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In this paper, we used simulations to compare the performance of classical
and Bayesian estimations in logistic regression models using small samples.
In the performed simulations, conditions were varied, including the type of
relationship between independent and dependent variable values (i.e.,
unrelated and related values), the type of variable (i.e., binary and
continuous), and different Binomial distribution values and symmetry (i.e.,
symmetry and positive asymmetry). Iteratively re-weighted least squares
was used as the estimate method to fit the models in both the classical and
Bayesian estimations. A weakly informative default distribution was chosen
as the prior distribution for Bayesian estimation. The simulation results
demonstrate that Bayesian estimations provide more stable distributions but
are not able to solve problems generated by asymmetric distributions based
on small samples. Additional research using different kinds of priors that is
addressed at solving problems caused by asymmetry is needed.

It is well known that sample size is associated with the accuracy of an
estimator (Claeskens, Aerts, & Molenberghs, 2003; Mila, Yang, &
Carriquiry, 2003). Inference on large data sets can be highly inaccurate if
applied to logistic regression (LR) with small samples (SS) (Potter, 2005).
Further, estimates from the analysis of small or medium samples are biased
(Maiti & Pradhan, 2009). According to Steyerberg et al. (2001), the
accurate estimation of the internal validity of a predictive LR model is
especially problematic with SS. The problem centers on the fact that the
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regression coefficients are overestimated for predictive purposes (Van
Houwelingen & Le Cessie, 1990) and that the excess error estimate is
outstanding (Bautista, Arana, Marti-Bonmati, & Paredes, 1999). Nemes,
Jonasson, Genell and Steineck (2009) state that LR overestimates odds
ratios in studies with small to moderate samples size. Hence, large sample
theory may not be appropriate in SS (Chen, Chen, Yang, & Chen, 2008;
Dasgupta & Chen, 2002; Nottingham & Birch, 1998).

Some studies have been conducted in light of these problems related
to SS data sets in LR models. Most of them relate to LR-SS contexts with
respect to model fit, coefficient of determination, type I error, validation and
estimate methods.

Pooi (2003) investigated the performance of the likelihood ratio test
when fitting LR models with SS. It is commonly assumed that the null
distribution of this test is approximately Chi-square with one degree of
freedom. The study concludes that the size of the test at the nominally 5%
level can range from 6% to 14% in the case of SS. Lekdee and Ingsrisawang
(2010) present the empirical distribution of the Wald test, Score test,
likelihood ratio, Hosmer-Lemeshow test, and Deviance test as compared
with the Chi-square distribution when the sample is small. The above
authors find that the Hosmer-Lemeshow distribution is still close to the Chi-
square distribution. Regarding the R* coefficient, Mittlbock and Schemper
(2002) propose two adjustments for use with SS; one is a direct analogue of
R’ from the general linear model, and the other is based on shrinkage.
Another related work (Liao & McGee, 2003) presents two adjusted
coefficients of determination for LR that correct the overestimation problem
associated with unadjusted coefficients; these adjusted coefficients of
determination are especially useful when the sample size is small or the
number of predictors is large. Dasgupta, Pascual and Spurrier (2001) and
Dasgupta, Spurrier, Martinez and Moore (2000) compare several binary
regression slopes to that of a control. Their findings indicate that effective
control of type I error can be achieved through the use of an asymptotic SS
test in conjunction with a pivoted version of that test. These tests are
generally robust to departures from the LR model (Dasgupta & Chen,
2002). Moreover, Potter (2005) presents a permutation test for inference in
LR with small data sets. As compared to the asymptotic likelihood ratio
test, type I error is well controlled. With regard to validation studies, the
leave-one-out method may reduce classification bias when the same cases
are used to obtain a predictive model (Bautista et al., 1999). For the purpose
of obtaining a valid model for another population, re-calibration may be a
recommended strategy (Steyerberg, Borsboom, van Houwelingen,
Eijkemans, & Habbema, 2004), even when a small validation data set is
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available for updating. Schulz, Betebenner and Ahn (2004) find that
Bayesian estimations based on 25% samples have predictive validity nearly
equal to maximum likelihood estimates (MLE) based on full samples. Data
characteristics, particularly sample size, have the strongest effect on the
predictive performance of LR models (Pearce & Ferrier, 2000). According
to these authors, a sample size of 50 is too small for the development of
accurate models. Hence, the sample density function is skewed with SS
(Nemes et al., 2009). Some alternatives have been proposed to improve
point and interval estimates and to reduce the associated error. Heinze and
Puhr (2010) present an SS penalty conditional likelihood bias correction
method. The results reveal a reduction in bias and an improvement in the
precision of point estimations. Some adjustments for skewness and kurtosis
of the conditional likelihood are achieved by saddle point methods, which
are used to estimate densities, likelihoods and tail probabilities (Platt, 2000).
Steyerberg, Eijkemans, Harrell and Habbema (2000) compare the
performance of some selection and estimate methods using small data sets.
They base their conclusions on the fact that selection from a predefined set
of predictors combined with external information may be adequate to
ensure predictive accuracy and insight in important predictive relationships.

