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For any density function (or probability function), there always corresponds 
a cumulative distribution function (cdf). It is a well-known mathematical fact 

that the cdf is more general than the density function, in the sense that for 
a given distribution the former may exist without the existence of the lat-
ter. Nevertheless, while the density function curve is frequently adopted as a 
graphical device in depicting the main attributes of the distribution it repre-
sents, the cdf curve is usually ignored in such practical analysis.

By looking at a density function curve, we instantly obtain a visual de-
composition of the shape of the underlying distribution (e.g., whether it is 
symmetric or skewed, either to the right or left, long-tailed or short-tailed, 
etc). By inspecting the cdf curve in the usual way, however, we do not receive 
a comparable amount of impact. In fact, given only the cdf curve, most peo-
ple would tend to mentally convert it into the corresponding density function 
curve and then try to visualise its characteristics.

Can the cdf curve be more fruitfully utilised as a graphical device? In this pa-
per, we show that the region above a cdf curve can be interpreted as an aggregate 
value of the underlying random variable. This perspective would facilitate the 
graphical display of the information contained in the distribution. We also ex-
ploit this approach to give intuition to the derivation of some well-known results.

For certain problems, this approach can be more advantageous than the 
usual treatment. For example, the Lorenz curve is typically used to illustrate 
income inequality. As shown later, the cdf curve reveals the same information 
as in the Lorenz curve, and additionally, it gives a better visual feel for the ex-
tent of income inequality. 

Apart from its use in practical analysis, this approach of viewing the cdf also 
has pedagogical value. We introduced it in a few statistics related courses (first 
and second year of university) to the students who have earlier been exposed to 
the cdf in the usual manner. From the feedback during tutorial discussions, the 
students generally appreciate the insights provided by this new perspective and 
value the additional information that is usually not discussed. This concept may 
also be useful in teaching some Years 11 and 12 mathematics courses, which in-
troduce a probability distribution with the usual focus on its density function only.
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An alternative view of the cdf curve

The main reason of not gaining much information about the distribution via 
the cdf curve is that people tend to focus on the ordinate of the curve at a 
given point. We now consider the cdf curve from a different point of view. 
Suppose we have 100 straight iron rods of uniform shape but different lengths, 
and we want to portrait the distribution of the lengths. Let us arrange the 
iron rods in an ascending order of length and pile them up, as in Figure 1. 
Consider a point x on the horizontal axis. There are 85 iron rods with their 
lengths less than or equal to x and so we have Pr(X ≤ x) = 0.85, where X de-
notes the length as a variable. The curve formed by the lower sides and the 
right edges of the iron rods is effectively a discretised approximation of the 
cdf curve. Note that there is an error of approximation in estimating the per-
centile of X, and this error can be reduced by increasing the number of rods 
and reducing the width of each rod. For any x, there is always a width such that 
x corresponds to the length of a rod. The corresponding percentile is then the 
proportion of rods that have their lengths not greater than x.

In this view of counting the number 
of rods with different lengths, any region 
formed by the horizontal bundles in Figure 
1 represents the aggregate value of the cor-
responding elements in the sample space. 
As another example, consider a cdf curve of 
the incomes of a large number of individu-
als. Then the region formed by a horizontal 
strip, such as the shaded portion in Figure 
2, divided by the total region above the cdf 
curve, would represent the share of the total 
income received by those individuals having 
an income between a and b. In contrast, the 
usual view would centre on the probability 
associated with these individuals.

This approach of interpreting the cdf 
curve is potentially useful in analysing vari-
ous kinds of economics, population, and 
insurance data which have positive val-
ues, such as income level, future lifetime, 
and individual claim size. More examples 
are provided in the later sections. In addi-
tion, one may argue that this approach has 
some correspondence with the relationship 
Ε( ) ( )X F x dx= −( )∞∫ 10 , in which the expect-
ed value is given by the sum of the areas of 
the vertical bars covering the region above 
the cdf curve. 

Figure 1. Distribution of 100 iron rods.

Figure 2. Aggregate value represented as region.
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n interpreting and extracting inform

ation from
 the cum

ulative distribution function curve

Properties of some 
distributions

We now attempt to deduce the main features 
of some distributions using the approach 
above. First, note that the cdf curve of a de-
generate distribution at a point x = a could 
be interpreted, in the usual view, as a jump 
function with only one jump at a. In the 
alternative view, we would say that all the ele-
ments have the same value, represented by 
horizontal lines of the same length all end-
ing at a. 

