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In Volume 23(2) of the Australian Senior Mathematics Journal, Boncek and
Harden present an exercise in fitting a Markov chain model to rainfall data

for Darwin Airport (Boncek & Harden, 2009).
Days are subdivided into those with precipitation and precipitation-free

days. I will abbreviate these labels to wet days and dry days. It is suggested that
a 2 state Markov chain model may be suitable for modelling the pattern of wet
and dry days. 
1. As a first attempt, the data for calendar year 2008 are used to fit the

transition probabilities. The model is tested by using the stationary
distribution of the Markov chain to predict the number of wet and dry
days in the period 1999–2008. A chi-squared test is used to compare the
predicted numbers with the actual numbers and this test suggests the
model is not reliable. 

2. The data are examined in more detail and it is found that 2008 was an
unusually dry year. As a second attempt, the transition probabilities are
refitted using the two years’ data 2007–2008. The numbers of wet and
dry days for 1999–2008 are again predicted and compared to actual
data via the chi-squared test, this time finding no significant variation. 

The conclusion made is that for the second attempt, “this forecast model
works” (Boncek & Harden, 2009, p. 14), while the first attempt did not work.

Relevance to Australian High School Curriculum

Markov chains appear in the Mathematical Methods (CAS) subject and the
Specialist Mathematics subject in Victoria (VCAA, 2010), the Mathematics C
subject in Queensland (QSA, 2008) and are mentioned in a draft future
syllabus for the Mathematical Methods subject in South Australia (SACE
Board of SA, 2010). Markov chains do not currently appear in the draft
Australian Senior Secondary Curriculum (ACARA, 2009). Where they do
appear in state syllabi, generally, they are introduced as an example of an
application of matrices without discussion of methods of assessing the good-
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ness of fit of the model. Hence, in the Australian context the type of model-
ling exercise described by Boncek and Harden is probably more suited to the
tertiary education sector.

Use of the chi-squared test

The chi-squared test employed by Boncek and Harden is usually encountered
when dealing with a multinomial random variable. For example, there may be
n independent trials each of which can result in one of r outcomes with r ≥ 3,
and we are attempting to verify whether the number of each outcome
observed from n trials is consistent with a model that proposes the probabil-
ity of each outcome occurring. The relevant chi-squared random variable has
r – 1 degrees of freedom, which is at least two.

If there are only two possible outcomes for each trial, a chi-squared test
with only one degree of freedom is still technically valid, but is unnecessarily
complex. The underlying random variable is now simply binomial, so there is
a simpler way to test the hypothesis. 

Considering Table 8 of Boncek and Harden’s paper (2009, p. 13), the
hypothesis is that the number of dry days has the binomial distribution
Bi(3653, 66.58%) and we are testing whether an observation of 2416 dry days
is consistent with that. Employing a hypothesis test with the binomial random
variable —or by employing the Central Limit Theorem to approximate it by
a normal random variable—might bring the example within the range of
understanding of more students than does use of the chi-squared test.

To view this issue from a different perspective, a chi-squared random vari-
able with n degrees of freedom arises from summing the squares of n
independent normal random variables. Hence, a chi-squared random vari-
able with 1 degree of freedom is simply the square of a normal random
variable. As a rule of thumb, if you find yourself using a chi-squared test with
only one degree of freedom, consider whether there is a simpler way to view
the problem.

Checking the hypothesis with overlapping data

The type of hypothesis test employed to test the goodness of fit of the model
assumes the data being used to test the model is independent of the data used
to fit the model. Here the model was first fitted with 2008 data and then
tested against a 10-year set of data that included 2008. It was then refitted
using 2007 and 2008 data and tested against a 10-year set of data that included
both years. We would naturally expect the second model to more closely fit
the 10 years of data since there is greater overlap, but there is nothing in the
hypothesis testing process that demands a higher degree of coherence in the
results before classifying the model as acceptable. 

The Markov chain model is complex, so perhaps a simpler model might
clarify the problem here. If we were to estimate the number of dry days in the
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10 years 1999–2008 by using p1, defined as the proportion of days in 2008 that
were dry, we might expect the estimate to be moderately good. If we do it
using p2, the proportion of days in 2007–2008 that were dry, we would expect
a better estimate. However, if we estimate the number of dry days in the 10
years 1999–2008 by using p10, the proportion of days in that 10 years that were
dry, we get exactly the right answer. It would then not be appropriate to test
the fit of the model by using a hypothesis test that assumes the number of dry
days in 1999–2008 is a binomial random variable with distribution Bi(3653,
p10), since that number is not a random variable at all. It is a fixed number
that was used to fit the parameter p10.