Several authors support Bayesian estimation (BE) as an alternative to
classical statistical approaches. Although there are some studies reporting
satisfactory results (Marrelec, Benali, Ciuciu, Pélégrini-Issac, & Poline,
2003; Nijsse, 2003; Okada & Shigemasu, 2010; Wang & McArdle, 2005),
Bayesian methodology is not yet commonly applied in psychology. In a
previous study Gordovil, Guardia, Perd and de la Fuente (2010), found
some advantages for using BE in LR models. But what happens when
working with SS and/or skewed samples? Cafiadas, Lozano, de la Fuente,
Vargas and Saldana (2010) state that the Bayesian approach is specially
recommended when working with SS. Although, very little is currently
known about the unconditional LR estimate with SS, especially if samples
are skewed. In this study, we aim to compare classical estimation (CE) and
BE in SS-LR models via simulation. We present results for different types
of distributions and asymmetry. We define SS as cell count with fewer
effectives. We work with sample sizes equal to 100 but, the relationship
between dependent variables (DV) and independent variables (IV) will
provide a small number of effectives per cell (see the outline of simulated
conditions). Note that DV refers to the outcome variable and IV refers to
any kind of predictor variable.
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METHOD

A simulation study was performed to compare CE and BE in LR
models with SS. We simulated different conditions for a DV and two IV.
The three variables (under all generated conditions) were set at a LR
models:

Logit{P(Y=1)}=BotB1x1+Px2t€

The procedure was to initially manipulate certain parameters (i.e.
distributional values, relationship conditions, asymmetry) to see the effect
they have on the LR models.

The settings in the simulation were as follows. The DV Y, sets two
conditions generated by two different Binomial distribution values, namely,
m=.5 (first condition) and m;=.2 (second condition). This is, we simulated a
population in which a specific disorder was present in 50% of cases and
absent in the remaining 50% (first condition for the DV: m;=.5; np=.5); we
also simulated another population in which a specific disorder was present
in 20% of cases and absent in the remaining 80% (second condition for the
DV: m=.2; ny=.8). Note that the subscript 1 refers to the group with the
disorder and the subscript 0 refers to the group without the disorder.

There were 2 1V, a binary variable (X;) and a continuous variable
(X>). In regard to the binary IV X, two different kinds of conditions were
generated by the Binomial distribution, namely, 1) unrelated condition
(m=.5; my=.5, subscripts refers to the DV groups) and 2) related condition
(m=.7; my=.4, subscripts refers to the DV groups). In the unrelated
condition, we simulated that a specific exposure was present in the 50% of
cases and absent in the remaining 50% in the group with the disorder. The
same percentages affected the group without the disorder, and hence, 50%
of cases without the disorder presented the exposure, and the remaining
50% did not present it. Thus, exposure was unrelated to the disorder
because it was equally distributed in both groups (i.e. the group with the
disorder and the group without the disorder). Under the related condition,
exposure was present in the 70% of cases and absent in the remaining 30%
of cases in the group with the disorder. Regarding the group without the
disorder, exposure was present in the 40% of cases and absent in the
remaining 60%. Hence, exposure was related to the disorder because it was
differently distributed in both groups and it was more frequent in the group
with the disorder compared to the group without the disorder.
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Regarding the continuous IV X,, symmetry and relation conditions
were varied. The procedure was as follows. First, normal standardized
variables (u=0, c”=1) were defined. Afterward, we generated asymmetry
using the formula below, based on Tukey’s distribution (Jiménez &
Martinez, 2006).
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Y:Tg’h (Z)=

