
The promotion of proof as a process through which mathematics knowledge

and understanding have been constructed will not necessarily motivate

students, though, unless they believe that they are participating in meaningful

mathematical discovery (Vincent, 2005, p. 94).

In high school geometry courses, students are often given a prepackaged
statement that they are asked to prove. In these situations, the process of

writing proofs is being abridged, if not misrepresented. To provide my
students with a more authentic experience in writing a proof, I provided
them with a summative project for which they had the opportunity to explore
a problem, make a conjecture, and then write a proof to justify that conjec-
ture. 

In particular, the assignment examined in this article, the octagon
problem, was developed from a piece of children’s literature. Although the
intended audience of the book is the elementary grades, the content was
extended to a high school honours geometry course. The octagon problem is
a rich mathematical task requiring deductive reasoning that incorporates
several geometric concepts including regular polygons, angle measures of a
regular polygon, transformations (reflection, rotation, and dilation), scale
factors, properties of right isosceles triangles, and properties of quadrilaterals.

After discussing how the project was conceived, I provide the details of the
assignment and information about my students’ prior experiences in geome-
try. For the remainder of the article, I share the students’ work and the
challenges encountered with writing the proof. I wanted to experience the
exploration with my students; so I deliberately chose not to work out the
problem for myself prior to giving the task to them. As a result, I describe a
unique aspect of this particular proof, discovered when I was assessing the
students’ arguments and make some suggestion for teachers who find them-
selves in similar situations. 
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A square becomes a regular octagon:
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The origin of the project

Long and Crocker (2000) wrote an article about
the use of Cindy Neuschwander’s (1997) book, Sir
Cumference and the First Round Table: A Math
Adventure, in a fifth-grade mathematics class. The
story revolves around the trials of Sir Cumference,
his wife, Lady of Diameter, and his son, Radius, as
they attempt to create a table that fits King Arthur
and his knights comfortably. Originally, the table is
a rectangle which is then sequentially transformed
into a square, a parallelogram, an octagon, an oval,
and then finally a circle.

In the article, there is a diagram demonstrating
the transition from a rectangle to a square. Since I
asked my students to make a parallelogram from a
rectangle in my geometry classes in order to
discover the formula for the area of a parallelo-
gram, I was able to visualise the change from a
square to a parallelogram as I read the article.
Then, I came upon the following description:
“The text shows how to cut off irregular quadrilat-
erals from the corners of the parallelogram, to
form an octagon; parts of the quadrilaterals are
then attached to the first octagon to make it a
regular octagon” (Long & Crocker, 2000, p. 243).
Since, without a diagram, I was not able to see this
transformation, I bought the book. Even after
seeing the diagram, shown in Figure 1, I was still
curious: How does one know where to make the
cuts so that the final octagon is, in fact, a regular
octagon?

The activity

I decided to use the regular octagon construction
as a culminating project in my Honours Geometry
class. To introduce the assignment, I read the book
to the students. As the story progressed through
the different shapes, the students used a pre-made
template (Figure 2), which included the cuts, to
imitate the changes to the table. The students were
then presented with the directions:
1. Sketch [in The Geometer’s Sketchpad

(GSP)] the square with the cut lines that will
form a regular octagon [Figure 2]. Make
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Figure 1. The transformation of the table from
a rectangle to a square to a parallelogram to a

regular octagon (Neuschwander, 1997).

Figure 2. The square with the cuts that the
students were asked to recreate using GSP.



sure that your diagram remains similar when you move any segments or
vertices. Explain how you constructed the figure.

2. Write a proof showing that the octagon constructed from the square is
a regular octagon. The proof can be written in any format.

3. Did drawing the diagram in Sketchpad help you write your proof? If yes,
explain how. If no, how did you develop your proof?

I encourage the reader to take some time to understand and investigate
the problem before continuing. 

My students, ninth and tenth graders, had used GSP throughout the year
so they were very familiar with the basic tools as well using them to construct
figures such as square. The Honours Geometry course also had a strong
emphasis on proof and the students were exposed to different formats for
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Figure 3. The student diagrams that correspond to the directions using the scale factor approach.



writing arguments such as paragraph, flow, and two-column. The students
spent two 60-minute class periods in the computer lab creating their sketches
(Question 1). Questions 2 and 3 were to be completed on the students’ own
time. However, several of the students stayed after school to work with me and
their classmates. 

The sketches

The ways in which the students constructed the square with the cuts can be
classified into two different strategies. The first of these is referred to as the
‘scale factor strategy’ (see Figure 3) and the second the ‘working backwards
strategy’. The students who used the first strategy found the ratio of two
segments (see Figure 3)

and used this as a scale factor for a dilation to determine the point (G in
Figure 3) which would guarantee a regular octagon. For example, one of the
students gave the following directions. Refer to Figure 3 for the diagrams that
correspond to the steps. (The portions within brackets are added by the
author for clarification purposes.) 

