
A new iterative method to calculate p
Peter Dion

Department of Anesthesia,
St. Catharines General Hospital, Ontario, Canada

<sleepdoc.awning@sympatico.ca>

Anthony Ho
Department of Anesthesia and Intensive Care

Prince of Wales Hospital, Hong Kong
<hoamh@yahoo.com>

For at least 2000 years people have been trying to calculate the value of p,
the ratio of the circumference to the diameter of a circle. We know that

p is an irrational number; its decimal representation goes on forever. Early
methods were geometric, involving the use of inscribed and circumscribed
polygons of a circle (see http://en.wikipedia.org/wiki/Approximations_
of_%CF%80#Early_history). However, real accuracy did not come until the
use of infinite series techniques, in which one can, by calculating more and
more terms, obtain smaller and smaller corrections all leading to a precise val-
ue. Such series go on forever, so the limitation on accuracy is how much time
one is willing to devote to the task and how fast the computer is, but mainly
how quickly your series converges.

One of the first series invented (see http://en.wikipedia.org/wiki/Pi) was
by James Gregory (1638–75):

	

π
4

1
1

1
3

1
5

1
7

= − + − …

As you add up terms in this series it approaches the value of p
4 , that is, it con-

verges, but it does so very slowly. It takes 626 terms just to get p narrowed down
to 3.14, that is, two decimal places. The 626th term is

1
1251 , or about one one-

thousandth, which corresponds to just the third significant digit in the answer.
Isaac Newton used the binomial theorem for real numbers to get a better se-
ries (see http://egyptonline.tripod.com/newton.htm).

A still better formula by John Machin (see http://milan.milanovic.org/
math/english/pi/machin.html), developed in 1706, enabled hundreds of
digits to be calculated:

	

π
4

4
1
5

1
239

= −arctan arctan

This is not strictly an infinite series, as it just has two terms. However, to
calculate each of these terms an infinite series is required.

Not all methods to calculate p are practical. In the so-called “Count Buffon
Problem” (see http://www.worsleyschool.net/science/files/buffon/buffon.
html), one finds that when one throws toothpicks of length L on a paper ruled
with parallel lines spaced a distance L apart, the probability of any toothpick

A
ustralian S

enior M
athem

atics Journal vol. 2
6

 no. 1

41

hitting a line is p
2 . It is an interesting problem and one could actually estimate

p by throwing a toothpick repeatedly on a paper. But in practice such an ap-
proach for accurate work would be ridiculous.

In this paper we will take a different approach, in which a computer is
also used. We will use an iterative approach. A guess at p is used to gener-
ate a better estimate, which in turn is used to obtain a still better estimate.
This method will initially appear to be very impressive, providing more than
sixteen decimal places with only three iterations. However we will see that
eventually the calculations become almost unimaginably unwieldy, and that
the approach is ‘ridiculous’ for a serious application. Nevertheless, it makes
for a very interesting exercise.

This article will be addressing first year undergraduate university students
who will encounter in their mathematics courses the subjects of differentia-
tion, Taylor series, exponentials and natural logarithms, and the idea of array
storage in basic computer programming. In terms of teaching concepts we
describe the Newton-Raphson method for solving equations in detail as a very
useful and lesser known application of differentiation, and then apply it in an
unexpected manner to solve a seemingly unrelated problem, the determina-
tion of the value of p, thus introducing a new method of approaching one of
the most famous endeavours in mathematics. In pursuing this we delve into
practical problems in using power series to calculate functions and also into
in certain aspects of numerical analysis. This latter topic utilises the Stirling
approximation for n!, which is introduced but not derived.

We begin with a function f(x). We want to solve the equation f(x) = 0. If
f(x) is linear or quadratic we can use routine steps to isolate x on one side
of the equation. But if f(x) is complicated and we cannot isolate x, there is a
technique for a computer to quickly give us a solution provided f(x) is a differ-
entiable function, and it is called the Newton-Raphson method.

Figure 1. The Newton-Raphson method to find the roots of a function f(x).

In Figure 1 we see some function f(x) which crosses the x-axis at some un-
known value x which we want to determine. Our first step is to make a guess
somewhere near x using whatever intuition or luck we can muster. We call our
guess a, shown on the diagram. Now we know what the function f(x) is, and we
can calculate f(a), the height from the x axis to f(x) at point x = a. We can also

D
io

n
&

 H
o

A
us

tr
al

ia
n

S
en

io
r

M
at

he
m

at
ic

s
Jo

ur
na

l v
ol

. 2
6

 n
o.

