JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR

2011, 95, 175-187

MODELING THE EFFECT OF REWARD AMOUNT ON PROBABILITY DISCOUNTING
JOEL MYERSON, LEONARD GREEN, AND JOSHUA MORRIS

WASHINGTON UNIVERSITY

The present study with college students examined the effect of amount on the discounting of
probabilistic monetary rewards. A hyperboloid function accurately described the discounting of
hypothetical rewards ranging in amount from $20 to $10,000,000. The degree of discounting increased
continuously with amount of probabilistic reward. This effect of amount was not due to changes in the
rate parameter of the discounting function, but rather was due to increases in the exponent. These
results stand in contrast to those observed with the discounting of delayed monetary rewards, in which
the degree of discounting decreases with reward amount due to amount-dependent decreases in the
rate parameter. Taken together, this pattern of results suggests that delay and probability discounting
reflect different underlying mechanisms. That is, the fact that the exponent in the delay discounting
function is independent of amount is consistent with a psychophysical scaling interpretation, whereas
the finding that the exponent of the probability-discounting function is amount-dependent is
inconsistent with such an interpretation. Instead, the present results are consistent with the idea that
the probability-discounting function is itself the product of a value function and a weighting function.
This idea was first suggested by Kahneman and Tversky (1979), although their prospect theory does not
predict amount effects like those observed. The effect of amount on probability discounting was
parsimoniously incorporated into our hyperboloid discounting function by assuming that the exponent
was proportional to the amount raised to a power. The amount-dependent exponent of the probability-
discounting function may be viewed as reflecting the effect of amount on the weighting of the
probability with which the reward will be received.
Key words: discounting, probability, amount, scaling, decision weight, prospect theory, humans
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Individuals often prefer a smaller immediate
reward over a larger delayed reward. It is
frequently assumed that this is because the
subjective value of the delayed reward is
discounted whereas the value of the immedi-
ate reward is not. A similar phenomenon is
observed with respect to probabilistic rewards:
Individuals often prefer a smaller certain
reward over a larger probabilistic reward, and
it is frequently assumed that this occurs
because the value of the probabilistic reward
is discounted whereas the value of the certain
reward is not. Indeed, the same hyperboloid
function describes both delay and probability
discounting:

V=A4/(1+bX)", (1)
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where Vis the subjective value of the delayed
or probabilistic reward, A is the amount of
reward, and X is either the delay until, or the
odds against, receipt of the reward (for a
review, see Green & Myerson, 2004). Equation
1 has two parameters: b, which governs the rate
of discounting, and s, which has been inter-
preted as reflecting the psychophysical scaling
of amount, time, and likelihood. The present
study concerns the validity of this interpreta-
tion of the exponent, s, particularly as it
applies to the discounting of different
amounts of probabilistic reward.

To facilitate comparisons involving the
discounting of different amounts of reward,
Equation 1 is often written as

V=1/(1+bX)’, (2)

where V is the relative subjective value (i.e.,
subjective value of a reward expressed as a
proportion of its nominal value). The psycho-
physical scaling interpretation of the exponent
in the hyperboloid discounting function,
Equations 1 and 2, assumes that amount, time,
and likelihood are all nonlinearly scaled
(Green & Myerson, 2004; see Myerson &
Green, 1995, and the first section of the
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Appendix for derivations that explicate how
nonlinear scaling of amount affects the expo-
nent in delay and probability discounting,
respectively). For example, the relation be-
tween the subjective value of a monetary
reward and the actual amount of that reward
is frequently assumed to be a negatively
accelerated power function (Gonzalez & Wu,
1999; Myerson & Green, 1995; Tversky &
Kahneman, 1992). Such a function captures
the fact that as the amount of reward
increases, its subjective value increases at an
ever-decreasing rate. For similar reasons, both
the relation between subjective and actual
duration and the relation between subjective
and actual likelihood may be assumed to be
negatively accelerated power functions.

In both cases (i.e., delay and probability
discounting), it is assumed that the determi-
nants of the exponent, s, in the hyperboloid
discounting function remain constant when
either the amount of money and the duration
of the delay or the amount of money and the
likelihood of reward are varied. This is because a
psychophysical scale is a rule that describes the
way that changes in some objective quantity
affect the corresponding perceived quantity
(Stevens, 1957), and although the perceived
quantity will change with the objective quantity,
the rule itself (and thus the exponent that
characterizes the rule) remains constant. As a
consequence, the psychophysical scaling inter-
pretation predicts that the exponent in the
discounting function will remain constant for a
given individual and type of reward. With respect
to delay discounting, the results of a number of
studies support this prediction (Estle, Green,
Myerson, & Holt, 2006; Myerson & Green, 1995;
Myerson, Green, Hanson, Holt, & Estle, 2003).
With respect to probability discounting, howev-
er, the prediction that the exponent will remain
constant as the amount of probabilistic reward is
varied has been called into question (Estle et al.,
2006; Myerson et al., 2003).

