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Correcting Two-Sample z and ¢ Tests for Correlation:
An Alternative to One-Sample Tests on Difference
Scores

Donald W. Zimmerman®

Carleton University, Canada

In order to circumvent the influence of correlation in paired-samples and
repeated measures experimental designs, researchers typically perform a
one-sample Student ¢ test on difference scores. That procedure entails some
loss of power, because it employs N — 1 degrees of freedom instead of the
2N — 2 degrees of freedom of the independent-samples 7 test. In the case of
non-normal distributions, researchers typically substitute the Wilcoxon
signed-ranks test for the one-sample ¢ test. The present study explored an
alternate strategy, using a modified two-sample ¢ test with a correction for
correlation, analogous to the “z test for correlated samples” used at one time
for paired observations. For non-normal distributions, the same modified ¢
test was performed on rank-transformed data. Simulations disclosed that this
procedure protects the Type I error rate for moderate and large sample sizes,
maintains power for normal distributions and several symmetric non-normal
distributions, and substantially increases power for various skewed non-
normal distributions.

Statistical analysis of paired-samples or repeated-measures
experimental designs typically employs the one-sample Student ¢ test on
difference scores in place of the independent-samples ¢ test. This method,
widely used in the past, entails some loss of power, because the test on
differences is necessarily based on N — 1 instead of 2N - 2 degrees of
freedom. In the first part of the last century, data from paired-samples was
often analyzed in a different way. Many introductory textbooks in that
period, focusing mainly on large-sample studies for which the z-test is
appropriate, presented methods of analyzing what were called correlated
samples, using a modification of the familiar two-sample z test. These
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methods calculated the standard deviation of a difference between means by
the formula

2 2
Oy x, = \/Oil + 0y = 20,05 Oy, (D

where p,, is the correlation between X, and X,, and based the standard error
on this value when calculating the z statistic (see, example, Guilford &
Fruchter, 1973; p. 154; Hays, 1988, pp. 313-315; McNemar, 1955, p. 85;
Snedecor & Cochran, 1989, pp. 99-100). Recent textbooks sometimes
include these formulas, although authors usually recommend the paired-
samples ¢ test, not the z test for correlated samples, as a practical method.
Furthermore, after nonparametric methods became widely used to overcome
non-normality, the Wilcoxon signed-ranks test typically was used in place
of the ¢ test on difference scores when the normality assumption was
questionable.

The present study re-examined some two-sample significance tests
based on paired data, using formulas containing correlation coefficients.
Instead of the large-sample z test, however, it employed a version of the
two-sample Student ¢ test modified to allow for correlation (Zimmerman,
Williams, & Zumbo, 1993; Zimmerman, 1997). Thus, tests were based on
2N — 2 degrees of freedom, instead of the N — 1 degrees of freedom of the
one-sample ¢ test. And in the case of non-normal distributions, it employed
the same modified two-sample ¢ test on rank-transformed data, instead of
the Wilcoxon signed-ranks test based on differences. For a variety of both
normal and non-normal distributions, this strategy brought about some
improvement in control of Type I error rates, as well as an increase in the
power to detect differences.

A TWO-SAMPLE T TEST WITH A CORRECTION
FOR CORRELATION

It is possible to derive a “f test for correlated samples” analogous to
the “z test for correlated samples.” An estimate of the population variance
from sample data is based on the standard deviation of a difference between
means given by equation (1), instead of the well known formula for the
standard error of a difference (Zimmerman, Williams, & Zumbo, 1993).
Because N, = N, = N, where N is the number of pairs in the paired-samples
procedure, together with the conventional assumption o, = 0, = 0, we

obtain /20°(L—p)/ N for the standard error of a difference between
means. The weighted estimate of the population standard deviation from the
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two sample variances for this case is
\/[E(Xl - >Zl)2 + E (X, = X,)?]/2(N -1) . Substituting this result for the

above standard error o in the usual expression for ¢, with equal sample
sizes, gives the result

v _ X, =X, _ | 2)
(Xl—X1)2+ (Xz_xz)2
( NN 1) (1-p)

where p is the population correlation. Further simplified, if ¢ is the usual
Student ¢ statistic based on two independent samples of N observations

each, then
t' =t/ - p. 3)

Because p is a constant, (3) indicates that a correlation between pairs
increases or decreases the variance of ¢ depending on whether p is positive
or negative. In practice, with only sample values available, parameters of
the distribution of #” are unknown. Sample distributions of the ¢ and ¢’
statistics based on 20,000 samples are shown in Figure 8 to be discussed
below. The figure shows the reduction of the variance of the sample
distribution resulting from correlation and the increase in variance after the
correction.

In most research studies that analyze paired data, the value of the
population correlation p is not known. In order to make use of equation (2)
in practical significance testing, it is necessary to substitute a correlation
coefficient estimated from sample data for the unknown population
correlation. The present simulation study investigated how this modified
test compares to the paired-samples ¢ test with regard to Type I error rates
and power, and how substitution of a sample estimate, r, for the population
correlation, p, in equation (2) affects the accuracy of the result. The study
also examined an analogous procedure in which the same test, performed on
rank-transformed data replacing the original scores, is substituted for the
Wilcoxon signed-ranks test.

