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Two complementary processes involved in mathematical modelling are 
mathematising a realistic situation and applying a mathematical technique 
to a given realistic situation. We present and analyse work from two 
undergraduate students and two secondary school teachers who engaged 
in both processes during a mathematical modelling task that required them 
to find a graphical representation of an anti-derivative of a function. When 
determining the value of the anti-derivative as a measure of height, they 
mathematised the situation to develop a mathematical model, and 
attempted to apply their knowledge of integration that they had previously 
learned in class. However, the participants favoured their more primitive 
mathematised knowledge over the formal knowledge they tried to apply. 
We use these results to argue for calculus instruction to include more 
modelling activities that promote mathematising rather than the 
application of knowledge. 

The history of mathematics is full of stories that tell how many 
mathematics topics grew out of real world problems: Probability theory 
grew out of gambling dilemmas, trigonometry had its origins in 
astronomers tracking planetary motion. In spite of this, many students’ 
experiences of school mathematics have led them to regard the subject as 
dry, abstract, and irrelevant to the real world. A growing number of 
mathematics educators concerned with this negative view of mathematics 
have advocated the use of real world problems in classrooms as a way of 
connecting the mathematical world to the real world (Freudenthal, 1968; Pollak, 
1968). Two of the most common ways of doing this are modelling activities 
and application problems. These two ways connect the real and 
mathematical worlds in ways that emphasise processes that are related but 
different. Modelling activities require students to develop a mathematical 
model by mathematising a real world situation, whereas application 
problems require students to apply a previously learned mathematical 
model to a real world context (see Figure 1).  

 
Figure 1. The difference between modelling and applications, adapted from 

Lesh & Doerr (2003, p. 4). 
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A group of researchers has developed a class of modelling activities 
called Model-Eliciting Activities (MEAs) that are designed to mimic the 
kinds of real world problems encountered in business, engineering, science, 
and other mathematics-heavy fields (Lesh, Hoover, Hole, Kelly, & Post, 
2000). The researchers claim that MEAs are more productive instructional 
activities than application problems, citing the enhanced conceptual 
understandings students develop while mathematising real world situations 
(Lesh & Doerr, 2003). However, they warn that the effectiveness of MEAs 
largely depends on the timing of their implementation (Lesh, Yoon, & 
Zawojewski, 2007). When MEAs are implemented before any direct 
instruction on the topic, they serve their intended role of encouraging 
students to develop their own understandings through the process of 
mathematising. In contrast, they argue that when MEAs are implemented at 
the end of an instructional unit, they resemble application problems, in 
which students can apply what they have already been taught. Does it 
necessarily follow that students will not engage in mathematising in a MEA 
that is administered after an instructional unit?  

In this article, we investigate the claim that students develop deep 
conceptual understandings by mathematising real world contexts after an 
instructional unit, using data from the implementation of a calculus MEA. 
The MEA is set within the context of tramping, and was implemented after 
participants received direct instruction on differentiation and integration. 
Therefore, the participants were able to approach the MEA in two ways: (a) 
as a modelling activity in which they mathematised the tramping context, or 
(b) as an application problem in which they applied their previously learned 
knowledge of calculus to the tramping context. In this article, we analyse the 
mathematical understandings of four participants who approached the MEA 
in both ways. While their mathematisations led to primitive understandings 
of how a gradient graph reveals the value of the anti-derivative as a measure 
of height, their attempts to apply their prior knowledge of integration were 
unsuccessful and revealed their limited conceptual understanding of the 
topic. We suggest that there are important educational benefits in 
implementing MEAs even at the end of an instructional unit, as they give 
students an opportunity to deepen their understanding of the mathematical 
topics by mathematising, as well as an opportunity to apply their 
knowledge. 

