
In a recent newspaper article Polster and Ross (2010) decry the absence of
“reasoning involving proof—the one compelling argument for teaching

mathematics” in the new national draft curriculum (ACARA, 2010). The
rationale for the subject Queensland Senior Mathematics B (Queensland
Studies Authority, 2008) includes the aim that students should appreciate the
“nature of proof” and “the contribution of mathematics to human culture
and progress”. 

Although the study of proofs is not specifically recommended in it, the
draft curriculum (ACARA, 2010) advocates as an aim the development of
“thinking skills” and “creativity” in students. The study of Kurt Gödel’s proof
of the “incompleteness” of a formal system such as Principia Mathematica
(Russell & Whitehead, 1910–1913) is a great way to stimulate students’ think-
ing and creative processes and interest in mathematics and its important
developments. 

This paper describes salient features of the proof together with ways to
deal with potential difficulties for students. It recommends the study of the
logical-skeletal structure before students attempt the proof itself. It describes
how students can be introduced to the proof with a documentary highlight-
ing its importance (Malone & Tanner, 2008); two books for the ‘general
reader’, Nagel and Newman (2001) and Frantzen (2005) are evaluated and
the best description of its logical core written in clear English (Feferman,
2006c) is given. The author also suggests a prior discussion about paradoxes
in mathematics with students, in particular the Richard paradox, the Liar’s
paradox—“This sentence is false,”—and Russell’s set-theoretical paradox in
the theory of classes (Hersh, 1998).

Bertrand Russell and A. N. Whitehead’s Principia Mathematica
(1910–1913), hereafter designated as PM, contained a proof that the whole
of mathematics can be developed on the basis of set theory. With it they
hoped to prove that all mathematics is founded on logic. 

Kurt Gödel’s proof (1931/1986) of the ‘incompleteness’ of formal systems
such as PM is important for many reasons. It is important in the history of
mathematics and for further developments in mathematics such as: the
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theory of algorithms and the theory of formal systems which has led to the
development of computers and computer languages, and advances towards
artificial intelligence (Hofstadter, 1999); for the evolution of mathematical
proof and proof theory; and for the development of logic as it is taught today.
It is interesting because to master it an understanding of language is as impor-
tant as knowledge of mathematics. 

A superb logician, Gödel improved the standing of logic within mathe-
matics and was the first mathematician to prove a number theoretical truth,
not by deducing it formally from the axioms and rules of a formal system, but
through meta-mathematical argument (Gödel, 1931; Nagel & Newman, 2001;
Feferman, 2006c). The theorems make one reflect on: the nature of mathe-
matics, the notion of proof, and the fascinating interface of language and
mathematics. 

The difficulties students have in understanding proofs have been studied
(Padula 2003, 2006) but not exhaustively, and although Feferman (2006b)
remarks that Gödel’s incompleteness paper is a “classic … elegantly organised
and clearly presented”, at first reading its 46 definitions and 11 propositions,
the difficulties of understanding formal language, and, in part, the somewhat
different symbolism Gödel uses (German letters, terms) can combine to
intimidate students. It poses a challenge for teachers. How do you allow
students to appreciate its logical core while not allowing them to become
daunted by its technical complexities? However Solomon Feferman, editor of
Gödel’s collected works (1986) has written a good structural summary of
Gödel’s theorems (Feferman, 2006c). Feferman starts with an explanation of
formal systems and Gödel’s motivation in writing the proof.

Description of a formal system

To understand the proof it is essential to have knowledge of what constitutes
a formal system in mathematics. A formal system S, with a formal language L,
is an idealised model of mathematical reasoning. It is described as complete if
for every sentence A of L either A, or its negation –A, is provable. It is
described as consistent if there is no sentence A, such that both A and –A are
provable. (Feferman’s more detailed account is given in Appendix A.) 

The incompleteness theorems

Gödel’s initial aim was to provide a consistency proof of an axiomatic system,
furthering the mathematician David Hilbert’s program. Hilbert wanted to
secure mathematics against paradoxes that had emerged at the turn of the
century by axiomatising it in formal systems representing the various parts of
the subject: number theory, analysis, geometry, set theory, etc. and establish-
ing the consistency of each axiomatic system. He challenged mathematicians
to prove that the axioms (assumptions, postulates) of (formal) arithmetic are
consistent – that a finite number of logical steps based on them can never
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lead to contradictory results. Gödel’s plan was to reduce the consistency of
analysis to the consistency of number theory and then to prove the consis-
tency of number theory by finitary1 means as Hilbert recommended
(Feferman, 2006a). 

