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This theoretical paper explores the decision-making process involved in 
modelling and mathematizing situations during problem solving. 
Specifically, it focuses on the authority behind these choices (i.e., what or 
who determines the chosen mathematical models). We show that different 
types of situations involve different sources of authority, thereby creating 
different degrees of freedom for the problem solver engaged in the 
modelling process. It also means that mathematics plays different roles in 
these problems and situations. This epistemological analysis on the 
meaning of modelling implies that we should reconsider the mathematical 
status of realistic solutions and raises questions on the validity of some 
traditional choices of mathematical models and their use in diagnosing 
children's conceptions. It also suggests constructing modelling tasks by 
choosing a certain variety of situations that might lead to a better 
understanding of the roles of mathematics. 

Recent reviews (Niss, Blum, & Galbraith, 2007; Stillman, Brown, & 
Galbraith, 2008) indicate that the community of researchers that investigate 
issues of modelling and applications is involved in many research 
perspectives. Many of the works deal with the effect of modelling tasks on 
student learning of mathematical concepts, student developing of modelling 
skills, teacher attitudes towards modelling tasks and teacher learning from 
observing students' modelling processes.  

Within modelling issues, this article touches on several perspectives. 
From the Epistemological perspective, which is less investigated (Stillman et 
al., 2008), it aims at analyzing the nature and meaning of choosing 
mathematical models in a given situation.  From the Authenticity and Goals 
perspective it investigates the roles of mathematics in problem solving, and 
views the development of this knowledge as a curriculum goal that can have 
an impact on the choice of modelling tasks. Our goals are also motivated by 
the need to promote a radical change in teacher beliefs about the roles of 
everyday knowledge and the roles of mathematics in problem solving and 
modelling (Bonotto, 2007). 

For these purposes, we will compare different types of problems in an 
effort to find what determines the problem solver's modelling choices. We 
use the term authority in the sense of a source of knowledge or power that 
either suggests or imposes the choice of mathematical structures. 

We believe that teachers and students who engage in modelling tasks or 
any other problem solving activities should be conscious of their reasons for 
making choices in applying mathematical concepts. We also believe that this 
awareness can change teacher and student beliefs about the roles of 
mathematics.  
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The Authoritative Power of Reality over Mathematics 
 
Issues that focus on authority are not new and have always been a 

trigger for fascinating philosophical debates. Some of the main issues 
involve the relationship between mathematics and the real world. While we 
look briefly into the role of real-world phenomena in the construction of 
mathematical concepts, the focus of this paper is in the other direction; that 
is investigating the role of mathematics in the analysis of situations during 
problem solving.  

Scholars and thinkers have long pondered the question that is at the 
heart of the field of mathematics: What is the authority that creates 
mathematical objects and determines mathematical rules and "truths"? More 
simply, what is the relationship between mathematics and reality? As Sfard 
(2007) put it in her discussion of the emergence of negative numbers: "Back 
then in the 17th century the real, albeit unspoken, question was about the 
rules of mathematical game:  Who is the one to decide what counts as 
mathematically acceptable - the reality itself or the participant of the 
mathematical discourse" (p. 582)?   

For a long time the prevailing view was that observed phenomena 
determine the construction of mathematical structures, and that 
mathematical truths could only emerge from observed reality. Acceptance of 
the view that mathematical structures might be born in the human mind 
without an explicit real-life source did not come easily, especially since most 
examples supported the opposite view. Today, of course, it is relatively easy 
to support the authority of the human mind. Plenty of mathematical ideas 
that are not grounded in any real-world phenomenon, and that were 
therefore once rejected, have turned out to be powerful tools with a 
legitimate existence in the mathematical world.  

As suggested by the quotation from Sfard (2007) above, one of the 
earliest examples is negative numbers, which originated from an algebraic 
need for closure (Hefendehl-Hebeker, 1991), and which were not accepted 
by some mathematicians when they were introduced. Other mathematical 
objects and theorems that were developed without a basis in reality later 
triggered ingenious inventions and applications. One of the most famous of 
these is the RSA coding method, named after its inventors (Rivest, Shamir, & 
Adleman, 1978), which is based on the near impossibility of deducing two 
very large prime numbers from their product. The world financial system 
depends upon this and related coding systems.  