We begin this article by describing the theoretical framework in which 
we use the terms applying and mathematising in the context of MEAs. Next, 
we describe the participants in our study, and the methods used to collect 
and analyse the data. We then present and analyse the mathematical 
thinking of the four participants, and compare their applied knowledge with 
their mathematised knowledge. In the final section, we discuss our results 
and call for calculus instruction to adopt more modelling activities, which 
emphasise the process of mathematising over the application of a particular 
technique. This article is an extension of Yoon, Dreyfus, and Thomas (2009) 
where initial findings were reported; we have incorporated an additional 
case study (of two teachers) and included a more detailed theoretical 
framework and discussion section. 
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Theoretical Framework: Mathematising and applying in 
MEAs 

The framework we use to analyse our participants’ mathematical thinking is 
based on the two processes of mathematising and applying that can occur 
within MEAs. In this section, we clarify what we mean when we use the 
terms mathematising and applying by considering them in the context of 
modelling activities and application problems respectively. Then we justify 
how we propose to identify both mathematising and applying within MEAs. 
Our framework draws on the emerging “Models and Modeling Perspective” 
(Lesh & Doerr, 2003), which supports the use of MEAs.  

Applying and Applications Problems 
The majority of “real world problems” that are found in calculus textbooks 
can be classed as application problems, which require students to apply 
some knowledge they have previously learned. The following is a typical 
example of an application problem taken from “Delta Mathematics”, a 
calculus textbook that is popular in New Zealand: 

The top and sides of the curtains for the stage in a theatre are decorated 
with a string of small electric lights 24 m long. Calculate the height of the 
top above the floor of the stage if the area of the curtains is as large as 
possible. (Barton & Laird, 2002, p. 121) 

This problem comes from a chapter called “Applications of differentiation”, 
which follows chapters on differentiating various types of functions, using 
the product and quotient rule, and identifying turning points and points of 
inflection. Thus, if students follow the progression of chapters in the 
textbook, they will have learned the calculus techniques that are needed to 
solve the problem. Furthermore, the textbook provides students with a list 
of seven steps that detail how to solve problems like the one described in 
which they are required to “set up a function in terms of one variable only 
before differentiating to find a maximum or minimum” (Barton & Laird, 
2002, p. 118). Thus, students encountering the above problem have already 
learned how to solve problems of its type, and need only see through the 
disguise of curtains, electric lights, and theatre stage to recognise what it 
calls for. Researchers consider use of context in these kinds of application 
problems as merely “dressing up” a mathematics problem that the student 
has already learned how to solve (Blum & Niss, 1991). Consequently, the 
main thinking process involved in these problems is “undressing” the real-
world context to decipher which procedure to apply.  

Application problems can be useful because they give students the 
chance to see the utility of the mathematics they have learned by applying it 
in an extra-mathematical context. However, because the goal of such 
problems is to demonstrate the application of a particular procedure, the 
context is often sparse and contrived, and needs to be interpreted in a non-
realistic way. The overuse of such activities can give the impression of 
mathematics only being useful in unrealistic contexts (Lesh et al., 2000). In 
contrast, modelling activities tend to be context-rich problems that do not 
assume the student has already learned a procedure for solving the problem; 
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instead they require students to create their own models by mathematising 
the context and constructing new understandings in the process. 

Modelling and Mathematising 
Mathematical modelling involves the complex coordination of a variety 

of processes that can be depicted around the modelling cycle as in Figure 2. 
The modelling cycle begins in the real world, where one determines which 
pieces of information in the real context are relevant to the problem. Next, 
one interprets the relevant information in the real world mathematically to 
create a mathematical model. This model is then used to find a mathematical 
result, which is in turn interpreted back into the real world context. The 
fitness of the model is then assessed, and if necessary, the cycle begins again 
in pursuit of a model with a better fit (for a more comprehensive discussion 
of the modelling cycle, see Stillman, Galbraith, Brown, & Edwards, 2007). 
 
 
 
 
 
 
 
 

Figure 2. Elements of the modelling cycle. 

