-avoidance in situational interpretation and problem solving. 74, No. 3 (Whole No. 504).

Podell, Harriet A. Two processes of concept formation. 72, No. 15 (Whole No. 468). C

Braine, M. D. S. The ontogeny of certain logical operations: Piaget's formulation examined by nonverbal methods. 72, No. 5 (Whole No. 475). C

Kettner, N. W., Guilford, J. P., & Christensen, P. R. A factor-analytic study across the domains of reasoning, creativity, and evaluation. 73, No. 9 (Whole No. 479). C

Wallech, M. A. The influence of classification requirements on gradients of response. 73, No. 8 (Whole No. 478). C

Shipstone, Eva I. Some variables affecting pattern conception. 74, No. 17 (Whole No. 504). C

Dicken, C. F. Connotative meaning as a determinant of stimulus generalization. 72, No. 1 (Whole No. 303). C

Gagné, R. M., & Paradise, N. E. Abilities and learning sets in knowledge acquisition. 72, No. 14 (Whole No. 518). C

Horton, B. L., & Kjeldergaard, F. M. An experimental analysis of associative factors in mediated generalization. 72, No. 11 (Whole No. 515). C

Shepard, R. M., Hovland, C. I., & Jenkins, H. M. Learning and memorisation of classifications. 72, No. 13 (Whole No. 517). C

Bernstein, E. Some effects of cognitive selection processes on learning and memory. 76, No. 35 (Whole No. 554). C

Erickson, B. C. Studies in the abstraction process. 76, No. 18 (Whole No. 537). C

Frederiksen, N. Factors in in-basket performance. 76, No. 22 (Whole No. 541). P

Gagné, R. M., Mayor, J. R., Garsten, Helen L., & Paradise, N. E. Factors in acquiring knowledge of a mathematical task. 76, No. 7 (Whole No. 326). C

Gardner, R. W., & Schoen, R. A. Differentiation and abstraction in concept formation. 76, No. 41 (Whole No. 360). C

Goodnow, Jacqueline J. A test of milieu effects with some of Piaget's tasks. 76, No. 36 (Whole No. 555). C

Merrifield, F. R., Guilford, J. P., Christensen, P. R., & Frick, J. W. The role of intellectual factors in problem solving. 76, No. 10 (Whole No. 529). P

Graham, Frances K., Ernhart, Claire B., Craft, Marguerite, & Berman, Phyllis W. Brain injury in the preschool child: Some developmental considerations. 78, No. 10 (Whole No. 573). C

Beach, L. R. Cue probabilism and inference behavior. 78, No. 5 (Whole No. 582). C

Beach, L. R. Recognition, assimilation, and identification of objects. 78, No. 6 (Whole No. 583). C

Johnson, E. S. An information-processing model of one kind of problem solving. 78, No. 4 (Whole No. 581). C

Maitzman, I., Belloni, Harigold, & Fishbein, M. Experimental studies of associative variables in originality. 78, No. 3 (Whole No. 580). P

Psychological Record

Tombaugh, T. H., & Tombough, Jo. The effects of apparent task solubility and reward upon the duration of problem solving behavior. 12, 83-87. P
Psychological Reports

1955
Walk, R. D., & Wellin, F. A response board for group experiments in problem solving and concept formation. 1, 335-338.

1956

1957
Deterline, W. A. Verbal responses and concept formation. 3, 372.
Nadelman, Lorraine. Influence of concreteness and accessibility on concept-thinking. 3, 189-212.

1958
Flavel, J. H., Cooper, A., & Loizelle, R. H. Effect of the number of pre-utilization functions on functional fixedness in problem solving. 4, 333-335.

1959
Ammons, R. B., & Ammons, Carol H. Rational evaluation of the "standard anagram task" as a laboratory analogue of "real-life" problem solving. 5, 718-720.
Ammons, R. B., & Ammons, Carol H. A standard anagram task. 5, 654-656.
Milton, G. A. Sex differences in problem solving as a function of role appropriateness of the problem content. 5, 705-708.

1960
Silverstein, A. B. Relations between intelligence and conceptual levels in active and passive concept formation. 7, 202.

1961
Gormezano, L., & Abraham, P. D. Intermittent reinforcement of a formerly relevant dimension in concept formation. 8, 111-116.
Jenkins, H. M., & Heyser, M. S. Time-pattern of switching among alternatives in problem solving. 8, 419-430.