Gödel’s results were unexpected by Hilbert and the mathematicians of the
day (circa 1931). He found that formal arithmetic was neither complete nor
consistent—in any formal system there always exists a statement that cannot
be proven within the system even though its truth is apparent—the first
incompleteness theorem. Moreover, if formal arithmetic is consistent then
that consistency cannot be proven within formal arithmetic itself—the second
incompleteness theorem (Hawking, 2005). The first incompleteness theorem
showed that on the assumption that the system of PM satisfies the condition
that Gödel called ω-consistency (omega consistency), it is incomplete, meaning
that there is a statement in the language of the system that can neither be
proved nor disproved in the system. Such a statement is undecidable in the
system. The second incompleteness theorem established that if the system is
consistent—meaning that there is no statement in the system that can be both
proved and disproved—the consistency of the system cannot be shown within
the system (Franzén, 2005).

Gödel’s proof uses a creative slant on a paradox from philosophy called
Epimenides’, or the Liar’s Paradox, “This sentence is false.” 

The Liar’s Paradox, the paradox analogous to the
diagonal lemma

The paradox that forms the basis of a crucial step in the proof, the diagonal
‘lemma’ or argument, is what is commonly known as the Liar’s Paradox. It is
altered somewhat by Gödel in the process.

In PM, Russell and Whitehead tried to remove paradoxes from mathemat-
ics. They invented an elaborate (and infinite) hierarchy of levels in a
desperate search for a way to circumvent paradoxes of self-reference in math-
ematics (Hofstadter, 1999). Gödel tried a different approach: he used a
well-known paradox intuitively, translating an ancient paradox in philosophy,
Epimenides’, into mathematics. 

Gödel realised he would need to formally express the concept of truth for

number theoretical sentences in the language of number theory itself, but if

he could do that, he would be able to produce a form of the Liar Paradox (a

statement that asserts its own falsity, e.g., This sentence is false) within number

theory. This would be a contradiction so his plan could not be carried out.

(Feferman, 2006a, p. 6)

However, Gödel realised that since the concept of provability could be
formally expressed in the system, a number theoretical statement called G (or
A, or D, etc.) could be formed that asserts its own unprovability. Now if it were
possible to prove G in the system for number theory it would contradict its own state-
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1. ‘Finitary’ means the
small set of reason-
ing methods usually
accepted by mathe-
maticians
(Hofstadter, 1980).
In more detail,
“[O]nly such proce-
dures as make no
reference either to
an infinite number
of structural proper-
ties of formulas or
to an infinite
number of opera-
tions with formulas”
(Nagel & Newman,
2001, p. 33).



ment of unprovability; therefore it is indeed unprovable, and number theory
is incomplete (Feferman, 2006a). As Hawking (2005) remarks, Gödel
formalises the paradox in his proof. Instead of stating: “This sentence is false,”
he re-forms it as: “This statement is unprovable,” a subtle variant that avoids
the trap of absurdity. 

Note that whether you assume that the statement is true or false you end
up with an inconsistency, and therefore the statement is neither true nor false
(Singh, 2005); it is simply “undecidable”. 

Gödel acknowledges the similarity of the paradox to the argument in his
proof and compares it to an analogy with the Richard ‘antinomy’ (correctly
drawn inferences, each of which is supported by reason). It is closely related
to the ‘Liar’ too, he continues (Feferman, 1988). In 1934, three years after
writing his incompleteness theorems, Gödel, along with Alfred Tarski, came
to the realisation that the (Richard or Liar’s) paradox can be considered a
proof that a ‘false statement in A’ cannot be expressed in the language A: 

… a complete epistemological description of language A cannot be given in

the same language A, because the concept of truth of sentences of A cannot be

defined in A. It is this theorem which is the true reason for the existence of

undecidable propositions in the formal systems containing arithmetic.

(Feferman, 1988, pp. 104–105)

“Epistemological” means of that branch of philosophy which investigates
the origin, nature, methods, and limits of human knowledge.

Many people, however, including famous mathematicians and authors,
think that the most remarkable aspect of the proof is Gödel’s numbering
system. 

