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Introduction
A major goal of the manufacturing industry

is increasing product quality. The quality of a
product is strongly associated with the condition
of the cutting tool that produced it. Catching
poor tool conditions early in the production will
help reduce defects. However, with current CNC
technology, manufacturers still rely mainly on
the operator’s experience to operate and monitor
machines to avoid defects from poor tool condi-
tions. Since operator experience can be unreli-
able, recent research has focused on integrating
a tool condition monitoring system within the
machine to allow online, real-time monitoring 
to reduce the dependence on human judgment. 

Any effective monitoring system must be
able to sense tool conditions, allow for effective
tool change strategies when tools deteriorate,
and maintain proper cutting conditions through-
out the process (Lee, Kim, & Lee, 1996).
Among the many possible machining conditions
that could be monitored, tool wear is the most
critical for ensuring uninterrupted machining.

The traditional process for predicting the
life of a machine tool involves Taylor’s (1906)
equation VTn=C, where V is cutting speed, T is
tool life, and n and C are coefficients. This
equation has played an important role in
machining tool development (Kattan & Currie,
1996). Since advanced machining was intro-
duced in the mid-1900s, various tool wear mon-
itoring methods have been proposed to expand
the scope and complexity of Taylor’s equation.
However, none of these extensions has been
successfully adopted in industry universally due
to the complex nature of the machining process.
Therefore, there have been many attempts to
explore other more promising methods for mon-
itoring tool wear online using computers and
sensing techniques (Atlas, Ostendorf, &
Bernard, 2000; Li & Tzeng, 2000; Pai,
Nagabhushana, & Rao, 2001; Roth & Pandit,
1999; Wilkinson, Reuben, & Jones, 1999).
Again, none of the in-process monitoring sys-
tems has ever been applied in any form in
industry because research is still at the estima-
tion stage; the systems are too immature to
implement for monitoring (Waurzyniak, 2001).  

Therefore, researchers saw a need to
explore an experimental and statistical approach
in developing an in-process tool wear monitor-
ing (ITWM) system. In order to accomplish this
goal, this ITWM system requires an integration
of sensing and decision-making techniques. For
any in-process machining monitoring system,
the sensing techniques are used to give the
machine the capability of “seeing” that is equiv-
alent to the human’s eyes. However, the signals
from the sensor have to be processed in order to
determine whether or not something abnormal
has occurred. The decision-making techniques
are developed for the purpose of processing the
signals from the sensors and data from other
resources to determine whether or not the
machining is satisfactory. Therefore, the deci-
sion-making techniques function like the
“brain” of machines to make them intelligent.

Studies in the past have shown that the
dynamometer sensor was much more effective
than any other sensors in the field of tool wear
(Dutta, Kiran, & Paul, 2000; Wilkinson et al.,
1999). However, cutting force is very com-
plex—it varies in different directions and varies
throughout the whole revolution of the spindle.
As a result, when tool wear occurs, it is sensible
to conduct a cutting force analysis experimen-
tally and statistically to find the cutting force
representation that best predicts tool wear. 

There is no doubt that the dynamometer is
the most effective sensor available for monitor-
ing tool wear. However, past studies of building
tool wear prediction systems have used different
decision mechanisms—either classic mathemati-
cal equations (Cho, Choi, & Lee, 2000; Sarhan,
Sayed, Nassr, & El-Zahry, 2001) or expert sys-
tems (Dutta et al., 2000; Susanto & Chen,
2002)—based on different interests. In this
study, a multiple regression approach was used
as the decision mechanism in the proposed
ITWM system.

Purpose of Study
The purpose of this study was to develop an

ITWM system using cutting force as a sensing
signal and integrating the multiple regression
approach as the decision mechanism. In order 
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to develop the proposed ITWM system, the fol-
lowing two research outcomes were expected:

1. Identify the cutting force representation
that could best predict tool wear.

2. Build and test an in-process tool wear
prediction system, which was a multiple-
regression model in this study, with the
cutting force identified from the first
task.

Architecture of In-Process Tool 
Wear Prediction System

In this study, the ITWM system that inte-
grated multiple-linear regression can be named
the multiple-linear-regression-based in-process
tool wear prediction (MLR-ITWP) system. The
input variables were feed rate (F), depth of cut
(D), and cutting force (Fc), while the only out-
put variable was tool wear (Vb).  The architec-
ture of the MLR-ITWP system is illustrated in
Figure 1.

In the MLR-ITWP system, the three inputs
entered the system as follows: both feed rate
and depth of cut were controlled and pro-
grammed into the Fadal machine, while cutting
force signals were collected through a dyna-
mometer and converted to digital format
through an A/D (analog/digital) converter. The
digitized cutting force data per revolution of 
the spindle were simplified to a representative
value, which was selected based on the force
analysis. The following section shows the exper-
imental setup for the study.

Experimental Setup
The experimental setup is illustrated in

Figure 2. The dynamometer sensor was mounted
on the feeding table of the Fadal vertical
machining center with the workpieces/tool hold-
er on top of the sensor. The proximity sensor
was mounted on the spindle and connected to a
power supply. Through an A/D converter, the
signals from both sensors were collected and
converted into digital codes on the computer. 