Duncan, C. F. *Attempts to influence performance on an insight problem.* 2, 35-42.

Lydecker, W. A., Piskhin, V., & Martin, B. *Effects of different feedback conditions on concept identification of schizophrenics.* 9, 557-563.

Lydecker, W. A., Piskhin, V., & Martin, B. *Effects of different feedback conditions on concept identification of schizophrenics.* 9, 557-563.

Duncan, C. F. *Probability vs. latency of solution of an insight problem.* 10, 119-121.

Huttenlocher, Janellen. *Some effects of negative instances on the formation of simple concepts.* 11, 35-42.

Byers, J. L. *Strategies and learning set in concept attainment.* 12, 623-634.

Linker, E., & Ross, B. M. *Memory and hypothesis in solving alternation problems with random competition.* 12, 783-797.

Sassamuth, J. M. *Test anxiety, manifest anxiety and concept learning without awareness.* 12, 71-81.

Hoffman, L. R., Burke, R. J., & Water, M. R. *Does training with differential reinforcement on similar problems help in solving a new problem?* 13, 147-154.

Matthews, C. G. *Problem-solving and experience background determinants of test performances in mentally retarded subjects.* 13, 391-401.

Lawson, E. D. *Reinforcement in group problem-solving with arithmetic problems.* 16, 703-710.

Siegel, P. S. *Concept formation: Response-time considerations.* 14, 435-442.

Wittrock, M. C., & Twelker, P. A. *Verbal cues and variety of classes of problems in transfer of training.* 14, 827-830.

Byers, J. L. *Rate of information acquisition in concept attainment.* 15, 111-117.

Glucksberg, S. *Problem solving: Response competition and the influence of drive.* 15, 939-942.

Rigley, Jean, Biari, J., & Tripodi, T. *Social concept attainment and cognitive complexity.* 15, 503-509.

Psychological Review

1952
Rovell, C. I. A "communication analysis" of concept learning. 59, 461-472.

Saugatad, P. Incidental memory and problem-solving. 59, 221-276.

Underwood, B. J. An orientation for research on thinking. 59, 209-220.

1953

1954
Handler, G. Response factors in human learning. 61, 235-244.

1955
Holtzman, I. Thinking: From a behavioristic point of view. 62, 275-286.

1956

Rhine, R. J. A concept-formation approach to attitude acquisition. 65, 362-370.

1959
Bourne, L. E., Jr., & Restle, F. Mathematical theory of concept identification. 65, 275-296.

1960
Goss, A. E. Verbal mediating responses and concept formation. 69, 246-274.

Guilford, J. P. Factorial angles to psychology. 69, 1-20.

Staats, A. W. Verbal habit-families, concepts, and the operant conditioning of word classes. 68, 190-204.

1961
Kendler, K. K., & Kendler, Tracy S. Vertical and horizontal processes in problem solving. 69, 1-16.

Restle, F. The selection of strategies in cue learning. 69, 329-343.

1962
Restle, F. & Davis, J. M. Success and speed of problem solving by individuals and groups. 69, 320-336.

1963

Levine, M. Mediating processes in humans at the outset of discrimination learning. 70, 234-276.

Simon, H. A., & Kotovsky, K. Human acquisition of concepts for sequential patterns. 70, 534-546.

Suppes, P., & Ginsberg, R. A fundamental property of all-or-none models, binomial distribution of responses prior to conditioning, with application to concept formation in children. 70, 139-161.

1964

Psychonomic Science

1964

Glucksberg, S. Functional fixedness: Problem solution as a function of observing responses. 11, 117-118.

Neisser, Edith D., & Wagner, R. Information gathering in diagnostic problem solving as a function of number of alternative solutions. 11, 329-330.
Pishkin, V., & Blanchard, R. J. Auditory concept identification as a function of subject and stimulus dimensions. 1, 177-178.

Shaw, N. E., & Blum, J. M. Effects of the group's knowledge of member satisfaction upon group performance. 1, 15-16.

Trabasso, T. R., & Bower, G. Memory in concept identification. 1, 133-134.

Quarterly Journal of Experimental Psychology

Kaye, H. Effects of position in a display upon problem solving. 6, 155-169.

Hunter, I. M. L. Note on an atmospheric effect in adult reasoning. 2, 175-176.

Wason, P. C. The processing of positive and negative information. 11, 92-107.

Wason, P. C. On the failure to eliminate hypotheses in a conceptual task. 12, 129-140.