Gödel’s numbering system

Gödel found that numbers could replace the patterns in PM and that the
patterned formulas of PM could be seen as saying things about themselves
and each other. His coding enables statements of number theory to be under-
stood on two levels: as statements of number theory, and also statements about
statements of number theory (Hofstadter, 1999), or meta-mathematical state-
ments. As well as symbols for constants, and variables based on the product of
primes (Nagel & Newman, 2001), Gödel’s numbering system includes
mapping and the arithmetisation of syntax (Franzén, 2005). 

Mapping

Gödel introduced an ingenious method of mapping. Since every expression
of PM is associated with a particular Gödel number, a meta-mathematical
statement about formal expressions and their typographical relations to one
another may be construed as a statement about the corresponding Gödel
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numbers and their arithmetical relations to one another. In this way meta-
mathematics becomes ‘arithmetised’. Each meta-mathematical statement
about strings of symbols and how they are typographically related corresponds
to a statement about the strings’ Gödel numbers and how those numbers are
arithmetically related (Nagel & Newman, 2001). 

Arithmetisation of syntax

The representation of sentences and proofs as numbers and expressing state-
ments about sentences and proofs as arithmetical statements about the
corresponding numbers is known as the arithmetisation of syntax and was first
carried out by Gödel in his proof. A method of representing syntactical
objects (such as sentences and proofs) as numbers is called Gödel numbering.
For example, “n is the Gödel number of a proof in S of the sentence with the
Gödel number m” can be defined in the language of arithmetic. Also, it is
necessary that the Gödel number of any sentence or sequence of sentences
can be mechanically computed and that computable properties of syntactic
objects correspond to computable properties of Gödel numbers (Franzén,
2005). 

According to Douglas Hofstadter (1999) Gödel’s numbering system was
his “great stroke of genius” in that he realised that numbers are a universal
medium for the embedding of patterns of any sort; statements supposedly
about numbers alone can encode statements about other universes. He saw
beyond the surface level of number theory and realised that numbers could
represent any kind of structure. Computers, for example, basically manipu-
late numbers, and because they are a universal medium for the embedding of
patterns of any sort they can deal with many different patterns. 

Ordinary people use computers for: word processing, game playing,
communication, animation, designing, drawing, etcetera, without ever think-
ing about the basic arithmetical operations going on deep in the hardware
(Nagel & Newman, 2001). Gödel’s numbering system and work in logic,
followed by Alan Turing’s papers and efforts at code-breaking at Bletchley
Park during the Second World War, led ultimately to the development of
computer languages and digital computers. 

Let us now consider the logical structure, or ‘heart’ of the proof by study-
ing Feferman’s summary of Gödel’s proof, part of a lecture at the Princeton
Institute, Gödel Centenary Program.

Feferman’s summary

Feferman (2006c) presumes some previous knowledge of mathematics and
his explanation is written in a mixture of good mathematical English and
symbols. He uses words such as “function” and “hypothesis”. It explains
Gödel’s proof concisely and it is well laid out. Once its symbols are under-
stood it may be easier to follow for some students, especially perhaps those
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students whose command of English is not as good as those from an English-
speaking background but who have an understanding of the relevant
technical terms. Footnotes have been added by the author because Feferman
does assume prior understanding of some formal-language concepts, for
example: “Peano Arithmetic” (PA) and “recursive”. They should help clarify
(or extend) certain points for students. He precedes his summary with a brief
description of the symbols he has used; they are not exactly the same as
Gödel’s. His symbol for “not” is “¬”, not the tilde, for example. 

Feferman’s explanation of Gödel’s incompleteness theorems: 
Feferman’s symbols for the formal language are:

A symbol for 1, symbols for addition, +, and multiplication, ×, symbols for

equals, =, and the less-than relations <, and symbols for the logical particles

‘and’ (&), ‘or’ (∨), ‘not’,(¬), implies (⇒), ‘if and only if’ (⇔); ‘n’ and ‘m’ that

act as variables interpreted as referring to arbitrary (positive) integers and

what are called the quantifiers ‘for all n’ (n) and ‘there exists n’ (∀n), as well

as parentheses to avoid ambiguous expressions… 

The first incompleteness theorem. If S is a formal system such that

(i) the language of S contains the language of arithmetic,

(ii) S includes Peano Arithmetic2

(iii) S is consistent

then there is an arithmetical sentence A which is true but not provable in S.