The mere existence of these cases has caused a shift that has freed 
mathematics from the need to obey the authority of reality even in cases that 
have not yet proven to be "useful". In the wake of this shift, mathematical 
theory could develop without having to lean on objective, real-world 
"truths". 

Mathematics Power in Modelling and Mathematizing 
Situations 

Whatever their source, be it some realistic phenomenon or imaginative 
inspiration, the field of mathematics now offers us a wide range of 
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structures and models that can be used in different situations. The choice of 
mathematical models is what interests us in this paper.  

A brief note on terminology is warranted. When problem solving 
involves a process of organizing a given situation and fitting a mathematical 
structure or representation, the term modelling is used for the entire process, 
including the decision-making element. The act of representing a situation 
using the terms and symbols of the mathematical concepts that seem to fit it 
is termed mathematizing. Our use of the terms modelling and mathematizing 
will be relaxed in the sense that we will discuss fitting mathematics to 
situations in cases that involve different degrees of decision making, and 
might also involve relatively little organization. 

What is the Nature of the Modelling Process?  
When a problem solver makes a decision about what mathematical concept 
or concepts to apply in a certain case, the question that we ask is: What is the 
source of information or the authority on which the solver can make this 
choice? Other questions follow in its wake. How much freedom does the 
problem solver have in choosing mathematical concepts? Does the context 
influence these choices, and in what way? To answer some of these 
questions, we analyze a few examples, compare their solution processes, and 
make some generalizations. 

Examples of Problem Solutions 
We start by looking at a relatively standard problem, the Lottery Problem, 
together with its common solutions. Standard problems traditionally require 
very few decisions, and often the location of the problem in the textbook 
reveals the mathematics that the problem composer sees as fit to describe or 
solve the given situation. Still, the fitting of mathematical concepts in such 
problems might contribute to our understanding of this process. 

Two friends, Anne and John, buy a lottery ticket together. The price of the 
ticket is $5. Anne pays $3 and John pays $2. They win $40. How should they 
split their winnings?  

Some version of this problem often appears in textbooks following 
instruction on ratio and proportion. It is expected that students will identify 
the problem as a ratio and proportion problem and that their solution will 
involve splitting the $40 according to the investment ratio, 3:2. Using this 
ratio Anne would receive 

 

3

5
 of $40 (i.e., $24), and John would receive 

 

2

5
 of 

$40 (i.e., $16). 
Why do we automatically employ proportion in this case? The obvious 

response is that we use proportion because this is a proportion problem; that 
is, the problem appears in the chapter of the textbook dealing with 
proportion, so this model is an obvious fit. However, for the purpose of our 
current analysis, we are interested in going beyond this sort of tautological 
answer ("It's a proportion problem because it's a proportion problem") to 
figure out why this example belongs to the collection of conventional ratio 
and proportion problems.   
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In fact, an implicit assumption is made by the textbook writer that a 
constant ratio should be maintained – in other words, that the ratio between 
John and Anne's investments should equal the ratio between their profits. 
What is the rationale for this ratio equivalence? Most likely, behind it stands 
an implicit assumption that each invested dollar should earn the same 
amount of money. In calculating the profit shares in the Lottery Problem, 
since the total investment is $5, the profit per dollar is a fifth of the total 
winnings. The rest of the calculation then follows by multiplying this 
intensive quantity by the invested amount. Using Schwartz's (1988) terms, 
this intensive quantity can also be viewed as a scalar because we get dollars 
divided by dollars, and we can then refer to a given individual lottery 
drawing situation as having some profit scalar showing by how many times 
one's investment has grown. 

Is a similar implicit assumption used in other proportion problems?   
We will take a look at another problem considered by its presenter as a 

proportion problem. This problem is more complex than the standard 
example given above, and calls for some situation analysis before fitting a 
mathematical model.  