Wetherick, N. E. Eliminative and enumerative behaviour in a conceptual task. 14, 246-249.

Bredailey, A. D. A Zeigarnik-like effect in the recall of anagram solutions. 15, 63-64.

Review of Educational Research

Suchman, J. R., & Aschner, Mary J. M. Perceptual and cognitive development. 31, 451-462.

Scandinavian Journal of Psychology

Bjerstedt, A. "Routine-blockade" experiments in perception: Pro-expectational distortion and more general cognitive characteristics. 1, 19-26.

Raaheim, K. Problem solving and the ability to find replacements. 1, 14-18.

Rommetveit, R. Stages in concept formation and levels of cognitive functioning. 1, 115-124.

Smedslund, J. Transitivity of preference patterns as seen by pre-school children. 1, 49-54.

Science Education

Committee on Research in Secondary School Science. Problems related to the teaching of problem-solving that need to be investigated. 34, 180-184.

Haupt, G. W. First grade concepts of the moon. Part II, by interview. 34, 224-234.

Stollberg, R. J. Some concepts basic to an understanding of electricity and electronics. 33, 3-16.

Van Deventer, W. C. Teaching science in relation to man's thinking. 35, 104-106.

Björkman, H., & Qvarsele, Birgitta. On homogeneity of states and transfer in learning to categorize. 4, 236-240.

Rauhias, K. Sex differences on problem-solving tasks. 4, 161-164.

Smedslund, J. The concept of correlation in adults. 4, 165-173.

Smedslund, J. Patterns of experience and the acquisition of concrete transitivity of weight in eight-year-old children. 4, 251-256.

Smedslund, J. Patterns of experience and the acquisition of conservation of length. 4, 257-264.

Raahem, K. Analysis of the missing part in problem situations. 5, 149-152.

Haupt, G. W. Concepts of magnetism held by elementary school children. 36, 162-168.

Matthews, Una Mae. Technique for evaluating third grade children's understanding of some science terms and principles. 36, 254-255.

Medir, Elsa M. Problem solving for today's children. 36, 131-134.

Carpenter, F. Conceptualization as a function of differential reinforcement. 38, 284-294.

Carpenter, F. Effect of different learning methods on concept formation. 40, 282-285.

Nelson, Pearl A. The acquisition of concepts of light and sound in the intermediate grades. 42, 357-361.

Silano, A. A. Conceptogrammatic materials in the teaching of elementary science. 42, 436-439.

Hannon, H. An analysis of the mathematical concepts necessary for the college physical science course. 43, 51-55.

Weiss, T. M. Identification restricts problem solving. 43, 184-185.

Garone, J. K. Acquiring knowledge and attaining understanding of children's scientific concept development. 44, 104-107.

Nelson, Pearl A. Concepts of light and sound in the intermediate grades. 44, 142-145.

Atkin, J. M. Teaching concepts of modern astronomy to elementary school children. 45, 54-58.

Dean, P. Problem solving techniques in teaching secondary school physics. 45, 399-403.

Hannon, H. An analysis of the mathematical concepts necessary for the college physical science course. 43, 51-55.

Yuckenberg, Laura M. Children's understanding of certain concepts of astronomy in the first grade. 46, 148-150.

Weaver, E. K., & Coleman, S. Relationship of certain science concepts to mental ability and learning of first grade children. 47, 490-494.
AUTHOR INDEX

