
During the last decades of the twentieth century, changes in school curric-
ula have resulted in proof-free or proof-lite curricula. This article argues

that proof is, and should be seen to be (and that is another issue), a central
component in the school curriculum — from at least the middle of the
primary years and upwards. It identifies proof with problem solving, logical
argument, explanation, and meaningful learning. The article includes exam-
ples of proofs, and sub-proofs, such as that is irrational. 

Proof has always been central to research mathematicians. It is the engine
that has driven historical developments in mathematics, that vast body of
knowledge with roots in the folk traditions and earliest historical records of
ancient civilisations. For many centuries proof—specifically the classic geom-
etry proofs of Euclid—was a staple of school mathematics. Why? Traditionally,
through the primary years, the broad aim of the school mathematics curricu-
lum was to prepare for secondary mathematics study, and to help students
learn to handle the everyday demands of everyday life. Then, through second-
ary school, the broad aim was to prepare students for university study of
mathematics, and to use school mathematics in other university subjects and
in specialist vocations. Proof, albeit often confined to the geometry curricu-
lum, was then a natural part of secondary preparation for further
mathematical study, even though it might have no simple use in everyday life,
or in most forms of paid work. At least it was, outside of clear thinking lessons
in English (or similar venues for rigorous argument), an important place that
school students experienced a “nice knock-down argument” (such as
appealed to Alice’s acquaintance, Humpty Dumpty in Carroll, 1971/1960
edition chapter VI 'Humpty Dumpty'). 

Through the last quarter of the twentieth century, or slightly longer, proof
in school mathematics has been an oddity, a fossil survivor (where it has
survived) like the coelacanth and the horseshoe crab. With changes in the
school curriculum, recent generations of school students and school teachers
have experienced (mainly) proof-free mathematics. 
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Proof in the Victorian Curriculum

Consider, for example, the Victorian Essential Learning Standards (VELS)
Discipline-based learning strand: Mathematics. Within the Dimension (curricu-
lum sub-section) Working Mathematically, at Level 4 (to be achieved by the
end of Year 6) standards, we find:

Students develop and test conjectures. They understand that a few successful

examples are not sufficient proof and recognise that a single counter-example

is sufficient to invalidate a conjecture. For example, in:

• number (all numbers can be shown as a rectangular array)

• computations (multiplication leads to a larger number)

• number patterns (the next number in the sequence 2, 4, 6… must be 8)

• shape properties (all parallelograms are rectangles). (VCAA, 2008, p. 25)

Apart from this interesting example, where the emphasis is actually on
disproving a conjecture, the word “proof” does not appear below Level 4, and
has no substantial mention in Levels 5 or 6 (ending around Year 10, before
the post-compulsory specialist secondary years): it is mentioned, but with no
examples! Similarly, a search of the related Progression Points (an online
curriculum, assessment and reporting resource used in Victoria) finds the
words “proof” and “conjecture” being used, but with little illustration by
example.

A related interesting example, for the key word “conjecture”, occurs in
Level 6 (to be achieved by the end of Year 10) Working Mathematically:

At Level 6, students formulate and test conjectures, generalisations and argu-

ments in natural language and symbolic form (for example, ‘if m2 is even then

m is even, and if m2 is odd then m is odd’). They follow formal mathematical

arguments for the truth of propositions (for example, “the sum of three

consecutive natural numbers is divisible by 3”). (VCAA, 2008, p. 37)

It is very interesting to see the example-conjecture ‘if m2 is even then m is
even, and if m2 is odd then m is odd’, as this is a crucial Lemma in a proof of
the irrationality of the square root of 2—a very important conceptual exemplar.

An exhaustive and creative search of the Victorian Progression Points can
actually uncover a reasonably large curriculum for Proof. For example, as
early as Years 1 and 2, working towards the completion of Level 2, we find in
Working Mathematically [WM]:

WM: 1.25 — Students select appropriate materials and diagrams to model and

describe mathematical ideas and test simple conjectures. They use basic math-

ematical facts and symbols to describe their thinking when solving problems. 

WM: 1.5 — Students test simple conjectures by transferring known facts to

unfamiliar situations using examples of objects, patterns, shapes and numbers.

They use the calculator and describe how they use it to explore numbers and

solve simple equations and problems. 
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WM: 1.75 — Students test simple conjectures by describing examples and

counter-examples using materials, diagrams and models.