In working with pre-service teachers, Koirala (1999), a teacher educator, 
asked them to solve the following Shoe-Sale Problem: 

Two friends are shopping together when they encounter a special "3 for 2" 
shoe sale. If they purchase two pairs of shoes at the regular price, a third 
pair (of lower or equal value) will be free. Neither friend wants three pairs 
of shoes, but Pat would like to buy a $56 and a $39 pair while Chris is 
interested in a $45 pair. If they buy the shoes together to take advantage of 
the sale, what is the fairest share for each to pay? 

 In offering his solution, Koirala explained that it could be reached in two 
different but equivalent ways, one involving the concept of percentage and 
the other the concept of ratio. The first suggests that the two friends should 
get a same-percent discount. This calls for calculating the total discount in 
percentage terms and then using this to figure out the individual discounts. 
The second route suggests that the ratio between the new costs should equal 
the ratio between the original costs. Either approach leads to Pat having to 
pay $68.54 and Chris, $32.46. According to Koirala, this is the only 
appropriate solution to the problem, and he evaluated any alternative 
solution by how far it was from it.  

Why should the problem be solved by using proportion? As in the 
Lottery Problem, there is probably an implicit assumption here that would 
lead to Koirala's claim that the ratio between the new (reduced) costs should 
be the same as the ratio between the original costs. This assumption might 
say that each buyer should pay a constant amount for each dollar of the 
original cost. 

Phrased in this way, the implicit assumptions in the two problems are 
similar. In the Lottery Problem one is expected to earn the same profit for each 
dollar invested, and in the Shoe-Sale Problem one is expected to get the same 
discount for each dollar of the original price. In both cases this results in a 
scalar operator that linearly determines the amount earned or saved. Does a 
problem solver have to use these assumptions? What is the status of a 
solution that does not use them? 
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Initial Reservations: Alternative Solutions 
While the two examples offered here appear to have "correct" solutions, in 
both cases alternative solutions have been suggested. We will examine these 
solutions and consider their mathematical status. 

Alternative solutions to the first example: The Lottery Problem.  Ron, a sixth-
grader who solved this problem, suggested three different solutions, given 
here with his calculations and comments:  

Solution 1:  40:2 = 20.  Each child gets $20. 

Solution 2: One child (the one who paid $2) will get $19 and the other 
(the one who paid $3) will get $21 although the difference is $2 [while 
the difference in the amount paid is $1].                                                                                           

Solution 3:  40:5 = 8, 3 × 8 =24, so $24 to the child who paid $3, 2 × 8 = 
16, so $16 to the child who paid $2. 

After writing these solutions Ron concludes: “In my opinion, the first 
solution is the most fair, but the third is most right because of the ratio”.   
Ron, aware of classroom norms, knew that the teacher expected him to give 
the third solution, even if it did not feel quite right to him. Is proportional 
sharing really the "right" (and unique) model? Do we have to use the 
implicit assumptions discussed earlier? 

Alternative solutions to the second example: The Shoe-Sale Problem. Koirala 
(1999) was unhappy with the performance of his pre-service teachers, since 
none of his 32 teachers (not even his best students) suggested a solution that 
he considered appropriate. Instead of using the equivalent same-percent or 
same-ratio solutions, they used different price or savings split criteria. The 
most frequent answers were: 

1.  Split the price according to the ratio of shoes bought (rather than the 
price ratio). Thus, the friend who buys 2 of the 3 pairs pays 

 

2

3
 of the 

total price. (This answer was given by 8 of the 32 pre-service 
teachers.) 

2.  Split the savings (the price of the cheapest pair) evenly. (This 
answer was given by 7 of the 32 pre-service teachers.) 

