
Aparabola is an interesting curve. What makes it interesting at the second-
ary school level is the fact that this curve is presented in both its contexts:

algebraic and geometric. According to the intended curriculum in mathe-
matics, in 9th grade, students should learn about quadratic functions,
including simplification techniques. In the 10th grade, they are expected to
solve a wide range of quadratic equations, construct graphs of parabolas, and
connect algebraic and graphical representations of quadratic functions. 

Being one of Apollonius’ conic sections, the parabola is basically a geomet-
ric entity. It is, however, typically known for its algebraic characteristics, in
particular as the expression of a quadratic function. How do these two enti-
ties, the geometric and the algebraic, coincide with one another? In this
paper we try to answer this question.

Geometric and algebraic definitions of the parabola

We start by discussing some definitions of curves, followed by an examination
of the relations between them. 

Consider the following four definitions of sets of curves (Shriki & David,
2001):

1. Set No. 1 (Λ1): λ1 is an element of Set No. 1 if and only if given line l and

point F that is not on line l, λ1 is the locus of points on the plane that are

equidistant from both line l and point F.

2. Set No. 2 (Λ2): λ2 is an element of Set No. 2 if and only if λ2 is a graph

of a function of the form y = ax 2 + bx + c, where a ≠ 0 and a, b, c ∈ R.

3. Set No. 3 (Λ3): λ3 is an element of Set No. 3 if and only if λ3 is the graph

of an implicit function of the form y 2 = 2px, where p ≠ 0 and p ∈ R.

4. Set No. 4 (Λ4): λ4 is an element of Set No. 4 if and only if λ4 is the graph

of a function whose form is a product of two non-constant linear expres-

sions.

Now, (i) for each of the above definitions, draw a schematic curve that
corresponds with the definition and describe its characteristics, and (ii) draw
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a Venn diagram that describes the logical relations between the four sets of
curves. 

Algebraic definitions versus a geometric definition

It is apparent that the first definition is of a geometric nature, while the other
three are algebraic in nature. The first definition is actually Apollonius’ defi-
nition of a parabola. But what about the three other definitions? Do they also
describe parabolas?

We start by examining the curve of λ2. High school students recognise the
curve described by the expression y = ax 2 + bx + c, where a ≠ 0 and a, b, c ∈ R,
as a parabola. However, as mentioned, a parabola is defined using geometric
characteristics, and thus, in order to justify the use of the term “parabola” for
both curves, we must show that curve λ2 satisfies the requirements presented
for λ1. In other words, we must prove that for λ2, there exists a point F (the
“focus”) and a line l (the “directrix”) as described for Set No. 1 (David &
Shriki, 2002). 

Figure 1 presents the graph of the function y = ax 2. The vertex of this
graph lies on (0,0). If this graph is a parabola, the distance of this vertex from
the focus should be equal to its distance from the directrix. Therefore, a suit-
able candidate for the focus is any point on the y-axis, F(0,k), and a suitable
candidate for the directrix is any line that runs parallel to the x-axis, l: y = –k. 

In order to find the value of k, we use the equidistance constraint 
(x – 0)2 + (ax 2 – k)2 = (ax 2 + k)2 and obtain 
x 2 + (ax)2 – 2ax 2k + k 2 = (ax)2 + 2ax 2k + k 2 ⇒ x 2 – 4ax 2k = 0 ⇒ x 2(1 – 4ak) = 0

Thus, the solution is .

Since we succeeded in finding a focus and a directrix that do not depend
on the selection of points on λ2, we have proved that the curve described by
the function y = ax 2 is indeed a parabola.

It is easy to generalise the proof for any quadratic function by considering
the canonic equation y = a(x – m)2 + n, where (m, n) is its vertex. We show that
by applying two translations to the graph of y = ax 2: (1). In Figure 2, the graph
is translated m units in parallel to the x-axes, so that its vertex is (m,0).
Obviously, the directrix remains the same, but the focus is now ; (2).
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In Figure 3, the graph is translated n units in parallel to the y-axes, so that its
vertex is (m, n). Its focus is therefore . The directrix should simul-
taneously translate n units in parallel to the y-axes, so its equation is

. 

To conclude, we proved that λ2 is a parabola with and
. 

Note that we have shown that all λ2 are λ1, but not vice versa. In other
words, Λ2 ⊂ Λ1.

