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Abstract 

 

In 2007, a group of mathematics educators and researchers met to examine rational numbers and 

why children have such an issue with them. An extensive review of the literature on fractional 

understanding was conducted. The ideas in that literature were then consolidated into a 

theoretical framework for examining fractions. Once that theoretical framework was in place, it 

was decided that we would utilize this framework to develop an assessment of student 

understanding of fractions and to create lessons that would hopefully impact the understanding 

of the participating students. The intent of this paper is to describe that journey to examine the 

past research and theory around fractional understanding that lead to a theoretical framework. 

The paper will also share this framework, as well as provide some information about the 

instruments and lessons that were created as a result. 

 

 

Introduction 

In the spring of 2007, a group of six mathematics educators came together as part of Baylor 

University's graduate program to design a course related to mathematics education that would be 

of value to all six of them. The backgrounds of these six were very different. One was a tenured 

professor who had conducted research on many different areas of mathematics teaching and 

learning.  Two were middle school teachers; one was still teaching and attending school part 

time, while the other had left teaching to attend graduate school full time to complete a doctorate 

in education. One was an elementary school teacher with little formal background in 

mathematics outside the methods courses required for certification. One was a high school 

teacher with fifteen years of experience, and one was high school certified but had taught adult 

remedial education for most of her career. In addition, four of the participants had majored in 

mathematics during their undergraduate careers, while the other two had majored in elementary 

education with no specific emphasis on mathematics. At first glance, it would be easy to assume 

that such a diverse group would struggle to reach consensus on what would be a worthwhile 

investigation. However, it took only a short time to decide to research rational numbers, 
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specifically fractions. The reason for this was that, at all the different levels with which the six of 

us worked, we had all experienced issues with our students' understanding of fractions, or lack 

thereof. 

Data from national and international assessments clearly support the existence of the 

difficulties American students have with fractions we had all observed in our own experiences. 

For example, the National Assessment of Educational Progress (NAEP), often referred to in the 

US as the Nation's Report Card, has historically shown that students struggle with all but the 

least complex questions involving fractions. Wearne and Kouba (2000) found in their analysis of 

the 1996 NAEP assessment that students struggled with problems that were multi-step or non-

routine. Kastberg and Norton (2007) furthered this analysis by comparing results from the 1996, 

2000 and 2003 NAEPs. Again, students did well on simple questions such as identifying the 

picture that represents a specified fraction, with 83 percent of tested 4th grade students 

answering this question correctly in 2003 (89). However, more complex problems such as 

naming and shading an equivalent fraction remained a struggle for 4th graders, as only 19 

percent of students correctly responded correctly (89). An examination of the latest NAEP data 

shows there are still struggles with these fraction concepts (NCES 2009). In 2009, students 

improved somewhat in dealing with equivalent fractions, as 55% were able to correctly identify 

the picture showing that 3/4 and 6/8 are equivalent. However, only 25% could accurately 

determine which of four fractions was closest to 1/2. Both of these questions were classified as 

being of low complexity. 

An examination of international testing data from the Trends in International Math and 

Science Study (TIMSS) further supports the findings from the NAEP and would seem to indicate 

that fractions are more of a problem for American children than for children from many other 

countries. Gonzales et al. (2004) reported results of the 2003 TIMSS study revealing that 4th 

grade students in the United States had scores that were significantly lower than their 

counterparts in eleven of the twenty-four participating countries. Only 59% of the questions in 

the strand related to fractions and number sense were answered correctly on the 1999 TIMSS 

(Mullis et al. 2000). All this demonstrates further the ongoing trend of the challenges faced by 

children in the United States regarding fractions. 

The final proof of the need for research into student fractional understanding comes from 

the difficulty teachers themselves have with understanding fractional concepts. This is evidenced 

most clearly in the research of Liping Ma (1999). Ma demonstrated this difficulty by asking two 

groups—one of American teachers and one of Chinese teachers—to solve a problem involving 

division of fractions and to write a word problem that would utilize the given problem as a 

solution. Within the group of Chinese teachers, all were able to solve the problem, and 90% of 

them were able to write at least one word problem that was pedagogically correct for division of 

fractions. In contrast, only 43% of the teachers from the United States were even able to solve 

the problem presented, and only one was able to write a mathematically accurate word problem. 
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Why Are Fractions So Difficult? 