It should be noted that although both delay
and probability discounting can be well de-
scribed by the same hyperboloid function
form, there is ample evidence that they involve
at least some different processes (Green &
Myerson, 2010). Most prominently, the mag-
nitude effects for delay and probability dis-
counting are opposite in direction. Whereas
smaller delayed amounts are discounted more
steeply than larger delayed amounts, smaller
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probabilistic amounts are discounted less
steeply than larger probabilistic amounts
(e.g., Green, Myerson, & Ostaszewski, 1999;
for a review, see Green & Myerson, 2004).
Given the differential effects of amount on the
degree to which delayed and probabilistic
rewards are discounted, it may well be the
case that amount affects the parameters of the
corresponding discounting functions in qual-
itatively different ways. In particular, if the
exponent in the probability-discounting func-
tion were to change with reward amount, such
a finding would indicate that the psychophys-
ical scaling interpretation of the exponent
does not apply to probability discounting, in
which case the probability-discounting func-
tion itself may need to be reinterpreted.

Accordingly, the present study examines the
effect of amount on probability discounting by
varying the amount of the probabilistic reward
over an extremely wide range ($20 to
$10,000,000). Of interest is how increases in
amount affect the parameters of the probability-
discounting function, and in particular, whether
the exponent, s, will remain constant as predict-
ed by the psychophysical scaling interpretation
or whether it will change systematically with
reward amount. The answer to this empirical
question will have important implications for
several related theoretical questions: Is it possi-
ble to go beyond describing changes in param-
eters of the discounting function as increases or
decreases and actually specify mathematically
how amount affects these parameters? If so, then
how should the effect of amount on probability
discounting be modeled? And finally, what does
such modeling reveal about the decision-making
processes involved? Prospect theory, the major
account of probabilistic decision making in
economics, does not deal with how such decision
making is affected by the absolute magnitude of
the amounts involved (Kahneman & Tversky,
1979; Tversky & Kahneman, 1992). Thus, the
results of the present effort, particularly the
attempt to model the effect of amount on
probability discounting, may have implications
for prospect theory as well as for our under-
standing of discounting in general.

METHOD
Participants

Forty undergraduate students (16 males and
24 females, mean age = 20.6 years) at
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Washington University were recruited through
the Department of Psychology’s participant
pool and received 10 dollars each for their
participation.

Procedure

Participants were tested individually in a
quiet room using a computer-administered,
adjusting-amount discounting procedure. Par-
ticipants read the instructions on the monitor,
informing them that they would be choosing
between hypothetical amounts of money, one
of which could be received for sure whereas
the other could be received with a given
probability. They also were informed that
there were no correct or incorrect choices,
and that they should make their choices as if
real money were involved.

For each choice that they had to make,
participants saw the amount of the certain
reward presented on the screen next to both
the amount of the probabilistic reward and the
probability of receiving that reward. Partici-
pants were informed that if they changed their
mind, they would have an opportunity to
change their response. They were then given
several practice trials and offered the oppor-
tunity to ask questions before beginning the
actual experiment. The experimenter then left
the testing room and sat in another room from
which he could observe the participant.

The experiment consisted of 45 conditions:
nine amounts of probabilistic reward ($20,
$250, $3000, $20,000, $50,000, $100,000,
$500,000, $2,000,000, and $10,000,000)
crossed with five probabilities (.80, .50, .25,
.10, and .05). A computer program randomly
selected a probabilistic reward amount (with-
out replacement) and then administered all
five probability conditions for that amount in a
random order. The side of the computer
screen on which the probabilistic reward was
presented alternated randomly across the 45
conditions. Within each condition, an adjust-
ing-amount procedure was used to obtain an
estimate of the amount of the smaller, certain
reward that the participant judged to be
equivalent in value to the larger, probabilistic
amount.

In each amount/probability condition, par-
ticipants were presented with a series of six
choice trials. On the first trial, the participant
chose between receiving either the probabilis-
tic amount or half of that amount “‘for sure.”
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On each subsequent trial, the amount of the
certain reward was adjusted based on the
participant’s choice on the preceding trial.
Specifically, if the participant had chosen the
certain reward on the previous trial, the
amount of the next certain reward was
decreased; if the participant had chosen the
probabilistic reward, the amount of the next
certain reward was increased. The size of the
adjustment, either increase or decrease, itself
decreased with successive choices. The first
adjustment was half of the difference between
the amounts of the certain and probabilistic
rewards presented on the first trial, and the
size of each subsequent adjustment was half
that of the preceding adjustment, rounded off
to the nearest dollar.