PART I: Construct a square
1. Create a segment.
2. Mark one end as the centre (double click).
3. Select segment and other point (not the centre [of rotation]).
4. Click transform and rotate [90°].
5. Select new point and mark it as your new centre.
6. Repeat steps 3 to 5 until you have a square.

PART II: Setting up
1. Select segment and construct midpoint.
2. Repeat with opposite segment.
3. Connect the two midpoints.
4. Repeat for the [other pair of opposite] sides.
5. Create a diagonal from the upper right to the lower left of the square.

PART III: Construct the octagon
1. Mark B as the centre.
2. Select calculate and enter . 

[The calculation of this scale factor follows.]
3. Create segment and then select segment .

4. Dilate the answer [segment] from calculating .

5. Create a segment on top of to create and another to create .

1

2 1+

AB AB

1

2 1+

CACD

CG
CA

AD
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6. Mark C as the centre and select and A.
7. Repeat [step number] 4.
8. Do the same for with D as the centre.
9. Connect [G to J and H to J].
10. Mark as your mirror and reflect the new points (G and H [and J])
11. [Repeat step number] 9.

Following the directions, the student justified the use of 

as the scale factor for making the dilation. She focused on the top right
corner of the square with the cuts (see Figure 4) and let x represent one-half
the length of one of the sides of the regular octagon ( ). It then follows
that , a side of the regular octagon, is 2x. Since m∠BJG = 135 (because it is
an angle of a regular octagon) and m∠A = 90, m∠AJG = m∠AGJ = 45.
Therefore, ΔAJG is a right isosceles triangle and . Using this
information, the scale factor is calculated:

The students who used the second strategy to construct the square with the
cuts worked backwards. Since the square was transformed into the regular
octagon, the students created a regular octagon first. The directions written
by one of the students and the corresponding diagrams (Figure 5) follow.

1. Create octagon: a. create segment, b. rotate entire segment (including

points) 135 degrees around the centre of rotation (change centre of

rotation each time you rotate)

2. Create your octagon.

3. Pick two parallel segments and connect midpoints of these segments.

4. Hide the 5 segments (including parallel ones, above) to the left of the

middle segment.

5. Connect the ends of the middle segment to the rest of the drawing.

EF

1

2 1+

CG
GJ

AG AJ x= = 2

CG
CA

x

x x
=

+
=

+2

1

2 1

AD

CA

Figure 4. The student diagram used to explain the calculation of the scale factor .
1

2 1+



6. Reflect [half of the] octagon using the segment parallel to the middle

segment as the line of reflection.

7. You have a concave polygon; connect the points to make a square.

8. Create the midpoints of the two sides of the square parallel to the

middle segment.

9. Create diagonal of square.

10. Select 4 points of square and create quadrilateral interior.

Initially, the students were focused on the square. Once they saw the
octagon within the square, they were able to work in the opposite direction.

The proofs

When it came to writing their proofs, the students encountered some road-
blocks. Approximately half of the students wrote arguments that mirrored the
scale factor strategy. Instead of explaining why the octagon was a regular
octagon, the ‘proof’ read more like directions on how to construct the
regular octagon. The basic premise is that the side length of the regular
octagon can be determined in relationship to the side length of the square.
With that ratio, the location of the cuts can be determined. However, instead
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Figure 5. Student sketches for the working backwards strategy.



of proving that the octagon was a
regular octagon, the students assumed
the octagon was a regular and used
this fact to determine the ratio of the
side of the regular octagon to the side
of the square. 

Other students did attempt to
prove that the octagon was a regular
octagon by showing that all of its
angles measured 135° and all of its side
lengths were congruent. Many of the
issues in their proofs involved circular
arguments. For example, in explaining
why all of the angles measured 135°,

one student wrote (refer to Figure 6): “If angle BDQ is 45 degrees, then angle
MQP is 45 degrees, because corresponding angles are congruent where paral-
lel lines are present (parallel lines are present because of the square).” Two
lines later, the student continued: “Now, a trapezoid DQMF exists (DF is paral-
lel to QM, because it is already established that the angles FDQ and DQM are
45 degrees and 135 degrees respectively, and if the same side interior angles
are supplementary, then the lines are parallel).” In the first statement, the
student essentially assumes the segments are parallel to determine the angle
measures. The student then uses those angle measures to explain why the two
segments are parallel.

In discussing the flaws in the students’ proofs with a colleague, we discov-
ered the problem. There are infinite number of locations in which the cuts
can be made to form an octagon (Figure 7). Yet, there is a unique cut that will
transform the parallelogram into the regular octagon (bold cuts shown in
Figure 7). 

Therefore, to write the proof you need to know and use the location of the
point on the side of the parallelogram (or square) at which the cuts are made.
Herein lies the challenge with this proof. To construct the argument, one
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Figure 6. The diagram used by the student with
the circular argument.

