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Formal inference, which makes theoretical assumptions about distributions 
and applies hypothesis testing procedures with null and alternative hy-

potheses, is notoriously difficult for tertiary students to master. The debate 
about whether this content should appear in Years 11 and 12 of the Australian 
Curriculum: Mathematics has gone on for several years. If formal inference is 
not included in Years 11 and 12, what statistical content, if any, should there 
be? Should students continue learning more data handling skills, which are 
a feature of the F–10 curriculum (Australian Curriculum, Assessment and 
Reporting Authority [ACARA], 2011)? Perhaps the focus should be on pro-
cedural aspects, such as correlation and lines of best fit, employing principles 
from calculus. Or perhaps the curriculum should drop statistics and focus on 
the more complex theoretical aspects of probability.

To imagine a school curriculum without an acknowledgement of some 
aspects of inference, however, should be impossible for the developers of 
the curriculum. Statistics is about carrying out investigations with data from 
random samples to answer questions about populations or with data from 
randomised experiments to draw causal inferences. At some point in the de-
velopment of understanding of the inferential process, probabilistic reasoning 
becomes involved because the decisions about the questions cannot be made 
with certainty. Although the word inference is not used in the F–10 mathemat-
ics curriculum (ACARA, 2011), there are places where the language implies 
that decisions are in the offing. Terms such as “make predictions” (Year 2), 

“interpret data sets” (Years 5–7), “investigate” (Years 8–10), and “evaluate” 
(Year 10) are associated with decision making, as seen in the elaborations in 
the curriculum. The question that arises in the classroom is how to link stu-
dents’ experiences across the years to the aim of appreciating the inferential 
nature of statistics in making generalisations based on data. The ingredients 
are there up to Year 10 but the connections are missing. Should the connec-
tions begin to be made in Years 11 and 12?

The statistics education research community has been discussing the lead 
in to inference, through informal inference, for some time, and for example 
the fifth Statistical Reasoning, Thinking and Literacy Forum (SRTL-5 in 2005) 
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had informal inferential reasoning as its theme. The SRTL-6 and a special 
issue of the journal Mathematical Thinking and Learning have been devoted 
to “the role of context in developing reasoning about informal statistical in-
ference” (Makar & Ben-Zvi, 2011). Over the last few years various phrases 
have been used to describe the concept. Ben-Zvi (2006) used IIR (informal 
inferential reasoning), whereas Pratt and Ainley used ISI (informal statistical 
inference). Makar and Rubin (2009) presented a useful framework that can 
be summarised as context and a question, where evidence is used to make a gen-
eralisation beyond the data with an acknowledgement of uncertainty. 

In formal statistical inference, the evidence comes from representative data 
collected randomly in a sufficient quantity from a population or process satis-
fying the mathematical assumptions of the statistical model that is to be tested, 
in order for a specific probability to be placed on the likelihood that the ob-
served data could have arisen from the sampling distribution derived from 
the null hypothesis. Those who only accept the formal way of considering 
inference reject informal inference as inadequate for answering meaningful 
statistical questions, whereas those who adhere to informal inference believe 
that as long as the evidence and the type of generalisation are made clear 
along with acknowledging the uncertainty associated with the conclusion, 
then others are able to believe (or otherwise) the conclusion (Cobb, 2007).

Many examples of students conducting and analysing statistical investiga-
tions of an informal nature exist in the literature. From Ben-Zvi’s early work 
with young children (Ben-Zvi, 2006; Ben-Zvi, Gil, & Apel, 2007), through Wat-
son’s (2008) work with Year 7 students, to Pfannkuch’s (2011) study with Year 10 
students, many student experiences have led researchers to believe that impor-
tant intuitions are being built about the inferential process that will form a solid 
foundation for formal inference if met in later years of education. If formal 
inference is not encountered later, at least students should have a grounding 
that will allow them to ask questions about claims they see/hear in wider society.

The types of investigations that students at school find interesting are often 
those that involve differences between two groups, for example boys and girls 
or year levels within the school (e.g., Watson & Wright, 2008). The question of 
generalising differences observed in the classroom or school can be assisted 
for example by collecting random samples of data from the Census@School 
website (www.abs.gov.au). The concept of determining how much difference 
in the samples can be considered as a genuine difference in the populations 
evolves over time as students gain experience with analysing graphs of distri-
butions. Initially students are often overly conservative, not wanting to declare 
a difference genuine unless there is no overlap of two distributions, or the op-
posite, declaring any slight difference as meaningful (Watson, 2008).