 1

42

A
 new

 iterative m
ethod to calculate p

calculate the derivative of f(x), evaluate it at point a, and this gives us the slope
of the oblique line shown in the diagram, which is tangent to f(x) at point
(a, f(a)). This line extended intersects the x-axis at some value b. This value b is
usually a better estimate than the value (a) which we started with.

It is easy to calculate b. The slope of the line is f'(a), easily calculated, and
that is equal to the rise f(a) divided by the run (a – b).

So
	

f a
f a
a b

'()
()

()
=

−

One solves to obtain
	

b a
f a
f a

= − ()
()' 	

(1)

So now we have a new estimate, b. Strictly speaking, this method will not
work with any function, but for most conventional functions which cleanly in-
tersect the x-axis rather than simply tangentially touching it, and provided our
guess a is sufficiently close to the point of intersection, it works very effectively.
The next step is to repeat the process; we plug our new estimate b into (1)
wherever a appears, to get a newer, better estimate. This process is repeated,
and the method usually converges very quickly. One repeats until the new es-
timate coming out of the formula is the same as the estimate put in, limited
by the accuracy (number of decimal places) of your computer. Later we will
also use the Newton-Raphson method to solve a fairly complicated equation.

Now, getting back to p, what we need to have is some function f(x) which
we know is equal to zero for x = p. If we have that, we can guess a solution, say
x = 3, and use the Newton-Raphson method to hone in on the real solution, p.
Well, sin x is a periodic function that produces a nice wavy curve which hap-
pens to cross the x-axis at x = p, so we are almost there. Our f(x) is sin x, the
derivative is cos x, and so our recursion formula for guesses is:

	
b a

a
a

= − sin
cos

where our first guess will be a =3.
The computer program we use is a six-line program. We used one written

in BASIC, but we present a ‘pseudocode’ version which might be understood
by readers familiar with other languages.

Set x=3

OUTPUT "Initial guess was "; x

FOR i = 1 to 10

Let x = x - sin x / cos x

OUTPUT i , x

NEXT i

The first two lines assign a value of 3 for x, and print it. Lines 3 and 6 are
a “FOR - NEXT” loop, using a dummy variable called i, which in essence says,

“For every value of i from 1 to 10, do the stuff between the ‘FOR’ line and the
‘NEXT’ line.” So ten times you repeat lines 4 and 5. In line 4 you assign to
the value x the new value x – sin

cos
x
x , in line 5 you print out the value of i, which

A
ustralian S

enior M
athem

atics Journal vol. 2
6

 no. 1

43

keeps count of which iteration you are on, and print x, which is our current
estimate for p.

Here is the output of the program:

Initial guess was 3

1 3.142546543074278

2 3.141592653300477

3 3.141592653589793

4 3.141592653589793

 .

 .

 .

10 3.141592653589793

Our initial guess was 3, and the Newton-Raphson formula gave us a better
estimate #1 of 3.14 plus 13 wrong digits. Estimate #2 provided p correct to 9
decimals; estimate #3 was correct to at least 15 decimal places, but we really do
not know how good it was because we are already limited by the accuracy of
our computer. Most computers provide eight-digit accuracy for real numbers,
and 16 digits if the variable is designated as double precision. The fourth to
the tenth estimates were simply a repeat of estimate #3, because we already
had p correct to within the accuracy of our computer. For reasonably behav-
ing functions f(x) the Newton-Raphson method converges very quickly, often
doubling the number of digits for each iteration. That means that our third
guess may have really been accurate to about 18 digits, the fourth to 36 digits,
etc. So at first glance, this seems to be a fabulous method that generates p to
fantastic accuracy very quickly!

So perhaps now the authors of this article should be arranging to get over
to Stockholm to pick up their Nobel Prize in mathematics. Well, no. Actually
there are several problems. First, the Newton-Raphson method is not our dis-
covery. Second, a Noble Prize in mathematics would never be given simply for
doing a calculation; one would have to develop an important original theo-
retical basis for the calculation. Thirdly, there is no such thing as a Nobel Prize
for mathematics (that is another story!). But finally, our method to calculate p
is all a bit of an illusion. Actually this method, although interesting, is a really
poor way to generate p accurately, and in the rest of this paper we will explain
why.

To begin with, we have to talk a bit about managing numbers with many
digits. We have seen above that our method initially has provided tremendous
accuracy, but we are not sure just how accurate because we are representing
our desired value, x, as a computer variable, limiting us to 16 digits. Now six-
teen digits in real practical life provides fantastic accuracy for pretty well any
measurement any human will ever make. But remember here we are playing a
game of trying to determine a large number of digits for p, regardless of how
impractical the result may be. So if we want more than 16 digits, we will have
to represent our number p differently, so it can have hundreds, thousands, or
even billions of digits. This is a problem faced by all programmers regardless

D
io

n
&

 H
o

A
us

tr
al

ia
n

S
en

io
r

M
at

he
m

at
ic

s
Jo

ur
na

l v
ol

. 2
6

 n
o.

