
with John Gough
< jagough49@gmail.com>

More than a decade ago I was an active part of the AAMT mathematics 
education interest-group listserv. One of the messages posted to the 

listserv members said:

I am a Year 9 student, and I was looking through my school’s library and found 

a book called Algorithms & Data Structures. Since I am fond of computers I 

had a look. I turned to pages 141–147 and found the Hilbert and Sierpinski 

curves. I looked at the source code in Pascal and with my limited knowledge 

of it I translated them to BASIC. The results were spectacular. I was wonder-

ing, are there any links, source code, information or diagrams with any other 

forms of curves available. I am also interested in fractals. I saw my first fractal 

tree bloom on the Mac SE when I was about 5. I have seen many since then 

(in colour!) and I want to know how to replicate this effect.

Let me assume that what I said, as a reply to this Year 9 query, was help-
ful at the time. But let me also assume that this kind of question is peren-
nial. Here is a version of what I said, years ago, offered in the hope it may 
still be of some wider, general interest.

Hilbert and Sierpinski curves are space-filling curves. They are related to 
fractals, in that they have self-similar patterns. That is, when we magnify 
one section of the fractal object, we find we are looking at a very similar 
version of the object, such as 1 kilometre length of coast line, measured in 
units of metres, for example, resembling the kind of wiggly coastal-bounda-
riness of 100 kilometres, measured in units of 100 metres. 

Such space-filling curves were originally developed as conceptual math-
ematical ‘monsters’, counter-examples to Weierstrassian and Reimannian 
treatments of calculus and continuity. (The mathematical philosopher Imre 
Lakatos explored the role of examples, and counter-examples, including 
‘monsters’ to illustrate and test mathematical conjectures and proofs—like 
a kind of experimental scientific method; see Worrall & Zahar, 1976).

These were curves that were everywhere-connected but nowhere-differen-
tiable (or some similar paradoxical combination of conditions): that is, there 
were no breaks in the curves, but they were so extremely and discontinuously 
wiggly that ordinary differentiation did not apply to them. Paradoxical little 
beasts, indeed! Moreover, they showed that a ‘line’—specifically a ‘curve’, 
rather than a ‘straight line’—could fill two-dimensional space! Remarkable! 

As early as 1940, the great mathematics popularisers Kasner and Newman 
discussed the Koch snowflake, the anti-snowflake, and bizarre space-fill-
ing ‘curves’ as examples of what Kasner and Newman called “pathologi-
cal” shapes. Pathological, because the two-dimensional snowflake curve, for 
example, is contained within a finite area but is itself infinitely long, while 
the three-dimensional counterpart is a space-filling curve that is infinitely 

Hilbert and Sierpinski space-filling curves, and beyond
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long and completely fills a finite volume. Similarly, the Peano and Hilbert 
curves pass through every point of a finite area. Very pathological! 

You might enjoy reading some of the great ‘popularisers’ of mathemat-
ics. Here are a few suggestions. (These days, Google, Wikipedia and other 
online possibilities are also good alternatives to standard paper-based 
book-resources!)

• Gleick, J. (1987). Chaos: Making a new science. New York: Viking. 
• Julia, G. (1918). Mémoire sur l’iteration des fonctions rationelles. Journal 

de Mathematiques Pure et Applied, 8, 47–245. 
• Kasner, E. & Newman, J. (1940). Mathematics and the imagination. New 

York: Simon and Schuster.
• Mandelbrot, B. M. (1982). The fractal geometry of nature. San Francisco: 

Freeman.
• Paulos, J. A. (1991). Beyond numeracy: An uncommon dictionary of math-

ematics. New York: Knopf. 
• Pedoe, D. (1958). The gentle art of mathematics. London: English 

Universities Press..
• Peitgen, H-O, Jürgens, H. & Saupe, D. (1991). Fractals for the classroom: 

Part 1: Introduction to fractals and chaos. New York: National Council of 
Teachers of Mathematics & Springer-Verlag.

• Peitgen, H-O, Jürgens, H. & Saupe, D. (1992). Fractals for the classroom: 
Part 2: Complex systems and Mandelbrot set. New York: National Council 
of Teachers of Mathematics & Springer-Verlag. 

• Poundstone, W. (1985). The recursive universe: Cosmic complexity and the 
limits of scientific knowledge. Chicago: Contemporary Books. 

• Sawyer, W. W. (1943). Mathematician’s delight. Harmondsworth: Penguin. 
• Sawyer, W. W. (1961). What is calculus about? New York: Random House/ 

L. W. Singer. 
• Stewart, I. (1975). Concepts of modern mathematics. Harmondsworth: 

Penguin. 
• Stewart, I. (1987). The problems of mathematics (2nd ed. 1992). Oxford: 

Oxford University Press. 
• Stewart, I. (1989). Does God play dice? The mathematics of chaos. London: 

Blackwell. 
• Stewart, I. & Golubitsky, M. (1992). Fearful symmetry: Is God a geometer? 

London: Blackwell. 
• Stewart, I. (1996). From here to infinity [3rd ed. retitled The problems of 

mathematics]. Oxford: Oxford University Press. 