Moving to the stage of informal inference where randomness is deliberately 
introduced into the study design through random sampling and/or random 
assignment, resampling methods offer a way of evaluating evidence to sup-
port a generalisation that can be reported with an associated frequency-based 
probability. Simon (1997), one of the strong advocates of resampling states, 

“Resampling refers to the use of the observed data or of a data generating 
mechanism (such as a die) to produce new hypothetical samples, the results 
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of which can then be analysed” (p. 2). In particular the available data on a 
variable can be randomly reallocated either with or without replacement.1 The 
process then recalculates the value of the statistic of interest for the resampled 
data, perhaps the difference in the group means or medians. This is done many 
times to estimate the relative frequency (probability) with which the original 
statistic (or more extreme) would be expected to occur compared to the dif-
ferences with random reallocation. Simon, as well as others, suggest a diversity 
of data analysis situations where the process can be used to support generali-
sations from samples. Examples that use resampling without replacement to 
consider hypothesised differences in two groups are based on comparing pro-
portions from two-way tables (e.g., Rossman, 2008; Scheaffer & Tabor, 2008; 
Stephenson, Froelich, & Duckworth, 2010) or comparing means or medians 
for two groups (e.g., Arnholt, 2007; Christie, 2004; Clements, Erickson, & 
Finzer, 2007; Ricketts & Berry, 1994; Scheaffer & Tabor, 2008; Shaughnessy, 
Chance, & Kranendonk, 2009; Taffe & Garnham, 1996). Stephenson et al. also 
compare their results with and without replacement. Examples based on resa-
mpling with replacement to mimic the sampling from a population to estimate 
a statistic include estimation of a mean (e.g., Arnholt, 2007; Christie, 2004), a 
correlation coefficient (e.g., Arnholt, 2007; Christie, 2004), and a confidence 
interval (e.g., Engel, 2004; Johnson, 2001; Wood, 2004).

In being exposed to this process, students are initially given hands-on 
experiences in carrying out the resampling, which is then transferred to a 
software package or applet to be carried out a large number of times, per-
haps 100 or 1000. This process has been used as an adjunct to traditional 
teaching of hypothesis testing in university statistics units (e.g., Park, delMas, 
Zieffler, & Garfield, 2011; Reaburn, 2011; Rossman & Chance, 2008; Tin-
tle, VanderStoep, Holmes, Quisenberry, & Swanson, 2011). It has also been 
a feature of Shaughnessy, Chance, and Kranendonk’s (2009) Focus in High 
School Mathematics Reasoning and Sense Making: Statistics and Probability. Vari-
ous software packages can be adapted to handle the resampling process. 
Taffe and Garnham (1996), for example, provided the instructions to use 
Minitab and Christie (2004) did so for Excel. Ricketts and Berry (1994) used 
the purpose-built software Resampling Stats and Arnholt (2007) provided in-
structions for using R (R Development Core Team, 2004). An investigation 
titled “Orbital Express,” which involves students in dropping two types of pa-
per objects onto a target (Clements, Erickson, & Finzer, 2007), illustrates the 
process using Fathom Dynamic Data (Key Curriculum Press, 2005). Rossman 
and Chance provide applets for various types of resampling procedures at  
<www.rossmanchance.com/applets>.

The more recent statistical software from Key Curriculum Press, TinkerPlots 
(Konold & Miller, 2005, 2011), provides an exceptionally user-friendly way of 

1	 There is some debate among statisticians about the conditions for using resampling with 
and without replacement and the exact terminology to use. See Stephenson et al. (2010) for 
a useful discussion and comparison of these two resampling possibilities with comparing 
two proportions. The resampling method used in the present paper (without replacement) 
is perhaps more appropriately called re-randomisation or reallocation, because it is carried 
out without replacement and mimics the randomness inherent in the random assignment 
process rather than the sampling process from a larger population. The term resampling is 
used here for simplicity and applies to both resampling with and without replacement.
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carrying out resampling and re-randomisation. It creates a constructivist plat-
form for students from the middle years to produce graphs without the need 
to know the exact format before starting and it also provides a random sam-
pler, a ruler device, a tool to define a measure, and a history button to keep 
track of measures. These features make TinkerPlots an ideal software for car-
rying out the resampling procedures. In this software, students are able to 
construct their own investigation, rather than only be presented with the com-
pleted computer code by the teacher. Even without a real-time demonstration, 
the steps in the following section illustrate the resampling (without replace-
ment) procedure for comparing groups without having to write instructions 
in a software language.