For example, in the condition with $250 at
p = .25, the choice on the first trial would be
between “‘$250 with a 25% chance’ and “‘$125
for sure.” If the participant chose the “$250
with a 256% chance,”’ the choice on the second
trial would be between “‘$250 with a 256%
chance” and “‘$188 for sure.” If the partici-
pant then chose the “$188 for sure,” the
choice on the third trial would be between
“$250 with a 26% chance’” and ‘““$156 for
sure.”” Three more trials with the same
probabilistic reward were presented before
the program switched to a new amount and
probability. The adjusting-amount procedure
that was used rapidly converges on an estimate
of the subjective value of the probabilistic
reward, which was calculated by taking the
amount of certain reward presented on the
sixth trial and either adding or subtracting
1.56% (i.e., 100/26 percent) of the probabilis-
tic reward amount, depending on whether the
participant chose the probabilistic or certain
reward, respectively.

RESULTS

Figure 1 plots the group median relative
subjective value as a function of the odds
against receiving the probabilistic reward for
each of the nine amounts studied. Relative
subjective value (i.e., subjective value divided
by the actual amount of the probabilistic
reward) is used as the dependent variable in
order to facilitate comparisons across the
different reward amounts. In each panel, the
solid curve represents the best fitting hyper-
boloid function (Eq. 2) for that amount
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Fig. 1. Relative subjective value as a function of the odds against receiving a reward. Each panel depicts the group

median subjective values for a different amount of probabilistic reward. Solid curves represent Equation 2 fitted to the
data; dashed curves represent Equation 3 rewritten in terms of relative subjective value.

condition. (The dashed curve represents the
fit of a power model to be described later.)
The hyperboloid function provided excellent
fits to the data from all nine amount condi-
tions; all of the R%s were greater than .96.
For the most part, Equation 2 also provided
good fits to the data at the individual level. For
each participant, the hyperboloid function was
fitted simultaneously to the relative subjective
values from all nine amount conditions,
resulting in separate estimates of the b and s
parameters for each condition and providing a
single overall fit measure (R?). Across the 40
participants, the mean and median R”s were
906 and .918, respectively. In order to select
representative individuals to depict, we first
ranked all of the participants based on their
R? and then chose 3 whose R’ were at the

25" 50", and 75™ percentiles. The data for
these 3 representative individuals are shown in
Figure 2. For ease of presentation, only the
data for the $20, $20,000, and $500,000 reward
amounts are shown. (The complete set of
individual data, consisting of the indifference
points for each probabilistic amount at each
probability, are presented in an online supple-
ment, available in the supplemental section of
this article at PubMed Central.)

The Effects of Amount of Probabilistic Reward

As may be seen in Figures 1 and 2, larger
probabilistic rewards were consistently dis-
counted more steeply than smaller probabilis-
tic rewards. The relation between steepness of
discounting and amount of probabilistic re-
ward may be seen more clearly in Figure 3,
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Fig. 2. Relative subjective value as a function of the odds against receiving a reward for 3 representative participants.
The left, middle, and right columns depict the data for the participants whose R2s were at the 25“‘, 50“‘, and 75"
percentiles. Solid curves represent Equation 2 fitted to the data.

which shows both the area under the group
median data (top panel) and the median of
the areas calculated from the data for each
individual (bottom panel) plotted as a func-
tion of amount on log-log coordinates. The
area-under-the-curve (AuC) measure (Myer-
son, Green, & Warusawitharana, 2001) repre-
sents the area under the observed subjective
values and provides a single, theoretically
neutral measure of the degree of discounting.
Because the independent and dependent
variables are normalized for purposes of
calculating the AuC, values may range between
0.0 (maximally steep discounting) and 1.0 (no
discounting). The degree of discounting, as
measured by the AuC, was strongly correlated
with the amount of the probabilistic reward:

rs = —.991 and —.983 for the group medians
and the medians of the individuals, respectively.

