
One of my undergraduate students recently asked me whether it was
possible to generate a random positive integer. After some thought, I

realised that there were plenty of interesting mathematical ideas inherent in
her question. So much so in fact, that I decided to organise a workshop, open
both to undergraduates and postgraduates, in order to explore some of these
ideas. This led to many lively discussions regarding the generation of arbi-
trarily large integers, and we considered both practical and theoretical
aspects of this problem.

The purpose of the present article is to discuss and distil the mathematics
that came out of just this one short session, and to highlight some of the
educational benefits to be gained from running such workshops. It was appar-
ent that the students were genuinely intrigued by the wealth of fascinating
material that evolved from such an apparently innocent question. In fact, I
have since given an informal talk on this very theme to some that were not
involved in the workshop, with the result that several of them wished to follow
it up. 

The material presented here is aimed at undergraduates and bright
students in Years 11 and 12. Although our journey starts with a distinctly statis-
tical flavour, we soon find ourselves venturing into the realms of pure
mathematics. Indeed, we will encounter aspects of probability, random vari-
ables, analysis, special functions, Fourier series and more. For students or
teachers who are unfamiliar with some of the more advanced mathematical
ideas discussed here, nothing is essentially lost by skipping the odd paragraph
on a first reading. It is hoped, however, that readers will be inspired to under-
take further study in these areas.

We also consider the teaching and learning that took place in this work-
shop within the context of the Australian Senior Secondary Mathematics
Curriculum, a draft consultation version of which appeared on the website
(ACARA, 2010). It was proposed that this curriculum should comprise four
courses: Essential Mathematics, General Mathematics, Mathematical Methods
and Specialist Mathematics. Each of these course focuses on a pathway
meeting the educational needs of some particular group of students. 
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What do we mean by a “random integer”?
Let us first answer this question somewhat informally with respect to a

finite set of integers. If a coin is tossed into the air then, ignoring the possi-
bility for it to land on its edge, the outcome would be either a head or a tail.
We might assign the integer 1 to heads and 2 to tails, so that each toss would
result in a 1 or a 2. If these outcomes are equally likely then the coin is said
to be fair, with each toss resulting in a random integer from the set {1,2}. More
generally, when the word “random” is associated with some probabilistic
experiment it tends to imply that all of the outcomes are equally likely to
occur.

We now apply, via a specific example, a little more formality to the notion
of a ‘random integer’. On rolling a fair tetrahedral die many times we would
expect the proportions of ones, twos, threes and fours that occur each to tend
to as n → ∞. This may be expressed as follows. With nk denoting the
number of times a k has occurred after n rolls of the die, we would expect that

(1)

for k = 1,2,3,4. This is known as the law of averages, and is certainly not trivial
to prove (see Grimmett & Stirzaker, 2001, p. 31). To be a little more rigorous,
we might say that converges to as n → ∞ in the sense that, for any ε > 0,

(2)

Let us try to unravel what the above mathematical statement is actually
saying. First, it is worth pointing out what (2) is not saying. It does not imply,
for example, that for every possible sequence comprising ones, twos, threes
and fours the proportion of ones tends to as n → ∞. Take the sequence 1,
1, 1, 1, 1, … for example! However, (2) does tell us that for any fixed number
ε > 0, however close to 0 it is, if we roll the dice for long enough then we can
ensure that the probability of being within ε of is as close to 1 as we like.
Incidentally, the underlying probability distribution here is known as discrete
uniform.

At this point it is worth mentioning a common misconception amongst
undergraduate students with regard to this limiting process. Some believe
that as n increases then each of n1, n2, n3 and n4 should get closer and closer
together. This, however, is not the case. It is certainly possible for each of
these frequencies to get further apart as n increases, while still satisfying (1).
Probability is to be studied in the Essential Mathematics course (ACARA,
2010), and students are expected to appreciate the notion of relative
frequency, perform simulations and even apply probability to simple queuing
problems. Furthermore, both discrete and continuous random variables
appear in Mathematical Methods.