Both Ian Stewart (1992, chapter 17, pp. 240–242; and 1996, chapter 16, 
pp. 238–241) and James Gleick (1987, pp. 98–103) discuss the way chaos 
theory and fractals evolved from ‘monster’ examples of bizarre mathematical 
objects: 

curves that fill an entire square, curves that cross themselves at every point, 

curves of infinite length enclosing a finite area, curves with no length at all 

… in 1872 Weierstrass showed … a class of functions which are continuous 

everywhere but differentiable nowhere. (Stewart, 1992, p. 240)

Stewart also mentions the amazing, monstrous Cantor set, which is made 
by taking an interval and deleting the middle third, then deleting the middle 
third of the two remaining intervals, and so on, for ever. “The total length 
removed is equal to the length of the original interval; yet an uncountable 
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infinity of points remain” (Stewart, 1992, p. 241). Gleick calls this remaining 
set “Cantor dust” (1987, p. 93). 

Of course the Sierpinski triangular gasket and rectangular carpet, and 
the Menger sponge, which has infinite surface area and zero-volume, are 
two- and three-dimensional analogues of Cantor’s remarkable 1-D set of 
points along the real number-line. 

Let me emphasise that I am referring to ‘dimension’ in a strictly tradi-
tional Euclidean sense, not as a fractional (fractal) dimension of, say, 1.35 
which describes the way a curve (which would otherwise have traditional 
Euclidean dimension of 1) wiggles so much that its dimension approaches 
2, the traditional Euclidean dimension of an area.

The basic idea of a fractional dimension is this: a one-dimensional object, 
such as a line, or the arc of a circle, completely fills the ‘surface’ of a line or 
a circumference. Similarly, a two-dimensional object, such as a finite-area 
square or an infinite-area parabolic region, completely fills the two-dimen-
sional surface of that object. Compare these two kinds, one-dimensional, 
and two-dimensional, with a ‘tangled’ or ‘bumpy’ kind of line, such as a 
coastline, or the contour of a cloud, or the cross-section of a cauliflower, or 
the threads of a river delta. In each of these cases, we have something which 
is not entirely two-dimensional, or does not entirely fill a two-dimensional 
plane, but which does occupy a considerable portion of a two-dimensional 
plane, and certainly occupies or fills far more of the two-dimensional surface 
than does a simple one-dimensional line or curve. In these cases, it makes 
sense to use a fractional dimension, a number such as 1.7 or 1.34, between 
the Euclidean integer dimension values of 1 and 2, to represent to space-
filling dimensionality of these objects. Felix Hausdorff and A. S. Besicovich 
were the first two mathematicians to suggest such a fractional dimension 
(Stewart 1989, (rev. ed. 1997), pp. 205, 207).

Also, to explore more about fractals, try the ‘logistic equation’ xnext = rx(1 – 
x), in which an initial input value of x is combined with some fixed constant 
r, and each subsequent output value xnext is used as the next input value of 
x, with the same r. 

For example, if x = 0.5 and r = 2.1, then xnext = 0.525; then using this as 
the new value of x, the next value of xnext is 0.5236875. 

James Gleick (1987, p. 80) quotes Robert May as saying: “The world 
would be a better place ... if every young student were given a pocket calcu-
lator and encouraged to play with the logistic difference equation”, testing 
the different effects for different starting values of x and different coefficients 
r — “chaos should be taught”, and it is “time to recognise that the standard 
education of a scientist [gives] the wrong impression” (see also Paulos, 1991, 
p. 36). 

Using a graphic calculator or computer simulation of the logistic equa-
tion is better, and practicable at secondary level. The original Julia set, for 
example, used by Mandelbrot, is based on iteration with complex numbers, 
possibly a Year 11 or 12 topic. 

A complex number z (or a + ib) is a member of a Julia set, for a given 
real number c, if z is the first member of a sequence, defined by an iterative 
function, which remains bounded. 

If the sequence created by the iteration diverges indefinitely (“approach-
ing ± ∞”), then z is not in the set. 

The sequence is defined by the function zoutput = zinput
2 + c, substituting 

z for the first input, and iteratively using each zoutput as the new value for 
zinput. 
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Plotting each z in a Julia set on an Argand diagram—plotting (a, b) on 
ordinary Cartesian axes—constructs a fractal object. 

This is ideal computer simulation and plotting material! 
Recursive and iterative processes exist as curriculum topics on the 

borderline between mathematics, logic and computer science at upper 
secondary and undergraduate tertiary levels—or for any interested and able 
secondary student!

When I first drafted my reply to the listserv query, I had not found 
any secondary-level curriculum unit for fractals which did anything more 
substantial than look at a few intriguing fractals. Nor, at the time, did any 
book or curriculum document connect fractals and chaos with the existing 
curriculum core in any coherent way, although Fritjof Capra (1996, chapter 
6) attempts to discuss the connections between calculus and the investiga-
tion of linear systems and the non-linear focus of chaos theory. 

Peitgen, Jürgens, and Saupe (mentioned above) is an excellent almost-
school-level book about chaos and fractals, with much programming; also 
two of the pioneering originals are Julia, and Mandelbrot.

Finally, Logo (or a dialect) is an excellent programming language for 
investigating chaos and fractals, because Logo is purpose-built to handle 
recursion. 
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Hunting the Hidden Dimension
In the television program “Hunting the Hidden Dimension”, 
Benoit Mandelbrot talks about the beginning of his fascination with the visual side of mathematics.“It is only in January, ‘44, that, suddenly, I fell in love with mathematics. And not mathematics in general. With geometry in its most concrete, sensual form — that 

part of geometry in which mathematics and the eye meet. 
The professor was talking about algebra. But I began to 
see, in my mind, geometric pictures which fitted this algebra. And once you see these pictures, the answers become obvious. So I discovered something which I had no 
clue before. That I knew how to transform, in my mind, instantly, the formulas into pictures.”
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