In considering the difficulties students (and teachers) have with fractions, it is not surprising that 

much of the research refers to the complex nature of fractional understanding. One of the reasons 

for this complexity is the relative thinking required to comprehend the meaning of a fraction 

(Lamon 2008a). When dealing with whole numbers, students are able to apply principles of 

cardinality to the idea of a number of objects. Cardinality refers to the fact that, when counting a 

set of objects, the last number said tells the amount of the set (Van de Walle, Karp, and Bay-

Williams 2010). A fraction, however, does not represent a specific amount, but rather it 

represents some portion of an amount. Because of this students must be able to think 

multiplicatively (in relative terms) rather than additively (in absolute terms). Even this is too 

simplified a description. The research actually notes many different interpretations of a single 

fraction such as subdividing an area in equal-sized parts; subdividing a set; as a ratio; and as a 

way to express division (Lamon 2008a; Charalambous and Pitta-Pantazi 2007; Moss 2005; 

Witherspoon 2002). Students must be comfortable with all of these interpretations and this way 

of thinking to have deep fractional understanding, and they must be able to do so without 

confusing whole number characteristics and fraction characteristics. 

Unfortunately, another major issue with student understanding involves the way in which 

fractions are taught (Lamon 2008a; Chan, Leu, and Chen 2007; Paik and Mix 2003; Cramer, 

Post, and del Mas 2002; Mack 1995; Bezuk and Cramer 1989). It is a fault of the current system 

of education in the United States that concepts are often taught using procedures and 

memorization rather than having students develop their own understanding of fraction concepts. 

Moss (2005) sums up this issue very clearly with a quote from a student, “Oh fractions! I know 

there are lots of rules but I can’t remember any of them and I never understood them to start 

with” (309). Proceeding with this sort of rote memorization can create many different problems. 

First, this method tends to discount the informal knowledge students already possess with regard 

to fractions. Students enter school with some understanding of equal sharing and fractions, but 

this prior knowledge is not always properly accessed and built upon (Mueller, Yankelewitz, and 

Maher 2010; Empson 1999). Brizuela (2005) further observed this understanding through the 

examination of children’s use of fractional notation. Rote memorization also does not allow for 

the connection of mental operations to fraction notations, which is key for real understanding to 

exist (Saenz-Ludlow 1994), and it can actually be detrimental to a student’s development of 

numerical reasoning to present an algorithm too early (Kamii 1994).  

The variety of concrete models can also be a confounding factor for students as they 

attempt to make sense of fractions with so many different representations. The research is clear 

that concrete representations are key for student comprehension of fractions (Van de Walle, 

Karp, and Bay-Williams 2010; Cramer and Wyberg 2009; Lamon 2008a; Watanabe 1996; Taube 

1995; Bezuk and Cramer 1989). The use of manipulatives in teaching fractions is critical, 

because it accesses Piaget’s levels of development and a student’s need to have physical 

knowledge of a concept prior to presentation of an algorithm (Bransford, Brown, and Cocking 

1999; Kamii and Warrington 1999). There are two categories of concrete models for fractions—
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continuous (regions or lines) and discrete (sets of objects) (Van de Walle, Karp, and Bay-

Williams 2010)—and the research does not necessarily agree on which model students should be 

presented with first in their initial introduction to a fraction concept. Some research recommends 

that students begin with a continuous model, because it is more generalizable to other models 

(Cramer, Wyberg, and Leavitt 2008; Bezuk and Cramer 1989; Behr, Wachsmuth, and Post 

1988). However, the stated issues about some continuous models, such as the difficulty with 

visual distractors (Cramer, Post, and Behr 1989) and the artistic troubles students have in using 

continuous models to explain their reasoning (Lamon 2008a), could easily lead the reader to 

believe the discrete model is the better starting point. There is also research that stresses the need 

to use both models at all stages of the conceptual development for fractions to increase a 

student’s flexibility in thinking about fractions (Lamon 1996; Watanabe 1996; Taube 1995). 