Ideas of “proof” (indicated by “describe their thinking”, and “test simple
conjectures”) or a convincing argument are implicit here, and in other
Dimensions, in the explanations of how a problem has been solved, the
discovery of a counter-example, the recognition of a pattern, or the logical
sequence of definition and concepts, notation and process used in some
multi-step computation. The catch is that neither the teachers nor the
students are likely to recognise any of this in terms of the word “proof”. That
is, a Proof sub-curriculum does exist within the larger Victorian mathematics
curriculum, but it lacks explicit labelling that makes it coherent, and visible.
For example, Working Mathematically has the Progression Point:

WM: 5.75 — Students follow a formal mathematical argument of several steps

presented by the teacher, such as Pythagoras’ theorem.

Here, even though a major theorem is named, are students to experience one
or more formal proofs of the theorem, or just the algebraic-computational
and measurement uses of it?

Proof in the New South Wales Curriculum

The New South Wales syllabus is an interesting comparison (Board of Studies,
NSW, 2007). In the sub-syllabus for Space and Geometry, in Stage 4 (to be
achieved by the end of Year 8), we find, for example:

SGS4.3 — Triangles: prove, using a parallel line construction, that the interior

angle sum of a triangle is 180º;

SGS4.3 — Triangles: prove, using a parallel line construction, that any exterior

angle of a triangle is equal to the sum of the two interior opposite angles.

Elsewhere in the NSW syllabus we find in the Background Information (to
guide teachers implementing the syllabus): “Memorisation of proofs is not
intended. Every statement or theorem presented to students to prove could
be confirmed first by construction and measurement” (Board of Studies,
2003, p. 159). This is interesting; but it is unclear what can be proved by the
specific example that results from a “parallel line construction”: a construc-
tion is different from a schematic sketch. Similarly, it is unclear how physical
constructions and measurement can aid with the conceptual generalisation
that is the essence of a “proof”. Further exploration of the 7–10 NSW syllabus
finds an extensive sub-syllabus of Proof, in mid-secondary—but exclusively
concerned with geometry, of the formal Euclidean kind. This has traditionally
been the case in North America: much of the secondary curriculum is
compartmentalised into subjects: Algebra, Trigonometry, and Geometry—
only the last with any explicit attention to proof. 
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By contrast, even though it wears a disguise, the Victorian curriculum for
Proof, albeit expressed not as “proof” but in terms of problem solving, reason-
ing, logic, making and testing conjectures (and so on), begins early, and
ranges across all the topics in the curriculum, not just geometry. Hidden, or
not, that Proof is so central in the current Victorian curriculum is a credit to
the curriculum designers—but is that how Victorian teachers see it or are the
richer challenges of Working Mathematically neglected, the better to concen-
trate on the more familiar teaching of Number, Measurement, and other
seemingly stand-alone sub-curricula (referred to as Dimensions, in the
Victorian system)? That Working Mathematically is supposed to apply to all
the other Dimensions tends to lose emphasis, because although it is meant to
be ubiquitous, it is in the background of other focal Dimensions. 

Hence I suggest that, as seen in these cases of the Victorian and NSW
curricula, proof, as a sub-curriculum, does exist; but it is either concealed, or
appears only in Geometry, and only as an important topic in mid-secondary,
and beyond. We can quantify the NSW focus on Proof. Across 11 years of
primary and pre-Year 11 secondary, perhaps three of the years include Proof
—only in Space and Geometry, one of five strands. Within Space and
Geometry, Proof appears only in some of the topics, such as Deductive
Geometry. Overall, out of the NSW compulsory school syllabus, rather less
than 3/55 is identifiable as Proof—not more than one-twentieth of the
syllabus! Is this proof-lite?

But should this be the case? What is proof? And why is it educationally
problematic? We might think that, given centuries of school tradition, proof
is fundamentally concerned with Euclid and formal geometry. Against this, I
argue that a stronger, less limiting, more general view sees proof as what we do
whenever we present a logical argument for something (or against something).
We can even be proving, using logic, in contexts other than mathematics,
such as in Law (e.g., du Sautoy 2008, p. 233), the sciences, or even in history.

