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Abstract
Various studies suggest that covariational reasoning plays an important role on unders-
tanding the fundamental ideas of calculus and modeling dynamic functional events. The
purpose of this study was to investigate a group of mathematics teachers’ covariational re-
asoning abilities and predictions about their students. Data were collected through inter-
views conducted with five secondary mathematics teachers to reveal about their covari-
ational reasoning abilities as they worked through a model-eliciting activity, predictions
about their students’ possible approaches to solve the given problem, possible mistakes in
solving the problem, and misconceptions they possibly held. The results showed that not
only the teachers’ covariational reasoning abilities were weak and lack depth but also the-
ir predictions about students’ reasoning abilities bounded by their own thoughts related
to the problem.
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The notion of change is fundamental for the major concepts of calculus,
a critical course for students majoring in mathematics, physics, engineer-
ing, and others (Carlson, Larsen & Lesh, 2003; Carlson & Ochrtman,
2005; Cottrill et al., 1996; Kaput, 1994; Saldanha & Thompson, 1998;
Thompson, 1994a; Zandieh, 2000). Studies show that students’ covaria-
tional reasoning abilities have a major role to construct and interpret the
models of continuously changing events (Carlson, Jacobs, Coe, Larsen &
Hsu, 2002; Kaput, 1992, 1994; Monk, 1992; Rasmussen, 2001). These
studies also demonstrated that this type of reasoning (i.e., covariational
reasoning) ability plays an important role on modeling dynamic func-
tional situations. However, even high performing students have difhi-
culties in modeling dynamic functional situations (Carlson et al., 2002;
Carlson & Ochrtman, 2005; Kokli, 2007; Monk & Nemirovsky, 1994).
In particular, students’ difficulties are associated with lack of imaging and
coordinating the simultaneous changes of variables, namely their covari-
ational reasoning abilities (Carlson & Oehrtman, 2005). Although there
are various definitions of covariational reasoning in the literature (e.g.,
Carlson et al., 2002; Confrey & Smith, 1995; Saldanha & Thompson,
1998), the common trait in these definitions is that covariational reason-
ing is imagining and coordinating the changes in two quantities simul-
taneously. In this study, we adopted the definition provided by Carlson
et al. (2002) to describe covariational reasoning: “the cognitive activities
involved in coordinating two varying quantities while attending to the
ways in which they change in relation to each other” (p. 354).

Researchers emphasize that the concept of function should be intro-
duced as covariation, that is coordinating changes in one variable with
the other variable, and student should be provided with more opportu-
nity to explore the concept of rate of change in earlier grades (Confrey
& Smith, 1995; Kaput, 1994; K6kli, 2007; Thompson, 1994b). In Prin-
ciples and Standards for School Mathematics, NCTM (2000) emphasizes
the need for more function related tasks in the classrooms and stresses
the importance of the students’ understanding of the concept of rate
of change in real-world situations. In this context, modeling activities
provide opportunities to achieve these aims (Carlson et al., 2003; Lesh
& Doerr, 2003b; Lesh, Hole, Hoover, Kelly & Post, 2000). For effec-
tive instruction, on the other hand, it is important for teachers to know
the concepts students have difficulty with and the ways to overcome
the common misconceptions or misunderstandings. However, research



SEN ZEYTUN, CETINKAYA, ERBAS / Mathematics Teachers’ Covariational Reasoning Levels... * 1603

studies suggest that although it is an important component of peda-
gogical content knowledge (Shulman, 1987) there are discrepancies
between teachers’ predictions about students’ difficulties and students’

actual difficulties (Even, 1993; Hadjidemetriou & Williams, 2002).

Some research conducted in Turkey on the concept of function (e.g.,
Aydin & Kogge, 2008; Karatas & Giiven; 2003; Tiirkeli-Sandir, 2006;
Ural, 2006), were not concerned with the covariational approach to
tunctions. Moreover, studies focusing on in-service teachers’ covaria-
tional reasoning abilities have been neglected in the literature compared
to that focuses on prospective teachers and elementary and secondary
students in international studies. Thus, this study aimed to explore co-
variational reasoning abilities of in-service mathematics teachers and
their predictions about students’ covariational reasoning abilities by us-
ing a model-eliciting activity.

Method

In this study, we used the covariation framework developed by Carlson
(1998) and Carlson et al. (2002) to describe and interpret the covaria-
tional reasoning abilities of students (see Table 1). This framework con-
tains five distinct developmental levels: Coordination (Level 1); Direction
(Level 2); Quantitative Coordination (Level 3); Average Rate (Level 4);
and Instantaneous Rate (Level 5) (for details see Carlson et al., 2002).

Table 1.
Mental Actions and Corresponding Behaviors in the Covariation Framework *

Mental Action Description of Mental Action Behaviors
* Labeling the axes with
Mental Action 1 Coordinating the value of verbal indications of
one variable with changes in coordinating the two
(MA1) the other. variables (e.g., y changes

with changes in x).

* Constructing an increasing
straight line.