With all the conflicting views about how to teach fractions, it is easy to see why students would 

struggle to learn them. 

 

Our Timeline 

Our initial meeting began without the benefit of all the above-mentioned literature. The review 

of the current research was to be one of the first products. It was therefore necessary to have a 

point at which to begin investigating, for which we chose a couple of texts that we felt would 

give us a feel for the seminal works on fractional understanding. One was Susan Lamon's book 

Teaching Fractions and Ratios for Understanding (2008a) and its companion text More (2008). 

This text was chosen in large part because it served the dual purpose of providing research into 

many of the areas that cause issues with learning fractions as well as supplementing that research 

with both examples of student work and with strong problem examples that could be used to 

deepen our comprehension of issues with fractions. The other text was Making Sense of 

Fractions, Ratios, and Proportions (NCTM 2002), the 64
th

 yearbook from the National Council 

of Teachers of Mathematics (NCTM) that focused specifically on recent research related to 

issues with rational numbers and offered us a wider view of the existing research. 

While reading through these two texts, each of the participants also conducted an expanded 

investigation on a topic of personal interest related to fractions that would then be shared in 

detail with the group. For example, one participant examined the work of Joan Moss (2002) 

suggesting that the teaching of rational numbers should be reordered to begin with concepts of 

percents rather than with fractions. Another participant considered the physical models that are 

used to represent fractions, such as the line model, continuous model, and discrete model, and 

analyzed the research regarding the ramifications of each of these choices. A third member of the 

group extended Brizuela’s (2005) work and considered fraction notation and its significance in 

student understanding. 

Along with the extensive examination of theory and research on fractions we conducted 

throughout the spring, we also decided it was critical to consider how fractional concepts 

appeared in our own state's standards. Texas utilizes the Texas Essential Knowledge and Skills 
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(TEKS) (Texas Education Agency 2007) as its statewide curriculum, and it is these skills 

students are tested on at the end of every school year. We also felt it was important to see how 

this curriculum connected to the newest national standards via the Curriculum Focal Points 

(2006) that were released by NCTM. What we discovered that was central to the eventual 

research we conducted was a disparity between the state's curriculum at the time and the 

recommendations made by NCTM (see Figure 1). While NCTM makes no mention of fractions 

or fractional concepts until third grade, the TEKS had students begin working on fractional 

language, unit fractions, fair sharing, and parts of a whole as early as kindergarten. 

 
This was only one of many contradictions in the research that piqued our curiosity about 

how students actually learn fractions most effectively.  It was partly this curiosity that provided 

fertile soil for the growth of a formalized research project once the seed was planted. Baylor 

University in Waco, Texas, USA, has a tradition of conducting research in partnership with the 

local school district. For example, as part of its teacher education program, all of the pre-service 

teachers must conduct at least one action research project within their various field placements as 

a requirement of graduation. In the past, more formalized research had also been conducted in 

cooperation with one of the local schools on improving the understanding of geometric concepts 

in the early grades. When it was discovered that a cohort was studying student struggles with 

fractions, it was therefore natural for the principal of this school to ask if there was any intent to 

turn this into a research study similar to the geometry study that had been conducted at the 

school previously. We agreed to this request as a way to further our own understanding of the 

issues with teaching fractions in the early grades. The decision was made to focus on early 

learning because the one issue that all the research seemed to agree on was that a foundation in 

the understanding of what a fraction is and how different fractions relate to each other was 

critical for success in any of the other rational number concepts.  

 

 

Figure 1. Curriculum Focal Points (CFP) compared to the Texas Essential Knowledge and Skills (TEKS) 
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Theoretical Framework 

As with any research project, the first goal was to synthesize all of our learning thus far into a 

theoretical framework for a research study on fractions. Although there were many different 

areas of study to consider within the data that was being collected, it was decided that the most 

important aspect of the study was to first examine student understanding. Over the range of 

grades from kindergarten through third, this understanding was segmented into four distinct 

areas that appeared critical to later fraction success. These were fair sharing, part-whole 

partitioning, unitizing, and equivalence. These four concepts became the framework around 

which we developed our research. 