Gödel proved it in the following manner. He firstly showed that a large class of

relations that he called recursive3 (and we now call primitive recursive) can all be

defined in the language of arithmetic. As well, every numerical instance of a prim-

itive recursive relation is decidable in PA. Similarly for primitive recursive

functions. Among these functions are: exponentiation, factorial(s), and the

prime power representation of any positive integer.

He then attached numbers to each symbol in the formal language L of S and,

using the product-of-primes representation4, attached numbers as codes to

each expression E of L, considered as a finite sequence of basic symbols. These

are now called the Gödel number of the expression E. In particular, each

sentence A of L has a Gödel number. Proofs in S are finite sequences of

sentences, and so they too can be given Gödel numbers. He then showed that

the property:

n is the number of a proof of A in S,

written

Proof s (nA)  

is primitive recursive and so expressible in the language of arithmetic.

(The) sentence 
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2. A formal version of
the axioms proposed
for arithmetic by the
Italian mathematician
Giuseppe Peano in
the 1890s; its axioms
assert some simple
basic facts about addi-
tion, multiplication
and the equality and
less-than relations
(Feferman, 2006c, p.
7).

3. “Recursive” means
effectively
computable, may be
computed by a
(Turing) machine.
For more about
recursion, read
Feferman (2007) and
Gödel’s (1931/1986)
paper (pp. 157, 159,
163) where he lists
the functions, x+y, x.y
and xy, as well as the
relations x<y and x=y
as recursive.

4. The variables in a
formula are assigned
Gödel numbers in
accordance with the
following rules: (i)
each distinct numeri-
cal variable
(numerals, such as
ss0, or the successor
of the successor of 0)
is associated with a
distinct prime
number greater than
12; (ii) each distinct
sentential variable
(sentence or
formula) is associated
with the square of a
prime number
greater than 12; (iii)
each distinct predi-
cate variable
(predicates such as:
“is prime”, “is greater
than”) is associated
with the cube of a
prime number
greater than 12
(Nagel & Newman,
2001, p. 74).



(∃n) Proof s (nA)  

expresses that A is provable from S.5 Moreover if it is true, it is provable in PA.

So we can also express directly from this that A is not provable from S, by ¬Prov.

Gödel used an adaptation of what is called the diagonal method to construct a

specific sentence, call it D, such that PA proves:

D ⇔ ¬Prov s (D). 

Finally, he showed:

(*) If S is consistent then D is not provable from S.

The argument for (*) is by contradiction6: suppose D is provable from S. Then

we could actually produce an n which is a number of a proof S of D, and from

that we could prove in PA that “n is the number of a proof of D in S”, from

which follows “D is provable in S”. But this last is equivalent in S to ¬D, so S

would be inconsistent, contradicting our hypothesis.7 Finally, the sentence D is

true because it is equivalent, in the system of true axioms PA, to the statement

that it is unprovable from S.8

It should be clear from the preceding that the statement that S is consistent

can also be expressed in the language of arithmetic, as ¬Prov s (A & ¬A), for

some specific A (it does not matter which)9; we write Con s for this. Then we

have:

The second incompleteness theorem. If S is a formal system such that 

(i) the language of S contains the language of arithmetic,

(ii) S includes PA, and

(iii) S is consistent,

then the consistency of S, Con s is not provable in S.

The way Gödel established this is by formalising the entire preceding argu-

ment for the first incompleteness theorem in Peano Arithmetic. It follows that

PA proves the formal expression of (*), i.e. it proves

(**) Con s  ¬Provs (D).

But by the construction of D, it follows that PA (and hence S) proves

(***) Con s ⇒ D.

Thus if S proved Con s (consistent) it would prove D, which we already know

to be not the case.10 (Feferman, 2006c, p. 5 & pp. 7–10)

Thus, S proves the consistency of S (Con s) implies the statement D, and
since D is not provable in S if S is consistent, it follows that the consistency of
S is not provable in S under the same conditions (Feferman, 2006a). Actually
Gödel (1931) designates two types of consistency in his proof: consistency of
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5. To be more precise
Proof s (nA) is here
written for Proof s (n,
m) where m is the
Gödel number of A
(Feferman, 2006c, p.
8).