Figure 7. Examples of cuts that will produce an octagon, with the bold cuts producing a regular octagon.



cannot simply start at the beginning and progress to the desired end, proving
the octagon is regular. Instead, one has to work backwards in order to figure
out the given information. (For a similar problem, refer to Fermat’s problem
to Torricelli: “Determine a point P in a given triangle ABC such that the sum
PA + PB + PC is a minimum” (Honsberger, 1973, p. 24)). In essence, the
students whose “proofs” were instructions actually discovered the statement of
the problem, which can be written as follows (refer to Figure 8):

Suppose a square is cut on a diagonal and one of the triangles is translated to
form a parallelogram. 
• Mark B a distance of one-half the length of the horizontal side of the

parallelogram (or square) from A. 
• Mark D the same distance from E. 
• Mark G the same vertical distance from F. 
• Connect B and G. 
• Connect G and D. 
• Cut along . 
• Rotate trapezoid DEFG 180° clockwise about F. 
• Repeat for the opposite side of the parallelogram. 
Prove that the resulting octagon is regular.

For an example of a possible proof, refer to the Appendix.

Conclusion

Initially, with the octagon task, it appeared as if the problem statement was
given to the students: prove that the octagon constructed from the square is
a regular octagon. Later, I realised that the problem statement was incom-
plete, and, in order to determine the complete statement, it was necessary for

1

2 1+

BG GF GD, and
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Figure 8. Parallelogram used to write the problem statement.



the students to explore, discover, and conjecture. In describing how she
teaches proof, Muller (2010) further delineates the stages through which her
students progress: “exploration, discovery, conjecture, further exploration,
brainstorming, writing, assessment, and rewriting” (p. 438). The last two
stages, assessment and rewriting, were unfortunately not a part of my imple-
mentation of the octagon project since it occurred in the last days of the
school year. A class discussion about the student errors could have led the
students to the discovery, made by me and my colleague, and enabled them
to complete the proof. All of the stages outlined by Muller should be incor-
porated into this or any similar assignment so that students authentically
experience the process of proof writing.
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Appendix

Figure A1. Diagram used for proof.

Suppose a square is cut on a diagonal and one of the triangles is translated to
form a parallelogram. 
• Mark B a distance 

of one-half the length of the side of the parallelogram (or square) from A. 
• Mark D the same distance from E. 
• Mark G the same vertical distance from F. 
• Connect B and G. 
• Connect G and D. 
• Cut along . 
• Rotate trapezoid DEFG 180º clockwise about F. 
• Repeat for the opposite side of the parallelogram. 
Prove that the resulting octagon is regular.

To prove that octagon P'L'BGG'D'JP is a regular octagon, we must show
that all of its angles measure 135° and all of its sides are congruent.

Angles

First, to show that ΔQ'MF and ΔQAN are congruent, right isosceles triangles,
refer to Figure A2. m∠Q'MF = m∠QAN = 45° since the diagonal of a square
bisects opposite angles. ∠MQ'F and ∠AQN are right angles since they were
originally angles of a rectangle. Similarly, Q'M = QA because they were origi-
nally opposite sides of a rectangle. Therefore, ΔQ'MF and ΔQAN are
congruent, right isosceles triangles, F is the midpoint of and QF = AC
(Figure A1). (It is given that C is the midpoint of .)

1

2 1+

BG GF GD, and

′Q Q
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Figure A2. Diagram used to show that ΔQ'MF and ΔQAN are congruent right isosceles triangles.

Return to Figure A1. Since ∠QAC and ∠AQF are right angles (from the
rectangle) and QA = QF = AC, quadrilateral ACFQ is a square.
Therefore, ∠GCB is a right angle and AC = FC. Combining this information
with the given information leads to the facts that is the perpendicular
bisector of and GC = . These two pieces of information indicate that
ΔBCG and ΔDCG are congruent, isosceles right triangles, and 
m∠CBG = m∠CDG = 45° and m∠BGD = 45° + 45° = 90°. Since ∠CBG and ∠ABG
form a linear pair, m∠ABG = 135°. Similarly, m∠GDE = m∠G'D'H = 135°. Since
m∠E = 45° (bisected angle of square), ∠GDE and ∠FED are supplementary.
Combining this information with DE = GF (given), and quadrilateral
GDEF is an isosceles trapezoid. Therefore, m∠GDE = m∠FGD = m∠FG'D' = 135.
Since m∠FGD = 135° and m∠BGD = 90°, m∠BGF = 135°. Repeat this argument
for the opposite side of the parallelogram to show that 

m∠HJP = m∠JPN = m∠NP'L' = m∠P'L'A = 135°.

Sides

In the process of arguing that all of the angles of the octagon measured 135°,
it was shown that ΔBGD is an isosceles right triangle (m∠CBG = m∠CDG = 45°
and m∠BGD = 45° + 45° = 90°). Since BD = , BG = GD = G'D' = 2x. From
the given information, GF = FG' = x and GF + FG' = GG' = 2x. Likewise, 
D'H = HJ = x and D'H + HJ = D'J = 2x. This argument can be repeated to show
that JP = PP' = P'L' = L'B = 2x.

2 2x

GD FE

GC
BD x 2
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