Fair Sharing 

At the absolute foundation of fractional understanding is the ability of a student to share some 

object or objects fairly into a preset number of divisions. A key understanding about fair sharing 

is that it accesses a student’s experiences outside of school (Lamon 2008a; Empson 1999). 

Students have many opportunities in life to fairly share things with friends and siblings, and 

many have even experienced how to deal with fair sharing when splitting something that did not 

come out evenly, such as two cookies among three children. Lamon notes that the difficulty in 

fair sharing is for students to recognize that equal refers to the amount given, not necessarily the 

dimension or number of pieces.  

 

Part-Whole Partitioning 

Part-whole relationships are defined as those in which a student “designates a number of equal 

parts of a unit out of the total number of equal parts into which the unit is divided” (Lamon 

2008a 125). Once students are able to competently apply fair sharing skills to both discrete and 

continuous objects, quantifying those shares becomes critical. This is accomplished through part-

whole understanding and the structure of a fraction. Cramer and Wyberg (2009) specify that 

understanding of the part-whole relationship “relies on the comparison between ‘shaded part’ 

and the whole unit” (229). While this may seem a simple concept, the thinking required is quite 

complex. As Norton and Wilkins (2009) note, “This scheme relies upon operations of identifying 

(unitizing) a whole, partitioning the whole into equal pieces, and disembedding some number of 

pieces from the partitioned whole” (2). As noted by Charalambous and Pitta-Pantazi (2007) the 

concept of part-whole partitioning takes up the bulk of the curriculum in younger grades, 

because it is critical to understanding other rational number concepts such as ratios, quotients, 

and measure. Behr, Lesh, Post, and Silver (1983) summarize this in their research for the 

Rational Number Project by stating, “It seems plausible that the part-whole subconstruct, based 

both on continuous and discrete quantities, represents a fundamental construct for rational-

number concept development” (10). 
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Equivalence  

Equivalence with fractions refers to the fact that many different fractions can be used to name the 

same quantity, depending on how the quantity is subdivided (Lamon 2008a). This need to be 

able to subdivide a quantity creates its own unique issues. Cramer, Post, and Behr (1989) discuss 

the issue of perceptual distractors in their research, which are created by these very subdivisions. 

When considering an area divided into six regions with four of those regions shaded, students are 

often unable to recognize that this picture can represent both the fractions four-sixths and two-

thirds. 

 

Further Specifications 

Once these larger concepts were chosen, it was still necessary to further specify what we would 

be looking for as we designed the study and developed coding structure to analyze the data that 

would be collected. It was decided that, first and foremost, the model being used to teach a 

concept would be critical in analyzing student success. As was stated earlier, providing students 

with concrete representations is one of the components that is key to a student being successful 

in working with fractions and having a strong understanding of fraction concepts (Van de Walle, 

Karp, and Bay-Williams 2010; Cramer and Wyberg 2009; Lamon 2008a; Watanabe 1996; Taube 

1995; Bezuk and Cramer 1989). The two categories of models used for fractions are continuous, 

meaning they can be subdivided into smaller pieces, and discrete, which consists of a group of 

undividable objects. Van de Walle, Karp, and Bay-Williams (2010) further classify continuous 

models as area models and length models, although we did not utilize this subdivision for the 

purpose of coding. This was in large part due to the fact that the emphasis on ordering fractions 

did not occur until later grades. We also included a category for other models in order to allow 

for flexibility in coding what students did in the event their actions did not fit directly into the 

use of a continuous or a discrete model. 

 The observed actions within each of these models was then further subdivided to analyze 

the types of representations used and the types of understanding that manifested during the 

research. We specifically considered whether students used language, pictures, symbols, or 

actions to represent their fractional understanding. With regard to understanding, it was decided 

that we would need to consider both understanding and misunderstanding specific to the issue 

being observed, as well as to analyze a student’s responses for deeper misconceptions about 

fractions. All these pieces are summarized in Figure 2, and it was this that made up the 

developed theoretical framework for our research on student fractional understanding. 
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Project Development 

The theoretical framework was only the beginning of what has become a much larger 

longitudinal study of fractional understanding. Utilizing this developed framework as the 

foundation, the team met in the summer to design the research study requested by the principal. 