6. Is D a theorem of
PM? If so then it must
assert a truth. But
what in fact does D
assert? Its own non-
theoremhood. Thus
from its theoremhood
would follow its non-
theoremhood: a
contradiction. (With
thanks to D.
Hofstadter 1999, p.
448.)

7. D is valid in S, other-
wise its negation ‘This
statement is provable’
is valid in S; also,
refer back to
Feferman’s (2006c,
pp. 6–7) explanation
of a formal system in
the Appendix .

8. Now what about D
being a non-theorem?
This is acceptable, in
that it doesn’t lead to
a contradiction. But
D’s non-theoremhood
is what D asserts—
hence D asserts a
truth. And since D is
not a theorem, there
exists (at least) one
truth which is not a
theorem of PM.
(With thanks to D.
Hofstadter, 1999, p.
448.) See also
Franzén (2005, p. 42)
for further explica-
tion of ‘equivalence’.

9. Remember, S is said
to be consistent if
there is no such
sentence A such that
A and not-A are prov-
able in S (see
Feferman’s explana-
tion of a formal
system in the
Appendix). ¬Prov s (A
& ¬A) is just a
symbolic expression
of this.

10. For a fuller descrip-
tion with slightly
different symbolism
see Feferman (2006b,
pp. 5–6) and Franzén
(2005, p. 97). 



the system implies non-provability of [R(q);q], the string of symbols described
by him in a footnote (Gödel, 1931/1986) as merely a meta-mathematical descrip-
tion of the undecidable proposition; ω-consistency implies non-provability of its
negation (Feferman, 1988).

It can be argued that if the consistency of the formal system could be
demonstrated inside the system itself, then the informal argument could be
formalised and the formalised version of the statement, “This statement is
unprovable,” would itself be proven, thereby contradicting itself and demon-
strating the inconsistency of the system! (Hawking, 2005). The second
incompleteness theorem shows that no sufficiently strong formal system
(containing PA) that happens to be consistent can prove its own consistency.
It is stated by Feferman (2006a) that the Second Incompleteness Theorem
requires much more ‘delicate’ work than the First. 

Two books for the ‘general reader’

Nagel and Newman’s (2001) book about Gödel’s proof was written for the
‘general reader’. Although it was valuable for many years it contains some
errors, the most egregious being the misstatement of Gödel’s first incom-
pleteness theorem. After constructing a formula G which is true if and only if
it is not provable, the authors fail to give the proof that G is not provable.
They state in section C (ii) on page 93: “G is demonstrable if and only if ~G
is demonstrable.” As Putnam (1960) notes, this statement could have been
replaced by the following argument: suppose G were demonstrable, then ~G
would be demonstrable. Therefore, if arithmetic is consistent, G is not
demonstrable. But the meta-mathematical statement: “G is not demonstrable”
is mapped by Gödel’s mapping onto the statement G itself, and moreover the
mapping maps truths onto truths. So G is true, and therefore ~G is not
demonstrable, assuming no falsehoods are provable in number theory
(Putnam, 1960; Feferman, 2011).

Feferman’s choice

Feferman (2006c) recommends a different book as an introduction to the
proof for the ‘general reader’, Torkel Franzén’s (2005): Gödel’s Theorem: An
Incomplete Guide to its Use and Abuse, and another of Franzén’s books:
Inexhaustibility: A Non-exhaustive Treatment (2004) for readers with ‘a moderate
amount of logical and mathematical background’ (Feferman, 2006c). Franzén’s
(2005) book reflects his experiences over the years of reading and comment-
ing on references to the incompleteness theorem on the Internet. Although
the author himself recognises that his book will be, in part, ‘heavy going’ for
readers not used to mathematical proofs and definitions, it does reward the
persistent reader with a description of ideas such as ‘provable fixpoints’. 
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Provable fixpoints

As Franzén explains in Section 2.7 of Chapter 2 of his book the general
fixpoint construction is widely used in logic to prove various results. Gödel
used it to prove his first incompleteness theorem, by applying it to the “prop-
erty of not being a theorem of S”, S being a formal system (like PM). By a
Gödel sentence for S is meant a sentence G obtained through the general
fixpoint construction such that S proves

G if and only if n is not the Gödel number of a theorem of S,

where n is the Gödel number of G itself.
He follows this with a description of the reasoning behind Gödel’s proof