In Figure 3, the usual view would say that 
the cdf curve is steep around the interval 
(a, b) and so the density function has a high 
value there. In the alternative view, we would 
take a look at how the horizontal lines meet 
the cdf curve. The lengths of these lines, and 
hence the values of the corresponding ele-
ments in the sample space, change rather 
slowly around this interval, which means 
there is a high probability here relative to 
the unit length of the x-axis.

Figure 4 shows the density and the corresponding cdf curves of a uniform 
distribution. The usual view would refer to the constant slope of the cdf curve, 

which implies the uniformity of the density. 
The alternative view would regard the indi-
vidual values, as shown by the horizontal lines, 
as changing evenly throughout the range.

Figure 5 demonstrates a typical right-
skewed distribution. The alternative view 
would suggest that the length of the horizon-
tal lines changes rather quickly at the start, 
then more slowly in the middle range, and 
ultimately more quickly (than the start) in 
the upper end with large values. For a long-
tailed distribution as in Figure 6, the length 
of the horizontal lines changes rapidly at the 
long tail. The tail behaviour is very important 
in many applications such as waiting time to 
failure and long-tailed insurance claims. 

In general, a J-shaped distribution (with 
highest frequency initially and decreasing 
frequency afterwards as in Figure 3) has a 
cdf curve whose values change first slowly 
and then more quickly. Likewise a U-shaped 

Figure 3. Density and cdf curves of a J-shaped 
distribution.

Figure 4. Density and cdf curves of a uniform 
distribution.
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distribution (e.g., beta distribution with both 
parameters smaller than one) has a cdf curve 
whose values also change slowly at first and 
more quickly afterwards, but then change 
slowly again towards the upper end.

Depicting income 
concentration—an application

Figure 7 shows the distribution of Australian 
household income in 2005-06, expressed in 
Australian dollars per week, as reported to 
the Australian Bureau of Statistics. The ag-
gregate value associated with the lowest 30% 
income group and that associated with the 
highest 4.5% income group are represented 
by the two shaded regions. The equality of 
the areas of these two regions means that 
the lowest 30% group earns as much as the 
highest 4.5% does. Comparisons of other 
proportions can be made similarly. For ex-
ample, the broken line at F(x) = 0.596 divides 
the total value, as represented by the entire 
region northwest of the cdf curve, into two 
halves. Thus, the total household income is 
shared equally between the poorest 59.6% 
and the richest 40.4% of Australian house-
holds. This way of inspecting the graph 
provides us a convenient means of gaining 
insights into the concentration or inequality 
of income among Australian households.

The existing method of displaying in-
come concentration graphically is almost 
exclusively via the celebrated Lorenz curve. 
See Stuart and Ord (1994) for the defini-
tion and properties. The Lorenz curve which 
corresponds to the distribution in Figure 7 
is shown in Figure 8. If both the total fre-
quency and the total value, as represented by 
the whole region northwest of the cdf curve, 
are scaled to 1, then a typical point P on the 
Lorenz curve would have its horizontal co-
ordinate equal to the frequency at S and its 
vertical coordinate equal to the lower shad-
ed area in Figure 7.

Figure 5. Density and cdf curves of a  
right-skewed distribution.

Figure 6. Density and cdf curves of a  
long-tailed distribution.
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A graph like that in Figure 7 should be a 
good supplement of, or an alternative to, the 
Lorenz curve in showing such phenomena 
as income inequality. It displays directly, in 
terms of area, the contrast between the indi-
viduals having high income and those with 
low income.

The relationship between two 
random variables

The relationship between two random vari-
ables, and hence between their distribution 
functions, are easy to visualise using the same 
approach as above. For example, Figure 9 
shows the cdfs F(x) of a random variable X 
and G(x) of the random variable X + a. One 
can immediately see via the horizontal lines 
that G(x) can be obtained from F(x) through 
extending the F(x) curve horizontally by an 
amount a. Likewise, Figure 10 shows the 
cdfs F(x) of X and H(x) of the random vari-
able cX. Here each horizontal element has 
its value extended, or shrunk, by a multiple 
c. This interpretation would work well only 
for monotone transformation of the random 
variable.

A random variable Y is said to be stochas-
tically greater than another, X, if Pr(Y ≥ a) 
> Pr(X ≥ a) for any a. Then, in terms of dis-
tribution functions, the smaller random 
variable X would have its cdf F(.) greater than 
the cdf G(.) of the greater random variable 
Y at any point, which is not a very convenient 
relationship to grasp. As shown in Figures 9 
and 10, examining the horizontal lines has 
more intuitive appeal in interpreting such 
relationships.