For the probabilistic experiments discussed above there were only a finite
number of possible outcomes. What happens when we try to extend this idea
of ‘equally likely events’ to situations whereby there are an infinite (albeit
countable) number of possible outcomes? Suppose that N is a discrete
random variable with the property that P(N = n) > 0 for each positive integer
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n. It is clear that, in order for the sum

to converge, we must have P(N = n) → 0 as n → ∞. Thus, there exists no c > 0
such that P(N = n) = c for each n. In other words, we cannot construct a mass
function for N such that each positive integer is equally likely to occur.
Therefore, in answer to my student’s question, it would appear that it is not
possible to generate a random integer. So we can all pack up and go home?
Not likely! The answer raises yet more questions; ones that may be used as a
springboard for the exploration of some fascinating areas of mathematics.

Generating positive integers

A well-known example of a distribution taking non-zero probabilities on all of
the positive integers is the geometric distribution. If, for example, we define
X to be the number of rolls of our tetrahedral die required to obtain the first
appearance of a 3, then 

The mass function of X is given by

This is because, in order for the first appearance of a 3 to occur on the nth
roll, it must have been the case that each of the first n – 1 rolls resulted in
numbers other than 3. Then, assuming that the outcomes on each roll were
independent, the formula for P(X = n) follows. In connection with this,
geometric series are covered in both the General and the Specialist
Mathematics courses (ACARA, 2010).

The process of rolling the die until a 3 appears could in theory be used to
generate a positive integer, although we would need to be prepared to wait a
very long time! Given any period of time, say 10 years for sake of argument,
there is a chance, however small that chance might be, that we will not have
rolled a 3 by the end of that time period, even if we rolled the die every
waking moment. Of course, further practical constraints come into play here.
If we did ever have to roll the die for such a lengthy period, it would have
become extremely worn and might no longer be fair.

How about getting a computer to simulate this experiment? Setting up
such a simulation would certainly be very straightforward. However, even
though the computer can ‘roll’ the die many thousands of times faster than
we can, there is still no guarantee that a 3 will have appeared within 10 years
(or within any other time period for that matter). This brings us onto one
further point; computers possess pseudo-random number generators. These are
algorithms for obtaining sequences of numbers that pass at least some of the
established statistical tests for randomness. Students might be interested in
finding out about such tests. Indeed, they could go on to consider whether or
not numbers generated by a computer may ever be regarded as truly random;
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this could have implications for the simulations. It is worth visiting the
Wikipedia website (2010b) in this regard.

Another way to generate positive integers is by way of the random variable
U, possessing the continuous uniform distribution with probability density func-
tion f(u) defined by

We then set , where ⎣x⎦ denotes the floor function, giving the
largest integer less than or equal to x (thus, for example ⎣x⎦ = 3 and ⎣7⎦ = 7).
From this the mass function of M may be obtained as

This of course presupposes that our random number generator is able to
provide us with numbers in the interval (0,1) to an arbitrary degree of accu-
racy. Thus, with regard to generating integers, it would appear that the issue
is not now one of time, but of accuracy. For example, in order to generate the
number 1 000 000, would have to be between 1 000 000 and 1 000 001. This
requires U to be specified to at least seven places of decimals, which of course
poses no problems whatsoever. However, to cater for the possibility of gener-
ating much larger integers, far greater levels of accuracy are required. We can
write programmes to generate numbers in (0,1) to ever-greater levels of accu-
racy, but this will be at the expense of time; it seems we are back to square
one!

Making some comparisons

Returning to theoretical considerations, we might next dream up ways of
comparing how well two particular random variables, N1 and N2 say, are able
to ‘approximate’ or ‘mimic’ the behaviour of some aspect of a uniform distri-
bution on {1,2,…,n} as n increases without limit. To this end, suppose that Dm

is a discrete uniform random variable on the first m positive integers, so that
its mass function is given by P(Dm = d) = for d = 1,2,…,m, and P(Dm = d) = 0
otherwise. Note, for example, that one particular property of Dm is that 
P(Dm is a square) → 0 as m → ∞. On the basis of this, the calculation of 
P(N1 is a square) and P(N2 is a square) might, in some sense at least, allow us
to make comparisons with regard to how ‘uniform’ these distributions are.
Let us follow this line of enquiry for the moment.