. Coordinating the direction of izi
Mental Action 2 g Verbalizing an awareness

change of one variable with of the direction of the
(MA2) : .
changes in the other variable. change in the output while
considering changes in the
input.

Ly
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Plotting points/constructing
secant lines.

Mental Action 3 Coordinating the amount of  « Verbalizing an awareness
change of one variable with of the variable amount of
(MA3) changes in the other. change of the output while

considering changes in the
input.

* Constructing contiguous
Coordinating the average secant lines for the domain.

Mental Action 4 rate-of-change of the * Verbalizing an awareness
function with uniform of the rate of change of the
(MA4) increments of change in the output (with respect input)
input variable. while considering uniform
increments of the input.
* Constructing a smooth
curve with clear indications
Coordinating the of concavity changes.
Mental Action 5 instantaneous rate of * Verbalizing an awareness of
change of the function with the instantaneous changes
continuous changes in the in the rate of change for
(MAS5) independent variable for the the entire domain of the
entire domain of function. function (direction of

concavities and inflection
points are correct).

* Carlson et al., 2002, p. 357.
Participants and Data Collection

Data were collected using qualitative research methods through inter-
views conducted with five secondary school mathematics teachers, of
whom two were teaching in Anatolian high schools; one was teach-
ing in a foreign language intensive high school; one was teaching in a
dershane that is a type of private education institute offering special-
ized preparation for nationwide standardized tests like the university
entrance exam; and one was teaching in a vocational high school. The
modeling activity used in this study was based on the concept of func-
tions, and particularly increasing and decreasing functions, a topic in
mathematics curriculum for 12th grade (See Figure 1).
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Imagine that the bottle shown below is being filled with water.

a) Draw a volume-height graph (the height of the water given the
amount of water that is in the bottle). Explain your reasoning while

drawing the graph.
b) Explain how one can draw a graph for any type of bottle.

Height

\

Volume

Figure 1. Model Eliciting Task Utilized in the Study [adapted from Carlson
(1998) and Carlison et al. (2003)].

All participating teachers had experience in teaching 12th grade stu-
dents. During the interviews, teachers were first asked to read and an-
swer the mathematical modeling task shown in Figure 1. They were also
asked a question related to covariational reasoning and their views and
predictions about students’ covariational reasoning abilities. The follow-
ing topics were covered in the interviews: (a) Teachers’ covariational
reasoning abilities; (b) Students’ mathematical knowledge; (c) Students’
possible approaches, or strategies to solve the problem; (d) Thoughts
those students had during the solution; (¢) Possible mistakes students
made to solve the problem; and (f) Misconceptions students’ may have.
Teachers were asked to elaborate and rationalize their answers to the
questions directed during the interviews.

Data Analysis

In analyzing the data gathered, teachers’ solution sheets for the given
modeling task and transcriptions of the interviews were evaluated to-
gether. Verbal explanations and drawings on the solution sheets were
analyzed and coded according to mental actions and corresponding be-
haviors described in the theoretical framework. To determine the teach-
ers’ predictions of students’ covariational reasoning abilities transcrip-
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tions of interviews were coded to assist in categorizing and summarized
to be compatible with the research question. The next step in the data
analysis involved identifying recurring patterns in the coded data. As
reading through the data, certain words, and phrases about teachers’
predictions about students’ ways of thinking repeated and stand out.
Finally, whole data set was put into several categories, helping to under-
stand the teachers’ predictions about students’ covariational reasoning
abilities. While we essentially adopted the titles of subcategories from
the literature based on the theoretical framework (e.g., treating time as
the input variable as reported in Carlson et al., 2003), we occasionally
constructed some based on our understanding of the data.

Results

In the modeling task, teachers were expected to construct the graph
of a dynamic situation in which the rate changing from decreasing to
increasing. Thus, we tried to identify the teachers’ thought processes as
well as how successful they were in constructing the graphs of increas-
ing, decreasing, and linear functions. Also, we attempted to assess to

what extent they predict the students’ covariational reasoning abilities.

The Levels of Teachers’ Covariational Reasoning

Participating teachers’ answers to the modeling activity revealed that all
participants had difficulty to solve the problem correctly. Their under-
standing of the relationship between two varying quantities was poor
and implied that they might have misconceptions. Interviews confirmed
the weaknesses in their ability to represent and interpret continuously
changing rate.

The first teacher (T1) demonstrated covariational reasoning ability in
Level 3 (i.e., quantitative coordination). He used the words such as
“accelerating”, “faster”, “slower”, “at gradually decreasing speed” while
constructing and interpreting the graph. He claimed that the flow rate
of the water is the main factor (i.e., variable) in constructing the graph
of the function. Although he constructed the graph correctly, when
prompted to explain the rationale for it, he expressed that he might have
considered the axes inversely. That is, he considered the volume axis as

height, and height axis as volume.

The second teacher (T2) demonstrated covariational reasoning ability
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in Level 2 (i.e., direction). He first drew the graph as line segments
with a positive slope and explained that time was the effective factor so
he drew the graph according to “time”. When prompted to elaborate
more on the graph, he changed the graph, yet again could not draw the

correct one.