Z is a random normal distributed variable, g refers to the asymmetry
of the distribution (a value of 0 denotes a symmetric distribution), and / is
the distribution kurtosis. Kurtosis was not studied in the performed
simulations. Hence, & was set to 0, and g was set to .8 to generate positive
asymmetry distributions as follows.

e0.8-2_1
Y:Tg,o(z)=#+U*T

In the above formula, we specify notation for mean and standard
deviation. This is because mean values were varied to generate unrelated
and related conditions. We define unrelated conditions to those conditions
in which the mean of the group with the disorder (pt;) has the same value as
the mean of the group without the disorder (o). Hence, pw;= po=100. If the
means are equal among the two groups, this value is un-related to the
presence or absence of the disorder. Moreover, we define related conditions
to those conditions in which the mean of the group with the disorder (i)
has a different value compared to the mean of the group without the
disorder (o). This is, =100, pe=120. If mean value varies among the two
groups, we can say that this value is related to the presence of the disorder.
Taking this explanation into account, the unrelated conditions were: 1)
ni=po=100; o=15; g;=.0 and 2) w=pe=100; c=15; g;=.8. The related
conditions were: 3) u;=100; po=120; 6=15; g;=.0 and 4) n;=100; py=120;
0=15; g;=.8. As can be seen, positive asymmetry is only generated in group
1, while the value of the standard deviation remained constant throughout
all simulated conditions.

Note that, unrelated and related conditions refer to the relationship
between DV (the presence of the disorder) and IVs (the presence of the
exposure). LR models with three variables were defined. The three variables
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were: the dependent binary variable, an independent binary variable and a
continuous IV. Note that, when positive asymmetry is generated,
overdispersed models are defined. Each simulated condition was carried out
using a sample size of n=100. Simulations were repeated 10000 times. All
simulated conditions were combined and they are summarized as follows
(see Table 1).

Table 1. Outline of simulated conditions using sample sizes of 100 with
10000 replications.

Type of IV Type of Condition Distribution Values
DV v
Binary (X)) Unrelated m=.5;my=.5 m=.5; my=.5

mn=2; Ty=.8
Related n=.5; my=.5 =7, mt=4
m,=2;Ty=.8
Continuous (X;) Unrelated =5, =5 ni=pe=100; 0=15; g,=.0
ni=poe=100; 0=15; g,=.8
m=2; Ty=.8
Related =5 10=5 w=100; u=120; 6=15; g;=.0

=2 m0=8  11,=100; pe=120; 0=15; g,;=.8

Note: IV, independent variable; DV, dependent variable.

We used generalized linear models (GLM) methodology, particularly
iteratively re-weighted least squares (IRLS), as the estimate method to fit
the LR models. The IRLS algorithm is a simplification of MLE but is
limited to exponential distributions. An advantage of using GLM methods
over the individual maximum likelihood is much easier with modeling
process by the GLM; the interested reader may refer to Hilbe (2009) for a
useful explanation of LR estimation methods.
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Regarding the BE, we used weakly informative prior knowledge to
find out whether differences, compared to the CE, could have been detected.
Following Gelman, Jakulin, Pittau and Su (2008), LR models were
estimated using a simple adaptation of the IRLS algorithm. The choice of
the parametric family for the prior distribution corresponded to the ¢ family,
focusing on the Cauchy distribution. This prior distribution was constructed
by scaling non-binary variables to have a mean 0 and standard deviation of
.5 and scaling binary variables to have a mean of 0 and to differ by 1 in the
lower and upper conditions. After standardizing variables, the independent
Cauchy prior distribution was assigned to coefficients in the LR models,
except for the constant term. The prior distribution was centered to 0 and
scaled to 2.5; see Gelman et al. (2008) for a detailed explanation of the
constructed prior distribution.