From our previous definition of M, the probability that it is a square is
given by

(3)

At this point we may choose to adopt either a numerical or a theoretical
approach to calculating this probability. The former might allow students to
exercise their programming skills or to develop ingenious methods of
approximation, while the latter would give them the opportunity to explore
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more advanced mathematical territory. We pursue here the analytic route;
some may wish to skip the following paragraph on a first reading and then
come back to it after having done a little research in this area.

It is well-known that the first sum on the right of (3) is equal to . For a
proof of this see Apostol (1976, p. 266) or visit Chapman’s website (2009),
where no less than fourteen of proofs of this result are to be found. Let us
therefore concentrate on the second sum. It is possible to obtain the follow-
ing Fourier series for cos αx:

For those not familiar with such series, they allow us to decompose any
periodic function into an infinite sum of sines and cosines, and are utilised in
areas of applied mathematics and physics such as signal processing and
acoustics. Students might like to explore the Wikipedia website (2010a) to
found out more about the mathematical properties and applications of
Fourier series. This would allow them to see the trigonometric functions
encountered in Mathematical Methods (ACARA, 2010) in a rather more chal-
lenging setting. On putting α = i and x = π we have

which rearranges to give

On combining the above results it follows that

As an alternative to this, we could agree to disregard the first k positive
integers in order to diminish the effect of the initial high concentration of
squares amongst the integers. Use can then be made of the continuous
uniform random variable V with probability density function given by

where

On redefining M as we would then have

where ⎡x⎤ is the ceiling function, giving the smallest integer greater or equal to
x. Numerical calculations give, for example, P(X is a square) ≈ 0.079 when 
k = 10.
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Let us next consider a general geometric random variable X ~ Geo(p). To
this end,

where θ(x) is the theta function given by

It can be shown that P(X is a square) → 1 as p → 1 and P(X is a square) →
0 as p → 0, which is as we would expect intuitively. The theta function can be
implemented using Mathematica, a sophisticated piece of software published
by Wolfram (2007). For example P(X is a square) ≈ 0.384 when p = while
P(X is a square) ≈ 0.762 when p = . It should be noted that θ(x) is related to
elliptic functions, and, as a consequence, is associated with some rather
advanced mathematics; see, for example, Hardy and Wright (2008) or Rose
(1994). It is fascinating how our simple initial question has led on to functions
that were studied by some of the greatest mathematicians of the nineteenth
and twentieth centuries.

This investigation also gives students the chance to encounter the ‘inno-
cent-looking’ (more on this shortly) random variable Y defined, for 
y = 1,2,3,… , via the mass function

(4)

noting that our earlier observation

does indeed imply that (4) is a genuine mass function. We have

Since, from Apostol (1976, p. 266) once more,

it is the case that 

From the foregoing discussion, it would seem that, provided the value of
its parameter p is small, a geometric distribution fares rather well compared
to the other distributions. Of course, some might argue that the method of
comparison we have been using thus far is rather arbitrary. Furthermore, it
would be very easy to ‘manufacture’ a mass function for N looking distinctly
non-uniform yet for which P(N is a square) is as close to 0 as we like. Are we
thus able to identify a less arbitrary aspect of the behaviour of Dm as m → ∞?
A fairly obvious candidate would be the fact that E(Dm), the expectation of Dm,
tends to infinity as m → ∞, but surely there cannot be a mass function with the
ability to mimic this property? Oh yes there can! Let us return, as promised,
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to the innocent-looking random variable Y. The interesting thing here is that

which shows, by virtue of the fact that the series on the right diverges, that
E(Y) does not have a finite mean. Incidentally, there are several ways of
showing that the series

diverges, none of which would be beyond able students from Years 11 or 12;
see Knuth (1968, p. 74), for example.