Although we acknowledge that modelling involves many processes, in 
this article we focus particularly on the process of mathematising. Lesh and 
Doerr (2003) define this process of mathematising in MEAs in the following 
way:  

Model-eliciting activities usually involve mathematizing – by quantifying, 
dimensionalizing, coordinatizing, categorizing, algebratizing, and 
systematizing relevant objects, relationships, actions, patterns, and 
regularities. (p. 5) 

The “objects, relationships, actions, patterns, and regularities” in the above 
definition are echoed in Niss, Blum and Galbraith’s (2007) description of a 
mathematical model:  

A mathematical model consists of the extra-mathematical domain, D, of 
interest, some mathematical domain M, and a mapping from the extra-
mathematical to the mathematical domain. Objects, relations, phenomena, 
assumptions, questions, etc. in D are identified and selected as relevant for 
the purpose and situation and are then mapped – translated – into objects, 
relations, phenomena, assumptions, questions, etc. pertaining to M. (p. 4) 

We interpret the “objects, relations, phenomena, assumptions, 
questions, etc.” in the extra-mathematical domain as comprising a system in 
the real world, whereas the “objects, relations, phenomena, assumptions, 
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questions, etc.” pertaining to the mathematical domain corresponds to the 
mathematical entities relevant for the solution of the mathematised real 
world problem. Thus, we characterise the process of mathematising as 
interpreting the structural aspects (i.e., the objects, relations, actions, 
patterns, regularities, assumptions, etc.) in a real world system, and 
expressing this structure in a mathematical model using mathematical 
representations such as symbols, text, graphs, diagrams, and so forth.   

Mathematising and Applying in Model-Eliciting Activities 
As mentioned at the beginning of this article, MEAs were designed to 

provide students with authentic experiences of modelling through the 
mathematisation of a rich context. In our study, we created a MEA called The 
Tramping Problem in close adherence to the six principles for designing these 
types of activities (for a detailed explanation of the six principles, see Lesh et 
al., 2000). In accordance with the reality principle, the problem is set in the 
context of tramping, and begins with a newspaper article that discusses the 
inadequacy of difficulty ratings for tramping tracks in New Zealand. After 
reading the newspaper article, students work on warm-up activities that ask 
them to find the gradient graph (i.e., derivative) of a distance-height graph 
of a tramping track.  

The problem statement then presents the gradient graph of a tramping 
track shown in Figure 3, and asks students to develop a method for finding 
the distance-height graph of the original track, and generalising their 
method so that it works for any gradient graph. By asking students to 
develop a method instead of merely providing their solution, the activity 
fulfils the model construction principle, and by asking them to generalise their 
method, it also fulfils the model generalisation principle. In mathematical 
terms, the problem amounts to creating a method for finding an anti-
derivative of the given gradient graph, and the embedding of this 
mathematical task in the tramping context satisfies the simple prototype 
principle. 

 

Figure 3. The gradient graph given in the modelling task. 
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The problem statement asks students to write their method in the form 
of a letter to clients who wish to determine whether the track is suitable for 
their purposes, thereby fulfilling the model documentation principle. Finally, 
students are instructed to use their method to draw the distance-height 
graph, which gives them a chance to test and revise their method, thereby 
satisfying the self-assessment principle.  

Lesh, Yoon, and Zawojewski (2007) acknowledge that even though 
MEAs are designed to encourage authentic modelling experiences, their 
ultimate success in this endeavour is subject to the timing of the MEA 
implementation. They describe two possible types of implementation 
scenarios, which they call (1) Making mathematics practical, and (2) Making 
practice mathematical. In the first scenario, the MEA is implemented at the 
end of an instructional unit, which “guides students along (necessarily 
narrow) conceptual trajectories towards a textbook’s (or teacher’s) cleaned-
up version of the meaning of the relevant concepts or abilities” (Lesh et al., 
2007, pp. 316-317). This approach turns the MEA into an opportunity for 
students to apply what they have been taught, thereby seeing how the 
mathematics they learned is practical.  