Table 1 is a 2 x 6 classification of some two-sample tests of
differences in location, based on, first, whether the population variance is
known or estimated and, second, whether the population correlation is
known or estimated. In the case in which the correlation is known, a further
dichotomy is based on whether that correlation is zero or nonzero. The table
shows the significance tests usually recommended in introductory textbooks
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for these various possibilities. The upper section is relevant to normal
populations and the lower section to non-normal populations, where
nonparametric methods are conventional. The present paper investigates the
possibility of substituting a new two-sample test, analogous to the z test for
correlated samples, for the one-sample tests on differences in both the upper
and lower sections.

Table 1. Classification of significance tests considered appropriate for
paired data with known and estimated population variances and
correlation coefficients.

normal populations (parametric case)

o known

02 estimated

0 known 0 estimated
p=0 p=0
Z test Z test
z test for correlated for correlated
samples samples
t test paired-samples t test | paired-samples t test

non-normal populations (nonparametric case)
£ known

o known

o estimated

p=0

p=0

0 estimated

Wilcoxon-Mann-
Whitney test

Wilcoxon signed-
ranks test

Wilcoxon signed-
ranks test

Wilcoxon-Mann-
Whitney test

Wilcoxon signed-
ranks test

Wilcoxon signed-
ranks test
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METHOD'

The study compared Type I error rates and power of several
significance tests performed on correlated samples from normal and 9 non-
normal distributions. Three of the non-normal distributions were symmetric
and 6 were skewed. The significance tests were (1) the independent-samples
Student ¢ test, (2) the paired-samples Student 7 test, (3) the Wilcoxon-Mann-
Whitney test, which assumes identical distribution functions irrespective of
shape, and which is equivalent to the Student ¢ test performed on rank-
transformed data, (4) the Wilcoxon signed-ranks test, and (5) the modified ¢
test described above, using sample correlation coefficients, r, in place of the
population correlation p.

Simulations were performed using Mathematica, version 4.1, together
with Mathematica statistical add-on packages. All sample values were
transformed to have mean 0 and standard deviation 1. Constants were added
to the scores in one sample in increments of fixed proportions of a standard
deviation, in order to produce systematic differences in means and
determine the power of the tests.

The correlation between sample values was induced by adding a
common random component to each sample value, using

X! =X, +cU/y1+c® and X)=X,+cU/y1+c®, where U is a unit
normal deviate, ¢ =,/p/(1- p), and p is the desired correlation. If X, and X,
are independent random variables with mean O and variance 1, then the
correlation between Xiand X'2 is p. There were 50,000 iterations of the
sampling procedure for each condition in Tables 2, 3, 4, and 5, where
sample sizes were large, and 100,000 iterations for each condition in Tables
6 and 7, where sample sizes were smaller. There were 20,000 iterations for

each point plotted in the figures. All significance tests were non-directional,
except for the ones represented in Tables 3 and 5.

As a check, some of the simulations were repeated using the random
number generator introduced by Marsaglia, Zaman, and Tsang (1990),
described by Pashley (1993, pp. 395-415). Normal variates, N(0,1), were
generated by the rejection method of Marsaglia and Bray (1964) and were
transformed to have various distribution shapes using inverse distribution
functions. The results of these methods were extremely close to the values
in Tables 3 and 5, so all subsequent random deviates were obtained directly
from Mathematica statistical add-on packages. For further details

! Copies of the Mathematica code used in this study can be obtained by writing to the
author.
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concerning simulation of non-normal variates, see, for example, Dagpunar
(2007), Evans, Hastings & Peacock (2000), Gentle (1998), and Robert &
Casella (2004).

SIMULATION RESULTS

The upper sections of Figure 1 compare the Type I error rates of the
z test and the “z test for correlated samples,” as a function of correlation, for
sample sizes of 20 and 100. The lower sections compare the independent-
samples ¢ test and the modified ¢ test using a correction for correlation for
the same sample sizes. The Type I error rates of the conventional z test are
seriously disrupted by correlation. For positive population correlations, the
probability of rejecting H, falls below the .05 significance level and
continues to decline as the correlation increases. For negative population
correlations, the probability of rejecting H,, exceeds the .05 level.

The discrepancies can be attributed to overestimation or
underestimation of the standard error of the mean in the denominator of the
z statistic when the correlation term in equation (1) is ignored. Using the
modified estimate that includes the correlation term restores the probability
to values very close to the .05 level, and the results are the same for both
sample sizes.

Apparently the outcome is quite similar in the case of the
independent-samples ¢ test and the modified ¢ test with a correlation term.
Again, overestimation or underestimation of the standard error in the
denominator of the ¢ statistic that results from using equation (2) apparently
accounts for the difference. In the case of N =20, the probabilities based on
the modified statistic do not quite reach the .05 significance level, although
the correction improved for N = 100.