According to the above authors, the inclusion of some actual prior
information is enough to regularize the extreme inferences that are obtained
using MLE or completely non-informative priors. Other marks in its favor
are the production of stable, regularized estimates and the innovation
developed by Raftery'; the prior scale parameter is given a direct
interpretation in terms of LR parameters (Gelman et al., 2008).

Notice that when we refer to BE, we are referring to the use of the
above mentioned weakly informative default prior distribution in the
generated LR models. When we refer to CE, we are emphasizing a lack of
any kind of prior distribution in the simulated LR models.

Data Analysis

Classical and Bayesian LR estimations were obtained for each
simulated condition. We used the glm function from the stats package (R
Development Core Team, 2010) to obtain the classical LR estimation, and
we used the bayesglm function from the arm package (Gelman et al., 2010)
to obtain the Bayesian LR estimation. The IRLS estimation algorithm was
employed in both cases. Means of the coefficient estimates, means of the
standard errors and correct p-values were computed under each simulated
condition among the 10000 replications. Proportion comparison tests
(related samples) and binomial tests were also computed to identify
significant differences between classical and Bayesian LR estimations in the
percentage of correct p-values. Simulations, calculations and figures were
derived with the R environment 2.11.1 (R Development Core Team, 2010).

" As explained in Gelman et al. (2008), Raftery standardized the input variables and applied
this procedure to Bayesian generalized linear models.
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sample proportion test were not met, binomial tests were used.
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RESULTS

The percentage of correct p-values given by CE and BE are
summarized in Table 2. A two-sample proportion test (related samples) was
performed to analyze possible statistical differences over correct decision
percentages beyond the CE and BE. We performed a one-tailed test by
supposing that BE would outperform CE. When assumptions for the two-

Table 2. Percentage of correct p-values, the proportion comparison test
(related samples) and the binomial test, for type of independent
variable and type of logistic regression estimation.

Type of IV Distribution Type of Proportion Binomial
Values Estimation Comparison Test Test
Classical Bayesian z CI p p
Binary DV=25; V=35 96.25 96.85 1434 0892 <001
DV=2,IV=5 96.48 97.35 16.98 .09-91 <.001
DV=.5,IV=7/4 54.23 53.23 13.39 27-73 <.001
DV=2,IV=.7/4 41.83 39.70 21.45 .23-77 <.001
Continuous DV=.5; =p=100; S 95.25 95.95 <.001
DV=.5; u=p=100; A 35.90 0 <.001
DV=2; =p=100; S 95.70 96.45 <.001
DV=.2; u=pe=100; A 34.65 0 <.001
DV=.5; 1,=100; p=120; S 100 100 <001
DV=.5; =100; p=120; A 100 100 1
DV=.2; u;=100; n=120; S 99.85 99.75 1
DV=2; w=100; p=120; A 100 100 1

Note: IV, independent variable; DV: dependent variable; S, symmetry; A, asymmetry
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This table lists results for both the classical and Bayesian LR
estimations. The results are arranged according to the simulated condition.
Hence, the first and second conditions of the binary variable are unrelated
conditions whereas third and fourth conditions refer to related conditions.
Regarding the continuous variable, first, second, third and fourth conditions
correspond to unrelated conditions whereas fifth, sixth, seventh and eighth
conditions correspond to related conditions.

