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Abstract: Let X be a statistical variable representing student ratings of University teaching. It is 
natural to assume for X an ordinal scale consisting of k categories (in ascending order of 
satisfaction). At first glance, student ratings can be summarized by a location index (such as 
the mode or the median of X) associated with a convenient measure of ordinal dispersion. For 
instance, the median of X may be associated with the dispersion index of Leti, resulting in a 
synthesis that takes into account the ordinal nature of data and also communicates 
information in an effective way. More generally, there are many indexes (such as the ordinal 
entropy) that can be properly employed to measure the ordinal dispersion. On the other hand, 
student ratings are often converted into scores and treated as a quantitative variable. More 
generally, it is possible to measure student satisfaction by means of a real-valued function 
defined on the standard simplex and satisfying some appropriate conditions. Finally, such a 
measure of satisfaction can be associated with a suitable measure of variability. 
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1.  Introduction  

The evaluation of University teaching by students is generally carried out by 
administering a questionnaire. Such a questionnaire requires responses on an ordinal scale 

consisting of k categories kmm  ...1  in ascending order of satisfaction.  

For example, the question “Overall, are you satisfied with this course?” (in the 
questionnaire adopted by Italian Universities) can be answered by “Decidedly no”, “More no 
than yes”, “More yes than no” or “Decidedly yes” (k = 4).  

Focusing on responses to a single item in the questionnaire, the issue immediately 
arises of synthesizing the corresponding distribution of relative frequencies (shown in Table 
1) by appropriate measures of location and dispersion.  
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Table 1.  Distribution of relative frequencies.  

Ordinal categories m1 … mi … mk 
Relative frequencies p1 … pi … pk 

 
The discussion of this issue, introduced in Section 2, is developed in Sections 3, while 

Section 4 extends the study to multidimensional measures.  

2.  Location and dispersion of ratings  

In order to take into account the ordinal nature of student ratings, it is appropriate to 
represent the standard simplex of frequency distributions with k categories  
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preserve the stochastic ordering, i.e. if  
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then  

   kk GGLFFL  ,...,,..., 11 .  

Such an index, in fact, reaches its minimum or maximum value, respectively, in the 
case of complete dissatisfaction (p1 = 1) or total satisfaction (pk = 1):  
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In addition, such an index of location, as the median  5.0:min 1  ii Fmme , can 

be associated with a suitable measure of ordinal dispersion, as the index of Leti  
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or the ordinal entropy  
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These indexes allow to decompose the overall dispersion measured in a set of C University 
courses in two parts, namely “between” and “within” the courses:  
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(Grilli and Rampichini, 2002) and  
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  (i = 1,…,k) is the relative cumulative frequency expressed as a 

finite mixture of relative cumulative frequencies Fi|c, corresponding to ratings of the course c, 

with weights c  given by the proportions of students who evaluate the course c (c = 1,…,C). 

In this regard, we note that the higher is the value of the “between” component, the more is 
the influence of the course features on the student ratings.  
In general, an index of ordinal dispersion D attains its minimum if  

1    ipki   

and attains its maximum in the case of polarization  

kpp  2
1

1   

(Leti, 1983). This happens for the indexes (3) and (4).  

In particular, it follows that ordord GH   and the index (4), when compared with (3), gives 

more weight to the frequencies  

kk pFpF  ,11   

when they are small.  
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In the case of four courses and k = 4, Table 2 illustrates how the above approach 
produces results easy to communicate, despite being characterized by a lack of ability to 
discriminate situations very different from each other, because of the poor range in (2).  

Table 2.  Some traditional measures of location and ordinal dispersion in the case of k = 4.  

 m1 m2 m3 m4
 Location Dispersion 

Course p1 p2 p3 p4 Mode Median Leti Entropy 
1 0.10 0.20 0.30 0.40 m4 m3 1.08 1.61 
2 0.01 0.20 0.39 0.40 m4 m3 0.83 1.24 
3 0.01 0.10 0.49 0.40 m3 m3 0.70 1.08 
4 0.10 0.30 0.30 0.30 nd m3 1.08 1.61 

 
Table 2 also shows that the mode, as location index, does not preserve the stochastic 

ordering. 

3.  Satisfaction indexes  

From a general point of view, a satisfaction index can be identified with a real-
valued function defined on the standard simplex (1)  

 kS :      (5) 

for which the following two conditions apply.  
 

Condition of strict monotony  
The function S is said to be strictly monotone if it is strictly increasing with respect to 

the stochastic ordering, that is to say  
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Being a reinforcement of stochastic order preserving condition, (6) implies the 
following condition  
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Condition of equivariance  
The function (5) is said to be equivariant if it is equivariant with respect to the order reversing 

permutation of  kk pppp ,,...,, 121  , that is  

 

       121121 ,,...,,maxmin,,...,, ppppSSSppppS kkkk   .           (8) 
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This condition identifies the value s of (5) corresponding to any frequency distribution 
invariant under order reversing permutation, i.e. such that  

   121121 ,,...,,,,...,, pppppppp kkkk   ,  

since from (8) follows immediately   2)max()min( SSs  , indicating a medium level of 

satisfaction.  
 