Table 2 compares the Type I error probabilities and power of three
significance tests, for normal distributions, when population correlations
ranged from -.60 to .60 in increments of .30. Sample sizes were 25, 100,
and 400, and the significance levels were .05 and .01. In the second column,
the difference between means was expressed as 0, 1, 2, and 3 times a fixed
value based on the standard error of the mean. For N’s of 25, 100, and 400,
these values were 4, .2, and .1, respectively. Because of this adjustment, the
probability values for each statistic turned out to be similar for all three
sample sizes.
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Figure 1. Probability of rejecting H, by z and t tests as a function of
correlation for normal distribution (o = .05, N = 20 and 100).
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Table 2. Type I error probabilities and power of the independent-
samples Student t test (t), modified t test (tc), and paired-samples t test
using difference scores (tp), nondirectional tests.

a=.05 N =25 N =100 N =400

p t tc tp t tc tp t tc tp

120  .056 .047 A21 .053 .050 120 .049 .049
314 196 176 322 195 190 .330 199 197
735 577 .543 147 .596 .588 752 .604 .602
966 .908 891 .968 .920 917 .968 .920 919

—.60

.082  .055 .046 .086 .053 .050 .086 .049 .049
301 .233 .207 .308 .232 227 .235 .235 .235
759 672 .638 174 .694 .686 776 .697 .695
978 956 .947 979 961 .959 978 .962 961

—.30

.052  .058 .047 .053 .055 .052 .051 .051 .050
282 .289 .260 .288 201 .283 .293 .293 .292
793 791 762 .807 .807 .801 .810 .809 .808
988  .987 .982 .988 .988 .987 .988 .988 .988

023 .060 .049 .020 .052 .049 .020 .052 .051
246 .389 .352 .255 .392 .383 .258 .395 .393
832  .913 .894 .846 .920 916 .851 .923 922
996 999 .999 .997 .999 .999 .997 .999 .999

.30

.004  .059 .047 .003 .052 .049 .002 .050 .049
194 598 .555 191 .606 .596 .035 .367 .363
.894 993 .990 911 .993 .993 915 .993 .993
999 1.000 1000 1.000 1.000 1.000 1.000 1.000 1.000

.60

o
WNEFPOWNRFEFOWNREFEOWNEOWNEF OMm

a=.01

.042 .015 011 .042 .013 012 .041 .010 .010
.169 .081 164 173 077 .072 178 074 072
535 .333 281  .563 .355 .342 572 .359 .356
.892 736 .682  .906 770 .758 .907 775 772

—.60

.024  .015 .010  .025 011 .010 .023 .010 .010
144 .097 .076  .151 .094 .088 .091 .091 .092
542 422 363  .578 452 438 .584 459 456
914 .840 796 .926 .865 .857 931 874 872

—.30

011 .014 .009  .012 012 011 011 011 011
113 124 095 122 125 117 120 122 120
.561 .564 499 591 591 576 .599 .599 .595
940 933 907 .950 .948 944 .952 951 951

.003 .015 .010  .003 .012 .010 .002 011 011
.079 .186 147 .082 .189 A77 .082 .188 .185
570 754 .694  .607 781 .768 .617 .790 787
965 .990 983 974 .993 992 977 994 994

.30

.000  .015 .010  .000 012 .009 .000 011 .010
.040 357 295 034 362 .345 .035 .367 .363
.592 .960 939 641 .969 .966 .654 970 970
986 1.000 1.000 .994 1.000 1.000 .996 1.000 1.000

.60

o
WNPFPOWNREFPOWNEOWNE OWNEO
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For negative correlations, the Type I error rates and power of the
independent-samples t test were both spuriously elevated, and for positive
correlations, the probabilities declined below the .05 Ilevel. The
discrepancies varied inversely with the degree of correlation and was close
to zero for zero correlation. These results were independent of the sample
size, for all degrees of correlation and for both significance levels. When
p < 0, the power values are reduced below the values when p =0, and when
p > 0, the power values are inflated. The adequacy of the correction
formulas is found by comparing of the corrected values with the
corresponding entries the table for independent samples when p = 0.

As expected, the paired-samples ¢ test performed well despite
sizeable correlations. In all cases, the Type I error probabilities were
restored to values close to the nominal significance level. The power
increased in the case of positive correlations, and the spuriously large
probabilities of rejecting H, were reduced in the case of negative
correlations. Again, the result was the same for all degrees of correlation
and both significance levels.

The pattern of results for the modified ¢ test was quite similar to that
for the paired-samples 7 test. The modified test evidently protected the Type
I error probability very well in the case of sample sizes of 100 and 400 and
to some degree for the sample size of 25. Furthermore, the modified ¢ test
showed a very slight but consistent increase in power compared to the
paired-samples test, for N = 100. For N = 400, the power values were almost
identical for the two tests. In the case of N = 25, the modified test showed
an apparent increase in power, but, at the same time, the Type I error
probabilities were somewhat elevated, so that the meaning of this result is
questionable.

Table 3 provides similar data for directional tests, using the same
values of N and ¢ in Table 2. Apparently the conclusions are the same,
although the power values increased as expected, for both the .05 and .01
significance levels. The Type I error probabilities remained about the same
and are close to the nominal significance levels.