 1

44

A
 new

 iterative m
ethod to calculate p

of the method used to calculate p. One obvious way to do this might be, for ex-
ample, to represent p as an array p(i) of integers, where p(0) might be 3, and
p(5) would be the fifth decimal (which would have the value 9), and p(23423)
would be the 23 423th decimal of p, and we do not have not a clue what that is.

This, of course, means that any calculations we do involving our number,
now an array, will have to be done via some sort of sub-program we must write
that enables us to keep track of and add and multiply numbers that will have
perhaps millions of digits. This is an annoying problem, but not a conceptu-
ally difficult one. In this paper we will ignore this problem and just continue
to work with 16 digit numbers represented by a variable such as x, and pretend
we are actually doing it on a huge array.

This, however, means that with our iterative method we will not be able to
tell the computer to simply calculate “sin x” anymore because now “x” is an
array with a huge number of elements. We are going to have to calculate sin x
ourselves using simple operations (addition, multiplication, division) that we
can perform on our huge array representing the number p. So how do we
‘manually’ calculate sin x and cos x for some x? The answer is that we do it ex-
actly the way the computer does, with a Taylor series; an infinite set of terms
which added together will create sin x and cos x.

The well known Taylor formulae are:

	
sin

! ! ! !
–x x

x x x x= − + − + …
3 5 7 9

3 5 7 9

and
	

cos
! ! ! !

x
x x x x= − + − + −…1
2 4 6 8

2 4 6 8

Incidentally, it is actually not obvious, but it turns out that the cosine series
can be obtained from the sine series by termwise differentiation, as one might
hope. Remember earlier we mentioned an infinite series for arctan 1

239
? Its

Taylor series is

	
arctanx x

x x x= − + − +…
3 5 7

3 5 7
where here you would set x = arctan 1

239
.

So now we know theoretically how to proceed. We handle our x as an
array, and we calculate sines and cosines with infinite series. It will be in strug-
gling with the practical details of this that we will discover why our method is
‘ridiculous’.

We saw early in the paper an infinite series that converged very slowly. If we
want a practical method with high accuracy, we do not want a series that takes
600 terms to give us two decimal places. We need our series to converge rap-
idly. Now in our current situation, the first annoying thing is that, for example,
the x8/8! term in the cosine series will have something like a 38 factor in the
numerator, a huge number, because x has the value of our current estimate
for p, which is about 3. True, all terms with high enough powers of x will even-
tually become small, regardless of the value of x, because the factorial factor in
the denominator will ultimately dominate. But it is most desirable to reduce
the number of terms required for a given accuracy, and for that one would

A
ustralian S

enior M
athem

atics Journal vol. 2
6

 no. 1

45

like x to be smaller than three. If x were less than 1, the powers of x would ac-
tually help the series converge.

So it is time to reconsider our strategy. Originally with the Newton-Raph-
son method we sought a value of x that makes f(x) = 0. We are not actually
limited to that. Suppose we wanted x such that f(x) = 29. We simply define a
new function, say g(x), which is just f(x) – 29. Thus a zero of g(x) is a value of x
which makes f(x) = 29.

How does this help? Well, initially we picked sin x = 0 to find x = p. But we
can do better. We know that sin p

6
 = 0.5, so we can rewrite this as f(x) = 0 where

f(x) = sin x – 0.5 and use the Newton-Raphson method to find the value of x
where this function is zero. Now our guess for x, and subsequent estimates for
x, will be sin p

6 or roughly 1
2

. So if we use this value of x, our x 8

8!
 term will have a

factor of (1
2

)8 instead of 38 and things will go much better. Now one might ask,
why not then pick sin p

1000
 or something, and get a really small value of x? The

problem is that we have to know the value of sin p
1000

 exactly, as we did above
for sin p and sinsin p

6 . This is because, otherwise, in essence, we would not know
the value of anything exactly. If say, the value of sin p

1000
 were q, then we would

be going in circles, using p
1000

 to find q and using q to find p
1000

. In fact, q would
likely be irrational and we would need its value to a billion digits if we wanted
to get p to the same number of digits. So we stick with sin p

6 . So we are now solv-
ing sin x – 0.5 = 0, and the derivative of the left side is cos x.

Our Newton-Raphson iteration is now

	
x x

x
x

= − −sin .
cos

0 5

where our initial guess for x is 1
2 .