The English word “proof” has several meanings. Here I will set aside the
misleading proverbial alternative usage: “The proof of the pudding is in the
eating”. Here “proof” means only “test”: we taste the pudding to test that it is
edible. This is also equivalent to a “trial”. This meaning of “proof” is equiva-
lent to the cognate words “probe” and “probity”. Legally, the conclusions of a
court trial are based on acceptable evidence—physical experience and
personal reporting—provided by witnesses and forensic science. By contrast
in mathematics when we prove something we usually do not rely on physical
evidence or witnesses’ reporting. Instead we ensure that every step of the
argument is logically sound. A mathematical proof is only partly like a court
trial—it is partly a test of the logic. The mathematician’s proof is more than
just a test or trial of the logic used in the argument. It also tests the rightness
of the assumptions, or clarity of definitions (as explored by Lakatos: 1976),
that begin the argument. (The conclusion reached at the end of a proof is
sometimes referred to as a “theorem”. Basic assumptions made at the begin-
ning of a proof may be referred to as “axioms”. The words, or concepts
announced at the beginning of a proof are usually called “definitions”. I
mention these technical terms for completeness.)
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I must stress that mathematical proof is not simple, philosophically. I refer
the reader to Jaquette’s encyclopaedic exploration in Philosophy of Mathematics
(2002) and to Lakatos’ pioneering analysis (1976). Nor is mathematical proof
simple, educationally. I refer the reader to Proof: International Newsletter on the
Teaching and Learning of Mathematical Proof, and to Flener (2001) for an
account of an educational experiment in the 1930s based on the explicit use
of mathematical and other proof in a school curriculum, and its life-long
impact on the students in the experiment.

In considering school mathematics, for simplicity and brevity and to
emphasise what I believe is the general importance of proof (whatever this
may be philosophically, and however it may be implemented educationally),
I will adopt a generic sense of “proof” and “proving”, and omit more rigorous
and potentially controversial details. Hence, for example, we are proving
when we ask, as MacNeal does, why does 2 × 2 = 4? MacNeal’s discussion leads
to his “Proposition 15: Until you work it out for yourself, two times two makes
four only because the teacher says so. You have to do multiplication before you
can understand what it means” (MacNeal, 1994, Chapter 11). Similarly we are
proving when we read and make sense of Paulos’s exploration of the connec-
tions and slippages between contextualised natural languages and formal
mathematics, and especially symbolic logic (Paulos 1998, Chapter 3). Also we
are proving when we consider Devlin’s compelling arguments for a newly
emerging “soft mathematics”—a form of mathematics which retains aspects
of rigour while being embedded in natural language, and in a purposeful
human context. A rigorous axiomatic approach runs the risk of breaking
down, or becoming so highly technical that it is unusable: but if this occurs,
common sense interpretations and informal arguments will fill the gaps
(Devlin, 1997, p. 282). We can even be proving when we play a logic game (e.g.,
Layman E. Allen’s neglected Wff N’ Proof or Queries N’ Theories, Allen, 1962).

Leaving aside these complications, we are proving whenever we start with
(mathematical) definitions and a (mathematical) question, and pursue the
logical consequences of this beginning with as much clarity as we can, so we
reach conclusions that are objective and compelling—for ourselves and our
audience. This is a reason-based (rather than experience-based or physical-
evidence-based) logic-managed version of general curiosity and reasoning.
Since it uses logic, this kind of curiosity does not apply to the creative emotive
Arts or Humanities; but proof as part of mathematical thinking applies to all
subject-areas that are, or aspire to be, objective and evidence-based, as well as
logic-based. Proving is another example of mathematics being applicable
across the curriculum!

In our ordinary mathematics classrooms we will be proving whenever we
or our students ask the questions: “What does this mean?” “What does it not
mean?” and “Why is this true?” School students should be asking these ques-
tions purposefully—to learn! 

If proof is understood in my generic way as a convincing logical argument,
then proof is virtually identical to reasoned problem solving. Ever since An
agenda for action: Recommendations for school mathematics of the 1980s (NCTM,
1980) problem solving has been accepted as an identified crucial component
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of any school mathematics curriculum, at any year-level. In my generic sense,
with a strict emphasis on logic, proof is equivalent to, or part of Polya’s classic
fourth stage of problem solving: Check (Polya, 1945). I have also argued that
learning is essentially what we do when we are problem solving (Gough,
1989). This suggests that if we accept that problem solving is central to school
mathematics, then so is proof, as a form of problem solving and mathemati-
cal argument—and learning!