These results are consistent with the advantage expected of a test
based on N, + N, — 2 degrees of freedom compared to one based on N — 1
degrees of freedom. The fact that the difference decreases as sample size
becomes large (e.g., N = 400) also is consistent with the same interpretation.
The inaccuracy of the modified ¢ test for N = 25 and its improvement as
sample sizes become larger can be explained by the dependence of the
variability of the sample correlation coefficients on sample size.
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Table 3. Type I error probabilities and power of the independent-
samples Student t test (t) , modified t test (tc), and paired-samples t test
using difference scores (tp), directional tests.

a=.05 N =25 N =100 N =400

» t tc tp t tc tp t tc tp

.102 .061 .055 .103 .057 .056 .096 .051 .051
404 .287 .266 416 .290 .284 420 .298 297
.817 .702 677 .824 717 711 .823 .718 717
.983 .955 947 .985 .960 .958 982 .958 .958

—.60

077 .058 .051 .078 .054 .053 074 .051 .051
402 .335 312 411 337 331 415 .339 .338
.842 785 .764 .848 793 .788 .856 .803 .802
991 .982 977 .990 .982 981 .990 .983 .983

—.30

.053 .056 .050 .049 .051 .049 .049 .049 .049
.394 .399 373 .403 404 .398 409 409 408
.876 .875 .860 .881 .880 877 .883 .884 .883
.994 .994 .993 .994 994 994 995 995 995

.028 .056 .049 .027 .052 .051 .024 .048 .048
376 .508 .480 .394 .520 521 .392 .516 515
914 .953 .946 918 .955 .953 918 .957 .957
999  1.000 1.000 .999 .999 .999 .998 .999 .999

.30

.007 .050 .044 .005 .053 .051  .005. .050 .049
351 715 .690 .353 .719 713 354 .716 714
.965 .997 .997 .964 997 997 .967 997 .997
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

.60

o
WNPFPOWNRPEPOWNREFEOWNEFEOIWNEFE O

o=.01
0 .040  .018 .015 .038 .015 .014 .036 .012 .012
—.60 1 215 117 .096 225 115 111 236 114 113
2 .618 432 .382 .648 453 442 .651 457 455
3 .929 .820 784 .936 .840 .833 .935 .845 .844
0 .025 .016 .013 .024 .014 .013 .022 011 .011
—.30 1 .200 142 117 .203 .136 130 .209 140 138
2 .642 .530 478 .655 548 534 .670 .560 557
3 949 899 .873 .954 .918 912 .956 .920 .919
0 .012 .014 .011 .011 .012 .011 .011 .011 .011
0 1 .167. 176 .148 177 178 170 .180 .180 178
2 .661 .661 .615 .687 .686 674 .694 .693 .690
3 .963 ..960 947 .970 .969 .967 973 973 972
0 .004 .014 011 .003 .012 011 .004 011 .011
.30 1 129 .252 217 138 .264 .255 141 .263 .260
2 .691 .830 795 715 .846 .839 727 .850 .848
3 984 994 .992 .986 .996 .995 .987 .996 .996
0 .000 .012 .010 .000 .011 .010 .005 .050 .049
.60 1 .081 446 .396 077 454 441 .354 .716 714
2 741 976 .969 771 .981 .980 .967 .997 .997
3 996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4 presents similar comparisons of three nonparametric tests
applied to paired-samples data from a normal and nine non-normal
distributions. All sample sizes were 100, and the population correlation was
A0. Many previous simulation studies have shown that the Wilcoxon-
Mann-Whitney test is substantially superior to the independent-samples ¢
test from several non-normal distributions in the table. Studies have also
shown that the Wilcoxon signed-ranks test is superior to the paired-samples
t test for the same distributions. Table 5 presents similar results for
directional tests.

It is clear that the Type I error probabilities of the Wilcoxon-Mann-
Whitney test fall considerably below the nominal significance levels as a
result of the correlation. However, the Wilcoxon signed-ranks test restores
the significance level and substantially increases power, just as the paired-
sample ¢ test does in the corresponding case of samples from a normal
distribution.

For these non-normal distributions, the modified ¢ test on rank-
transformed data performed just as well as the Wilcoxon signed-ranks test
and in some cases was superior to the Wilcoxon test, especially for the .01
significance level. It appears, therefore, that the modified ¢ test on ranks
combines the advantage of a modified correction for correlation for paired
data, using N, + N, — 2 instead of N — 1 degrees of freedom, with the
advantage of a nonparametric test for non-normal distributions. Tables 6
and 7 provide similar information for smaller sample sizes that are widely
employed in research studies. In most cases, the differences between the
three significance tests is larger for these small N’s. Also, the elevation of
the Type I error probability of the modified test above the nominal
significance level is somewhat larger. Again, this result is consistent with
the increased variability of the sample correlation coefficient for small
sample sizes.