Resampling with TinkerPlots 1

The setting used for the presentation of resampling is taken from Shaugh-
nessy et al. (2009) derived from the chapter by Gary Kadar first appearing in 
National Council of Teachers of Mathematics (NCTM, 2009). It is based on 
a classroom experiment that could be carried out in any class from Year 6 to 
university, which allows students to investigate the suggestion that it is easier 
for people to memorise meaningful words than nonsense words. Two lists of 
three-letter words are prepared, one a list of meaningful words and the other 
a list of nonsense words. These lists are randomly distributed face-down to 
members of the class, one to a student. Students are told to turn the sheet over 
and spend 30 seconds memorising the words. They then turn the sheet over 
and write as many words as they can remember on the back of the sheet. The 
statistical question is then related to a comparison of the performances of stu-
dents who worked on each list of words: Is it easier to remember meaningful 
words than nonsense words? Stacked dot plots for each type of word can be 
created and means or medians calculated.

Shaughnessy et al. (2009) provide an exemplary classroom discussion that 
illustrates the issues that are likely to arise in introductory sessions with the 
topic, for example, going beyond developing “habits of mind” such as look-
ing for patterns and variation, choosing a model, evaluating observations 
and reflecting on the reasonableness of conclusions (p. 84), to distinguish-
ing between the real study and the “fake” or “hypothetical” studies that are 
randomised in order to draw informal inference conclusions (p. 92). They 
present data illustrating one class’ results that can be easily entered into data 
cards in TinkerPlots. Figure 1a shows the original data set as it appears in a 
stack of data cards (one card on top) and in a table. Figure 1b shows a plot of 
the data separated by type of word and labelled with the median of the num-
ber of words remembered for each word type.

The question is, how unusual is this difference in medians (4 words) for 
the number of words remembered for the two word types, when there is no 
genuine advantage to remembering the meaningful words? The Sampler in 
TinkerPlots provides the opportunity to investigate how unusual the differ-
ence is based on random assignment without replacement of the attribute 
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Number_Words_Remembered, 
hence assuming there is no gen-
uine difference in the treatments 
and any differences found arose 
solely from the random assign-
ment process used in the study. 
After being emptied of its initial content, the Sampler is set up with a Counter 
containing the Word_type data in the order they appeared in the data cards 
and a Mixer containing the Number_Words_Remembered (Figure 2a). Resa-
mpling is done from the Mixer without replacement with a run size of 30 (the 
original combined sample size of the two groups) and the values assigned to 
the two types of words (in the Counter).2 The results appear in a new table 
Results of Sampler 1, now labelled Random_Number_Words, and these can 
be plotted as before (Figure 2b).

With the Plot window selected, the Ruler is chosen from the top tool bar 
(Figure 3a). The ends of the Ruler can be dragged to the medians of the two 
groups of word types, moving the mouse to the median symbol, which causes 
a circle to appear. The Ruler then measures the distance between the two me-
dians and records this in the lower left corner of the plot. Clicking the History 
(H) button in the tool bar below the plot creates boxes around the medians 
and the equation of their difference (Figure 3b).

2	 It is also possible (and equivalent) to use two Mixers and randomly sample both attributes, 
pairing the data. Some students find this method more intuitive.

(a)

Figure 2. Creating a random resampling of the data.

(b)

Figure 1. Basic features of TinkerPlots.

(a)

(b)
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Clicking on the equation box creates a 
new table of the History of Results of Sam-
pler 1. Initially it has one entry from one run 
of the resampling. As many resamples as de-
sired can be added by inserting the number 
desired in the Collect box in the History of Results of Sampler 1 table (Figure 
4a). At the same time a new Plot can be created to display the resulting differ-
ences in medians (Figure 4b), in this case 200 resampled differences.

