
The senior school Mathematics syllabus is often restricted to the study of
single variable differential equations of the first order. Unfortunately most
real life examples do not follow such types of relations. In addition, very few
differential equations in real life have exact solutions that can be expressed
in finite terms (Jordan & Smith, 2007, p. 2). Even if the solution can be found
exactly it may be far too difficult to be clearly articulated such as those that
form an infinite series. In either case, these real life problems are well beyond
the scope of the secondary student to solve.

Does this mean that many of the exciting relationships and models found
in the real world cannot be studied by the secondary student? What if we were
not interested in the solution? Wait a minute… What did you say? A mathe-
matician not interested in the solution! Surely that is not right! What if the
behaviour of the solution was just as important as the solution itself? What
device can be so powerful? Enter the phase plane—a geometrical device. 

To understand how the phase plane works, we will first consider the preda-
tor–prey model defined by Alfred Lotka in 1920 and Vito Volterra in 1926 called
the Lotka-Volterra System (as cited in Murray, 2002, p. 79). 

Predator–prey model

The predator–prey model is described using two coupled differential equations

(1)

where: 
• x is the number of prey;
• y is the number of predators;

• are their respective population growth rates; and 

• α, β, γ, δ are parameters representing the interaction between the species: 
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– αx represents the growth rate of the prey in the absence of predators;
– βxy represents the rate of predation upon the prey; 
– γy represents the loss rate of predators due to death or migration; and 
– δxy represents the growth rate of predators (Liu, Zhang, & Chen,

2005). 
It is obvious that the solution to these differential equations is beyond the

scope of the senior school Mathematics course. As can be seen, the rates of
growth for both predators and prey depend on the population of both the
predator and prey at any given time. For this reason, these equations are said
to be coupled. Neither equation can be examined independently from the
other.

To obtain a relation between y and x we remove the time parameter by 

If we choose an initial population of prey and predator arbitrarily (x0, y0), the
direction in which the predator and prey populations will move can be deter-
mined by the gradient. By using a numerical method it is possible to construct
a plot of the phase path or trajectory that this population will follow as it slides
in the direction of the gradient. The entire pattern of phase paths is called
the phase plane or phase portrait (Jordan & Smith, 2007, p. 6). Various free to
use software tools are available on the World Wide Web to generate such
phase planes. The Texas Instruments TI-Nspire graphics calculator can also
be used to generate phase portraits (TI-Nspire Student Software Guide, p.
267).

According to Mahaffy (2001) the following approximations for the inter-
action of lynx (the predators) and the snowshoe hare (the prey) in the
Canadian forests were determined: α = 0.4, β = 0.018, γ = 0.8 and δ = 0.023.
The chosen time scale affects the parameter as they affect associated growth
rates. In this example the time scales are in years. The interaction between
lynxs and hares were chosen as a result of extensive population records from
the Hudson Bay Company from the early 1800s to 1900s. An example of a
phase plane for the interaction of lynx and snowshoe hare populations is
shown in Figure 1.

Figure 1 was generated using several different starting populations. It can
be seen that the nature of interaction between species is cyclic. Also, for a
specific starting population at (34, 23), the population of predator and prey
is stable.

Students generating such a phase plane may be required to give reasons to
explain the cyclic nature of such a population growth. As the prey is
consumed by the predators the predator population increases and the prey
population decreases. Since the decrease in prey population cannot sustain
the increased population of predators the predator population starts to
decrease. This then allows the population of prey to increase due to the
decreased population of predators, and so the cycle continues.
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Students also possess the necessary skills to determine points where
neither species populations are changing, that is points where their respective
growth rates are zero. These points are called nullclines where

From (1) nullclines for the prey are found from setting αx – βyx = 0 and
their geometric representations are defined by y = α/β and x = 0. For the
predator δxy – γy = 0 and provide nullclines where x = γ/δ and y = 0. A steady
state occurs at the intersection of these nullclines so that neither population
are changing with time. These occur at (0, 0) the trivial case and 

the point where both populations are in perfect harmony.
This is a perfect example to introduce students to such pairs of coupled

differential equations. By looking at the behaviour of the solution rather than
the exact solution secondary students are able to analyse and predict behav-
iours of systems which are far more complex than those generally studied in
the secondary course.

Infectious disease model

We will now look at a more complex system of differential equations. In 1927,
McKendrick and Kermack (as cited in Murray, 2005) began work on the first
paper that provided the differential equations for a deterministic general
epidemic. According to Murray (2005, p. 245), the interaction between
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Figure 1. Phase plane for the interaction of lynx and snowshoe hare populations.



susceptible, infected and recovered individuals, called the SIR model, is
described by the following differential system of equations.