Figure 2 provides more detailed power functions of the three
significance tests for normal distributions. When p = 0 (upper section), the
functions for the independent-samples t and corrected ¢ are nearly identical,
while the paired-samples t was somewhat less powerful for all differences
between means. Again, this outcome is consistent with the slightly
increased power that would be expected from the difference between
N, + N, — 2 degrees of freedom and N — 1 degrees of freedom. When p =
40 (lower section), both the paired-samples ¢ and the modified r were
considerably more powerful than the independent-samples ¢ test as is
expected. Moreover, the corrected ¢ is slightly more powerful than the
paired-samples 7, again consistent with the difference in degrees of freedom.
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Table 4. Type I error probabilities and power of Wilcoxon-Mann-
Whitney test (W), modified t test on ranks (tcg), and Wilcoxon signed-
ranks test (WS), N =100, p = .40, nondirectional tests.

o=.05 o=.01
Distribution 0 W (tc)r WS W (tc)r WS
0 .022 .051 .049 .003 .012 011
normal 1 242 .367 .367 .077 171 .165
2 .827 .903 .906 578 749 744
3 .995 .998 .998 .964 .988 .989
0 .018 .050 .049 .002 .010 .009
exponential 1 402 571 524 .162 .334 .282
2 .962 .984 973 .850 .940 901
3 1.000 .1.000 1.000 .998 1.000 .998
0 .017 .051 .047 .002 011 .009
Laplace 1 .306 463 439 .109 .235 213
2 .905 .954 .944 719 .861 .833
3 .999 1.000 .999 .990 .997 .995
0 .017 .052 .048 .002 .011 .010
lognormal 1 773 .881 .824 .496 719 .615
2 .999 1.000 .999 .994 .998 .993
3 1.000 1.000 1.000 1.000 1.000 1.000
0 .020 .052 .049 .003 011 .010
logistic 1 .267 403 .397 .089 .196 .185
2 .858 .924 .922 .631 .793 779
3 .997 .999 .999 977 .993 .992
0 .019 .051 .049 .003 .011 .010
half-normal 1 .266 407 .390 .085 197 179
2 .859 .926 919 .635 799 J74
3 .997 .999 .999 979 .993 991
0 .021 .052 .049 .002 .011 .009
uniform 1 .226 .340 .351 .069 153 153
2 .783 .869 .883 .526 .694 .706
3 .990 .996 .997 .945 .981 .983
mixed-normal 0 .019 .051 .047 .002 011 .009
p=.02 1 .332 AT7 473 124 .252 .239
k=5 2 927 .966 .965 764 .885 .876
3 1.000 1.000 1.000 .995 .999 .999
0 .017 .050 .048 .002 .010 .009
chi-square 1 .340 494 469 123 .267 .239
2 .928 .968 .957 .768 .894 .856
3 1.000 1.000 1.000 .994 .999 .997
0 .020 .052 .049 .002 .011 .010
extreme value 1 .285 429 416 .097 211 .198
(Gumbel) 2 .880 941 934 672 .828 .806
3 .998 .999 .999 .985 .996 .995
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Table 5. Type I error probabilities and power of Wilcoxon-Mann-
Whitney test (W), modified t test on ranks (tcg), and Wilcoxon signed-

ranks test (WS), N =100, p = 40, directional tests.

o=.05 o=.01
Distribution 0 W (tc)r WS W (to)r WS
0 .019 .054 .052 .002 .012 .010
normal 1 .364 .551 .554 112 291 .280
2 919 .968 .970 .698 .880 .882
3 .999 1.000 1.000 .989 .998 .998
0 .017 .051 .052 .002 .011 .010
exponential 1 .545 718 702 223 470 437
2 .986 .995 .993 .909 .975 .965
3 1.000 1.000 1.000 .999 1.000 1.000
0 .018 .053 .054 .001 .012 .010
Laplace 1 442 .629 .626 154 .367 .350
2 961 .987 .986 .820 .940 .936
3 1.000 1.000 1.000 .998 1.000 1.000
0 .018 .056 .048 .001 .015 011
lognormal 1 .869 939 923 .602 .818 778
2 1.000 1.000 1.000 .998 .999 .999
3 1.000 1.000 1.000 1.000 1.000 1.000
0 .018 .051 .048 .002 .011 .009
logistic 1 .395 .582 581 125 321 .304
2 .938 .978 977 751 .907 .904
3 1.000 1.000 1.000 .992 .999 .999
0 .018 .052 .048 .001 .011 .010
half-normal 1 .392 575 574 .128 .320 .307
2 .939 979 978 751 .908 903
3 .999 1.000 1.000 .992 .998 .999
0 .020 .056 .052 .002 011 .010
uniform 1 .340 529 526 .099 272 .262
2 901 961 .962 .660 .860 .859
3 .999 1.000 1.000 981 .997 .998
mixed-normal 0 .019 .057 .052 .001 .014 011
p=.02 1 474 .658 .656 177 .400 .382
k=5 2 974 991 .992 .860 .958 .958
3 1.000 1.000 1.000 .998 1.000 1.000
0 .018 .055 .052 .002 .012 .010
chi-square 1 475 .660 .648 174 .398 374
2 974 .992 991 .854 .956 .950
3 1.000 1.000 1.000 .999 1.000 1.000
0 .018 .053 .051 .001 .012 .010
extreme value 1 416 .605 599 .136 344 .326
(Gumbel) 2 .954 .984 .984 .789 .928 .926
3 1.000 1.000 1.000 .995 .999 .999
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Table 6. Type I error probabilities and power of independent-samples
Student t test (t), modified t test (tc), and paired-samples t test using
difference scores (tp), for small samples from normal distribution.