Abraham, F. D., 15, 57, 68
Ackerman, W. I., 29, 52
Adams, J., 9, 70
Adams, J. A., 29, 55
Adams, Pauline A., 9, 42
Adamson, R. E., 29, 55, 57
Aftanas, M. S., 29, 69
Aikman, L., 35, 52, 64
Ainsworth, L. K., 29, 49
Alberoni, F., 9, 14, 60
Albert, J., 17, 67
Allen, M., 9, 44
Ammons, Carol K., 29, 68
Ammons, R. B., 29, 68
Anderson, N. H., 29, 64
Anderson, S. B., 29, 57, 43, 56, 62
Angelino, K., 29, 62
Annett, Marian, 9, 44
Archer, E. J., 9, 11, 13, 22, 55, 56, 57, 58
Armstrong, Eugene A., 33, 68
Aschner, Mary J. M., 25, 71
Asher, J. J., 29, 34, 60
Atkin, J. M., 9, 73
Ausubel, D. P., 9, 60, 64
Back, K. W., 29, 49
Baggaley, A. R., 9, 59, 68
Baker, C. A., 21, 51
Baker, F. B., 9, 48
Baker, R. L., 32, 53
Baldwin, A. L., 29, 47
Beales, R. F., 29, 48
Bell, T. S., 9, 52
Bangert, F. W., 29, 54
Banta, T. J., 29, 70
Barnes, D. L., 9, 54
Barnes, E. J., 19, 43
Barratt, E. B., 29, 62
Bassai, A., 39, 64
Battersby, W. B., 29, 62
Battig, W. F., 9, 13, 57, 59
Baum, Marian H., 9, 55
Beach, E. R., 9, 67
Beckman, W. D., 29, 63
Beier, E. G., 10, 30, 31, 33, 60
Bellin, H., 10, 30, 46, 54, 57
Belmont, M. R., 36, 67
Belmont, L. R., 30, 50
Bender, M. B., 29, 62
Bendig, A. W., 30, 55, 59
Benedetti, D. T., 30, 59
Benol, E. U., 27, 41
Bensberg, G. J., Jr., 10, 52
Bergum, R., 22, 55
Berlyne, D. E., 10, 44
Berman, Phyllis W., 15, 54
Bernstein, B. B., 33, 36, 42, 56
Bernstein, L., 10, 60
Bierl, J., 23, 69
Biersdorf, K., 30, 68
Bingham, A., 30, 47
Birch, H. G., 30, 55, 60
Birren, J. E., 30, 71
Bjerstedt, A., 10, 71
Björkman, M., 10, 72
Blake, R. R., 33, 64
Blanchard, R. J., 22, 50, 71
Blatt, S. J., 30, 63
Bloomer, R. H., 10, 54
Blum, J. M., 39, 71
Bogart, W., 36, 56
Bourne, E., Jr., 9, 10, 16, 27, 43, 55, 56, 57, 58, 59, 60, 70
Bower, G., 10, 26, 58, 59, 71
Bradley, A. C., 30, 71
Bradshaw, F. J., 22, 62
Bradys, J. B., 10, 47
Breiner, M. D. S., 10, 46, 57
Brealey, L. S., 10, 11, 53, 58
Braun, Jean S., 11, 46
Brems, M., 35, 66
Brilhart, J. K., 30, 51
Brooks, L. O., 36, 52, 56
Brown, F. G., 9, 11, 55, 56
Brown, L. T., 14, 57
Brown, W. L., 22, 60
Brownfield, C. A., 30, 52
Bruner, J. S., 11, 43, 45
Brush, P. R., 30, 45
Buchs, A. M., 15, 58
Bugelski, B. R., 30, 43
Bugurellsa, Rosaria G., 11, 58
Bunderson, C. W., 10, 58
Burack, B., 30, 54, 66
Burke, R. J., 34, 69
Burnstein, E., 11, 67
Burstein, A. G., 11, 49
Buss, A. H., 11, 55, 56, 57
Buss, Edith H., 11, 56
Buswell, G. T., 30, 47
Butts, D. P., 11, 30, 64
Byers, J. L., 11, 69
Byrum, M., 38, 50
Cahill, H. E., 11, 57
Callantine, M. F., 11, 68
Calvin, A. D., 30, 64
Cantor, G., 25, 51
Carley, Gloria L., 30, 49
Carey, Janice M., 11, 61
Carlson, E. R., 11, 69
Carman, P. M., 12, 51
Carney, R. L., 11, 48
Carpenter, F., 11, 30, 72
Carroll, J. E., 11, 48
Caul, W. F., 11, 19, 59, 70
Cavanaugh, D. K., 11, 49
Chang, J., 11, 23, 58, 65
Chapman, L. J., 11, 12, 49
Chase, C. I., 12, 30, 54
Childs-Quay, Lorena, 26, 60