John Mason also sees proof as an aspect of communication—convincing
someone:

The word proof is off-putting for many, perhaps because it has a sense of

certainty or finality: once something is proved there seems to be no going back.

I find it helpful to think in terms of convincing yourself, then convincing a

friend, and then convincing a very sceptical ‘enemy’ who looks for every possi-

ble little gap that you might have overlooked. (1998, p. 4)

Incidentally, a proof need not be a verbal sequence of argument state-
ments: it could be a diagram that shows the argument. For example, the limit
of the infinite addition of fractional powers of 2, namely, 

Why? We can “see” this is true because of the visually obvious way the 
unit square contains an infinite sequence of successive halvings (as shown 
in Figure 1). As the ancient Hindu mathematics textbook by Bhaskara 
(circa AD 1150) said about the classic diagrammatic proof of 
Pythagoras’s theorem: “Behold!” (end of argument); see, for example,
www.scribd.com/doc/40860/The-Pythagorean-Theorem-a-Wonder-for-all-Ages.

Figure 1. A traditional diagrammatic proof that 

Unfortunately, no easy visual diagram can prove the following amazing
series, that can be proved by integration (Pedoe, 1958, p. 133): 

Despite its geometric connections, what diagram could possibly represent π?

1
1
2

1
4

1
8

1
16

= + + + + …

1
1
2

1
4

1
8

1
16

= + + + + …

π
4

1
1

1
3

1
5

1
7

1
9

1
11

= − + − − − + …
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Why is proof educationally and mathematically
problematic? 

In part, the removal of proof from the school curriculum is due to the over-
crowded curriculum versus the information explosion. In part, it reflects the
perceived intellectual difficulty of teaching and learning about proof. In part,
it is also due to concern that proof was misunderstood by many students as a
matter of merely memorising steps in a standardised formal argument, rather
than as a fluid exploratory process. The more the curriculum (in all subject
areas) emphasised the importance that students understand what they learn,
the less value was placed on students memorising technical vocabulary, defi-
nitions, formulas, and mechanical computation processes. In the final stage
of Year 12 students were allowed to attend examinations with a sheet of
summary notes and formulas: previously this would have been forbidden and
all examination answers would have to be based on memorised knowledge.
Being able to repeat a formal proof (e.g., for Pythagoras’ Theorem, or to
differentiate from first principles) from memory under exam conditions was
no longer required: being non-examinable, did students need to experience
such proofs at all?

In 1984, the Fredkin Foundation, established by Edward Fredkin, an arti-
ficial-intelligence expert at MIT, announced a prize of $100 000 for the first
computer program to make a mathematical discovery—a major new theorem
based on mathematical ideas not implicit in the program that discovers it.
(Gardner, 1996, p. 39). As far as I know, the prize for a computer-created new
theorem has not yet been claimed. Computers have been used to assist
humans construct massively complicated proofs: du Sautoy’s fascinating
discussion of symmetry (or group theory) repeatedly refers to the extensive
use of calculators and computers to support human reasoning (2008; e.g., pp.
38–139, 144–146, 306, 312). 

In my view, we should not be too worried about the increasing role of
computers in supporting proofs. Some extreme writers claim this means we
have reached the era of the “Death of Proof” (Horgan, 1993). Computers, for
example, were essential experimental testing tools in the celebrated proof of
the famous Four Colour Theorem, that only four different colours are needed
on a flat map so that each country can be given a colour, without sharing any
part of a border with another country which has the same colour. It is unlikely
that humans could have completed all the tests of different colouring possibil-
ities needed to prove, or verify that, this theorem holds, for all mathematically
different configurations of countries. Whether the computer made a proof, as
such, or only verified the truth of the theorem, is discussed in Jaquette (2002,
pp. 167, 193–208, reprinting a 1978 discussion by Appel & Haken).

Obviously a human programmed the computer that tested these configu-
rations. In my experience, constructing a computer program is essentially the
same mathematical task as constructing a proof: manipulating the defined
program commands and logical rules of syntax to obtain a demonstrable
result, rather like a theorem. Until computers can program themselves, and
create their own programming language, we can be assured that proof is alive
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and well as an essential part of at least some research mathematicians’ and
computer programmers’ professional activities. Hence, it deserves active
attention in school classrooms. 