In the second scenario, the MEA is implemented before any instruction 
in the relevant mathematical concepts or abilities. Students are encouraged 
to mathematise the realistic context and “express, test, and revise their own 
relevant ways of thinking” (Lesh et al., 2007, p. 316) before being formally 
introduced to the mathematical concepts or abilities. In the instructional unit 
following the implementation of the MEA, teachers focus on helping 
students to “clean up” their primitive ways of thinking, and “endow them 
with more elegance, power, sharability, and reusability” (p. 316). Thus, 
students working on a MEA in this approach are encouraged to develop 
mathematical understandings in response to a practical need. 

In our study, we chose to implement the MEA after students had 
received traditional instruction on the relevant topics of differentiation, anti-
differentiation, and integration. This implementation can therefore be 
construed as adhering to the “Making mathematics practical” scenario, 
which emphasises the process of applying. However, we set the tramping 
problem within a purely graphical representation, which meant that a 
straight-forward application of integration was not obvious. Although the 
students had some previous experience in finding graphical derivatives 
without recourse to algebraic representations, they had not been exposed to 
the inverse problem (i.e., finding a graphical representation of an anti-
derivative). Thus, although we implemented the MEA at the end of the 
instructional unit, the design of the problem statement meant that students 
were encouraged to engage in the process of mathematising at least as much 
as the process of applying. Thus, we use the theoretical framework of 
mathematising and applying in MEAs to analyse the students’ modelling 
during the Tramping MEA. 

Methodology 
The data presented in this article were collected within a larger study that 
investigated the calculus knowledge of undergraduate mathematics 
students. Eighteen participants overall were involved in this study: Sixteen 
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participants were undergraduate students who were enrolled in a calculus 
course at a large university in New Zealand, and two were secondary school 
mathematics teachers who participated in the pilot test. The participants 
worked in pairs on four 1-hour long activities that focused on graphical 
representations of anti-derivatives. They worked in the presence of an 
interviewer in a quiet room, and were audiotaped and videotaped. The 
undergraduate students completed these tasks outside of class time, and 
were given $25 per hour each, whereas the secondary school mathematics 
teachers completed the activities for professional development. The 
interviewer presented the tasks in each activity, but refrained from giving 
advice on how to solve the problems. 

 In this paper, we report on the work from four of the participants from 
this study: Cam and Sid, who were two male undergraduate students, and 
Ava and Noa, the two female secondary school mathematics teachers from 
the pilot study. Cam and Sid were enrolled in a bridging course that covered 
similar levels of calculus content to that found in Year 13 (the last year in 
New Zealand secondary schools). By the time they started work on the 
activities in this study, they had already been taught differentation, anti-
differentiation, and integration in their course. Ava had seven years of 
teaching experience and Noa had two years of teaching experience. Both 
Ava and Noa had taught up to Year 12 mathematics, but neither had taught 
Year 13 calculus. Nevertheless, they had encountered the concepts of 
differentiation, antidifferentiation, and integration as secondary and tertiary 
students. Thus, all four participants had the mathematical preparation to 
make sense of The Tramping Problem. We report our analyses of these four 
participants’ work during the first activity – The Tramping Problem MEA, 
which was described in the previous section. We choose to focus on these 
participants because they were the only ones who engaged fully in both 
processes of mathematising and applying when trying to determine the 
value of the anti-derivative as a measure of height.  

We analysed a variety of sources in an attempt to infer the participants’ 
mathematical thinking. First, transcriptions of the participants’ audiotapes 
were annotated with descriptions, diagrams, and photos of their gestures, 
inscriptions, and interactions that were captured in the video footage. These 
annotated transcripts were then coded to identify the mathematical concepts 
the participants considered throughout the activity, and the participants’ 
mathematising and applying. The participants’ written work was analysed 
in conjunction with these coded, annotated transcripts to create narratives of 
the participants’ attempts to use mathematising and applying to determine 
the value of the anti-derivative as a measure of height. We present these 
narratives in the next section.  