(after noting that G is equivalent to the statement that no number p is the
Gödel number of a proof of G in S, and the property of being such a number
p is a computable one, given the general requirements on formal systems and
Gödel numberings):

First, if G is in fact a theorem of S, then it is provable in S that G is a theorem

of S (that is, that n is the Gödel number of a theorem of S). The reason for this

is that being a theorem of S is a property that can be verified by exhibiting a

proof in S, and since being a proof in S is required to be a computable prop-

erty of sequences of sentences, the verification can be carried out within S. So

if G is a theorem of S, this is provable in S, but since G is a provable fixpoint of

the property of not being a theorem of S, the negation of G is then also prov-

able in S, so S is inconsistent. (Franzén, 2005, p. 42)

Implications for teaching

These days, when there are very many students in our high schools and
universities from non-English-speaking backgrounds (NESB) it is incumbent
upon teachers to consider the difficulties these, and indeed, even many
students of English-speaking background (ESB) encounter when reading that
hybrid language, mathematical English. (The new national draft curriculum
requires that students be taught to “interpret mathematical symbols” and
“understand the meaning of the language of mathematics” (ACARA, 2010, p.
5). How do they do this if they do not study good examples of mathematical
English such as Feferman’s summary and Franzén’s book?)

Padula (2006) showed that the mix of mathematical symbols and words in
a proof (often, as in this case, a mixture of natural language and the English
mathematical register) can be more difficult for students than well-known
mathematical symbols alone (or with few words). One reason for this may be
that ‘simple’ everyday language is not an ideal means of communication:
Gödel is reported as saying that he marvels that we ever understand each
other (Goldstein, 2005); another, that mathematical English itself is complex
(Padula, 2001, 2002)—like ‘ordinary’ language it consists of definitions
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whose meanings have to be assimilated, and whose grammar provides a struc-
ture for ordered thinking and communication (Arianrhod, 2003). (It can be
even more difficult where paradoxes in mathematics are concerned.
Paradoxes, as Goldstein (2006) relates, are catastrophes of reason where the
mind is compelled by logic itself to come to contradictory conclusions. Many
are self-referential—and problematical because a linguistic item refers to
itself. The meaning of the words is implicit, not explicit (Padula, 2001) and it
is not clear what is the referent for the phrase, “This sentence,” or Gödel’s:
“This statement”.) Understanding it “seems simple, but it depends on our
very complex, yet totally assimilated ability to handle English” (Hofstadter,
1999, p. 495). 

Yet mathematical symbolism can convey more than words; symbolism
enables you to see at a glance similarities and differences that may not be
obvious if you think only in words (Arianrhod, 2003). So some students,
particularly perhaps, those of non-English-speaking background, may find
that a mostly verbal explanation, although clearly written like Franzén’s
(2005), is not as accessible as that of Feferman (2006c), who uses formal
symbolism and fewer words.

NESB students who know the technical terms may prefer Feferman’s
(2006c) summary, but many ESB students will wish to extend their under-
standing of the proof with Franzén’s (2005) detailed explanations. Teachers
may decide that both are necessary for complete understanding, are indeed
complementary, and may wish to refer all their students to them. And,
although it is certainly outdated and has faults, Nagel and Newman (2001)
may still provide a good introduction to formal language for some students;
its introductory chapters (1-6) are adequate, but with some philosophical
reservations as noted by Putnam (1960). Overall, Feferman (2006c) delivers
a clear and brief summary of the underlying logic of the proof.

High-achieving Year 12 students doing Specialist Mathematics and first- or
higher-year university students studying mathematics, or history of mathe-
matics, will enjoy studying Gödel’s proof—if it is introduced thoughtfully.
Teachers may wish to start with the BBC Four documentary (Malone &
Tanner, 2008) which shows how Gödel built upon the work of Hilbert and
Russell and paved the way for Alan Turing’s papers on computers and
computability. This could be followed by giving students a good summary of
a formal system, such as the Appendix. (Students can be advised to keep this
description in mind when studying the summary and to refer back to it as they
follow the logic of the proof.) At this point a discussion about Russell’s theory
of sets, the paradox he found, and the Liar’s Paradox would set the historical
scene. 