(2)

where:
• S is the number of susceptible persons to the disease;
• I is the number of infected persons;
• R is the number of recovered individuals;
• the parameter β is the rate of infection;
• γ is the rate of re-infection;
• υ is the rate at which infection is removed. 
The epidemic model proposed by McKendrick and Kermack is the above case
where γ = 0, where recovered individuals cannot be re-infected (Edelstein-
Keshet, 2005).

In this model the total population N is considered constant such that 
N = S + I + R. Since N is constant, we can eliminate R from equations by letting
R = N – S – I, so that the new set of differential equations are

(3)

Mkhatshwa and Mummert (2010) investigated the use of the SIPR model
for infectious diseases in the 2003 outbreak of Severe Acute Respiratory
Syndrome (SARS). The SIPR model is identical to SIR model however indi-
viduals labelled super-spreaders, P, are included with an additional differential
equation for

This SIR model does not include such individuals. During the study approxi-
mations were found for the SIR parameters, β = 0.01, υ = 0.25, and γ = 0.1.
Their research showed that the inclusion of super spreaders produced
improved modelling results for the SARS epidemic than the classical SIR
model. It also demonstrated that without any control measures the outbreak
of SARS would have been extreme.

Figure 2 displays a phase portrait of the SIR model as applied to the SARS
outbreak with a total of 800 persons. This paper is not arguing that the SIR
model best describes the SARS virus, but rather how does the SARS outbreak
behave if it follows the SIR model. It is readily seen that no matter what the
starting populations for infected and susceptible persons is, the number of
infected patients will eventually reach a steady state of 222. This steady state
is said to be stable.

It can be shown using the same method as used in the predator–prey
model that there are two steady states. A trivial steady state with S = 0 and 
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I = 0 and a second more meaningful steady state at

This second steady state introduces an important condition on the total popu-
lation size. If N < υ/β, the steady state for the infected population becomes
negative (impossible) and hence an infection does not take hold.

Let us now pose a problem to the senior secondary mathematics student.
Assume a research grant has been given to a group of medical researchers to
investigate methods to reduce the number of infected SARS patients and that
it transmits according to the deterministic equations for epidemic growth
with the same parameters listed above. Due to funding and staffing levels, the
research team are only able to focus their attention on the recovery rate,
infection rate, or preventing re-infection. The student is to give advice with
justification on which parameter they should focus.

The objective in this task is to reduce I in the long term. Mathematically
we are trying to reduce the steady state where

However, the laboratory can only focus on changes to one of the parameters
β, γ and υ. Reductions in I require that the infection rate β and re-infection γ
be both reduced whilst the rate at which infection is removed, υ, must be
increased.
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Figure 2. Phase plane for SARS outbreak applied to SIR Model 
with N = 800, β = 0.01, υ = 0.25, and γ = 0.1.



In order to compare which parameter causes the greatest reduction in

we change one parameter whilst keeping the remaining parameters constant.
We can then compare the steady state for the number of infected patients to
determine which parameter caused the lowest infected population. Since the
change is not likely to be linear it is necessary to test for a variety of percent-
age changes.

Figure 3 presents a graph displaying percentage changes for β, γ, υ versus
final stable infected population, I. It is evident from this graph that a signifi-
cant recommendation may be given to the research laboratory. Clearly the
research laboratory should focus on reducing the rate of re-infection. This
may be counter-intuitive as one would expect the focus to be on minimising
infection rates. Hence, this mathematical analysis would prevent precious
time wasting research.

This qualitative analysis of differential equations was founded by Henri
Poincare and Ivar Bendixson (cited in Jordan & Smith, 2007, p. 405). These
are but a few examples of dynamical systems and the reader is encouraged to
explore other such systems. There are many other interesting aspects of
dynamical systems just waiting to be investigated such as bifurcations where
the changing of certain parameters cause catastrophic changes in behaviour.

Although methods used to find exact solutions to these coupled differen-
tial equations may be beyond the scope of secondary school studies there is
evidence that such systems have been assessed. For example the Victorian
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Figure 3. Percentage change in parameters versus steady state infection population.
(Key: – – rate of infection, — rate of removal of infection, ++ rate of re-infection)



External VCE Specialist Mathematics Written Examination 2 (2008)
contained coupled solutions for the interaction between rabbits and foxes.
The students were required to draw phase planes from these solutions. In this
same paper another question required students’ to interpret a direction field
for certain first order differential equations.

Mathematics is an ever evolving discipline. Although many mathematical
models exist whose solutions are quite complex, this need not prevent
students from exploring such ideas. The phase plane method gives the
student another tool in their ever expanding ‘tool box’ to explore an exciting
area of mathematics. 
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