If however we were suggesting p10 was useful for wider time periods, we
could test this by using data from a different set of 10 years, such as
1989–1998.

Returning to the proposed Markov chain model, to test whether the model
fitted using 2007–2008 data is appropriate, we would need to use data that
includes neither 2007 nor 2008.

Inappropriateness of the Markov chain model

Markov chains as considered here have the time-homogeneous property,
meaning that the transition probabilities are constant over time. It is possible
to develop Markov chains that do not have this property but they have fewer
interesting mathematical results. Most of the nice results about Markov chains
require the time homogeneous property, so usually an unqualified reference
to “Markov chains” means those that have the time-homogeneous property.
(For similar reasons, it usually also means they have a finite number of states.)

In their “What went wrong?” section, Boncek and Harden suggest that
their first attempt at fitting the model failed because the transition probabil-
ities were not constant, with 2008 being a particularly dry year. They then refit
the model using 2007–2008 data, giving parameters that more closely match
the 10 year average and conclude this Markov chain model is appropriate.
This misses the major reason that the Markov chain model is not appropriate,
which is that the transition probabilities vary enormously within each year. 

Darwin, being in the tropics, has two seasons, wet and dry. From May to
October, if it was dry today it will almost certainly be dry tomorrow, because
almost all days in this range are dry. For 2008 there were 178 dry days in these
months and in 175 cases they were followed by a dry day. From January to
March, if it was dry today there is a significant chance it will be wet tomorrow,
because there are many wet days from January to March. For 2008 there were
23 dry days in this period and 13 of these were followed by a wet day.

Another way of viewing this problem is to imagine using the fitted Markov
chain to run a simulation of wet and dry days for the next 10 years. Within
each calendar year the simulation would tend to spread the wet days evenly
across the year, where as in practice the wet days should be clumped in the
wet season.
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What really went wrong?

There are two possible perspectives here, and I am unsure which the authors
intended.

The first perspective is: “We’re teaching Markov chains. Let’s pick an inter-
esting set of data, fit a Markov chain and then talk about how to test whether
it’s a suitable model.”

In this perspective, the test Boncek and Harden apply is not sufficiently
specific. The Markov chain model makes predictions about the pattern of wet
and dry days. It says they are uniform across the year. The test only looked at
the total number of dry days for a certain number of complete years. Even if
the model correctly predicts the number of dry days over 10 years, it is still an
inappropriate model since it doesn’t correctly predict the clumping of wet
days in the wet season. 

No detailed calculations are required to reject the model. A time line
showing the actual and predicted pattern of dry days over various calendar
years will suffice to demonstrate that the model is not capturing the seasonal
pattern of Darwin rainfall.

The second perspective is: “The aim is to predict the number of dry days
at Darwin airport next year. Would a Markov chain model give a good
answer?”

In this situation some people may argue that a model that incorrectly
predicts the distribution of dry days across the year might still be useful if it
accurately models the total number of dry days in the year. I find this uncon-
vincing. Ockham’s razor seems relevant here. If the aim is only to estimate the
total number of dry days in a year, the logical starting point is to average the
number of dry days in the years from recent history. There seems no obvious
reason to build a model that predicts the pattern of dry days within the year
if we only seek to estimate the total number of dry days.

However, if the task is to estimate the distribution of the number of dry days
that will occur next year, a more detailed model may be appropriate. For
example, a first glance at the data suggests that the arrival of the wet season
might vary by a week or so from year to year, so it may be useful to build a
model of the start date (and end date) of the wet season.

What type of calculations could justify a 
Markov chain model?

Continuing the above idea, might it be possible to use different Markov chain
models with different transition probabilities for different seasons? To take a
simpler problem: January always falls entirely within the wet season. Could we
model the precipitation status of days in January by a Markov chain?

Appealing to Ockham’s razor, to model the number of dry days in January,
the starting point would be a binomial model that has each day in January
having a probability p of being dry, with the result of each day being inde-
pendent of every other day. By contrast, to justify a more complex model such
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as a Markov chain, we would need some evidence of serial correlation; that is,
we would want some evidence that the probability of tomorrow being dry is
influenced by whether today is dry. 