Results and Analysis 
We present seven narratives that describe the engagement of Cam and Sid, 
and Ava and Noa in the processes of mathematising and applying while 
they tried to determine the value of the anti-derivative as a measure of 
height. The problem of finding the height of the tramping track was only 
one aspect of The Tramping Problem, and the four participants engaged in 
many more instances of mathematising and applying when investigating 
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other aspects of the problem. They also considered, for example, the 
tramping track’s summits, valleys, uphills, downhills, relative steepness and 
points of inflection. However, in this article, we restrict our analysis to those 
instances of mathematising and applying that relate directly to the problem 
of finding the height of the tramping track.   

Narrative 1: Cam and Sid’s First Mathematising Attempt 
Cam and Sid began by correctly determining that positive portions of the 
graph (coloured light and marked as A and E in Figure 4) correspond to 
uphill portions of the track, whereas negative portions of the graph 
(coloured dark and marked as C and G in Figure 4) correspond to downhill 
portions of the track. They also correctly ascertained that the x-axis 
intercepts on the graph indicate summits (B and F in Figure 4) and a valley 
(D in Figure 4) on the track.  

 

Figure 4. Features (A-J) of gradient graph referred to by Cam, Sid, Ava, and 
Noa. 

When they drew these features in their first distance-height graph of the 
track (shown in Figure 5), they assumed that the bottom of the valley is at 
sea level. They then encountered the problem of the height of the track for 
the first time when they tried to determine the height of the second summit 
in relation to the first summit. 
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Figure 5. Cam and Sid’s first drawing of the distance-height graph of the 
track (with labels added to indicate the summits and the valley). 

Cam initially suggested that the second summit is one third of the 
height of the first summit, since the height of the second maximum on the 
gradient graph (indicated as J in Figure 4) is one third the height of the first 
maximum (indicated as I in Figure 4). Thus, in his first attempt to 
mathematise the height of the track, he inferred a proportional relationship 
between the heights of the local maxima on the gradient graph, and the 
heights of the summits of the tramping track:  

 

maximum 2  (of gradient graph)

maximum1 (of gradient graph)
=

height of summit 2  (of the track)

height of summit1 (of the track)
 

However, he soon realised that this mathematisation was incorrect, and 
corrected himself, saying “Oh no it just gets a third as steep, that’s got 
nothing to do with distance (points to J in Figure 4), that’s not as steep, so 
it’s just flatter” (note that in this excerpt, he appears to use the word 
“distance” to refer to the height of track). He explained that the height of the 
gradient graph indicates the steepness of the track, not the track’s height.  

Narrative 2: Cam and Sid’s Attempt to Apply Integration  
Cam then wondered what features of the graph would help him find the 
height of the track, and brought up an idea he remembered from class. Note 
that in the following excerpt, he again uses the word “distance” when 
referring to the height of the track: 

Cam:  What does the area under the gradient graph mean? Doesn’t it 
mean something as well? 

Sid: No because well you can’t have negative areas so… 

Cam:  No but the absolute value of an area, isn’t that distance? 
(Directs question to interviewer) Are we allowed to use our 
textbook? 

Cam opened his textbook to the section describing “area under a curve”, 
but dismissed it after finding it written in the context of speed. He decided 
that he could not apply his knowledge about the area under a curve to 
determine the height of the track at the second summit, because his 
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textbook-based knowledge was situated in the context of speed, which he 
could not relate to the tramping context of the problem. Thus, Cam’s 
attempt to apply his knowledge about integration was unsuccessful, and the 
question of how to find the height of the antiderivative remained.  