We are going to do a lot better because the first ten terms of the series
x
n

n

!
 with x = 3 are 3, 4.5, 4.5, 3.375, 2.025, 1.0125, 0.4339286, 0.1627232,

0.05424107 and 0.01627232, but with x = 0.5 they are 0.5, 0.125, 0.0208333,
0.002604, 0.0002604, 0.0000217, 0.00000155, 0.0000000968, 0.00000000538,
and 0.000000000269. Consider the tenth term in each. For x = 3 it is about
0.016 and will contribute to p from the second decimal place on, but for x = 0.5
it is 0.000000000269 and will affect only the tenth decimal place and further,
so we will achieve more accuracy faster with the sin p

6 series.
So let us do the calculation. It will be instructive first to include terms in

our sine and cosine series only up to x5. Our results are:
Initial guess sin p

6 = 0.5 or p = 3
#1 3.140652818991098
#2 3.141577837945346
#3 3.141577879077594
...
(Note: Our series solves for sin p

6 but we have displayed the corresponding
value of p which is more recognisable.)

Subsequent estimates are all the same as #3. The fifteen decimal digits we
have will not change, and we are stuck with a value of p good to only four deci-
mal places. It never gets any better. This is because by including terms only
up to those in x5 we were not really calculating sin x or cos x, but rather some

D
io

n
&

 H
o

A
us

tr
al

ia
n

S
en

io
r

M
at

he
m

at
ic

s
Jo

ur
na

l v
ol

. 2
6

 n
o.

 1

46

A
 new

 iterative m
ethod to calculate p

functions that are sort of like them. If we include terms up to that involving
x13 we get the following:

Initial guess sin p
6 = 0.5 or p = 3

#1 3.140666842910904
#2 3.141592612362348
#3 3.141592653589793
Again, by the third iteration we have 15 decimals which will not change,

but these correctly match the first fifteen decimals in p. One must understand
however, that even with terms reaching to x13 we are still stalled at a “wrong”
value of π. If we had greater accuracy in our calculations (an array for x), we
would see that at some point (perhaps the 18th decimal place) our results
have diverged from a more accurate value of π. So it is clear that as our es-
timate for π gets better, we must include more terms in our sine and cosine
series in subsequent iterations. Conversely one need not start initially with a
huge number of terms in the sine and cosine series. A few terms will suffice
initially, because our estimate for π is not too good at the beginning. There is
no point carrying terms representing an accuracy not yet justified by our de-
veloping estimate for p.

Thus as our value for p gets better and better we need more and more
terms in our series. But how many? One strategy would be, at each iteration,
to compare the two previous estimates for p, and look to see for how many dig-
its they agree. This tells us our current state of accuracy because these digits
will not change any more.

We may thus know how many digits we have achieved to date, but we now
ask, how many terms in our series does this represent? One way to know would
be to test each term as generated. For example, let us say we have at some
point 1200 decimal places of accuracy. This corresponds to a quantity of 10–1200
in terms of precision. We could have our computer ask itself, as each term is
calculated, “Is this term I’m now calculating as small as 10–1200? And if so, I will
calculate no more on this iteration.” Since we will end up with thousands of
terms, this is a lot of testing. Is there a better way for the computer to know?

There is. If we have k digits of accuracy, this represents a quantity 10–k in
precision, and this should be the size of the final term to include, x

n

n

! where x
is about 0.5 in value.

Thus
	

10− =k
nx

n ! 	
(2)

and we theoretically could solve for n to get the number of terms to use for
this particular iteration. However, it is actually hard to solve for n here, as the
tricky item to deal with is n! We thus resort to a clever formula which gives
an approximate value for n!, called Stirling’s formula (see http://mathworld.
wolfram.com/StirlingsApproximation.html), which states that

	
n n e nn n! –≈ ()







2

1
2π

We will use the logarithmic form:
	 ln(n!) ≈ n ln(n) – n + 0.5 ln(2pn)	 (3)
and also the logarithmic form of equation (2) which is:
	 –k ln (10) ≈ n ln(x) – ln(n!)	 (4)

A
ustralian S

enior M
athem

atics Journal vol. 2
6

 no. 1

47

In equation (4) we substitute the expression for ln(n!) obtained in (3), and
after a little rearranging, and assuming x = 1

2
, recalling that x is our rough es-

timate of sin p
6 , we have:

	 k ln(10) ≈ n ln(n) – n + 0.5 ln(2pn) + n ln(2)	 (5)
Now this is an equation begging to be solved with the Newton-Raphson

method! We rearrange this into the form f(n) = 0 as follows:
	 n ln(n) – n + 0.5 ln(2pn) + n ln(2) – k ln(10) ≈ 0
and remember we are solving for n here.