Some expectation formulae

One of the concepts that a student of sta-
tistics first encounters is the expected value 
of a random variable. It is often presented 
as a measure of the central tendency of a 

Figure 7. Cdf curve of Australian income.

Figure 8. Lorenz curve for Australian income.

Figure 9. Cdfs F(x) of X and G(x) of X + a.

Figure 10. Cdfs F(x) of X and H(x) of cX.
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distribution. In classical mechanics, this is analogous to the centre of mass. If 
we visualise the dot diagram of a dataset as a uniform horizontal bar on which 
equal weights are placed at the positions of the data points, the expected 
value represents the balancing point of the bar. Another graphical representa-
tion of the expected value corresponds to the area above the cdf curve.

In Figure 11, the area above the cdf curve can be approximated by the sum 
of the areas of the n horizontal strips. For the strip corresponding to xi, the 
area is given by: 

x
i
 (F(x

i +1
) – F(x

i
)) .

Summing over all the strips, we obtain the approximate area above the cdf 
curve as:

	
x F x F xi i i

i

n

+
=

( ) − ( )( )∑ 1
1

.

As we reduce the width of each strip and increase the number of strips, this 
sum approaches the exact area above the cdf curve:

lim
n i i i

i

n
x F x F x x dF x

→∞ +
=

∞( ) − ( )( ) = ( )∑ ∫1
1

0
.

It is well known that the last expression in the above formula is the expect-
ed value of X. Similarly, the area above the cdf curve can also be derived by 
summing up vertical, instead of horizontal strips. In this case, we obtain the 
alternative representation of the expected value:

Ε X F x dx( ) = − ( )( )∞∫ 10
.

Figure 11. ∫x dF(x) = ∫(1 – F(x))dx.

In mortality studies, the complete expectation of life (i.e., expected fu-
ture lifetime or life expectancy) of a person aged exactly x is calculated as 

t dF tx ( )∞∫ 0 , where Fx(t) is the cdf of the future lifetime of this person. For 
example, the life expectancy at birth (i.e., x = 0) in 2007 for Australia and 
New Zealand are computed as 81.5 and 80.3 respectively, based on the data 
from Human Mortality Database and Statistics New Zealand. Accordingly, the 
region above the cdf curve can be seen as horizontal strips representing the 
lifetimes of a large group of individuals of the same age, and its area refers to 
the expected lifetime of these individuals.
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Sometimes we encounter a random variable X which is truncated above at 
a constant c:

	
Y X X c

c
= ≤



if
otherwise.

For example, an insurance cover may compensate only up to an amount 
c for a loss X. Then the expected value of Y (i.e., expected claim size to the 
insurer) is:

	

Ε Y x dF x c F c F x dxc c( ) = ( ) + − ( )( ) = − ( )( )∫ ∫0 01 1

This idea is illustrated in Figure 12. The integral in the middle equation 
above corresponds to the area of the region occupied by horizontal strips and 
the next expression in the equation corresponds to the shaded area. Thus, 
the expected value of a truncated random variable can also be linked to a par-
ticular region above the cdf curve. This region can also be seen as horizontal 
strips representing the individual claim sizes, whose values are either below c 
or capped at c. 

The situation is similar when a random variable X is truncated from below 
at a constant d:

	
Z X d

X d
= ≤

−
if

otherwise
0

..





In Australia, a motor insurance cover normally has an excess level d, in 
which the insurer pays only the amount in excess of d for a loss X. Then the 
expected value of Z (i.e., expected claim size to the insurer) is:

	

Ε Z x d dF x x dF x d F dd d( ) = −( ) ( ) = ( ) − − ( )( )∞ ∞∫ ∫ 1

which can also be interpreted as a particular area or region above the cdf 
curve.

Figure 12. x dF x c F c F x dxc c( ) + − ( )( ) = − ( )( )∫ ∫0 0
1 1 .
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A theorem in decision theory

In statistical estimation theory, many methods have been proposed for estimat-
ing the parameters of a distribution. The commonly used methods include 
the ordinary least squares, maximum likelihood, and method of moments. In 
the Bayesian approach, estimation is viewed as a decision-making problem. 
Given an observed random sample, x1, x2, …, xn, from some density function, 
the statistician has to decide what the estimate of the unknown parameter to 
be. One might then call the value of some estimator a decision and the esti-
mator itself,t = g(x1, x2, …, xn), decision function since it tells us what decision 
to make. The estimate is likely to be subject to error, so some measure of the 
severity of the error seems appropriate. In the literature, the word ‘loss’ is 
used in place of ‘error’ and ‘loss function’ is used as a measure of the ‘error’. 
Given a loss function, the Bayes estimator seeks a decision that minimises the 
expected loss, where the expectation is taken with respect to a statistical distri-
bution for the unknown parameter, known as the posterior distribution of the 
parameter. That is, the unknown parameter is treated as a random variable 
conditional on the data collected. For further details on Bayesian estimation, 
refer to Mood, Graybill, and Boes (1974).