Given the observed strong effect of amount,
we next sought to determine what changes in
the parameters of the hyperboloid discounting
function underlie this magnitude effect. Fig-
ure 4 shows the parameter estimates from the
fits of the hyperboloid discounting function
depicted in Figure 1. As may be seen, the
logarithm of the value of the s parameter
increased linearly as a function of the loga-
rithm of the amount of probabilistic reward
(top panel of Figure 4; r = .948, p < .001),
suggesting that s is a power function of
amount. In contrast, log & and log amount
were not significantly correlated (bottom
panel; r = —.117, p = .76).
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Fig. 3. Area-under-the-curve (AuC) as a function of
amount of probabilistic reward. The AuCs in the upper
panel are based on the group median data at each
amount, and the lower panel depicts the median
individual AuC at each amount. (Note the logarithmic
scales on the axes.)

Similar patterns of results were observed at
the individual level, although there was con-
siderable variation among individual partici-
pants. This variation may be seen in Figure 5,
in which the top panel depicts the frequency
distribution of the correlations between log s
and log amount, and the bottom panel depicts
the frequency distribution of the correlations
between log b and log amount. The correla-
tions between log s and log amount at the
individual level tended to be negatively skewed
with a peak at about .50, and an average r
(back-transformed from the mean Fisher z) of
.38. Importantly, the 95% confidence interval
about the mean Fisher z (0.173 = 0.030) did
not include zero, indicating that the correla-
tion between log s and log amount was
significant. In contrast, the correlations be-
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Fig. 4. Values of the s and b parameters of Equation 2
as a function of amount of probabilistic reward. Values are
based on fits of Equation 2 to the group median data.
(Note the logarithmic scales on the axes.)

tween log b and log amount showed little
evidence of a clear central tendency and had a
mean (back-transformed from the mean Fish-
er z) of .15. In this case, the confidence
interval did include zero (0.064 = 0.082),
indicating that the correlation between log b
and log amount was not significant.

It should be noted that when s = 1.0,
Equation 2 is a simple hyperbola, which
provides a useful benchmark against which to
assess the form of the probability-discounting
function. The effect of amount on s at the
individual level is reflected in the fact that the
percentage of cases in which s was significantly
less than 1.0 decreased from 63% at the
smallest ($20) amount to 30% at the largest
($10 million) amount. Overall, the s parame-
ter was less than 1.0 in 256 out of 360 possible
cases at the individual level (40 participants X
9 amounts), and significantly so in more than
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amounts. Each correlation was calculated based on the
logarithm of an individual’s parameter estimates for the
nine different amount conditions and the logarithm of the
corresponding reward amounts.

half (138) of those cases. In spite of the fact
that s increased as a function of the amount of
the probabilistic reward, s was significantly
greater than 1.0 in only 1 out of the 360
possible cases at the individual level, and this
at the largest amount.

Modeling the Effects of Amount

The preceding analyses were based on fits of
the hyperboloid discounting function (Eq. 2)
in which parameters were estimated for each
amount condition separately. It is possible,
however, that a more parsimonious descrip-
tion of these data would be sufficient. Given
that only the s parameter (and not the b
parameter) was systematically affected by
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amount, one possible model assumes that
although a different value of s may be needed
for different amount conditions, a single value
of b will suffice for all amounts. A model in
which s is assumed to be amountindependent
whereas b varies with amount is conceivable
(indeed, such a model does describe delay
discounting), but given our finding that only
the s parameter changed systematically with
amount of probabilistic reward, we considered
only regression models in which s varied with
amount but 4 did not.

One can fit the present data estimating a
separate s for each amount condition, but
based on the observed linear relation between
log s and log amount (see Fig. 4), it seems
reasonable to consider a power model in
which s is assumed to increase as a power
function of the amount of the probabilistic
reward, thatis, V= A/(1 + bX)’, where s = aA°,
or equivalently,

V=A/(1+bX)"" (3)
As was the case with Equation 1, the power
model can be rewritten in terms of relative
subjective value (i.e., the subjective value of
the probabilistic reward expressed as a pro-
portion of its nominal value) for purposes of
comparing the discounting of different prob-
abilistic amounts.

When a regression model (based on Eq. 2)
in which separate s and b parameters were
estimated for each amount was fitted to the
group median relative subjective values from
all nine amount conditions, it accounted for
99.1% of the total variance. This 18-parameter
model (two parameters for each of the nine
amount conditions) may be compared with a
10-parameter model that incorporates a single
amount-independent b parameter and nine
separate s parameters (one for each amount
condition), which accounted for 98.3% of the
total variance. Notably, the 3-parameter power
model (Eq. 3), in which the exponent of the
hyperboloid is a power function of amount,
also provided a very good fit, accounting for
96.4% of the total variance with b = 7.75, a =
0.295, and ¢ = 0.082. Indeed, inspection of the
fit of the power model to the group median
data, represented by the dashed curves in
Figure 1, reveals how little there may be to
gain from making the model more complicat-
ed, at least in this application.
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DISCUSSION