3.  Split the savings according to the ratio of shoes bought. Thus, the 
friend who buys 2 pairs gets 

 

2

3
 of the total discount. (This answer 

was given by 5 of the 32 pre-service teachers.) 
 Koirala described a dialogue with his best student, Ayaz, who 

suggested dividing the savings evenly. In describing his effort to convince 
Ayaz that his solution was inappropriate, Koirala wrote that he "provided a 
counter-argument saying that the sharing between Pat and Chris can be 
considered mathematically fair only if their savings are proportional to their 
original costs" (p. 166). 

Is this really an argument, or is it an assumption? In either case, is it 
justified? While there is some sense in the same-cost-ratio criterion, it also 
has flaws. Specifically, it does not take into account the fact Pat (who bought 
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two pairs of shoes) contributed more to the friends' ability to jointly take 
advantage of the sale (though she also benefited from going home with two 
pairs). From the opposite perspective, perhaps Chris (who bought the $45 
shoes) was not really thinking of buying anything, and joined the action to 
make her friend happy. In that case, Pat, who might have been willing to 
buy two pairs with no discount, should be happy with any discount at all.    

What is the status of these alternative solutions? Should we accept them 
as valid because in a real-world situation, considerations besides those of 
pure mathematical parity come into play? What does accepting them as 
valid solutions then mean? Do they have the same status as a mathematical 
solution to the problem, or do we believe that there is a unique 
mathematical solution to each problem, and the alternative solutions are 
useful for the real world but, as Koirala suggests, "mathematically 
inappropriate"? 

Often, it is easier to analyze an example by looking at other examples 
and comparing them. We will continue our search for answers by looking at 
yet another traditional problem and identifying similarities and differences 
in the features and solutions of the two problems. 

The Fish Food and Eel Food Problems 
In their thorough and detailed description of the development of ratio and 
proportion conceptions in a fifth grader, Lo and Watanabe (1997) present 
several fish-feeding tasks adapted from Piaget, Grize, Szeminska, and Bang 
(1977). The following Fish Food Problem is one of these tasks. 

Fish A is 18 centimeters long and Fish B is 12 centimeters long. If Fish B 
needs 60 pieces of food every day, how many pieces of food will Fish A 
need every day? (p. 225) 

The Fish Food Problem (in this or similar versions) is a common problem 
often used in class or in intelligence tests to diagnose proportional and 
analogical thinking. The problem solver is expected to say that the 
mathematical relationship between the fish lengths should also hold for the 
fish food; that is, a fish that is k times longer should also eat k times as much 
food as the other fish. 

Why should we accept the assumption that a fish that is, for example, 
twice as long as another fish, eats twice as much? Come to think of it, its 
volume might be around 8 times the volume of the first, and by the same 
rationale perhaps this fish should eat 8 times as much as its smaller cousin. 
Figure 1 demonstrates what happens when we double the length of a fish, 
keeping the new fish proportionally similar to the original one. In spite of 
the fact that only 2 of the 3 dimensions are represented, one can imagine 
fitting the smaller fish into the bigger one more than twice. 

In fact, if anything, those who use a linear relationship have fallen into 
the linearity trap discussed by DeBock, Dooren, Janssens, and Verschaffel 
(2002) in their extensive investigation of the sources of children's incorrect 
application of proportion (or a linear connection) in cases that involve more 
than one dimension. So, on the one hand we are unhappy when children use 
linearity where it should not apply, and on the other hand we expect them 
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to use it in a similar situation and identify them as having a poor 
understanding of proportionality if they do not! 

 
 

Figure 1. Fish of different lengths. 

Being aware of this issue, Piaget et al. (1977) eliminated additional 
dimensions by using fish that looked like eels. Following their examples, Lo 
and Watanabe (1997) use a picture of two lines to symbolize the length of the 
two fish. They indicate that "these pictures helped to establish a linear 
relationship" (p. 222). Piaget et al.'s (1977) task was also adapted by Hart 
(1981) and by many others. Some tasks use fish and some use eels, with 
some variations on the type of food as well. Figure 2 demonstrates a typical 
picture of eels that accompanies an Eel Problem (detailed below). 

Figure 2. Eels of different lengths. 