a=.05 N=38 N =10 N=15
p 0 t tc tp t tc tp t tc tp
0 .051 .071 .040 .049 .066 .040 .050 .061 .044
0 1 153 .185 120 182 .182 127 .256 271 226
2 453 476 .358 .548 .565 .458 .749 747 .690
3 794 .786 .675 .891 .900 .838 .980 976 .964
0 .023 .076 .039 .023 .069 .040 .022 .064 .044
.30 1 125 .238 .155 142 .250 173 224 .362 .302
2 447 .613 479 .560 .730 .621 .785 .882 .842
3 .830 .907 .826 933 976 .948 .992 .997 .995
0 .006 .080 .039 .005 .072 .040 .004 .066 .044
.60 1 .085 .362 242 .096 404 291 178 .563 488
2 449 .841 723 .588 937 .878 .843 .987 978
3 877 991 .970 .966 .999 .998 999 1.000 1.000
a=.01
0 .011 .024 .008 .011 .019 .007 .011 .016 .009
0 1 .050 .078 .033 .067 .068 .032 .100 119 .077
2 .210 .255 130 .285 .299 .168 .493 .504 .398
3 516 .540 .334 671 .690 .502 .902 .891 .822
0 .004 .026 .008 .004 021 .008 .003 .018 .009
.30 1 .034 .109 .046 .039 102 .048 .073 175 116
2 .184 .368 194 251 457 278 491 .689 578
3 527 719 495 .705 .869 718 .933 976 .948
0 .001 .028 .008 .000 .023 .007 .000 .019 .009
.60 1 .017 185 .078 .018 191 .089 .040 .326 .227
2 .156 .621 377 .230 .768 .568 .500 .930 .870
3 .544 933 787 745 .990 .956 965 1.000  .999
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Table 7. Type I error probabilities and power of Wilcoxon-Mann-
Whitney test (W), modified t test on ranks (tcy) , and Wilcoxon signed-
ranks test (WS), for non-normal distributions (N = 10, p = 40).

o=.05 o=.01

Distribution 0 W (tc)r WS W (tc)r WS

0 .019 .068 .048 .003 .020 .007

normal 1 130 .263 214 .034 109 .038
2 .558 764 .720 .252 .506 .261

3 .934 .982 975 712 .902 .690

0 .016 .066 .049 .002 .019 .006

exponential 1 214 416 .326 .062 .225 104
2 .703 .841 743 417 .667 414

3 .937 972 932 .783 .907 718

0 .017 .068 .049 .002 .019 .005

Laplace 1 172 344 .283 .049 172 .077
2 .637 .801 734 .345 .598 .362

3 931 971 .945 752 .897 .704

0 .012 .062 .048 .002 .017 .005

lognormal 1 424 .640 470 A77 416 .202
2 .875 .947 .798 .654 .843 .582

3 977 991 912 .890 .958 .799

0 .018 .070 .049 .003 .021 .006

logistic 1 .150 .307 .260 .039 .145 .060
2 .593 .769 722 .297 .552 .322

3 .924 971 .955 726 .888 .699

0 .016 .062 .043 .002 .017 .004

half-normal 1 .145 301 244 .037 .136 .053
2 .588 773 715 .287 .546 .307

3 .920 .969 .956 716 .887 .676

0 .018 071 .048 .003 .022 .006

uniform 1 128 .267 .229 .031 119 .047
2 531 715 .694 .239 470 .258

3 .907 971 .966 .683 .872 .666

0 .018 .069 .050 .002 .021 .006

mixed-normal 1 .184 .355 .304 .052 175 .075
p=.02 2 .703 .849 .793 .396 .654 420
k=5 3 .965 .986 942 .831 941 791
0 .016 .066 .048 .002 .019 .006

chi-square 1 .184 372 .304 .051 191 .086
2 .664 .821 737 .362 .629 .383

3 .940 .976 .943 172 .907 .710

0 .017 .069 .049 .002 .021 .006

extreme value 1 159 .330 272 .042 159 .067
(Gumbel) 2 .624 .790 728 321 579 .343
3 929 972 .950 749 .897 704
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Figure 3 shows similar power functions for exponential distributions,
where the Wilcoxon rank-sum test, the Wilcoxon signed-ranks test, and the
modified ¢ test on ranks were substituted for the parametric ¢ tests.
Comparison of the three power functions reveals that the outcome is almost
the same as in the case of the corresponding parametric tests applied to
normally distributed data. The Wilcoxon signed-ranks test was superior to
the Wilcoxon rank-sum test for paired data, while the modified ¢ test on
ranks was slightly superior to both.