Lecturers and teachers may find Feferman’s (2006c) version suitable as a
template for the following lecture or lesson, and students can be encouraged
to read Franzén’s (2005) book for more detail. Undergraduate students can
then proceed to study the original proof (Gödel’s introduction is very clear),
while for Specialist-Mathematics students a more detailed study may be left till
they are at university.
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The Boolos proof, an alternative approach

There is no great theorem with only one proof (Hersh, 1998). Interested
students would benefit from a look at a new, brief proof of Gödel’s incom-
pleteness theorem by George Boolos, a librarian at Oxford University. Its
premise: There is no algorithm whose output contains all true statements of arithmetic
and no false ones. Like Gödel’s, the proof is obtained by the substitution of a
name for a number in a certain crucial formula, but as Hersh comments it
does not use diagonalisation (from his Notes at the back of the book). 

Importance of the theorems-conclusion

Gödel’s incompleteness proof is an elegant classic. He has constructed a
proof which is technically innovative with its use of a unique numbering
system, the ingenious mapping of the Correspondence Lemma (Proposition
V) of statements of number theory with meta-mathematical statements, the
arithmetisation of syntax, proof of a number-theoretical statement through
meta-mathematical argument, and the diagonal lemma (with the Liar’s
Paradox by analogy). It is also of great significance: PM and related systems
are incomplete in that there are true statements of number theory that their
methods of proof are too weak to demonstrate (Hofstadter, 1999). Moreover,
it shows that not just PM, but any related formal system, is essentially incomplete.
If more axioms are added, the augmented system would still not formally
yield all arithmetical truths (Feferman, 2006c). With his proof Gödel showed
that provability is a weaker notion than truth, no matter what axiomatic
system is used (Hofstadter, 1999). 

Gödel eliminated Russell and Whitehead’s dream of proving that all math-
ematics is based on logic, with logic, and showed that logic could be pursued
mathematically with results as decisive, important and interesting as those
from other branches of mathematics. In doing this he laid the groundwork
for the subject of mathematical logic as we know it today (Feferman, 1988).

As Gödel showed, there is no limit to the creativity of mathematicians in
devising new methods of proof (Hofstadter, 1999), and indeed, (pure) math-
ematics itself. No matter how many problems are solved, there will always be
other problems that cannot be solved within existing rules (Feferman, 2006c).

The idea of proof has completely changed the way we think: philosophi-
cally, scientifically, medically and legally. Only in pure mathematics can it be
fully achieved—beyond any doubt—because of the self-consistency of mathe-
matical language (Arianrhod, 2003). The new Australian national curriculum
should include the study of the great historical proofs and Gödel’s incom-
pleteness proof in particular—it is historically, culturally, and pedagogically so
important. It is never too early to excite students about proof, the very
essence of mathematics; after all, Gödel was a young man (just 25) when he
accomplished his ground-breaking work and today both the subject and our
understanding of it have developed to the point where the proof is not
considered difficult (Franzén, 2005).
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Appendix 

An introduction to formal systems. A formal system is an idealised model of

mathematical reasoning. It is said to be complete if each sentence, A, in its

language, either A or its negation –A, is provable. It is said to be incomplete, if

for some sentence A, both A and not –A are unprovable.

A minimal criterion for the acceptance of a formal system S is that it should be

consistent. If S is to be used to obtain truths about numbers and other kinds of

mathematical objects, it should start from true axioms and use rules of infer-

ence that invariably lead from truths to truths. (Once we have a formal

language L, we can specify a formal system S in L by telling which sentences A

of L are axioms and which relations between sentences are rules of inference.)

The sentence A is said to be provable in S, if there is a proof in S which ends

with A. S is said to be consistent if there is no sentence A such that both A and

not-A are provable in S. There are two concepts of completeness related to

Gödel’s theorem: (i) S is said to be formally complete for L if for every

sentence A of L, either A is provable in S or not-A is provable in S. (In Gödel’s

terminology, every sentence L is decided by S. If S is not complete then there

are undecidable L-sentences in S.) (ii) S is truth complete for L if every true

sentence of L is provable in S. If S is consistent and truth complete for L it is

formally complete, because each sentence A of L is either true or false, i.e. its

negation is true. But S may be consistent and formally complete and not truth

complete, because it may prove false sentences. It is of course stronger to prove

of a given S that it is not formally complete, than that it is not truth complete,

and that’s what Gödel did in his original formulation. (Feferman, 2006c, pp.

6–7 & p.11)
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