It is then possible to observe how many of the resampled cases create a 
difference of four or more to compare to the original difference (or a differ-
ence of -4 or less). This is a two-tailed test also acknowledging the possibility of 
nonsense words being easier to remember than meaningful words. Using the 
Divider tool highlights that in this case there are only 4% of the 200 resam-
pled differences as extreme or more extreme than 4, or 1% if the alternative 
hypothesis is that meaningful words are easier to remember. This provides 
evidence that there is some other reason than “chance” for the observed ten-
dency to remember more of the meaningful words. (Students should also be 
able to explain the symmetry and centre of this distribution based on the un-
derlying model of no genuine treatment effect.)

To focus attention on the importance of 
sample size and the ease with which tech-
nology allows this approach to be employed, 
Shaughnessy et al. (2009) included another 
data set with 60 values representing 30 stu-
dents randomly assigned meaningful words 
and 30 randomly assigned nonsense words. 
The data are shown in the Plot in Figure 5, 
where the difference in medians for the two 

Figure 3. Using the Ruler, Measure tool  
and History button.

(a)

(b)

Figure 4. Collecting 200 newly resampled samples and 
plotting the difference of medians.

(a)

(b)

Figure 5. Data from a class of 60 students.
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groups is four, the same as for the original data set of sample size 30. Shaugh-
nessy et al. note that novice students are initially likely to expect either more 
variation in the distribution of differences in medians or expect no change in 
the significance of the results because the difference in medians is the same 
(p. 99). 

To test their conjectures, the same procedure is followed in TinkerPlots in 
placing the two attributes in an empty Sampler and drawing out 60 values 
from the Mixer, the number of words remembered collected randomly with-
out replacement (Figure 6a). The process is the same as illustrated for the 
original data set of 30, with Figure 6b showing the plot for 200 resamples and 
no samples with a difference in medians as great as 4.

Placing the History of Results for the two Samplers on the same scales, as 
in Figure 7, shows the reduced variation in the differences in medians for the 
larger sample size. Because of the larger the sample size, there is less variabil-
ity in the sample medians, and the evidence is stronger than before that the 
difference in memory for meaningful and nonsense words is not a chance dif-
ference. The focus for student discussion is more on the reduction in spread 
seen in Figure 7 rather than just that “n is bigger than 30.” 

It appears safe to conclude that there is a genuine tendency for people (as 
represented by these students) to remember more meaningful words than 
nonsense words. Furthermore, because the actual study involved random as-
signment of students to the two conditions it is possible to claim that this as a 
cause-and-effect relationship.

Figure 6. Summary of resampling for a class of 60.

(a) (b)

Figure 7. Comparing the resampling distributions for samples of size 30 (top) and 60 (bottom).

(a) (b)
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Resampling with TinkerPlots 2

The first example presents an alternative to the traditional two-sample t-test 
for means and is a commonly used application of resampling. In fact, the abil-
ity to choose different statistics (e.g., comparing medians instead of means) 
provides students with a very flexible and extendable tool that can be applied 
much more extensively than t tests. 

The next example is based on a two-way table that presents frequency data 
based on an experiment described in Rossman (2008) where 30 patients di-
agnosed with mild to moderate depression were randomly allocated to two 
treatment groups where they engaged in the same amount of time swimming 
and snorkelling each day for four weeks. One group, however, participated in 
the presence of bottlenose dolphins and the other did not. The patients had 
no other treatment. The results are shown in Table 1.

Table 1. Results of Dolphin Therapy Experiment (from Rossman, 2008).

Control group Dolphin Therapy Total

Did not show substantial improvement 12 5 17

Showed substantial improvement 3 10 13

Total 15 15 30

The question arises as to whether this result, favouring the treatment includ-
ing dolphins, was likely to have happened by chance alone. The process is the 
same as above—resampling the results using the Mixer without replacement 
and assigning values to the treatments in the Counter—recording the statistic 
from each resampling, say the number who were assessed as showing substan-
tial improvement after swimming with the dolphins. This process mimics the 
original random allocation of patients but assumes 13 patients will show substan-
tial improvement regardless of the treatment they received (hence assuming no 
genuine treatment effect). How do these numbers from resampling compare 
to the 10 improvers in the dolphin group observed in the study? The data from 
Table 1 can be entered into TinkerPlots via the Data Cards (Figure 8a) or Table 
with two categorical attributes: Treatment and Results. The values of the attributes 
are Dolphin or Control for Treatment and Improvement or No Improvement for 
Results. The data are seen in a two-way plot with the same information as Table 1 
in Figure 8b.