Apparently the modified ¢ test corrected for the correlation resulting
from pairing, while at the same time the transformation to ranks
counteracted non-normality. Figures 4, 5, and 6 indicate similar outcomes
for lognormal, chi-square, half-normal, and uniform distributions, using
several sample sizes, population correlations, and significance levels. Note
that the power functions for the smaller sample sizes were more widely
separated, while convergence is evident for the larger sample sizes.

Table 8 compares Type I error probabilities when a sample
correlation is entered into equation (2) for each sample taken and when a
fixed population correlation is entered the equation for every sample. The
first section of the table, for the normal distribution, is the result of the ¢ test
performed on scores. The remaining three sections, for non-normal
distributions, show the result of the ¢ test on rank-transformed data. For
relatively small correlations and relatively large sample sizes, the Type |
error probabilities for both tests were about the same and close to the
nominal significance level.

SOME PRACTICAL IMPLICATIONS

For samples of size 25 or 50 from normal distributions, the modified ¢
test with a correction for correlation maintained Type I error rates close to
the significance level, increased power in the case of positive correlations,
and removed spurious increases in the probability of rejecting H, in the case
of negative correlations. The power superiority of this test over the paired-
samples 7 test is about what one would expect from the difference in degrees
of freedom. The difference became less marked as sample sizes increased to
100 and 400, presumably because the difference in the critical values of the
t statistic for N — 1 and 2N — 2 degrees of freedom decreases as N increases.
Nevertheless, the power of the modified test was equal to that of the paired-
samples test for the larger sample sizes.
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Table 8. Type I error probabilities for corrections using sample
correlations, c(r), and population correlations, c(0).

a=.05 N =10 N =25 N =50 N =100

Distribution ) cr) clp) e c) cr) clp) o)  cp

0 .064 .050 .056 .051 .055 .051 .052  .050
.20 065 051 057 .051 .053 .051 .052 .051
normal 40 065 .053 .057 .052 .055 .052 .052  .051
.60 067 .056 .056 .053 .053 .052 .051  .050
80 068 .060 057 .055 .054 .051 .053  .052

0 068 .052 .052 .045 .052 .049 .051 .050
20 .067 .044 .055 .041 .052 .043 .052 .045
exponential 40 065 .052 .054 .049 .052 .049 .050 .049
.60 .067 .064 .055 .066 .052 .066 .051  .067
80 .068 109 .056 .109 .054 107 .051 .104

0 .067 .052 .053 .046 .051 .049 .052 .051
20 070 .049 055 .045 053 .047 .050 .046
Laplace 40 069 .057 057 .051 .051 .050 .052  .052
.60 .068 .061 .055 .063 .053 .065 .050 .062
80 069 096 056 .093 .052 .089 .051 .087

0 .067 .053 .051 .044 .052 .049 .050 .049
.20 071 055 055 .050 .051 .052 .050  .052
uniform 40 072 060 .055 .054 .052 .054 .052 .054
.60 074 053 058 .053 .053 .052 .051  .050
80 074 063 .059 .057 .052 .048 .051 .046

a=.01

0 .018 .011 .014 011 .013 .012 .012 .011
.20 019 011 014 011 .013 .011 .012 .011
normal 40 018 012 015 .012 .013 .012 .012 .011
.60 .020 .013 .014 012 012 012 .012 .011
80 .021 .016 .014 .012 013 012 .012 .012

0 .021 .011 .012 .010 011 .010 .011 .010
.20 018 .010 .013 .008 .011 .008 .011  .008
exponential 40 018 012 012 009 .011 .00 .010 .010
.60 .018 .018 .012 .015 .010 .06 .011 .016
80 018 039 012 .033 .011 .033 .011 .033

0 .021 .012 .013 .010 .011 .009 .011 .010
.20 .021 012 .013 .009 .012 .009 .010  .009
Laplace 40 020 .013 013 .010 .011 .00 .011 .011
.60 .019 .018 .012 .014 .011 .05 .010 .014
80 .019 031 012 .026 .011 .026 .010  .025

0 .021 011 .011 .018 .011 .010 .011  .010
.20 022 015 013 011 011 .011 .010 .011
uniform 40 023 014 014 011 011 .011 .011 .012
.60 .024 013 014 011 011 .010 .010 .010
80 024 015 015 011 011 .009 .011 .009
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For small N’s of 8, 10, and 15, the same differences in power
functions were evident, but the interpretation of these differences is
problematic, because the Type I error rates of the modified ¢ test were
somewhat higher than the nominal significance levels. Generally the Type I
error rate was about .060 for the .05 significance level and about .014 for
the .01 significance level. Possibly these disparities resulted from variability
of the sample correlation coefficient for small N.

The elevation, rather than a depression of the probability of rejecting
H, can be explained by the left-skewness of the distribution of the sample
correlation coefficient for positive values of the population correlation. For
those positive values of g, proportionately more high values of the sample r
appeared in the denominator of equation (2), resulting in an inflated ¢
statistic. However, as sample size increased, the distribution of the sample r
became more nearly symmetrical, and the inflation was not as large.