The following version appears in Misailidou and Williams (2003) as 
adapted from the Concepts in Secondary Mathemetics project (Hart, 1981). 

There are 3 eels, A, B and C, in the tank at the Zoo. 
A: 15 cm long   B: 10 cm long   C: 5 cm long 
The eels are fed sprats, the number depending on their length. If C is fed 2 
sprats, how many sprats should B be fed to match? 

Similar versions can be found in other works or tests. For example, the 
teaching resources site of the Department of Education and Early Childhood 
Development (2007) in Victoria, Australia, presents a similar item for testing 
multiplicative reasoning. The teacher is directed to show the child a card 
with a picture of 3 eels (as depicted in Figure 2) while saying: 

This card shows three eels. The blue eel is twice as long as the red eel and 
the orange eel is three times as long as the red eel. The eels are fed food 
pellets according to their length. If the red eel gets two food pellets, how 
many pellets would be fed to the other two eels? 
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Not knowing how eels feed, we cannot reject the intended and implicit 
assumption that eels are fed according to a linear function that depends on 
their length; but from where would the problem solver deduce this 
knowledge? As can be seen, in these two eel problems the problem solver is 
told that the eels are fed depending on their length or according to their length. 
This tells us that there is some relation between the length of the eel and the 
amount of food that it eats, but we are not even told that the relation is 
positive and that the longer the eel, the more it eats. We only assume this is 
the case. If the relation is multiplicative, and the problem solver is expected 
to deduce it, the solver should be given data on eels and their feeding habits. 
The common short versions of the earlier original Piagetian tasks do not 
provide such data. We will discuss the value and diagnostic power of these 
versions in the concluding remarks. 

A Mysterious Solution: The Case of the Three Widows 
In the previous examples we raised some questions about the legitimacy of 
composing problems based on implicit assumptions and the use of 
proportional reasoning. In the following case we find ourselves puzzled for 
the opposite reason: in a problem that looks like a proportion problem, the 
mathematical model seems to be something else. By investigating the 
rationale for the solution of this problem, we hope to learn something about 
modelling and mathematizing in other problems.  

This next example is taken from a Mishna in the Babylonian Talmud 
and deals with the hypothetical case of the death of a man who was married 
to three women, each of whom had a different marriage contract (called 
Kethuba, plural Kethubot). The widows had been promised 100, 200, and 300 
gold coins, but the estate consists of an amount less than 600. How should 
the estate be divided among the widows? If we were to ask a similar 
problem in a mathematics textbook, we would probably suggest dividing 
the estate proportionally; that is, the widows would receive 

 

1

6
, 

 

2

6
, and 

 

3

6
 of 

whatever the estate is, so that the ratio between what they receive is the 
same as the ratio between the marriage contracts. However, the Mishna that 
presents the case did not make life that easy for scholars who tried to 
interpret it. Table 1 presents the three examples given in the Mishna for 
demonstrating how the estate should be divided (the representation is 
adapted from Aumann and Maschler, 1985). According to Table 1, for an 
estate value of 100, the Mishna's instructions are to split the money evenly. 
With 200, the first widow receives half of her Kethuba, and the two others 
split the rest evenly. With 300 each receives half of her Kethuba.  

On the face of it, each case employs a different mathematical model for 
sharing, where only the third case uses proportion. For a long time this 
seeming inconsistency puzzled scholars who looked at the problem from 
moral, mathematical and pragmatic perspectives. A practical reason for 
confusion was the fact that without a better understanding of the reasoning 
behind the three decisions, it was not possible to generate a generalized 
sharing procedure for additional cases.  
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Table 1 
Three estate sharing cases (from the Mishna Kethubot) 

  Marriage contracts (Kethubot) (in coins) 

  100 200 300 

100 33⅓ 33⅓ 33⅓  
Estate 200 50 75 75 
(in coins) 300 50 100 150 

 
A possible solution to this puzzle was offered by Aumann and Maschler 

(1985). Being mathematicians familiar with game theory, Aumann and 
Maschler identified a similarity between the demonstrated sharing values 
and the values that would appear in a matrix of a coalitional game situation. 
This led them to identify a general model that when applied generates 
values equivalent to those given in the three Mishna cases. The mysterious 
seemingly inconsistency was solved. Now all that was left was to figure out 
why the Mishna had chosen this solution.  