Figure 8. Data for the Swimming with Dolphins Study.

(a) (b)
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The Sampler is set up again with the Coun-
ter and with the Mixer sampling the values 
of the Results attribute randomly without re-
placement (Figure 9a). For the first run the 
plot of the resample is shown with the count 
in each cell and the History button clicked to 
highlight the counts. Further clicking on the 

“7” in the Dolphin/Improvement cell collects 
the history of the resamples with respect to 
this cell (Figure 9b) to compare with the “10” 
that was observed in the original experiment 
(Rossman (2008) equivalently used the dif-
ference in conditional proportions rather 
than counts, which is also possible with Tink-
erPlots). The result is recorded in the History 
of Results of Sampler 1 table (Figure 9c).

Repeating the resampling process 100 
times (Figure 10a) shows that by chance, it 
would be expected that approximately two 
times out of 100, 10 or more of the 13 sub-
jects with substantial improvement would be 
observed for those swimming with dolphins. 
Repeating the resampling another 100 times 
(Figure 10b), no additional results as large as 
10 (or more) occur and the estimate of the 
probability of the result occurring by chance 
reduces to 0.01. (As Rossman, 2008, reports, 
the exact probability is calculated as 0.0127.) 
Because this probability is small and the study 
was a randomised experiment, the evidence 
suggests that there is some confidence that 
swimming with bottleneck dolphins is more 
effective in improving the patients’ depres-
sion than the control (swimming without 
bottleneck dolphins).

Although carried out in a virtual envi-
ronment, the collection and display of the 
statistics from the resampled data can pro-
vide a “concrete” experience for students. 
This is especially true if they have conduct-
ed a physical random resample themselves a 
few times before using the software. In both 
of these examples, watching the process in 
TinkerPlots as plots are replaced and statistics 
recalculated for each resample reinforces the 
randomisation at work and leads to answer-
ing the question, “could the initial observed 

Figure 9. Setting up the resampling process for the  
Dolphin Study.

(a)

(b)

(c)

Figure 10. Results of resampling in the Dolphin Study.

(a)

(b)
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outcome have happened by chance?” If we answer “no” or at least “very un-
likely,” then, because both studies utilised random allocation to treatments, 
we conclude that there is evidence for a causal relationship: meaningful words 
are easier to remember than nonsense words and swimming with bottlenose 
dolphins is more effective in improving patients’ depression than the control. 

For students who are reluctant to claim a difference in two treatment 
groups if the distributions are partially overlapping, watching the resampling 
process could help build intuitions about what is a meaningful difference. For 
those initially willing to declare any difference as significant, examples where 
the initial difference appears in the middle of the distribution of resampled 
differences (e.g., Stephenson et al., 2010) could help build intuitions about 
when there is very little evidence that a genuine difference exists. These ex-
amples can easily be extended to cases where students examine the effect of 
sample size and within group variability (for quantitative data). Acknowledg-
ing the need for an understanding of chance processes, the benefit of this 
approach for those who are beginners in the realms of inference is that the 
experience takes place without the baggage of theoretical assumptions and 
formal calculations of p-values while building inferential reasoning. 

Place in the curriculum for resampling

Those who have used resampling as an introduction to ideas of formal in-
ference report various degrees of positive outcome. Simon, Atkinson and 
Shevokas (1976) are the earliest to experiment with resampling as the Monte 
Carlo method. In three different classroom settings at the tertiary level they 
report both achievement and attitude differences favouring the randomisa-
tion procedure over the conventional theoretical procedure. Ricketts and 
Berry (1994) report positive feedback from their undergraduates using the 
Resampling Stats software.

The sampling method is, in my opinion, far easier to understand than the 

mathematical solution … A very clear difference I thought, was that the resam-

pling method makes one feel that we are physically doing it, or actually seeing 

it physically being done, without having to take any theoretical mathematics 

into consideration. (p. 43)

Simon et al. (1976) make it clear how they see the place of resampling 
methods in relation to conventional methods of teaching statistical inference. 
Using the terminology of resampling their comments appear relevant to the 
Australian context.

