
amt 62 (3) 20062

The problem

A lattice is a (rectangular) grid of points,
usually pictured as occurring at the intersec-
tions of two orthogonal sets of parallel, equally
spaced lines. Polygons which have lattice
points as vertices are called lattice polygons.

It is clear that lattice polygons come in
various shapes and sizes. A very small lattice
triangle may cover just 3 lattice points — at
the vertices. A very large lattice polygon might
be expected to cover many more lattice points.
This suggests that there might be a correlation
between the area of (simple) lattice polygons

and the number of lattice points they cover.
Let us see if we can find a formula. We let A
stand for the area, B for the number of
boundary points, and I for the number of inte-
rior points. For each of the illustrated
polygons, fill in the details in the table below.

You should be able to see a pattern by now.
If not, add some further polygons of your own.
We can now make a conjecture (educated
guess) that the following theorem is true.

Pick’s Theorem

Suppose a simple lattice polygon P has area A,
B boundary points and I interior points, then   

Note that at the moment, this result is just a
guess. We may be able to find a polygon for
which the result fails. We need to be able to
provide a proof. The theorem appears to have
been first proved in 1900 when Georg
Alexander Pick published the result. Pick
(1859–1943) was an Austrian mathematician
who died in the Theresienstadt concentration
camp.

The proof

The proof is not hard, and falls into two parts.
It will be useful to associate with the polygon
P the expression (function)

We call this Pick’s formula. Then f(P) = 0
becomes the statement of Pick’s Theorem.
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(1) We first show that Pick’s formula is addi-
tive. This means that if we adjoin two lattice
polygons for which Pick’s formula is true to
obtain a new lattice polygon P, then the
formula for the new polygon P will be given
by the sum of the formulae for the two
contributing polygons. This will become
clearer shortly.

(2) Since every lattice polygon P can be
constructed by assembling together lattice
triangles, Pick’s formula for P will be the
sum of Pick’s formulae for all the
contributing triangles. If we can show that
for any such triangle T, f(T) = 0, Pick’s
Theorem will follow.

(1) Let us begin at the beginning! 
Look at this example:

Here we are combining two lattice polygons
P1 and P2 to obtain a new lattice polygon P (or
P1 + P2). We see that in this example, Pick’s
formula (and in fact, Pick’s Theorem)
continues to hold for the new polygon.

P1 P2

Now, let us check the final entry in the
table. Using the values of A, B and I for P, we
obtain:

We say that the formula f is additive for
polygons related in this way. Obviously if we
wrote P1 = P – P2, the formula also remains
true under subtraction.

(2) We now assert that any lattice polygon can
be subdivided into lattice triangles, and in fact
lattice triangles with boundary lattice points
only at the vertices, i.e., with B = 3. Try some
examples: you will be easily convinced. 

So by Part 1, we only need to show that
Pick’s Theorem is valid for these triangles.

We observe that any lattice triangle can be
placed inside a lattice rectangle with sides
parallel to the coordinate axes.

A B I

P1 7 8 4 0

P2 5 8 2 0

P = P1 + P2 12 12 7 0

A B I

P1 A1 B1 I1

P2 A2 B2 I2

P = P1 + P2 A1 + A2
B1 + B2
– 2k + 2

I1 + I2 +
k – 2

?

Notice from the figure that we have added
the areas, lost one boundary point (twice) and
gained one interior point. The B column in the
table appears inconsistent with this because
we have also counted the two endpoints of the
common segment twice.

Let us try to work this through in general.
Let P1 have attributes A1, B1 and I1 (in the
obvious notation) and P2 have A2, B2 and I2.
Suppose the boundary which is in common
contains k lattice points (including the end
points). We now obtain:
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There are a number of different cases to
consider here, but they all involve lattice
rectangles (such as R) and right-angled lattice
triangles (such as P) with sides parallel to the
coordinate axes. We check Pick’s Theorem for
these rectangles and triangles.

Rectangle case

Suppose the rectangle U (for example) has
length l and width w. Then in this case, A = lw,
B = 2l + 2w, and I = (l – 1)(w – 1). 
Hence

and Pick’s Theorem is satisfied for U.