The present results demonstrate that the
amount of a probabilistic reward has a
profound effect on the degree to which its
value is discounted. More specifically, the
degree of probability discounting in the
current study increased continuously as reward
amount increased over more than five orders
of magnitude (i.e., from $20 to $10M). These
results are in contrast to those observed with
delayed monetary rewards, for which the
degree of discounting decreases with amount.
Moreover, the observed changes in degree of
probability discounting appear to have been
driven by changes in the value of the expo-
nent, the s parameter, which increased as a
function of the amount of the probabilistic
reward, whereas the value of the rate param-
eter, b, did not change systematically. Again,
these results stand in contrast to those
obtained with delayed rewards, for which the
b parameter decreases with amount while the s
parameter remains constant. The theoretical
significance of the present findings stems in
part from the fact that according to the
psychophysical scaling interpretation of the
exponent in the discounting function, the
exponent should be constant across variations
in the amount of a particular type of reward.
Although previous findings with delayed re-
wards are consistent with this interpretation,
the present results clearly are not, and argue
that the value of the exponent in the
probability-discounting function is not a sim-
ple scaling parameter.

Reward Amount and Probability Discounting

The current study is not the first to show
that amount of reward affects probability
discounting. Previous studies have reported
that larger probabilistic rewards are discount-
ed more steeply than smaller ones (e.g., Estle
et al., 2006; Green et al., 1999; Myerson et al.,
2003; Rachlin, Brown, & Cross, 2000), but this
is the first study to show that this effect of
amount on individuals’ choices between cer-
tain and probabilistic rewards holds over a
range extending up to millions of dollars.

For the most part, the possibility of an effect
of amount on probability discounting has
received little attention (for example, see the
review by Wu, Zhang, & Gonzalez, 2004). This
has been true even in studies that manipulated
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Fig. 6. Relative subjective value as a function of the
odds against receiving a reward. Data are from Gonzalez
and Wu (1999) and represent the means for the smallest
and largest probabilistic reward amounts, as well as an
intermediate amount. Curves represent the fit of Equation
2 to the data (all R* > 91).

reward amount. For example, Gonzalez and
Wu (1999) gave participants choices between
certain and probabilistic monetary rewards,
and determined the certain equivalents (sub-
jective values) of the probabilistic rewards. In
the conditions relevant to the current study,
the amount of probabilistic reward ranged
between $25 and $800 and the probabilities
ranged from .99 to .01, corresponding to odds
against receiving the reward of 0.01 to 99.0.
The data for the smallest ($25) and largest
($800) amounts used in their study, as well as
for an intermediate ($100) amount, are
presented in Figure 6. As may be seen, amount
effects are apparent even over this relatively
narrow range. Perhaps because the study
examined choice from the perspective of
prospect theory (Kahneman & Tversky, 1979;
Tversky & Kahneman, 1992), which implicitly
assumes that amount does not affect the
degree of discounting, Gonzalez and Wu did
not analyze their data in a way that could
reveal such magnitude effects. Nevertheless,
their data provide further support for the
generality of the finding that amount affects
how steeply probabilistic rewards are discount-
ed and does so in a way opposite to that
observed with delayed rewards.

Given that amount of reward affects the
degree of probability discounting, the ques-
tion arises as to what mechanisms are respon-
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sible. One approach to answering this question
is to examine the way in which the parameters
of the discounting function behave when the
amount of probabilistic reward is varied. In the
current study, the value of the s parameter
increased systematically as a function of
amount whereas the value of the b parameter
did not, a finding consistent with previous
studies that also examined the effects of
amount but did so over a much narrower
range (e.g., Estle et al., 2006; Myerson et al.,
2003). Indeed, McKerchar, Green, and Myer-
son (2010) showed that amount appears to
affect the exponent of the probability-dis-
counting function regardless of which form
of hyperboloid discounting function is used,
be it the form proposed by Rachlin (2006), in
which the odds against receiving a probabilis-
tic reward are raised to a power, or the form
examined here (Eq. 2), in which the entire
denominator is raised to a power. As already
noted, although the value of the s parameter
of individuals’ discounting functions increased
systematically as the amount of probabilistic
reward was increased from $20 to $10 million,
it was significantly greater than 1.0 in only one
out of a possible 360 cases. Given how large
some of the reward amounts were, these
results suggest that there may be a ceiling on
the value of the exponent in the hyperboloid
discounting function.