'The third teacher (T'3) constructing the correct graph demonstrated co-
variational reasoning ability in Level 4 (i.e., average rate). He attempted
to construct the graph by considering the uniform increments in vol-
ume axis. But, similar to T2, he explained that he considered and treated
the volume as “time”. When asked about the flow rate of the water, he
explained that he could not construct the graph in that way if the flow

rate of water is not constant.

'The fourth teacher (T4) constructing a wrong graph demonstrated co-
variational reasoning ability in Level 3 (i.e., quantitative coordination).
She had difficulties in solving the task like how to find the volume. She
also demonstrated some misconceptions about linear functions. There
were inconsistencies between her explanations and her drawings. But,
contrary to other teachers, she explained that the flow rate of the water

has no impact on the graph of the function.

Demonstrating covariational reasoning ability in Level 2 (i.e., direc-
tion), the fifth teacher (T'5) drew the same curve, not changing it for
different parts of the bottle, in her first attempts. First, she drew a line
segment with a negative slope, and then drew a curve resembling the
graph of Y = X% in the first quadrant. Then, she substituted different
values for x and tried to find corresponding values of y. Although she
thought that she had to find the volume of the bottle, she could not
remember the formula. Once again, she could not construct the correct

graph.

Teachers’ Predictions about Students’ Covariational Reasoning
Abilities

All the teachers stated that the modeling activity that they had worked
on would also be difficult for their students to solve. They all expressed
that their students could not construct the graph correctly. Their pre-
dictions did not go beyond their own thoughts related to the problem.
Some expressed that students will consider the axes as “time” versus
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“height”. Moreover, teachers have pointed out that these types of activi-
ties are hard to put into practice in Turkish context due to reasons such
as the OSS (Student Selection Exam) and limited time they have for
teaching so many topics. Four of the teachers stated that students are
more accustomed to working multiple-choice items and they face with
difficulties when they are confronted with open-ended questions and
asked to make generalizations like in this activity. Also, teachers sug-
gested that students assume the flow rate of the water as constant to
simplify the task as it is not mentioned in the task.

Discussion

Even though this study was conducted with in-service teachers, the re-
sults support the findings of those carried with students and preservice
teachers and introduction of functions through situations involving co-
variation would be useful (e.g., Carlson et al., 2003; Confrey & Smith,
1995; Kaput, 1994; Ko6kli, 2007; Saldanha & Thompson, 1998; Thomp-
son, 1994a, 1994b). The results show that the participant teachers had
poor covariational reasoning abilities and difficulties in representing
and interpreting graphs involving covariation. The results showed that
the teachers think functions as correspondence instead of covariation.
Their inability to identify being concave up or concave down or inflec-
tion points of a function while constructing the graphs would be per-
ceived as signs of their deficient understanding of the major concepts of
calculus. Teachers’ answers to questions revealed that their explanations
for the question and their conception did not differ from those found
in other studies conducted with pre-service mathematics teachers and
even high school students (Even, 1993; Norman, 1993). Such findings
also reveal the complexity of covariational reasoning (Carlson et al.,
2002, 2003; Confrey & Smith, 1995). On the other hand, participant
teachers treated “time” as the independent variable instead of “volume”.
'This might have been the result of their attempts to reduce the cogni-
tive load caused by difficulty of thinking two variables at the same time
(Carlson et al., 2003). They also mixed up the role of independent and
dependent variable (Carlson et al., 2002).

Although some of the teachers (T1,T2, and T4) demonstrated some
of the behaviors particular to mental actions, when we analyzed their
explanations it was seen that their behaviors took place without under-
standing. These behaviors defined by Vinner (1997) as “pseudo-analyt-
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ical behaviors” which might look like analytical behaviors, but which in

fact do not characterize conscious behaviors.

'This study provides evidence that visual features in the problem might
be an effective factor leading the solver into mistakes by making cor-
respondence between the shapes in the problem (e.g., curved shape of
a bottle) and the shape of their graphs (Leinhardt, Zaslavsky & Stein,
1990). Teachers considered the flow rate of the water is important for
the shape of the curve even though it was not. As the participants at-
tempted to recall and apply their knowledge in related physics concepts
in the mathematical situation at hand, this study indicates that math-
ematical modeling activities may provide students and teachers with
opportunities to develop both conceptual and procedural understanding
of particular mathematical and physical concepts simultaneously.

In this study, teachers’ behaviors and explanations as the signs of their
mental actions differed at some points from the descriptions denoted
within the covariation framework we utilized. These variations might
be helpful for further development of a framework for defining teachers’
covariational reasoning abilities. The results also suggest that developing
and implementing modeling activities are necessary to promote teach-
ers’ understanding of major calculus concepts. Furthermore, imple-
menting modeling activities, “thought-revealing” in nature, in the class-
rooms would help teachers to develop pedagogical content knowledge,
particularly the knowledge of students’ ways of thinking (Carpenter &
Fennema, 1996; Lesh & Doerr, 2003a).
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