The same process can be repeated for λ3. Using the above considerations,
the focus and directrix are described in Figure 4. From y 2 = 2px we obtain

, and therefore we have to solve the equation: 

Consequently, and . 

As in the case of λ2, we managed to find a focus and a directrix that do not
depend on the selection of points on λ3.

Figure 4

Thus, all of the λ3 curves are λ1 (but not vice versa).
It is now left to show that curve λ4 is a parabola. 
The expression of λ4 is 

h(x) = f(x) × g(x) = (ax + b) × (cx + d) = acx 2 + (ad + bc) x + bd. 
This expression is identical to the algebraic expression of curve λ2, which has
already been proved to be a parabola. 

The question now is: Are sets Λ2 and Λ4 identical? Examining the expres-
sion of h(x) reveals that its roots coincide with those of the linear functions
f(x) and g(x), since the solution of equation h(x) = 0 is equivalent to that of
f(x) × g(x) = 0. Given that f(x) and g(x) are not constant functions, h(x) must
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have at least one real root. Curves that belong to Λ2, however, might not have
real roots. This means that not all of the λ2 curves are λ4 curves, but all of the
λ4 curves are λ2 curves. 

Let us now further examine the relations between λ2 and λ4. What does it
mean to have two real roots? One real root? No real roots? 

We usually find the number of real roots of a quadratic function by exam-
ining its discriminant. However, observing the expression of λ4 and realising
that the roots of h(x) = f(x) × g(x) = (ax + b) × (cx + d) are determined by the
roots of f(x) and g(x), is it evident that a quadratic equation has no roots
whenever it is impossible to factor its expression into a product of two linear
functions. This is equivalent to b 2 – 4ac < 0. As for one real root: since the root
of f(x) is and the root of g(x) is , we obtain one root only ifx d

c
= −x b

a
= −

. In other words, when c = ka and d = kb (k ≠ 0), namely:
. We therefore obtain 

h(x) = f(x) × g(x) = (ax + b) × (kax + kb) = k(ax + b)2

which is the known expression for a quadratic equation with a single real root.
This is equivalent to b 2 – 4ac = 0. Finally, the quadratic equation has two real
roots only if , as the roots of f(x) and g(x) are different. This is equiv-
alent to b 2 – 4ac > 0.

A Venn diagram describing the four sets of curves 

Set Λ1 is obviously the most comprehensive one. As mentioned, Λ4 ⊂ Λ2. For
curves λ2 and λ4, the directrix is parallel to the x-axis and for λ3 it is parallel
to the y-axis. Λ2 and Λ3 are, therefore, distinct sets. 

The following Venn diagram represents the relations between the four sets
(Figure 5):

Figure 5

Are there any other sets of parabolas that are sub-sets of Λ1? 
Since we differentiated between the parabolas in Λ2 and Λ3 according to

the position of their directrix, other sub-sets of Λ1 include parabolas with
directrices that are not parallel to any one of the axes. Indeed, the geometric
definition of curve λ1 does not impose any restriction concerning the direc-
tion of the directrix. 

It should be noted that the algebraic expression that refers to all possible
parabolas is derived from the general, second-degree equation of the conic
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sections, ax 2 + 2hxy + by 2 + 2gx + 2fy + c = 0. When h 2 – ab = 0, the obtained
curve is a parabola (for further details, see Wolfram MathWorld, at
http://mathworld.wolfram.com/ConicSection.html). 

Comments

Use the term “a graph of a quadratic function” with care

If we ask students to define a parabola, they will probably say that it is a graph
of a quadratic function. It is, however, evident that a parabola is not neces-
sarily a graph of a quadratic function (for example, curve λ3,). Students
should therefore be instructed to say, “The graph of a quadratic function is a
parabola,” but not vice versa. 

Is the graph of y = x4 a parabola?

Many students tend to identify graphs of the family y = xn (n > 2, even) as
parabolas. It is easy to refute this using the geometric definition. Consider the
function y = x 4. If the graph of the function y = x 4 is a parabola, then according
to the definition of the parabola, the following should exist (see Figure 1):

Since the coordinates of point F depend on the choice of point (x,x 4), we
can safely conclude that the graph of y = x 4 is not a parabola. The same is obvi-
ously true for other functions of the form y = xn (n > 2, even). 
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