As noted previously, the present results raise
problems for an interpretation of the expo-
nent in the probability-discounting function
that is based on the psychophysical scaling of
reward likelihood. This is because if the
exponent did reflect the scaling of reward
likelihood, then (contrary to the present
results) it would have remained constant
across amounts of probabilistic reward. The
present results, however, are not inconsistent
with the idea that the exponent reflects the
scaling of amount, although this would not
explain the increase in the exponent as the
amount of the probabilistic reward increases
(as is shown in the derivation provided in the
Appendix).

Weighting Reward Likelihood

If the standard interpretation of the proba-
bility-discounting function, in which the expo-
nent reflects psychophysical scaling, is incor-
rect, then how should the function be
interpreted? One way to think about the form
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of the probability-discounting function is to
note its similarity to the equation for the
expected value (EV) of a probabilistic out-
come. The EVis the amount (A) of the reward
(or other outcome) multiplied by its probabil-
ity (P). Thatis, EV = A % P. To better see this
similarity, we may rewrite the equation for
expected value in terms of the odds against
receiving the reward (X), EV = A = [1/(1 +
X)1, and then introduce a coefficient, b, that
makes the expression in brackets in effect a
biased statement of the likelihood of reward:

(4)

It may be seen that Equation 4 is a simple
hyperbola, where b governs the rate at which
EV decreases as the odds against increase, and
is similar to Equation 1, the hyperboloid
discounting function, but without the expo-
nent, s. Thus, the probability-discounting
function may be seen to involve something
similar to expected value in that the amount of
a reward is multiplied by a function of the
likelihood of the reward. But what are we to
make of the exponent from this perspective?

To answer this question, we would note that
prospect theory (Kahneman & Tversky, 1979)
takes a similar approach to establishing sub-
jective value. That is, it too assumes that the
value of a prospect or gamble is the product of
a function of amount, termed the wvalue
Junction, multiplied by a function of probabil-
ity, termed the weighting function. The value
function is typically approximated using a
power function of amount; a number of
mathematical forms have been suggested for
the probability-weighting function (e.g., Gon-
zalez & Wu, 1999; Prelec, 1998; Tversky & Fox,
1995), but no consensus has yet emerged. (It
may be noted that Kahneman and Tversky also
assume that determination of a prospect’s
value follows an ‘‘editing phase,”” but this
need not be considered here.)

For our immediate purposes, what is impor-
tant is that Kahneman and Tversky (1979)
clearly distinguished between a subjective
probability and a decision weight. That is, an
individual may know that the probability of a
reward is very low, yet give little weight to that
probability when deciding whether or not to
gamble. Thus, according to prospect theory,
which emphasizes the role of decision weights
rather than subjective probabilities, the fact

EV=A % [1/(1+0bX)).
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that people buy lottery tickets does not
necessarily mean that they think the odds are
better than those printed on the tickets; it may
just mean that they give more weight to the
amount of the possible win and less weight to
the odds when making their decisions to buy
tickets.

To some extent, this weighting of the odds is
captured in the b parameter of the discounting
function. This effect of & may be seen by
considering the case where the exponent s =
1.0. Under this condition, choice will be what
economists term risk-averse if b is greater than
1.0 and risk-taking if b is less than 1.0. The b
parameter captures an aspect of weighting
that, as the present results show, does not vary
systematically with reward amount. In contrast,
the exponent does vary with amount, implying
that the weight one places on the probability,
relative to the amount, varies with what is at
stake. More specifically, as the exponent
increases with the amount of reward, there is
a corresponding increase in the ‘“‘weighted
probability,” as given by the expression [1/(1
+ bX)1“Y in the power model (Eq. 3). This
expression corresponds to what Kahneman
and Tversky (1979) termed a probability-weight-
ing function, except that our probability-weight-
ing function incorporates an effect of amount
whereas prospect theory does not. The impli-
cations of this amount-dependent weighting
function may be made apparent by consider-
ing specific examples.