Aumann, the first author of the above mentioned work and winner of 
the Nobel Prize in Economics for 2005, explains the rationale in another 
paper (1999). In short, the idea is that in order to allow each widow to satisfy 
at least some basic needs, a widow should not get less than some minimal 
amount. Only when these basic needs are satisfied can a proportion model 
be used. This is a social rationale that leads to certain mathematical 
constraints that happen to be well fit by the coalitional game model. 

As it turns out, this is not the only case where a problem that looks like a 
classical case of proportion is handled by using a different model. The 
widows' case is a special example of a more general situation of sharing 
where there are several creditors, and where the sum of the debts is larger 
than the available estate (as is the case in bankruptcy). In these situations, 
most countries have enacted laws and rules for resolving debts that do not 
simply involve sharing the assets according to the proportion between the 
debts. Other cases that are handled differently involve situations such as 
sharing the cost of an elevator between tenants or the price of an airport 
runway among users who have different needs. These cases involve 
alternative sharing algorithms such as the use of Shapli's Value, the Nash 
Equilibrium, or a Coalitional algorithm as in the widows' case. 

Comparisons and Generalizations 
We have observed a situation where a proportion model could be applied, 
but due to a social rationale, another solution was decided upon. Is the same 
sort of freedom available in any of the previously discussed examples? That 
is, can a non-proportional model be used in the lottery, shoe-sale, and fish 
cases? Here is where we need to generalize and categorize.  

The Lottery Problem and the Shoe-Sale Problem are similar to the Widows' 
Case in being based on some social-moral decision.  Since the decision is a 
matter of a social agreement, the friends in either of these two stories can 
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decide what division criterion they want to use. The authority or the source 
for deciding what model to use lies in their own hands. Thinking that one 
has to use a proportion model would mean giving mathematics a role and a 
power that it does not and should not have. 

Can the same be said about the Fish Problem?  For this analysis we look 
at an additional example: The Paint Mixing Problem. 

Tom mixed 3 cans of yellow paint with 6 cans of blue paint and got a nice 
green for his garden fence. The next day he wanted to get some more of the 
same shade of green by mixing blue paint with the 5 cans of yellow that he 
had left. How many cans of blue should he use? 

This, too, is a traditional proportion problem. Why is a proportion 
model used here? What would happen if we tried using another model? For 
example, we might suggest that since Tom is using 2 more cans of the 
yellow paint, he should also use 2 more cans of the blue and mix the 5 
yellow cans with 8 blue cans. If we tried this hypothetical alternative 
answer, we would either obtain the same green and affirm our hypothesis 
about the mathematical model that fits this context, or obtain a different 
green and know that our hypothesis was refuted and we should try a better 
fit. Having some knowledge about the phenomenon of mixing colours, we 
know that the additive model will fail to satisfy the prediction. 

What is this a case of? The mixing colors situation is a scientific 
phenomenon in which the behavior of the paints is dictated by the relevant 
science. Figuring out what model to use requires familiarity with this 
phenomenon. Indeed, Tourniaire (1986) found that only 37% of the 
elementary school children he tested on a Paint Problem succeeded in solving 
it, in comparison with 60% who succeeded in solving an Orange Juice 
Problem, in spite of the fact that both problems dealt with mixtures. He 
concludes that perhaps it is not simply a matter of familiar context, but 
rather a matter of familiarity with the use of ratios in the context.  

The Eel Problem should also fall in the same category of scientific 
phenomena. There are biological rules that model the connection between 
the length of eels and their feeding habits. Assuming that the proportion 
model is not a wild invention of the problem composer, further observations 
can support or reject the problem solver's predictions. It should be noted 
that this process is not always simple. Sometimes a given list of observations 
might fit several different models, and the model needs refinement by more 
observations. Sometimes a model might fit for a range of conditions but fail 
in others. Greer (1993), for example, suggests that in baking recipes, even 
though in normal daily use a proportion model helps calculate ingredients 
for different sizes of cake, this model might fail when very large quantities 
are involved.    