With regard to the binary IV, both the CE and BE correctly detect the
unrelated conditions (percentages of correct p-values are between 96.25%
and 97.35%). Percentages are significantly different between the two
unrelated conditions in favor of the BE (z=14.34, CI=.08-.92, p<.001 for the
.S-distributed DV and .5-distributed-1V; z=16.98, CI=.09-.91, p<.001 for
the .2-distributed DV and .5-distributed IV).

Major problems arise when we study relationship conditions related to
the binary IV. The percentages of correct p-values are between 39.70% and
54.23%. In these cases, the CE performs better in identifying correct p-
values (z=13.39, CI=.27-.73, p<.001 for a distribution of .5 in the DV and
.7/.4 in the IV and z=21.45, CI=.23-.77, p<.001 for the .2 distributed DV
and .7/.4 distributed IV). Although the CE is better, this kind of estimate
cannot provide percentages with respect to correct p-values higher than
54.23%.

When percentages of correct p-values for the continuous IV are
computed, a correct and nearly identical pattern stands out between both
estimation methods under the related conditions. As shown in Table 2,
100% correct p-values are achieved in all conditions, except when 99.85%
are achieved for the CE and 99.75% for the BE under a .2-distributed DV
and a symmetric IV with mean values of 100 in DV group 1 and 120 in DV
group 0. Regarding unrelated conditions, BE outperforms the CE when 1Vs
are symmetrically distributed for both .5-distributed (p<.001) and .2-
distributed (p<.001) DVs. We identify important problems for both
estimation methods under unrelated conditions when asymmetry is
generated with respect to the continuous IV. A lower performance under BE
is noteworthy. While the CE detects correct p-values at a rate of between
34.65% and 35.90%, BE shows a 0% correct p-values.

Coefficient estimates and standard errors were also computed. We
present results for the binary IV (see Figure 1) and the continuous IV (see
Figure 2) according to the two types of simulated conditions (i.e., unrelated
and related). Note that, unrelated condition boxplots are those situated on
the top of the figures 1 and 2, and related condition boxplots are those
situated at the bottom of the figures 1 and 2. Boxplots were created to
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enable a visual comparison of CE and BE in terms of coefficients and
standard errors estimates. Figures 1 and 2 were drawn without outliers so if
we include outliers in these figures, the scale substantially increases, and the
shape of boxes cannot be appreciated. Outliers are defined as those points
more than 1.5 times the interquartile range above the third quartile and
those points more than 1.5 times the interquartile range below the first
quartile. Moreover, the minimum and maximum values of the coefficients
and the minimum and maximum values of the standard errors were obtained
(including outliers). This allowed to keep the information provided by the
presence of outliers. A glance at the binary IV boxplot under unrelated
conditions shows that, in the two types of estimation, coefficient values are
nearly zero, as expected. Note that a value close to zero indicates unrelated
values in an LR model. Moreover, the CE for both .5- and .2-distributed
DVs presents greater variability than the BE. Hence, the standard errors of
CE present a considerable amount of variability as compared to those
derived from BE. This should be taken into account, because a high
variability in standard errors threatens the stability of the model’s
coefficients. When outliers are included in the analysis, we find
considerable differences between CE and BE in minimum and maximum
values corresponding to standard errors. When DV and IV are .5-
distributed, the minimum and maximum values of the classical distribution
are .53 and 3,384,213, respectively, whereas the minimum and maximum
values of the Bayesian distribution are .50 and .92, respectively. When the
DV is .2-distributed and the IV is .5-distributed, the minimum and
maximum values of the classical distribution are .58 and 3,500,966,
respectively, whereas the minimum and maximum values of the Bayesian
distribution are .53 and 1.14, respectively. The simulation results under the
related conditions show that the values approach 1 for CE and BE. As
unrelated conditions, BEs present less variability than the CEs. With regard
to standard errors, a greater variability for CE is again noteworthy (see
Figure 1). When the DV is .5-distributed and the IV is .7/.4-distributed, the
minimum and maximum values of the classical standard errors are .54 and
3,780,183, respectively, whereas the minimum and maximum values of the
Bayesian distribution are .51 and 1.01, respectively. When the DV is .2-
distributed and the IV is .7/.4-distributed, the minimum and maximum
values of the classical distribution are .60 and 3,653,235, respectively,
whereas the minimum and maximum values of the Bayesian distribution are
.55 and 1.55, respectively.
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Figure 1. Coefficient estimates and standard errors of the binary
independent variable from classical estimation and Bayesian
estimation. Unrelated and related conditions in a logistic regression
model.