Our iterations become:

	
n n

f n
f n

= − ()
()'

where	 f(n) = n ln(n) – n + 0.5 ln(2pn) + n ln(2) – k ln(10)

and	 f '(n) = ln(n) +
0 5.
n

 + ln(2)

obtained by differentiating f(n) with respect to n, recognising that k is just a
constant here.

Let us try it out. For k = 15 decimals of accuracy, let us (stupidly) guess that
n = 3 solves equation (5). The result of the Newton-Raphson method is:

Initial guess n = 3
#1 18.67333
#2 14.07435
#3 13.89607
#4 13.89574
So it seems that about n = 13 to 14 terms suffice. Above we found that we

got away with 13. So now we know how many terms to use.
But this is all rather cumbersome. Could we not more easily estimate with-

out going into a Newton-Raphson routine with each iteration? Yes we can. In
equation (5), some terms can be ignored. The 0.5 ln(2pn) term becomes
small compared to n, which might be in the thousands.

So we have k ln(10) ≈ n ln(n) – n + n ln(2). Pulling out a factor of n on the
right we have

k ln(10) = n (ln(n) – 1 + ln(2)). As we get into huge numbers of digits, the
number n of terms will get into the thousands, and ln(n) will become large
compared to 1 or to ln(2), so we can ignore these and simply have k ln(10) ≈
n ln (n). If we take this all to the eth power and then take log to base 10 we will
get:
	 k ≈ n log10 (n)	 (6)

Recall than n is the n in the term x
n

n

!
 which is the magnitude of a typical

digit in the kth decimal place in our estimate for p. We now want to solve equa-
tion (6) for n, but this is still impossible without the Newton-Raphson method,
which we are trying to bypass, so let us just do a bit of trial and error guessing.

For a value of k say, 100 000 let us guess that n were also 100 000. Then
we see that log(n) would be five, so we see we should really make n = 20 000
to satisfy the equation. But then the log of n would change again, but not by
much. It would go from 5 to 4.3 and leave the equation still approximately

D
io

n
&

 H
o

A
us

tr
al

ia
n

S
en

io
r

M
at

he
m

at
ic

s
Jo

ur
na

l v
ol

. 2
6

 n
o.

 1

48

A
 new

 iterative m
ethod to calculate p

true. So we can say that n is almost equal to k divided by the log of n (which
is almost the same as the log of k), so finally for k digits we just say we need
n ≈ k

klog() terms. So if k is a billion digits, log(k) is 9, and we need roughly
n = 110 000 000 terms in our series expansions for sin x and cosine x. Recall
that all these terms have to be calculated, added up to give the sine and cosine
values, then used in the Newton-Raphson iteration formula to get our next
estimate for p.

Now as a final practical matter, there is one short cut. When one actually
does the calculations, one need not work out each term from scratch. For ex-
ample, if one has the x16

16! term, the x17

17! term is obtained merely by multiplying
it by x

17 . But this little dodge is just hopelessly inadequate to save the day.
By now the reader should correctly be getting very, very worried. What we

have to do get beyond a billion or so digits in our estimate for p is to calculate
about 110 000 000 terms in x (each of which involves raising x to some power
from 1 to about 110 000 000), and where x itself is an array with of about a bil-
lion digits in it, just to get another iteration.

So by now, you see, our wonderful method has fallen apart. The basic prob-
lem is that no iterative approach will ever be successful in calculating a large
number of digits for p, because having to repeatedly deal with all of the digits
again and again eventually becomes intractable. In contrast, in using direct
series methods for calculating p as noted early in this paper one does not have
to keep dealing with the whole number for p. Rather, as one gets into billions of
digits, one need work only on calculations dealing with tiny corrections, not
with p as a whole. The Newton-Raphson and Taylor power series methods are
very effective tools as we have seen, but our use of this particular combination
of the two, although initially impressive, has turned out to be a very flawed
approach.

So in the end it is perhaps a good thing that there is no Nobel Prize in
mathematics, because your authors are certainly not going to be winning it
with this kind of stuff. But what is amazing is that now, methods have been de-
veloped which allow, for example, the 60 billionth digit of p to be determined
without having to figure out all the digits that lead up to it. But of course, this
is the stuff of mathematicians with vastly more skill than your authors. In this
paper we have just had some fun, nibbling about on the edges of a wonderful
problem that has intrigued at least a hundred generations of mathematicians.

A
ustralian S

enior M
athem

atics Journal vol. 2
6

 no. 1

49