Concluding Remarks 
With the goal of promoting modelling as an integral part of the school 
curriculum, children and teachers need to know more about the meaning of 
modelling and the roles of mathematics. Our theoretical analysis can be 
relevant for working with teachers on changing their conceptions and for 
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curriculum writers, who can design a sequence of modelling tasks that takes 
this analysis into account. 

The analysis has led us to identify different sources for deciding what 
mathematics can be used in modelling and mathematizing a situation, 
showing that these sources depend on the problem context. Specifically, in 
problems that involve social or moral behavior, the problem solver has the 
freedom to decide upon criteria or norms for applying a mathematical 
model, and then choose a model that fits these criteria. The role of 
mathematics lies solely in suggesting a repertoire of models and thereby 
giving problem solvers tools to come up with possible and reasonable 
criteria. Then it provides the solvers with calculation tools to realize their 
decisions.  

In cases such as the Lottery or Shoe-Sale Problems, problem solvers can 
suggest a wide range of money-splitting strategies. From a mathematical 
point of view all these solutions have the same mathematical status. The 
solutions offered by Koirala are good, but cannot be said to be better than all 
the so-called alternative solutions offered by his students. Moreover, this is 
true not because in reality these alternative solutions would be acceptable, 
but because from a modelling perspective these solutions are not inferior 
mathematically.  

In problems that involve a scientific situation (e.g., mixing paint), the 
source for the mathematical model lies in the phenomenon itself. The 
problem solver is constrained by the relations between the involved 
variables and by observations of how the phenomenon is realized. 
Sometimes there are several possible models that might fit the situation, but 
this is where the solver's freedom ends. The good news is that fitting a 
model to a given situation, at least in real life, can serve as a prediction and 
can be tested. 

This means that in cases such as the Fish Food, Eel Food or Paint Mixture 
Problems, the source of the model is in the phenomenon itself; therefore, if 
we want children to apply a mathematical model in a situation of this kind 
they should either be familiar with the behaviour of the phenomenon (as is 
true for some children with regard to mixing paints), or get enough 
information from which they can deduce it. If such relevant data is missing, 
the use of problems such as the Eel Food Problem in diagnosing children's 
knowledge might lead to "Ill diagnosis"… 

The use of relatively simple and traditional problems in this article 
allows us to make some remarks on the issue of realistic considerations and 
instructional goals. Often the avoidance of realistic considerations in 
traditional problems is legitimized by classroom goals and their 
corresponding norms. Traditional problems are viewed as an opportunity to 
teach specific mathematical concepts and therefore children are expected to 
use certain mathematical schemes without too many deliberations. In 
contrast, modelling problems focus on developing modelling skills 
encouraging a realistic attitude towards problem situations.  

Hopefully, our analysis has shown that this dichotomy between 
traditional problems and modelling problems does not hold even if the two 
types of problems have different goals. Through the divergent examples we 
have tried to demonstrate that the avoidance of realistic considerations is 
problematic not because things work differently in real life, but because of 
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the meaning of fitting a mathematical model to a given situation and the 
roles that mathematics plays in different situations. These meanings and 
roles hold for traditional problems as well as modelling problems and 
should not depend on their goals.   

Mathematics plays important roles in problem solving, but its roles are 
different and the limitations and nature of its authority should be 
understood. Following this realisation, our next goal is to design instruction 
that will promote teacher and student understanding of these roles and 
what they mean in terms of constructing and solving problems.  While the 
examples in this article were mostly simple word problems, the designed 
tasks can combine the goal for developing modelling skills with the goal for 
understanding the roles of mathematics leading to the construction of 
modelling tasks beyond the low hanging fruit, to use Galbraith's (2007) 
expression. 
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