Regarding the continuous IV studied under unrelated conditions, we
can observe that the medians of the coefficients and the standard errors are
close to zero. Furthermore, most distributions have almost no variability,
while the minimum and maximum values between the two estimations are
quite similar. Through a visual inspection of boxplots, consider the
configuration that consists of a .5-distributed DV and an asymmetric IV
distribution. In this case and in contrast to BE, the distribution values of the
classical coefficient and standard error present variability. The minimum
and maximum values of the classical distribution (including outliers) are .04
and 124,919.2, respectively, whereas the minimum and maximum values of
the Bayesian estimates are .03 and .72, respectively. A somewhat similar
pattern occurs for coefficients from the .2-distributed DV and asymmetric
IV case, although the variability is lower (see Figure 2). In this case, the
minimum and maximum values of the classical distribution are .03 and
342,992.7, respectively, whereas the minimum and maximum values of the
Bayesian estimates are .03 and .24, respectively. Finally, regarding related



356 A. Gordovil-Merino, et al.

conditions, we observe fewer differences between classical and Bayesian
coefficient estimates than in the previous analysis. The shapes of the
classical distribution and the Bayesian distribution are quite similar, though
slightly favoring the BE. Regarding standard errors, we also find more
variability in CE. Conditions including a high median value of standard
error are related to the generation of asymmetry with respect to the IV (see
Figure 2). When outliers are included in the analysis, the ranges of the two
types of estimates are quite similar. However, in most ranges, the CEs are
remarkably wider than the BEs.
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Figure 2. Coefficient estimates and standard errors of the continuous
independent variable based on classical estimation and Bayesian
estimation. Unrelated and related conditions in a logistic regression
model.
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DISCUSSION

This study compares two types of estimations using simulated LR
models. Bayesian methods rely not only on current knowledge (i.e., sample
data) but also on prior information that may be available on the parameter
of interest. In this study, BE involves introducing a weakly informative
prior distribution into the LR models. This distribution was proposed by
Gelman et al. (2008) as a default choice for logistic and other regression
models. Prior distribution was not introduced into CE-LR models.

We generated LR models with two IVs, namely, a binary IV and a
continuous IV. In the simulation procedure we specified models where
values were related (related conditions) and un-related (unrelated
conditions) to the DV. Regarding the binary IV, p-values were correctly
detected by both the CE and BE under unrelated conditions. However,
regarding related conditions, lower percentage values for both estimations
were noted. The obtained coefficients and standard errors (without outliers)
showed more variability in the distributions from CE. This was more
notable under related conditions. When outliers were included in the
distributions, CE provided extremely wide ranges in comparison to BE.
This feature affected both unrelated and related conditions. Regarding the
continuous IV, both estimations detected p-values correctly when related
conditions were studied. However, poor performance of both estimations,
especially the BE, was observed under unrelated conditions. This was
particularly problematic with positive asymmetric distributions. A glance at
the boxplots showed that most variability in asymmetric distributions was
obtained under the unrelated conditions. We should point out that this
variability is only accounted for with respect to CE. This is possibly
explained by the presence of outliers, which produced distributions with
considerably wide ranges.

Both boxplots and the range of distribution values suggest more
variability in classical distributions compared to Bayesian distributions.
This is possibly explained by the suggestion of Gelman et al. (2008) that
including some actual prior information may regularize the extreme
inferences that are provided by non-informative priors. According to them,
the prior introduced into the model should have produced more stable and
regularized estimations compared to the CE in which the prior had not been
introduced.