Triangle case

Consider now the triangle P (for example) with
side lengths l and w, and by assumption, no
points on the hypotenuse. In this case, 
A = 12 lw, B = l + w + 1, I = 12 (l – 1)(w – 1).
Hence

and T satisfies Pick’s Theorem.

Conclusion

We illustrate the final argument using the
most difficult third case illustrated above.
By Part (1) of our proof

f(U) = f(P) + f(Q) + f(R) + f(S) + f(T),
so f(T) = f(U) – f(P) – f(Q) – f(R) – f(S)

= 0,

since P, Q, R, S, U are all rectangles or trian-
gles of the type covered in Part 2 of the proof.

This completes the proof of Pick’s Theorem.
A shorter but more sophisticated proof of

the second part of our proof is given in Coxeter
(1969). Some proofs involve showing that the
area of the primitive triangle defined earlier (a
lattice triangle with B = 3 and I = 0) is 1

2. For
other proofs of Pick’s Theorem you might look
at Gaskell, Klamkin and Watson (1976), Haigh
(1980), Varberg (1985), and on the Internet,
LattE Background (HREF1), and Wikipedia
(HREF2).

Further results

(1) An obvious question to ask is whether an
analogue of Pick’s Theorem holds in 3-space.

Experiment with a few very simple lattice
polyhedra (for example, tetrahedra). For a
further hint, you might consider such tetra-
hedra lying within the infinite box with
cross-section the unit square with vertices
(0, 0), (1, 0), (1, 1), (0, 1). After trying for your-
self, check the following diagram

We can envisage a whole family of tetra-
hedra having B = 4, of varying height and
volume lying within this 1 × 1 column, and so
containing no interior lattice points. Hence we
can see that no direct analogue of Pick’s
Theorem will hold in space.

In 1957, Reeve obtained a result in 3-space
with the ingenious idea of introducing a
secondary lattice — in fact the lattice of all
integer multiples of (12, 

1
2, 

1
2). MacDonald (1963)

later extended this to higher dimensions. It is
a nice idea, but the results lack the appealing
simplicity of Pick’s Theorem.
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(2) Another idea would be to ask if Pick’s
Theorem remains true for non-simple lattice
polygons — polygons which have boundaries
intersecting (at a lattice point), or containing
polygonal “holes”.

There is an analogue in this case. It can be
shown that

where k is a number involving the Euler char-
acteristic of the region and the boundary. If
you are interested in following this up, see
Scott [S]. 

(3) A third question to ask is whether Pick’s
Theorem continues to hold for a more general
planar lattice. 

The answer to this is ‘Yes’, although there
needs to be a small modification in the state-
ment of the theorem. We can obtain other
lattices by transforming the integer lattice in a
linear way, for example by scaling, or using a
shear. Such transformations generally change
the left hand side of the expression  

but (assuming the polygon is mapped by the
transformation) have no effect on the right
hand side. Pick’s Theorem is valid in this more
general case in the form 

where the term d(L), the determinant of the
lattice L, measures the amount of area scaling
carried out in obtaining L from the integer
lattice. 

(4) Extending this idea further, we might ask
whether Pick’s Theorem has any application to
non-lattice situations. Ren, Kolodziejczyk,
Murphy and Reay (1993) apply the theorem to
polygons having their vertices at the vertices of
a regular hexagonal tiling to obtain area
approximations. Another result of this type is

obtained by Ding, Kolodziejczyk and Reay
(1988). In these “hexagonal lattices” the hexa-
gons have no centres, and rather
unsatisfactory constraints are placed on the
edges of the polygons.

(5) What do lattice triangles look like? Reznick
(1986) looks at lattice simplices in En with
B = n + 1 and I = m. He classifies such lattice
triangles for n = 2, and shows that if m = 1, the
interior lattice point is the centroid (centre of
gravity). Rabinowitz (1989) lists all lattice poly-
gons (up to equivalence) with at most one
interior lattice point.

A web version of this present article can be
found at
http://internal.maths.adelaide.edu.au/
people/pscott/lattice_points/3area.html
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