Narrative 3: Cam and Sid’s Second Mathematising Attempt 
Later, Sid drew a “good copy” of the graph they drew in Figure 5, and again 
drew the bottom of the valley at sea level (see Figure 6). While redrawing 
the graph, Cam and Sid revisited the question of the second summit’s height 
in relation to the first. This time, Cam suggested that the second summit is 
not as high as the first summit because although sections E and A (in Figure 
4) are “fairly similar shapes”, E occurs over a shorter horizontal length than 
A. Thus, he correctly recognised that the horizontal distance is an important 
factor in determining the height of the antiderivative. He remarked that a 
summit that is reached by travelling at a shallow gradient over a short 
horizontal distance is not as high as the summit reached by travelling at a 
steep gradient over a long horizontal distance. Thus, Cam incorporated the 
horizontal distance into his second mathematisation of the relationship 
between the gradient graph and the height of the antiderivative. However, 
this mathematisation was not formalised until the third drawing of the 
graph. 
 

 

Figure 6. Cam and Sid’s second drawing of distance-height graph of track. 

Narrative 4: Cam and Sid’s Third Mathematising Attempt 
After writing down their method in a letter, Cam observed that the steepest 
downhill portion of the track should only be “50% as steep” as the steepest 
uphill portion of the track, since the (absolute value of the) height of the first 
minimum on the gradient graph (I in Figure 4) is half that of the first 
maximum (H in Figure 4). Thus, he inferred a proportional relationship 
between the heights of the first relative maximum and minimum on the 
gradient graph, and the steepness of the corresponding parts of the track. 
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Cam then redrew the track (see Figure 7) to reflect the differences in 
steepness, and in doing so also corrected the height of the bottom of the 
valley in the track with the comment: “I think what misled us was that this 
(points to the first downhill portion of the track in Figure 7) was over a 
shorter distance, so maybe it (points to the valley in Figure 7) doesn’t go all 
the way down to the ground.” 

 

Figure 7. Cam and Sid’s third drawing of distance-height graph of track. 

Next, Cam explained to Sid that the horizontal distance in the gradient 
graph is as important as the amplitude when determining the height of the 
track: 

Cam: I think that the distance covered (referring to the horizontal 
distance) on the gradient graph does indicate the height 
climbed or descended in the… 

Sid: Yup. I’d be more that the amplitude for this section here 
(points to C in Figure 4) is not as big as the amplitude here 
(points to A in Figure 4), so therefore it doesn’t reach ground 
level again. 

Cam: Yeah, do you think it’s maybe a combination of the two, ‘cos if 
that was a lesser amplitude (points to C in Figure 4) but over 
the whole graph (points along the x-axis in Figure 4) then it 
would be going downhill the whole way? 

Sid: Yeah but then we would see that as it goes the whole way, but 
just for that part… 

Cam: Yeah, but for any graph. Just general graphs. The amplitude, 
it’s kind of that the amplitude times how far it’s gone is going 
to give you an indication of how high you’re going to go, how 
far you’re going to drop?” 

Sid: Yeah. 

Cam summarised this insight in a postscript to their letter: “you should 
take into account both the amplitude and horizontal distance as an indicator 
of the change in elevation for each slope”. Although Cam did not talk in 
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terms of area under the curve, he commented in the excerpt above that the 
change in elevation for the track is determined by “the amplitude times how 
far it’s gone”, or in other words:  

 

Change in elevation = amplitude of gradient graph ! horizontal distance.  
This third mathematisation is essentially a crude approximation of the 

area under the curve using one Riemann rectangle for each area (see Figure 
8). Thus, Cam initially dismissed the application of the “area under the 
curve” idea he had previously learned because it was embedded in a speed 
context in the textbook. However, he ended up developing a mathematical 
model that incorporates a primitive version of the very same idea in his 
third mathematisation of the relationship between the gradient graph and 
the height of the antiderivative.  

 

Figure 8. A graphical representation of Cam’s insight into the relationship 
between amplitude of the gradient graph and the horizontal distance. 