Let pD be the probability it will be dry tomorrow if it was dry today.
Let pW be the probability it will be dry tomorrow if it was wet today.
We adopt a null hypothesis that pD = pW, which would justify the independ-

ence model, and seek statistical evidence that pD ≠ pW, which would give
grounds for further investigation of a Markov chain model. 

Consider January 2008, it had 13 dry days, eight of which were followed by
a dry day (pD. = 62%) and had 17 wet days, six of which were followed by a dry
day (pW = 35%). These two percentages look quite different, but a 2 propor-
tion test finds them not statistically significant at the 5% level. So, as yet there
is no evidence to implement a Markov model rather than simply assuming the
precipitation status on each day in January is independent of every other day. 

This is of course a cop out! Since the sample size is small, if the inde-
pendence assumption is true we can still easily get very large differences
between the observed values of pD and pW, so there would need to be very
large differences between their true values for the test to fail. What we should
do is increase the sample size by collating January data for perhaps 10 years.
The extraction of data from the relevant web pages is quite tedious, so this is
left as an exercise for readers more skilled at data manipulation than I.

Existing literature

Thanks go to an anonymous reviewer and the editors for supplying pointers
to some existing literature on the topic of fitting Markov chain models to rain-
fall data. The idea of using a Markov chain for modelling wet and dry days
seems to be due to Gabriel and Neumann (1962). It is instructive to contrast
their approach to that of Boncek and Harden, and to my comments above.

Gabriel and Neumann use daily rainfall data for Tel Aviv, classifying each
day as wet or dry. A rainfall reading of 0.1mm or more results in a day being
classified as wet. They recognise that Tel Aviv, like Darwin, has a rainfall
pattern that varies over the year. They only investigated data for the rainy
season, running from November to April. Their data covers the rainy seasons
from 1923/24 to 1949/50. Even within the rainy season, they recognise the
true probabilities or rain vary within each calendar month. However, they try
fitting a model which assumes that the relevant probabilities vary by calendar
month but are constant within each month and find this gives a good fit. They
note that the fitted probabilities do not vary greatly within the mid-winter
months of December to February and further investigation leads them to
conclude that fitting a constant set of transition probabilities to the whole
mid-winter period still produces a reliable model. 

I suggested above that the first step in testing whether a Markov chain
model is suitable for modelling the pattern of wet and dry January days in
Darwin would be to test whether we can justify the simpler model of occur-
rence of rain on successive days being independent. This type of investigation
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may be within the abilities of many tertiary students.
However, with their greater knowledge of the existing literature, Gabriel

and Neumann began with the knowledge that the simpler model was unlikely
to succeed. They cite earlier studies showing that in some locations the prob-
ability that a wet day will be followed by another depends on the current
number of consecutive wet days experienced. For them the question is not
whether a model simpler than a Markov chain will provide a good fit, but
rather whether Tel Aviv may be a location where something as simple as a
Markov chain will give a good fit, when such a model is clearly not appropri-
ate in other locations. Hence they employ a different method of testing their
model’s goodness of fit. For their primary test:

“The fit of the Markov chain model is examined by testing whether the
proportions of wet days, given the previous day’s weather, are independent of
the weather two or more days earlier” (p. 93).

While the interested reader can find the details in Gabriel and Neumann’s
paper, the complexity of the test probably makes it unsuitable as a classroom
exercise other than for statistics majors.

It has been subsequently shown by Green (1964) that more complex
models can give a better fit to the Tel Aviv rainfall data. However, Gabriel and
Neumann wrote at a time when computers were not readily available. Hence,
knowing that the relatively simple Markov chain model gave an acceptable fit
was of great value, even if there were more complex models that could give a
better fit. It is interesting to note that Gabriel and Neumann explicitly refer-
ence a table of logarithms of binomial coefficients which they describe as
“indispensable” to their work!

Disclaimer

The above arguments should be read with the disclaimer that I have no skills
in meteorology. The problem has been approached solely as an exercise in
fitting a statistical model to data, with no understanding of the mechanics
behind the data. 

Modelling can benefit enormously from experts in the field. A skilled
meteorologist might be able to supply good physical reasons for adopting a
model that might not be immediately obvious to us from a mere 10 years’
data. For example, there could conceivably be a physical reason for the very
rare rain in the dry season to mostly happen as midnight rainstorms that
cause rain to be registered on two consecutive days. This would suggest the
need for a model more complex than the Markov chain model. Alternatively,
depending on the intended use of the model, it might be decided that wet
days in the dry season are so rare as to be not worth a complex model.
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