Lest this be unclear or seem to equivocate: Where there is limited time, or 

where students will not be able to grasp conventional methods firmly, we advo-

cate teaching the [resampling] approach, and perhaps that only. Where there 

is more time, and where students will be able to well learn conventional meth-

ods, we advocate (a) teaching [resampling] methods at the very beginning as 
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an introduction to statistical thinking and practice; and (b) afterwards teach-

ing the [resampling] method with the conventional method as alternatives to 

the same problem, to help students learn analytic methods and to give them an 

alternative tool for their use. (p. 15)

As Simon et al. (1976) go on to note, this method involves students in-
teracting with the pedagogy and the data, developing intuitions about what 
distributions look like and what it means to be “statistically significant.” Once 
the randomisation process is accepted, there is no need to take anything else 
on faith, as is usually the case for the analytical methods associated with tradi-
tional hypothesis testing. Tintle et al. (2011) more recently report significantly 
better outcomes on test items assessing statistical inference for tertiary students 
taught a randomisation-based curriculum (modelled on Rossman and Chance 
(2008)) compared to a more traditional curriculum. The examples presented 
by Schaeffer and Tabor (2008) and Shaughnessy et al. (2009) are specifically 
designed for secondary students and the draft US Common Core Mathematics 
Curriculum (Common Core State Standards Initiative, 2010, p. 82) includes 
randomised experiments and resampling ideas (S-IC.5) for the high school.

Given the potentially crowded nature of the Australian Curriculum: Mathe-
matics at Years 11 and 12, one could suggest the advice of Simon et al. (1976) is 
relevant to building intuitive ideas about inference. Cobb (2007) presents an 
even stronger argument than Simon et al. for changing the face of introduc-
tory statistics courses. Building on the changes brought about by computers 
to automate calculations and graphics by the end of the 20th century, Cobb 
goes one step further. 

Just as computers have freed us to analyse real data sets, with more emphasis 

on interpretation and less on how to crunch numbers, computers have freed 

us to simplify our curriculum, so that we can put more emphasis on core ideas 

like randomised data production and the link between randomization and in-

ference, less emphasis on cogs in the mechanism, such as whether 30 is an 

adequate sample size for using the normal approximation. (pp. 1–2)

Using as his analogy of how Copernicus changed the view of the earth as 
the centre of the universe, Cobb would throw away the normal approxima-
tion to a sampling distribution as the centre of the statistics and replace it with 
the core logic of inference: the three Rs. Cobb’s three Rs are (1) randomise 
data production, (2) repeat by simulation to see what is typical, and (3) reject 
any model that puts the data in its tail. In relation to building students’ intui-
tions about inference, providing a few examples of resampling in this manner 
would appear to provide the evidence required by Makar and Rubin (2009) to 
measure the degree of uncertainty with which one is able to generalise from 
the original sample of data collected, the evidence being strongest when the 
original data meet random criteria of selection or assignment. Why not bite 
the bullet and give students in Years 11 and 12 the chance to extend their pre-
vious work with exploratory data analysis in Years F–10 in a meaningful way to 
build an understanding of the logic of inference? If they go on to traditional 
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statistics courses at university, they will be able to apply the logic in the tradi-
tional environment.

Given the step-by-step visual presentation of the process of resampling that 
is created through the use of TinkerPlots, it is even possible to make a more 
radical suggestion. Why not make resampling available to students before Year 
11? Relative to the traditional theoretical approach, the resampling process 
could begin with tactile simulations using concrete materials and it could be 
introduced as soon as students are experiencing simulations in the curricu-
lum. Computer simulations are suggested in relation to Chance as early as 
Year 6 (ACARA, 2011, p. 32) and the TIMES Project (2011) uses simulation 
to illustrate sampling variation for a known proportion of a population with 
two outcomes in Year 8. This reflects the focus on samples and populations 
that develops across the middle years. Given that research has shown that 
students in Years 5 to 7 can create and interpret scatterplots (e.g., Fitzallen & 
Watson, 2011; Watson & Donne, 2009), which are not explicitly mentioned in 
the mathematics curriculum until Year 10 (ACARA, 2011, p. 46), potentially 
many students in Year 10 and earlier could develop intuitions about informal 
inference given straightforward examples as in Shaughnessy et al. (2009) or 
Rossman (2008) and software as creative as TinkerPlots.
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