Narrative 5: Ava and Noa’s First Mathematising Attempt 
Ava and Noa began by using gestures to ascertain the general shape of the 
tramping track, based on the gradients given in the gradient graph. They 
first became concerned with the issue of the height of the antiderivative 
when they came to draw the graph of the tramping track on paper. Ava 
correctly drew the initial ascent up to the summit in the graph, which 
corresponds to section A in Figure 4. However, she expressed doubt as to 
how far down the subsequent valley (which corresponds to section C in 
Figure 4) needed to descend. She initially drew the valley as descending all 
the way down to sea level, then paused with her pen at sea level saying, 
“Am I here, should I be here?” (see Figure 9a).  
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Figure 9. (a) Ava’s drawing of tramping track (initial drawing of valley 
descends to sea level), (b) Ava using a ruler to represent steep and shallow 

gradients. 

In trying to resolve the issue of how far down the valley went, Ava 
suggested that the size of the “humps” (A and C in Figure 4) indicated how 
high the track ascended. “If this hump (points to A in Figure 4) is bigger 
than this hump (points to C in Figure 4), what does that say in terms of the 
gradient? That says you’ve gone steeper so you’ve gone higher, surely?” 
When Noa disagreed, Ava used a ruler to emphasise her conjecture: “If 
you’ve gone steeper, you must have gone higher” (see Figure 9b). 

Eventually, Noa agreed, stating: “Steeper for longer must be higher.” 
Thus, their first mathematisation of the height of the antiderivative consisted 
of relating the steepness of the gradient with the duration of the steepness to 
the height of the antiderivative. 

Narrative 6: Ava and Noa’s Attempt to Apply Integration  
Later on, while writing their method up, Ava again questioned how to find 
the height of the track from the gradient graph, and suggested they apply 
integration to solve the problem. 

Ava: If you’ve got the gradient function how do you get back to the 
initial function? You need to integrate. Right, so we could 
integrate this function to provide a value? Yes we could 
(shades in the area underneath A in Figure 4), couldn’t we? 

Noa: Yeah. That’s clever now isn’t it? Yes, that’s right. The area 
under the curve. 

Ava and Noa were enthusiastic about the application of integration, but 
as it had been a few years since they had learned integration, they first tried 
to recall what they remembered about the topic: 

Noa: So what do we know about integration? We know yeah – 
distance, time graph – that’s right. Distance, time, so ds by dt is 
the gradient function which is the speed… 

This application of integration led to them incorrectly interpreting the 
gradient graph of the tramping track as representing the speed of the 
tramper, rather than the steepness of the slope. They subsequently 
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abandoned this approach while expressing low confidence in their ability to 
apply integration to the problem – “my brain’s going… it’s amazing how 
quickly it goes out of your head isn’t it?”   

Narrative 7: Ava and Noa’s Second Mathematising Attempt 
After abandoning the application of integration, Ava and Noa returned to 
their first mathematisation, and discussed the extent to which the gradient 
was responsible for determining the height of the antiderivative. Noa 
introduced a hypothetical scenario in which a shallow gradient could lead to 
a high hill. She stated: “you could have one that’s just got a shallow gradient 
but just goes on for ages. And then… you could end up being really high, 
but not really steep to get there”. Ava agreed, and suggested that they adjust 
their letter to mention portions of the track that corresponded to a “long 
hard slog” like the one Noa described. Thus, Ava and Noa refined their 
initial mathematisation of how gradient and horizontal distance interact to 
give the height of the antiderivative, to acknowledge that a shallow gradient 
over a long horizontal distance could give rise to a high hill. This second 
mathematisation reflects a more advanced understanding of gradient and 
the height of the antiderivative than the first mathematisation, which only 
allowed that steeper gradients could give rise to a higher antiderivative. 