Consider the Bayes estimator of the unknown parameter θ where the loss 
function, l(t;q), for a given estimator t is:

	

l t
a t t

b t

if
;θ

θ θ

θ
( ) =

−( ) ≤

−( ) otherwise.







The constants a and b can be defined to permit different amount of pen-
alty for under- and over-estimation of θ. For example, if a = b, under- and 
over-estimation of θ are considered to be equally serious, whereas if a > b (a 
< b), under-estimation is considered to be more (less) serious with a relatively 
heavier (lighter) penalty imposed on the error.

Suppose the posterior density function is given as f(q). The Bayes esti-
mate is the value that minimises the expected loss, that is, it is the t such that 
E(l(t;q)) is a minimum, where the expectation is taken with respect to f(q). 
Using the previous graphical approach, we can provide an alternative illustra-
tion that this minimum is attained at the 

	

a
a b+

quantile of the posterior distribution.
First, following the definition of expectation, the expected loss can be ex-

pressed as:

	
Ε l t b t f d a t f dt

t;θ θ θ θ θ θ θ( )( ) = −( ) ( ) + −( ) ( )∫ 0
∞∞∫

The two integrals above can indeed be represented by the areas of the 
shaded regions below and above the cdf curve in Figure 13, respectively. To 
understand this view, the first integral is expressed as:

	
t f d t f d f dt t t−( ) ( ) = ( ) − ( )∫ ∫ ∫θ θ θ θ θ θ θ θ0 0 0 == ( ) − ( )∫t F t dFt θ θ0
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Referring to Figure 13, F(t) is equal to the distance oq, and so t F(t) is the 
area of the rectangle oqpt. Next, the second integral θ θdFt ( )∫ 0 , by the same 
argument given in the previous section, is the area of that portion of the 
rectangle oqpt that lies above the cdf curve. Hence, t f dt −( ) ( )∫ θ θ θ0  is the 
shaded area opt. In a similar fashion, one can establish that θ θ θ−( ) ( )∞∫ t f dt  
is the upper shaded area above the cdf curve in Figure 13.

Figure 13. t f d and t f dt
t

−( ) ( ) −( ) ( )∫ ∫ ∞θ θ θ θ θ θ
0

Suppose a = 1 and b = 2, so that 
a

a b+
= 1

3
. 

Let t be the (1/3)rd quantile in Figure 14. The expected loss correspond-
ing to the (1/3)rd quantile of the estimate of θ is determined by the two 
shaded regions. Suppose t is to be increased to t + h. Then E(l(t;q)) is in-
creased by twice the area of A (the marked region below the cdf curve) and 
decreased by the area of B (the marked region above the curve). The net 
change in E(l(t;q)) would be:

	
2

1
3

2
3

3h h h h h+








 − −









 =

which is a non-negative quantity, with ∆h being the triangle-like area shown 
in the graph. A similar argument with the help of the graph shows that, if t is 
decreased by an amount h, there will again be an increase in E(l(t;q)). Thus 
the expected loss is at a minimum when the estimate t is the a/(a + b) quantile.

The same graphical technique has been applied to demonstrate an opti-
mality property of the median, namely that the mean absolute deviation is 
at a minimum when evaluated from a median. Note that this method is ap-
plicable to a posterior density function of any form, including discrete and 
mixed. Comparatively, the formal mathematical proof is not straightforward. 
For difficulties arising in the algebraic proof of the optimality property of the 
median, see Lee (1995).
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Figure 14. Expected loss is minimum at a specific quantile.

Concluding remarks

In this paper, we demonstrate an alternative approach to extract information 
from the cdf curve. Instead of the usual convention of converting the cdf 
curve into the density function curve, we show how the former can be more 
fruitfully utilised to describe the key features of the underlying distribution. 
As illustrated in the several examples above, this approach is potentially useful 
in a number of applications, such as economic analysis, mortality studies, and 
insurance claims modelling. Regarding teaching of statistics, it can also serve 
as a supplementary graphical device to help students understand better the 
rationale of some well-known results by gaining more intuitive insights from 
the cdf curve. 
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