There are, of course, several aspects that deserve further study; they
are related to the present study’s limitations. For instance, one important
limitation in our study is that we worked with a unique sample size (n=100).
Future work should take this into account by constructing LR models under
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different sample sizes. Moreover, global fit of the model was not assessed.
As stated earlier, extremely high standard error values from the CE have
been obtained. These results indicate a problem in the convergence of the
algorithm and it should be studied in future research. Other aspects that
contribute to complete the work would be the study of bias and precision.
Another aspect that deserves further study involves simulating other
distribution values with respect to the exposure variable. In this paper, we
worked with two conditions, namely, the same distribution of the exposure
in the two groups (m;=.5; my=.5) and different distributions of the exposure
in the two groups (m;=.7; my=.4). Future simulations could include more
extreme differences between the distributions of the exposure variable
among the groups with and without the disorder. From the variation of the
distributional values, could be considered more intense relations between
the DV and IVs. Complex models could have been defined (i.e. including
other variables such as categorical IV with more than two categories, or
studying interaction terms). Another interesting point would be to establish
relationship between IVs and study the effect of collineality on CEs and
BEs. Note that models based on clinical data can present collineality. It
would be fruitful to design simulations similar to real data and study the
obtained results.

Also to be noted is the interpretability of p-values. Future studies may
include confidence interval values in order to obtain much information.
Moreover and from a Bayesian viewpoint, it would be interesting to obtain
probability values associated to different hypothesis. Another immediate
follow-up study could include other kinds of prior distributions. This would
provide a more extensive understanding about BE in SS-LR models. We
acknowledge that what we denote as BE in this study is in fact a particular
case of more general Bayesian inference. Note that a prior distribution can
be non-informative, informative or very informative (Mila, et al.,2003).
Following Gelman et al (2008), we have introduced a somewhat
informative prior distribution that can be used in a wide range of
applications. The above authors state that this default prior can be viewed as
a baseline on top of which the user can add real prior information as
necessary. Hence, two future research lines appear particularly fruitful.
First, one line of research might involve studying results over SS-LR
models based on real data that compares different kinds of priors.
Informative priors would be constructed by incorporating relevant
background knowledge. This prior knowledge may come from expert
opinions, published experimental results, or a combination of both (Mila et
al., 2003). Second, comparisons can be studied between non-informative,
informative and very informative priors among SS-LR models via
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simulation. It would be interesting to compare these priors with classical LR
estimates. Finally, in both cases, research based on real data and/or
simulation studies should address situations involving asymmetric samples,
because this problem is not solved in the present study. Such research must
take into account that distributions based on psychologically data are not
often normally distributed. Hence, an approach for analyzing SS-LR models
when distributions are asymmetric is much needed.

RESUMEN

Estimacion en modelos de regresion logistica en muestras pequefias. Un
estudio de simulacion usando una distribucion previa escasamente
informativa. En este trabajo se utilizaron simulaciones para comparar el
rendimiento de las estimaciones clasica y bayesiana en modelos de regresion
logistica utilizando muestras pequefias. En las simulaciones realizadas, las
condiciones fueron variadas, incluyendo el tipo de relacion entre los valores
de las variables dependientes e independientes (es decir, los valores
vinculados y no vinculados), el tipo de variable (binario y continuo), y
diferentes valores de la distribucion binomial y la simetria (distribuciones
simétricas y con asimetria positiva). La aplicacion Iterativa de la estimacion
de minimos cuadrados ponderados se utilizd como método de estimacion
para ajustarse a los modelos, tanto en la estimacion clasica como en la
bayesiana. Una distribucion de tipo escasamente informativa fue elegida
como la distribucidn a priori para la estimacion bayesiana. Los resultados de
la simulacion muestran que las estimaciones bayesianas proporcionan una
distribucion mas estable, pero que no son capaces de resolver los problemas
generados por distribuciones asimétricas basadas en muestras pequefias.
Sera preciso plantear nuevos trabajos en el ambito del estudio del efecto de
las distribuciones asimétricas utilizando diferentes tipos de distribuciones a
priori.
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