The skewness is evident in Figure 7, which shows distributions of
the sample correlation coefficient under the conditions represented in Figure
1 and Table 2, when the sample sizes were 25 and 100 and the population
correlation was .50 and .75. The sample correlations were substantially
left-skewed for the smaller sample size and became more symmetrical and
less variable when the sample size increased. For N = 25, there was
considerable overlap of the two distributions of sample values for
population correlations of .50 and .75, and for N = 100, the distributions
were more widely separated.

Figure 8 plots relative frequency distributions of the values of the ¢
statistic. All four graphs are for a normal distribution with N = 25. The first
distribution, at the top, shows the independent-samples ¢ statistics when
p = 0. The second distribution shows a decrease in the variance of that
distribution when p = .50. The remaining distributions are for the two
methods of correcting for correlation based on r and p. The two
distributions of the corrected statistics have nearly the same variance, and
both restore the distributions close to their shape of the one in the graph at
the top. Means and values of the distributions of the t statistics, the two
corrections, and the paired-samples t statistic are shown in Table 9 for
various sample sizes and population correlations.

For non-normal distributions, the results were similar. The Wilcoxon
signed-ranks test is related to the Wilcoxon-Mann-Whitney rank sum test in
the same way as the paired-samples ¢ test is related to the independent-
samples ¢ test. However, there is no version of the Wilcoxon-Mann-
Whitney test involving correlation coefficients corresponding to the z test
for correlated samples. Since the Student ¢ test with a rank transformation
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and the Wilcoxon-Mann-Whitney test are equivalent, the modified ¢ test on
ranks appears suitable in the case of paired data. This test preserved Type I
error rates and increased power for the larger sample sizes. Again, there was
an elevation of the probabilities of rejecting H, above the nominal
significance level for the smaller sample sizes.

The modified ¢ test on ranks performed about the same as both the
paired-samples ¢ test and the Wilcoxon signed-ranks test for small and
moderate sample sizes, when the population correlation was used in the
correction formula. However, in the case of small sample sizes, Type I error
rates of the modified test were altered when sample correlations were used.
For large sample sizes — 100 or more — all the tests performed about the
same.

One might question, therefore, whether the advantage of acquiring
more degrees of freedom is enough to outweigh the disadvantage of
inflation of the Type I error rate for small sample sizes. Perhaps in some
special circumstances the modified test could be advantageous. First, under
some conditions, the population correlation coefficient between two paired
groups may be known in advance. In a before-after experimental design,
theory or previous research may have established the correlation between
the pairs. In that case, the known value of p can be substituted into equation
(2), and the variability of the sample r would be obviated, as suggested by
the results in Table 8. For small sample sizes, the increase in power could
be substantial. Although these special circumstances are unlikely in
practical research, the modified ¢ test can be a useful alternative to have
available. Second, in the case of some non-normal data, an assumption of
the Wilcoxon signed-ranks test, symmetry of the difference scores, may not
be satisfied. In that case it is reasonable to employ the modified ¢ test on
ranks, which appears to be effective.

More recently, many additional statistical tests have been developed
that are more accurate and more powerful than the traditional parametric
and nonparametric methods listed in Table 1 (see, for example, Huber,
1996; Wilcox, 2003). The estimation of correlation has also improved in
recent years (see, for example, Rousseeuw & Leroy, 1987; Wilcox &
Muska, 2002; Zimmerman, Zumbo, & Williams, 2003). The modified ¢ test
of the present study is not a substitute for the best current statistical tests
available, but is provided because of its theoretical interest and because it
fills gaps in the classification of two-sample tests of location. Under
conditions where limited computing resources are available, the correction
for correlation could be useful as a practical method.
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Normal Distribution N=25
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Table 9. Means and standard deviations of uncorrected and corrected
statistics. t,: Student t statistic from uncorrelated pairs. t: Student t
statistic from correlated pairs. t' (using r): Corrected statistic using
sample r in equation (2). t' (using p): Corrected statistic using
population p in equation (2).

Population Correlation (p)

N Statistic .25 .50 75
to .001 1.060 .001 1.062 .004 1.067
10 t .002 916 .001 762 .000 .546
t’(using r) ~.050 1148 -045 1179  _045  1.192
t’(using p) .002 1.078 .002 1.078 —.000 1.093
to .003 1.022 -.003 1.018 -.001 1.031
25 t -.004 .890 .002 726 .001 519
t’(using r) -.003 1.052 .003 1.056 .005 1.066
t’(using p) —.005 1.027 .003 1.026 .003 1.037
to .008 1.012 .003 1.007 -.007 1.008
50 t .002 .878 -.000 717 .001 .507
t’(using r) .003 1.026 —~.001 1.027 .003 1.028
t’(using p) .002 1.013 _.001 1.014 .002 1.014
to .002 .999 -.001 1.002 -.001 1.004
100 t -.002 .869 .002 711 —.004 .501
t’(using r) -.002 1.008 .002 1.012 —.009 1.008

t”(using p) —-.002 1.003 .003 1.006 _.008 1.002
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