Because we were dealing with early fractional understanding, it was decided that the research 

would begin by working with kindergarten and third grade students—the bookends of this 

understanding as defined by our theoretical framework. This process consisted first of the 

development of an interview instrument to use both pre- and post-treatment to assess the 

individual student’s understanding of fractions. The questions for these assessments were 

modified from a variety of sources, including the Texas Assessment of Knowledge and Skills 

(TAKS), the California Achievement Test (CAT), the Iowa Test of Basic Skills (ITBS), and the 

problems available for consideration in Lamon’s book (2008a). The questions chosen aligned 

both with our theoretical framework and with the expected grade level skills as outlined 

previously in Figure 1. The protocols were designed to be given orally and individually and were 

scored using four point rubrics that reflected the research about what constituted complete and 

partial fractional understanding. 

 Once the instruments were developed, lessons were written that again specifically 

addressed the components of the theoretical framework. Because of school scheduling 

constraints, these lessons were only taught once a week for approximately six weeks in small 

group settings. Each of the lessons strived to exemplify the tenets of best practice by having 

students work in contextual settings with both discrete and continuous models for fraction 

learning. The lessons were taught by junior-level and senior-level pre-service teachers who were 

in the school as part of the University’s teaching certification program. These lessons were 

Figure 2. Theoretical Framework for Student Fractional Understanding 
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observed by both professors and graduate students from Baylor University with the intent of 

finding evidence of student fractional understanding as laid out in the framework. 

 Although student understanding was the initial focus of the research, other data was 

collected on the teacher candidates as well, since their own knowledge of fractions and rational 

numbers is key to the success of the students they will eventually teach. The teacher candidates 

wrote reflective journals regarding their assessment of the day’s lesson and how well students 

understood what was being taught. They were also asked to take a pre- and post-assessment of 

their own fractional understanding, and they completed the Mathematics Teacher Efficacy 

Beliefs Instrument (MTEBI). This data will eventually be analyzed for evidence of changes in 

efficacy for teaching fractions, as well as for changes in teacher content knowledge (TCK) and 

pedagogical content knowledge (PCK) for mathematics. 

 Currently, this study is in its fifth iteration. Instruments and lessons have been developed 

for first and second grade students as well. Modifications have been made to lessons to improve 

them for student learning. The data is also being analyzed from a longitudinal standpoint, as 

some of the participants were in the study for all four grade levels. Informal results are positive, 

both anecdotally from the classroom teachers of participating students and from the data 

analyzed thus far. 

 Despite all that has been accomplished with this study, it is important to note that this 

was very much a focused study based strictly on student fractional understanding. While a more 

systemic investigation of student mathematical understanding may have been more meaningful 

for explaining student difficulties, the point of this study was to examine within the existing 

framework of a classroom how to improve student understanding of fractions. The researchers 

recognize that a student’s mathematical understanding of more basic concepts is going to have an 

impact on how well he or she does with fractions. However, the purpose of this study was to 

consider ways to improve fractional understanding rather than to create better overall 

mathematics instruction. 

Conclusion 

Because of the traditional methods of rote instruction that have dominated American 

mathematics education in the past, there are many areas in which both teachers and students 

struggle to reach a deeper conceptual understanding. Fractions seem to be one of those 

predominant areas for many. Through this study, the six researchers and by extension the 

participating teachers and pre-service teachers were able to gain a stronger understanding of the 

nuances within the learning of fractions. It is this sort of understanding that is required in order 

for change to be effected and instruction on fractions to be improved. 

 Of potentially more significance is the development of the actual research itself. Rather 

than there being a top-down approach to change, practitioners were given the power to research a 

problem of concern to them and work toward a potential solution. These practitioners were then 

able to bring their research to others in the classroom to determine its effectiveness. While some 

may resist research that does not follow a traditional research design, this sort of model is one 

that should be considered for more areas and be put to wider use than just through the facilitation 
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of a university. In the spirit of action research or Japanese lesson study, this historical accounting 

can perhaps be used as a model for allowing practitioners to develop solutions to the problems 

they face with content instruction as an alternative to current models. 
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