We begin by rewriting the power model (Eq.
3), substituting the estimates of the b, ¢, and ¢
parameters obtained from fitting the power
model to the group medians (see Fig. 1), as

A0-082

V=A% [1/(147.75 X)]**"

Now consider the case in which the probability
of winning is .50 (and thus X, the odds against,
equals 1). If the probabilistic amount, A,
is  $1,000, then the exponent equals
0.295%1000"%*% or 0.52, whereas if the proba-
bilistic amount is $1,000,000, the exponent
equals 0.92. Given that X = 1, the expression
in brackets, [1/(1 +7.75 X)], isequal to 1/(1 +
7.75) or 0.114, which, when raised to the 0.52
power to obtain the weighted probability, is
0.323, but when raised to the 0.92 power is
0.136 (compare the closed and open circles in
Figure 7). Thus, when the possible reward is
$1,000, the subjective value of a 50% chance of
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Odds Against Receiving the Reward

Fig. 7. Relative subjective and expected value as a
function of the odds against receiving a reward. The
dashed curve represents the relative Expected Value (i.e.,
EV /A = P). The two solid curves represent the predic-
tions of Equation 3, rewritten in terms of relative subjective
value, with the parameters obtained from fitting the
equation to the group medians for the $1,000 and
$1,000,000 amount conditions. The solid circle and solid
triangle represent the relative subjective value of a $1,000
reward when the odds against are 1 and 19 (P = .50 and
P = .05), respectively; the open circle and open triangle
represent the corresponding relative subjective values for a
$1,000,000 reward.

winning is close to one-third of the actual
amount, whereas when the possible reward is
$1,000,000, the subjective value of a 50%
chance of winning is less than one-seventh of
the actual amount. Although in both cases the
subjective value is less than the expected value
(i.e., one-half the actual amount), it is as if
people give more weight to the fact that they
might not win when $1,000,000 is at stake than
when $1,000 is what is at stake. Simply put,
people’s behavior is more risk-averse when the
rewards are larger.

As the odds of winning get worse, however,
behavior does not necessarily remain risk-
averse (i.e., the subjective value of a reward is
not necessarily lower than its expected value).
Whether behavior will be risk-averse or not
depends on both the odds and the amount
involved. For example, consider the case
where the probability of winning is only .05
(and thus X = 19). In this case, the expression
in brackets in the preceding equation is equal
to 0.0067, which when raised to the 0.52 power
(in the case of a possible $1,000 reward) gives
a weighted probability of 0.074 (see the closed
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triangle in Fig. 7). Thus, when the possible
reward is $1,000, the subjective value is nearly
7.5% of the actual amount, which is greater
than the expected value of 5% of the actual
amount, indicating that risk-taking behavior is
predicted. In contrast, when the possible
reward is $1,000,000, behavior is still predicted
to be risk-averse when the probability of
winning is 0.05: With this larger amount, the
expected value is still 5% of the actual amount,
but the subjective value is much less. In fact,
the subjective value, calculated by raising
0.0067 to the 0.92 power, is only 1% of the
actual amount (see the open triangle in
Fig. 7).

These examples suggest that people will
switch from being risk-averse to risk-taking as
the odds against winning increase when
smaller amounts are involved but remain risk-
averse when very large amounts are involved.
But what about the fact that people buy lottery
tickets for very large amounts? Such behavior
is definitely not risk-averse because the expect-
ed value of a lottery ticket is less than its price.
We would note, however, that the preceding
examples were based on average parameter
values, and the average person does not
necessarily buy lottery tickets. Moreover, ex-
trapolating beyond the range of odds for
which we have data is itself risky business,
and therefore one would want to have further
data about choice under situations in which
the odds against winning are considerably
higher than those studied here before extend-
ing these results to choices such as whether or
not to buy a lottery ticket. Nevertheless, the
general principle captured by the present
analysis is that the larger the amount of
possible reward, the lower the likelihood of
winning will have to be before people switch
from being risk-averse to being risk-taking.

The preceding analysis of the effect of
reward amount is consistent with Kahneman
and Tversky’s (1979) idea that the role of
reward likelihood in probability discounting
(or decision under risk, as they put it) is best
thought of in terms of the relative weight given
to a reward’s likelihood versus its amount.
What is new here, and which is not even
considered in prospect theory, is the idea that
these weights are themselves amount-depen-
dent. That is, people appear to put more
weight on reward likelihood (i.e., their behav-
ior is more controlled by the degree to which
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the larger reward is probabilistic) when the
amount of a probabilistic reward is large, and
thus are more likely to choose the certain
reward (i.e., to be risk-averse), and (perhaps
paradoxically) they put less weight on the
likelihood of reward (and thus relatively more
weight on the amount) when the amount of
the probabilistic reward is small.

Conclusions

Taken together, the present results con-
verge on the conclusion that one does not
need to fit a two-parameter hyperboloid
discounting function to the data for each
amount of probabilistic reward separately.
Rather, a model in which the b parameter is
amount-invariant provides a more efficient
description. Moreover, the value of the expo-
nent increases monotonically as the amount
increases, and the power model represents an
effort to describe that increase even more
parsimoniously. It is possible, of course, that
another mathematical form might describe
the relation between the exponent of the
discounting function and the amount of
probabilistic reward better than a power
function does. Nevertheless, it seems clear
that there is a functional relation between the
exponent and the reward amount, and that a
model is needed that describes that relation. A
power function would appear to provide at
least a reasonable approximation to that
relation.