This fact that Y does not possess a finite mean might initially seem some-
what counterintuitive, and certainly makes an interesting point for discussion.
One way of looking at this is as follows. Suppose that we had a way of gener-
ating integers by way of this distribution, and a sample of size n was obtained.
Let denote the mean of this sample. Then, for any positive integer N
you care to choose, P( > N) → 1 as n → ∞. This of course raises some
interesting questions: How may we generate integers via this probability distri-
bution? Is it indeed possible?

Let us now compare the random variables X and Y in this respect.
Although X has the property that E(X) → ∞ as p → ∞, it is the case that E(X)
is finite for any particular value of p. In this sense at least, Y might be regarded
as being far more successful at copying the limiting behaviour of E(Dm).

Running the workshop

This was a voluntary session, and took place one afternoon. Twenty-two
students attended—an ideal number for this sort of activity. My aims were for
each member of the class to have the opportunity to:

• work collaboratively;
• make decisions about how they might proceed; 
• venture into areas of mathematics with which they were unfamiliar;
• carry out some independent exploration and research.
In order to facilitate the above, the students worked in groups initially, with

each group possessing both undergraduates and undergraduates.
After a brief introduction outlining some of the ideas discussed in the

second section of this article, the students were given the freedom to proceed
in any manner they saw fit. From this point I acted as more of a guide than a
teacher, steering groups or individuals back to more fruitful lines of enquiry
if it was evident that their current train of thought was not leading anywhere,
or making suggestions if they had reached an apparent impasse, but trying to
keep out of the way as much as possible. I also ensured that computers with
mathematical software and internet access were available.

If I felt that a group had a particularly promising idea then I would ask
them to share their findings with the rest of the class. In order to avoid contin-
ually disrupting the flow of the session, however, I would sometimes rather ask
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an individual to circulate amongst the other groups to explain their current
line of enquiry. We concluded the workshop with a plenary activity, pulling
together, and trying to make some sort of sense of, the wealth of mathemati-
cal ideas that were generated. At one point this even turned into a healthy
debate, with some contesting an assertion posited by one of the groups.

Final thoughts

The distilled version of what went on in the workshop described in this article
was of course just one of a plethora of ways in which the session might have
proceeded. However, I have found that, whatever the outcome, running work-
shops such as these can have numerous educational benefits. Mathematical
exploration is encouraged, which in turn aids the development of technique,
problem-solving ability and knowledge. A setting is created within which
productive mathematical discussion and collaboration is able to take place;
possibly in the form of peer teaching both within and between the groups. In
addition, since practical, theoretical and computational work arises in such a
natural manner from this activity, there is scope for students to encounter a
wide variety of learning experiences. Indeed, the theme of mathematical
investigation pervades much of the Essential Mathematics course (ACARA,
2010).

Furthermore, the workshop allows students to consider, a little more
deeply, the mathematics associated with various distributions they may already
be familiar with. Ambitious students might next like to look at other distribu-
tions in the light of the ideas discussed here. A comprehensive list of both
discrete and continuous distributions can be found in (Grimmett & Stirzaker,
2001).

In the Secondary National Strategy (2007) guidance document for schools
in the United Kingdom, a rich task is described as one that: 

• is accessible and extendable;
• allows learners to make decisions; 
• involves learners in testing, proving, explaining, reflecting and inter-

preting; 
• promotes discussion and communications; 
• encourages originality and invention; 
• encourages ‘what if’ questions; 
• is enjoyable and contains the opportunity for surprise.
It would certainly seem that our workshop activity satisfies these criteria to

a large extent. Indeed, there is no reason whatsoever why such tasks should
not also be part of a university curriculum. They provide alternative modes of
learning to those experienced in lectures or even tutorials. In the workshop
environment, the freedom to explore means that a student’s learning experi-
ence tends to be rather more holistic than in the more traditional settings.
Furthermore, mathematical discovery is initiated by the students; something
that simply cannot be replicated in a lecture theatre.

If the reader is interested in running their own workshops then see also
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(Griffiths, 2009; 2010a; 2010b). The ideas presented in these papers certainly
have the potential to be developed into rich tasks for undergraduate students.
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