Discussion and Conclusions 
The MEA in this study was implemented after the participants had 

received direct instruction on integration. Hence the participants had the 
necessary mathematical tools to make sense of, and progress with, the 
problem, since they could approach it as an application problem that 
required them to integrate the given function to find the height of its 
antiderivative. However, all four participants solved this problem by 
mathematising the tramping context, while their attempts to apply their 
knowledge of integration were unsuccessful. This reveals two limitations in 
the participants’ prior knowledge. First, their knowledge of integration was 
closely linked to the context of speed, which did not carry over to the 
context of tramping. Cam rejected the applicability of his speed-bound 
knowledge of integration to the tramping context outright, whereas Ava and 
Noa tried unsuccessfully to convert the tramping context into a speed 
context. This result resonates with Gravemeijer and Doorman’s (1999) 
observation that the teaching community’s predominant use of the context 
of speed to illustrate integration concepts may be limiting students’ ability to 
apply their knowledge of integration to other contexts. 

A second interesting feature is their apparent lack of representational 
versatility (Thomas, 2008) in their prior knowledge of integration. Since the 
function was given only in the graphical form, an application of integration 
would have required the participants to use graphical and numerical 
representations of integration. For example, they could have used triangles 
to approximate the area under the curve, and thereby approximate the 
difference in height between each summit and valley. The fact that none of 
the participants chose to apply a graphical and numerical representation of 
integration to the problem echoes Thomas and Hong’s (1996) finding that 
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students’ knowledge of integration is largely confined to algebraic 
representations. This finding is strengthened further by the following 
observation: Cam and Sid reconstructed (a primitive version of) integration 
by mathematising in Narrative 4, and Ava and Noa reconstructed (a 
primitive verbal version of) integration by mathematising in Narrative 7. 
However, both participant pairs failed to recognise their reconstructions as 
cases of integration.  

Although the students’ work on the modelling activity revealed some 
limitations in their previously learned knowledge of integration, it also gave 
them an opportunity to build up their conceptual understandings through 
the iterative process of mathematising. Cam went through at least three 
cycles in the modelling diagram (Figure 2), and eventually mathematised 
the height of the track as the product of the amplitude of the gradient graph 
and the horizontal distance in the track. The knowledge Cam developed 
through the process of mathematising was more primitive than the 
sophisticated integration ideas he had previously rejected. However, his 
preference for this primitive understanding suggested that it was a deeper 
conceptual understanding of integration than his textbook knowledge of the 
topic. Similarly, Ava and Noa went through two modelling cycles in which 
they refined their understanding of how gradient and horizontal distance 
interact to indicate the height of the antiderivative. 

Our research suggests that even when MEAs are implemented after 
direct instruction in the topic, students may still approach them as 
modelling activities, particularly if the direct instruction did not lead to deep 
conceptual understandings of the topic in the first place. In the case of The 
Tramping Problem, the combination of the unfamiliar context of tramping and 
the unfamiliar graphical representation meant that a direct application of 
integration is only possible for those possessing a deep understanding of the 
topic. A wealth of research suggests that although most students of calculus 
are reasonably proficient in performing various calculus techniques, they 
often lack a conceptual understanding of the core ideas (Eisenberg & 
Dreyfus, 1991; Thomas & Hong, 1996; Thompson, 1994). This article suggests 
that real world problems that emphasise the process of mathematising, such 
as The Tramping Problem MEA, can help students develop, express, test, and 
revise their own conceptual understandings of calculus concepts. 

In this article, we have discussed the recommendation for MEAs to be 
implemented at the beginning of instructional units, rather than at the end 
(Lesh, Yoon, & Zawojewski, 2007). However, in practice, MEAs are often 
seen as standalone activities that are more likely to be used on a rainy day, 
than to be integrated into an instructional unit, whether at the beginning or 
the end. One reason for this common perception is the lack of available 
follow-on activities to most MEAs. We have developed three follow-on 
activities (to which we alluded in the methodology section) that are 
designed to help students strengthen and consolidate the primitive 
understandings they initially develop in The Tramping Problem. An 
important goal for future modelling research is to identify which design 
principles are most useful for creating productive follow-on activities to 
MEAs. Such research would increase the likelihood that MEAs are 
implemented at the beginning of instructional units, thereby enabling the 
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understandings that students develop through mathematising to be most 
effectively leveraged. 
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