We currently have a mathematics curriculum that is largely proof-free (or
light), and a professional body of active mathematics teachers who may them-
selves have studied little, if anything, about proof, at primary or secondary
school levels. At the end of the first decade of the 21st century, any discussion
of proof by, or for, school teachers must begin with a careful personal analy-
sis of what each teacher already knows about proof, possibly teaches about
proof, or recalls studying about proof during school and university mathe-
matics learning: When was the last time you proved something? When you
were a student at school, were you ever required to prove anything? Have you
ever proved anything, mathematically speaking, in your life? I ask these ques-
tions because I believe proof is important. Hence, all mathematics teachers
and students should be exposed to ideas of proof and proving. Others agree
with this (e.g., Mason, 1998; Mason, Burton, & Stacey, 1982).

However, despite the upheavals of the New Math, de-emphasis of memo-
rising, refreshed emphasis on problem solving, dilution or elimination of
formal study of (Euclidean) geometry, introduction of more statistics and
probability, and the widespread use of calculators and computers, the broad
content of the existing school curriculum (which contains minimal or no
proof) has not changed much since the 1960s, and earlier. 

Consider examinations, and memorising: it is interesting that important
explanatory terms in the constructivist theory of learning are “internalisa-
tion”, “automation” and “encapsulation” (e.g., Gray & Tall, 1994). Having
students memorise meaningfully is a constructivist’s ally: by memorising
students conceptualise—“internalise”. Exam preparation also helps students
form higher-level conceptions that encompass separate conceptions or
skills—“encapsulation”. Requiring students to perform fluently and rapidly
within the time-limit of an exam is a stimulus for fast practice—“automation”.
Notoriously, memorising for an exam is widely believed to last only for the
duration of the exam. Yet surprisingly often the strangest things memorised for
exams stick in our minds. This is particularly so when they are made interesting
and meaningful, a related diagram is visually striking, or a step in a calcula-
tion is breathtakingly sneaky (ingenious) or elegant (witty and/or aesthetic). 

Consider fitting together two copies of the staircase made by an arithmetic
sequence. To make a formula for the sum of one staircase, who would guess an
easy way is to solve it for two (see Figure 2). Who would guess another easy
way is to proceed by adding pairs of terms of the staircase from each end of
the staircase—a pincer attack!

As a simple geometric context, for exploration and proving as reasoning
and generalising, consider my concept of “Hole Numbers” (Gough, 1978). A
hole number is whole number which can be represented by a rectangular
array of dots, except that at least one dot is missing from inside the complete
boundary of dots. For example, 12 is a hole number, because it can be repre-
sented by a 3 × 5 rectangular array of dots, with three dots omitted from
within the array. (Draw the diagram!)

50

A
us

tr
al

ia
n 

S
en

io
r 

M
at

he
m

at
ic

s 
Jo

ur
na

l 2
4
 (

2
) 

2
0
1
0

G
ou

gh



What is the smallest whole number you can find which is a hole number? 

What are the first ten hole numbers? 

How many hole numbers are there?

What is the largest whole number which is not a hole number? 

Similarly, consider plug-hole numbers, where only one hole is allowed, and it

must be at the geometric centre of the rectangle. 

Consider fence numbers, the set of hole numbers which consist only of boundaries.

Shortly after students encounter square roots they may be ready to grapple
with the formal proof that some square roots cannot be expressed exactly as
fractions, finite decimals, or infinite recurring decimals. Unless students
experience this proof, they face a version of MacNeal’s Proposition 15: Until
you see the proof for yourself, root-two is irrational only because the teacher
says so. You have to do proof before you can understand what it means
(adapted from MacNeal, 1994, p. 290.) The distinctions and relationships
between fractions, finite decimals, and infinite recurring decimals is a rich
topic for exploration.

The initial discovery that the square root of 2 cannot be exactly repre-
sented as a ratio of two whole numbers led to an intellectual crisis in
mathematics in Ancient Greek times. The method of proof, involving argu-
ment by way of contradiction, is not too difficult for confident upper secondary
students to grasp. However, we should expect that many students will not
understand the complete idea the first time around. This proof is worth revis-
iting every year, being aesthetically lovely to behold, as is Baskhara’s implicitly
algebraic proof of Pythagoras’s Theorem, which uses a diagram of a
hypotenuse inner-square inside a larger square made with four other trian-
gles: consider these two alternatives (see Figure 3).
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Figure 2. The rectangle made by fitting together two stair-case “triangles”: 
the sum of n terms of an arithmetic sequence.