The following are some examples of satisfaction indexes:  

4321 10752 ppppCG    

(k = 4), due to Chiandotto et al. (2000) and used in teaching evaluation by Universities of 
Cagliari, Ferrara, Florence, Macerata, Milan, Palermo, Sannio Sassari, Trieste and Urbino;  

4321 pupuppMu    

(k = 4, 0 < u < 1), studied by Marasini et al. (2011) and used by Universities of Pavia and 
Insubria;  





k

i
i

k

i
i ipFSDI

11

  

proposed by Cerchiello et al. (2010) and employed by Universities of Bergamo, Brescia, 
Naples East, Molise, Rome - Tor Vergata, Turin, Venice - Ca 'Foscari and Verona.  

However, the index due to Capursi et al. (2001)  
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(r > 0) is strictly monotone, but is not equivariant, except in the case r = 1; while the index 
introduced by Civardi et al. (2006) at University of Milano – Bicocca  
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(k = 4, 0 < ν ≤ 1) meets the condition of equivariance and (7), but strict monotony is not 
met.  
In the case of four courses and k = 4, Table 3 illustrates the above considerations. For 

instance, the first course and the third course show that vCI , with ν = 1, is not strictly 

monotone, whereas the first course and the last course show that the index  
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is not equivariant (if this index were equivariant, then we would have 0.30 instead of 0.35 in 
the last row of the Table 3).  



  
The International Conference  

“Innovation and Society 2011. Statistical Methods  
for the Evaluation of Services (IES 2011)” 

 
130

Table 3.  Some popular measures of student satisfaction in the case of k = 4.  

Course p1 p2 p3 p4 CG M0.5 SDI IS0.5 CI1 

1 0.10 0.20 0.30 0.40 7.30 0.35 3.00 0.70 0.32 
2 0.00 0.30 0.30 0.40 7.60 0.40 3.10 0.81 0.49 
3 0.10 0.00 0.50 0.40 7.70 0.55 3.20 0.78 0.12 
4 0.40 0.30 0.20 0.10 4.70 -0.35 2.00 0.35 -0.32 

 
In general, the weighted mean  
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is a function defined on the standard simplex, which is strictly monotone, if it satisfies the 
inequalities  

   
 

kk wwww  121 ... ,     (10) 

and equivariant, if it also satisfies the equalities  
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(i = 1,…,k). Thus the linear function (9) with weights satisfying conditions (10) and (11) can 
be called linear satisfaction index (being strictly monotone and equivariant).  
More specifically, each linear satisfaction index is completely determined by a weight vector 
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(i = 1,…,k) satisfy (10) and (11). Moreover, we can see that (11) takes the simple form 

iik ww ~1~
1  .  

 
It is interesting to note that some linear satisfaction indexes can be interpreted in 

terms of probability. To see this, let X and Y be random variables providing ratings of a 

student chosen at random, respectively, from the observed distribution kpp ,...,1  and from a 

virtual distribution we require to be invariant under order reversing permutation. It is thus 
possible to define the probability that a student randomly selected from the observed 
distribution provides a rating not less than the virtual rating drawn from an invariant 
distribution corresponding to a medium level of satisfaction:  

   



k

i
ii pmYPYXP

1

.  

Similarly, we may define the difference    YXPYXP  .  

For instance, if we choose  kk
11 ,...,,  as the invariant distribution of Y, we get  

  



k

i
i k

SDI
p

k

i
YXP

1

  

and  

   
k

kSDI
p

k

ki
YXPYXP

k

i
i

1212

1





 



,  

which for k = 4 becomes  

    3/13
4

44
3

34
1

24
1

14
3 MppppYXPYXP  .  

However, if Y has invariant distribution  0,,,0 2
1

2
1 , then  

  4322
1 pppYXP    

is a weighted mean that does not meet the conditions of strict monotony and equivariance, 
while  

    2/1432
1

22
1

1 MppppYXPYXP  .  

 
A further advantage of the linear satisfaction indexes is that we can measure the 

ordinal dispersion (in the sense of Section 2) by means of the variance  
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where  
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(i = 1,…,k) is the relative frequency expressed as a finite mixture of relative frequencies pi|c, 

corresponding to ratings of the course c, with weights c  given by the proportions of 

students who evaluate the course c, and cS |w is the linear satisfaction index for the course c 

(c = 1,…,C).  

4.  Multidimensional satisfaction indexes  

If we extend our view to include C courses evaluated by a questionnaire with Q 
questions, we may construct a multidimensional index of the form  
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(Russo, 2002), being c  the proportions of students who evaluate the course c (c = 1,…,C) 

and  
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where, referring to the question q (q = 1,…,Q) about the course c, cqS
~

 and cqD
~

 represent, 

respectively, a standardized satisfaction index and a standardized ordinal dispersion index (in 
the sense of Section 2).  

5.  Conclusions  

The paper shows how to measure student satisfaction through real-valued functions 
satisfying some appropriate conditions. In this context, further work will involve providing a 
complete characterization of satisfaction measures and a general representation of them.  
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