Chown, Sheila M., 30, 66, 71
Christensen, P. R., 35, 67
Christner, Charlotte A., 33, 66
Clark, W. H., 15, 67
Clay, Hilary M., 30, 45
Cobb, H. V., 40, 68
Coger, C. M., 30, 34, 60, 68
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wechsler, D.</td>
<td>27, 45</td>
<td></td>
</tr>
<tr>
<td>Weene, P.</td>
<td>20, 58</td>
<td></td>
</tr>
<tr>
<td>Weinberg, N. E.</td>
<td>27, 46</td>
<td></td>
</tr>
<tr>
<td>Weinstein, E. A.</td>
<td>27, 46</td>
<td></td>
</tr>
<tr>
<td>Weir, M. W.</td>
<td>40, 70</td>
<td></td>
</tr>
<tr>
<td>Weiss, A. A.</td>
<td>27, 52</td>
<td></td>
</tr>
<tr>
<td>Weiss, Sandra R.</td>
<td>21, 58</td>
<td></td>
</tr>
<tr>
<td>Weiss, T. M.</td>
<td>40, 73</td>
<td></td>
</tr>
<tr>
<td>Weiss, W.</td>
<td>16, 55</td>
<td></td>
</tr>
<tr>
<td>Wellin, F.</td>
<td>27, 40, 68</td>
<td></td>
</tr>
<tr>
<td>Wells, H.</td>
<td>27, 58</td>
<td></td>
</tr>
<tr>
<td>Wesley, Elizabeth L.</td>
<td>27, 48</td>
<td></td>
</tr>
<tr>
<td>Wetherick, N. E.</td>
<td>27, 71</td>
<td></td>
</tr>
<tr>
<td>White, H. D.</td>
<td>40, 54</td>
<td></td>
</tr>
<tr>
<td>Whitescraft, R. A.</td>
<td>40, 68</td>
<td></td>
</tr>
<tr>
<td>Whitfield, J. W.</td>
<td>40, 71</td>
<td></td>
</tr>
<tr>
<td>Whitman, J. R.</td>
<td>27, 65</td>
<td></td>
</tr>
<tr>
<td>Wickelgren, W. A.</td>
<td>27, 31, 44, 45, 68, 69</td>
<td></td>
</tr>
<tr>
<td>Wiener, M.</td>
<td>31, 52</td>
<td></td>
</tr>
<tr>
<td>Wierman, W.</td>
<td>18, 53</td>
<td></td>
</tr>
<tr>
<td>Wiggins, J. G.</td>
<td>40, 51</td>
<td></td>
</tr>
<tr>
<td>Wilder, Nancy E.</td>
<td>27, 53</td>
<td></td>
</tr>
<tr>
<td>Witt, Mary</td>
<td>27, 54</td>
<td></td>
</tr>
<tr>
<td>Wittrock, N. C.</td>
<td>27, 40, 44, 53, 69</td>
<td></td>
</tr>
<tr>
<td>Woerner, Margaret</td>
<td>18, 59</td>
<td></td>
</tr>
<tr>
<td>Wohlwill, J. F.</td>
<td>28, 46, 56, 61, 64</td>
<td></td>
</tr>
<tr>
<td>Wolfe, R.</td>
<td>28, 62, 69</td>
<td></td>
</tr>
<tr>
<td>Wolfensberger, W.</td>
<td>28, 42</td>
<td></td>
</tr>
<tr>
<td>Wolfgang, A.</td>
<td>22, 28, 52, 62, 65</td>
<td></td>
</tr>
<tr>
<td>Wolk, W.</td>
<td>39, 50</td>
<td></td>
</tr>
<tr>
<td>Wood, E. C.</td>
<td>28, 73</td>
<td></td>
</tr>
<tr>
<td>Youniss, J.</td>
<td>28, 47, 53</td>
<td></td>
</tr>
<tr>
<td>Yuckenberg, Laura M.</td>
<td>28, 73</td>
<td></td>
</tr>
<tr>
<td>Yudin, L.</td>
<td>17, 28, 55</td>
<td></td>
</tr>
<tr>
<td>Zand, D. E.</td>
<td>40, 69</td>
<td></td>
</tr>
<tr>
<td>Zaslow, R. W.</td>
<td>28, 48, 52</td>
<td></td>
</tr>
<tr>
<td>Zelen, S.</td>
<td>35, 68</td>
<td></td>
</tr>
<tr>
<td>Zeitls, Rose</td>
<td>28, 54</td>
<td></td>
</tr>
<tr>
<td>Zigler, E.</td>
<td>28, 40, 42, 50, 51</td>
<td></td>
</tr>
<tr>
<td>Zimiles, H.</td>
<td>28, 46</td>
<td></td>
</tr>
<tr>
<td>Zimmerman, Claire</td>
<td>16, 62</td>
<td></td>
</tr>
<tr>
<td>Zuckerman, M.</td>
<td>35, 66</td>
<td></td>
</tr>
</tbody>
</table>