Theorem: The square root of 2 is irrational 
— proof by contradiction

Without including all the algebraic steps, we begin by making the deliberate
assumption that the square root of 2 can be expressed as a fraction, such as

with m and n positive whole numbers, with no common factors: 

Squaring both sides gives:

This means that m2 is an even number. 
We detour slightly to prove the lemma (a minor or subsidiary supporting

theorem) that if m2 is even, then m must be even. That is, there is a positive
whole number P that satisfies the equation m = 2P. Hence 2(n2) = 4(P 2). We
divide both sides by 2, and find that: n2 = 2(P 2). This means that n2 is an even
number, and n must be even.

But that is a contradiction: n and m are both even, contrary to our initial
assumption. The only way to avoid reaching this logical contradiction is to
reject our initial assumption: namely, the square root of 2 can not be
expressed as a fraction, such as 

with m and n positive whole numbers, with no common factors. When this
occurs we say that such a non-fraction-expressible number is irrational. QED:
quod erat demonstrandum — Latin words, meaning, “which was to be proved”,
but often glossed, sarcastically, as “quite easily demonstrated”—sarcastic,
because in the eyes of some students this argument has been far from easy.
But just follow the ideas and the steps, logically: it is, aesthetically, a beautiful
proof, with the possibly stunning result that some numbers are very different
from whole numbers, or simple ratios of whole numbers.

Given a proof of any particular statement it is often hard to think of other
statements that could be suggested, and either proved or disproved. It helps,
then, to offer a range of statements, indicating possibilities for further question-
ing and conjectures. For example, now that we know we can prove that is
irrational, so what? Where could this lead us? Easily enough, perhaps, we
could move to the next number, and ask whether is irrational? (The irra-
tionality of the cube-root of 3 is proved in Gough, 2009). Of course is not
irrational. Where next? What numbers can be proved to be irrational? Can we
construct a general proof?

Similarly, what other numbers can be shown to be rational or irrational?
We can, for instance, prove that log102 is irrational. (I refer curious readers to
Johnson & Rising, 1972, pp. 324–325). It is hard to identify other numbers
whose irrationality might be tested. The fundamental number π can be shown
to be irrational, but the proof would challenge most university mathematics
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graduates (Spivak, 1967, pp. 277–280). Spivak also includes a proof that the
logarithmic constant e is transcendental (pp. 362–368).

This method of proof—by contradiction—is notoriously harder for
students to grasp than direct proof. An easier example of proof by contradic-
tion is demonstrating Euclid's proof that there are infinitely many prime
numbers. Moreover, there are other methods of proof that cannot be consid-
ered here, such as proof by (mathematical) induction (not to be confused
with scientific induction, as a method of developing an evidence-based gener-
alisation).

When we solve a problem we do something (e.g., draw a diagram, manip-
ulate a spreadsheet, zoom in on a graphed function, fiddle with some algebra,
make numerical calculations) that convinces us (as Mason, 1998, says) that we
have answered a question about which we were initially uncertain. But would
anyone else believe you? You need a proof!

Centuries ago proof was a geometric demonstration based on Euclidean
ideas. Nowadays a proof is often a string of algebraic statements, linked by
logical inferences, beginning with scrupulously defined terms and rules,
possibly based on axioms. Outside the realms of abstract senior secondary
and undergraduate curricula, and technical research mathematics, a proof is
a story that persuades other people and one’s self that some claim is mathe-
matically correct. 

Conclusions

Conceptual understanding depends on logic, albeit, possibly simple, or natu-
ralistic, or naïve human logic. Consider the reasoning from first principles
needed to answer this question:

You have three coins. One is double-headed. One is double-tailed. One is an

ordinary head–tail coin. All the coins are “fair” or unbiased in the way they fall.

You choose one of the coins, randomly, and toss it. The coin lands heads

uppermost. What is the probability that the other side of the coin is a tail?

(Adapted from Donaldson, 1978.)

If you learn mathematics by understanding the reasons for what you know,
and do, then you are experiencing proof. Where you do not have proof, you
have rote learning—learning something without being able to meaningfully
explain it or connect it sensibly with other existing knowledge (see Gough,
2004). If you have not taught a proof, you have taught by rote. It is as simple
as that, and a central, necessary thread throughout the mathematics curriculum!
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