The change in the exponent of the proba-
bility-discounting  function  with  reward
amount can be understood in terms of the
concept of decision weights introduced by
Kahneman and Tversky (1979). People’s deci-
sions under risk are basically risk-averse, as
Kahneman and Tversky have shown, and in
the model proposed here, this is captured by
the fact that the value of the b parameter in the
discounting function is typically greater than
1.0. However, this tendency towards risk
aversion is modulated by the exponent of the
discounting function. The lower the exponent,
the less risk-averse the behavior, as if the
exponent reflects the weight put on the
likelihood of reward.

Although this interpretation builds on the
concept of decision weights, the weights
envisioned by prospect theory are not affected
by reward amount. In addition, although
Kahneman and Tversky (1979) propose that
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the weight placed on the likelihood of a
reward changes as a function of its probability
according to a nonlinear probability-weighting
function, their theory does not posit a specific
mathematical form for this function. Tversky
and Kahneman (1992) later used a one-
parameter weighting function, but they delib-
erately emphasized the qualitative predictions
of their theory rather than parameter esti-
mates and goodness of fit. In any case, their
one-parameter weighting function does not
allow for effects of amount on probability
weighting like those reported here. In con-
trast, our power model (Eq. 3) is the first
probability-discounting model to specifically
incorporate an amount-dependent probability-
weighting function.

The present findings with respect to the
effects of amount on the discounting of
probabilistic rewards reinforce the need to
distinguish between delay discounting and
probability discounting. First, increases in the
amount of delayed reward lead to shallower
discounting, whereas increases in the amount
of probabilistic reward lead to steeper discount-
ing. Second, increases in amount of delayed
reward are associated with decreases in the rate
parameter of the delay discounting function,
whereas increases in amount of probabilistic
reward are associated with increases in the
exponent of the probability-discounting func-
tion. Third, the amountindependent exponent
of the delay discounting function is consistent
with a psychophysical scaling interpretation,
whereas the amount-dependent exponent of
the probability-discounting function is consis-
tent with a probability-weighting interpretation.
Taken together, these findings indicate that
despite the fact that the delay and probability-
discounting functions are of similar mathemat-
ical form, underlying this form are fundamen-
tally different mechanisms.
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APPENDIX

Psychophysical Scaling of Amount and the Proba-
bility-Discounting Function

Here we show why the observed increase in
the exponent of the probability-discounting
function as amount increases is not inconsis-
tent with psychophysical scaling of amount
(even though it is inconsistent with psycho-
physical scaling of reward likelihood). Assume,
as is frequently done, that the scaling of
amount is described by a simple power
function: V = A% in which, because this is
psychophysical scaling, the exponent remains
constant as amount varies. As in Equation 1,
the value, V), of a probabilistic reward of
amount A, would then be given by

Vy=A) « 1/(146X)", (A1)
and the value, V,, of a certain reward (for
which X = 0) of amount A, would be given by

Ve=Af. (A2)
At indifference, the value of the certain reward
is equal to the value of the probabilistic
reward, V., = V,. Thus,

A=A * 1/(1+6X)* (A3)
To find A, the certain equivalent of the
probabilistic reward, one takes the d™ root of
both sides of the preceding equation, which
yields
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A=A, x 1/(1+bx)7". (A4)
This is equivalent to Equation 1 in the text (in
which Vis measured as A at indifference) but
reveals that if amount is psychophysically scaled,
then the exponent of Equation 1 contains the
exponent of the psychophysical power function
that describes the scaling of amount.

Psychophysical Scaling of Amount and the Power
Model of Probability Discounting

The same argument may be extended to the
power model of probability discounting (Eq. 3
in the text). If s = @A, then substituting into
Equation A4 yields

A=A, x 1/(146X) 9 (A5)
Dropping the subscripts, Equation A5 may be
rewritten as

V=A % 1/(1+bX)(/1A”)/d
_ (a/d) A (A6)
= AJ(1+ X)W A

which has the same mathematical form as
Equation 3 in the text. That is, the exponent of
the hyperboloid discounting function (Eq. 3) is
still equal to the product of a constant (now a/d,
rather than just @) and the amount of probabi-
listic reward raised to a power. Thus, only the
interpretation of this constant is affected by
assuming psychophysical scaling of amount, not
the form of the discounting function.