Hardware
Two sensors were used in the study: a

Kistler 9257B type dynamometer sensor, which
is capable of detecting force signals in three
orthogonal directions (Fx, Fy, and Fz), and a
Micro Switch 922 series 3-wire DC proximity
sensor, which is used to determine the starting
point of each revolution of the spindle in the
force diagram (see Figure 3). Together, these
two sensors were used to determine the cutting
force magnitude.

An RCA WP-703A power supply was used
to provide about 2.5V of electromotive force to
operate the proximity sensor. A Kistler Type
5010 amplifier was used to amplify the force
signals from the dynamometer to the maximum
of 10V. An Omega CIO-DAS-1602/12 A/D con-
verter was used to convert cutting force data
from analog to digital. A P5 133 personal com-
puter was used to collect data from the A/D
converter, which originated from the proximity
sensor and the dynamometer sensor.

The workpiece material used in the study
was 1018 steel. A VNE90-1250C 3-insert mill
with 1.25" cut diameter was used to hold
inserts. APKT 160408R coated carbide inserts
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Figure 1.  The architecture of the MLR-ITWP system.
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were mounted on the tool holder for the milling
machining. A Meiji EMZ-5TR Zoom Stereo
Microscope was used to observe and measure
the flank wears on the inserts.

Identifying the Best-Predicting
Cutting Force Representation 

The goal of the first experimental run and
data analysis was for force analysis, in order to
identify the best cutting force representation for
predicting tool wear.

Force Analysis Experiment
The first part of the study included deter-

mining the cutting force representation to be
recorded and entered into the prediction system
in the second part of the study. 

Past experiments have revealed that in end-
milling operations, the Z direction (the vertical
direction) of the cutting force can be ignored
because it is insignificant relative to tool wear
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Figure 2.  Experimental setup.

Figure 3.  An example of cutting force signal converted as 
collectable digital data.
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monitoring compared to the X and Y orthogonal
directions. Therefore, the selection of the force
directions was limited to the forces in the X and
Y directions and the resultant force of the two:
Fx, Fy, and Fr, where .

For each of these three directions of cutting
force, one could identify two possible cutting
force representations: average force ( ) and
average peak force (   ). Therefore, six cutting
force representations were identified:

In the equations, m is the total number of
cutting force signals collected in a revolution,
and n is the number of the mill inserts (in the
study, n = 3). 

To decide the best cutting force representa-
tion for predicting tool wear, the only independ-
ent variable was the flank wear (Vb) of the tool,
and the only dependent variable was the cutting
force. The remaining cutting conditions were 
set to fixed values: feed rate = 5 in/min, 
spindle speed = 1800 rpm, and depth of cut 
= 0.05 inches.

F =r Fx y+ F2 2

Correlations of Six Cutting Force
Combinations and Tool Wear

One of the easiest ways to identify the best
cutting force representation out of the six was to
compare the correlations of these cutting force
combinations and tool wear. The correlation
coefficients were determined using Microsoft
Excel, and the formula for the correlation 
coefficients is:

1)

where is the correlation coefficient
between tool wear (Vb) and cutting force 
combination k (Fck); Vbi is the tool wear 
value of the ith cut, while n is the total 
number of the training data sets. In this study, 
n = 13,                                                 . 

With six cutting force combinations, six
different correlation coefficients were obtained:

. The
largest correlation coefficient among the six
indicates that the correlation is the greatest and
the cutting force combination in that correlation
is the best to predict tool wear.

Results of Force Analysis
From the analysis (please contact the

authors for the details), it can be concluded 
that the average peak forces in one revolution 
in the Y direction had the greatest correlation
coefficient (0.78) with a p value of 0.002.
However, the Y direction here is from the
dynamometer, which is oriented differently 
from the machine. Therefore, the Y direction 
in this study is better defined as the direction
perpendicular to the direction of the table feed
(see Figure 5). The theoretical reasons, although
not included in the study, definitely merit fur-
ther study in the future.
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Figure 4.  A typical flank wear 
geometry on an edge of an insert.

ρ
Vb –Fck =

∑
n

i=1
Vbi – )( Vb (Fc k

i – Fc k )

∑
n

i=1
Vbi – )( Vb (Fc k

i – Fc k )2 2

Vb = ∑
n

i=1

Vbi n and Fc k = ∑
n

i=1

Fc k
i n .

ρ
Vb –Fx

, ρ
Vb –Fy

, ρ
Vb –Fr

, ρ
Vb –Fx

,ˆ ρ
Vb –Fy

,ˆ ρ
Vb –Fr̂

and

Figure 5.  Definition of cutting force 
directions. 
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Vb = 0.1615 + 0.0454*F + 5.965*D -0.0429*Fc +
0.1397*F*D -0.0781*F*Fc -8.2053*D*Fc + 1.3551*F*D*Fc
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Developing the MLR-ITWP System 
After the best cutting force representation

for predicting tool wear had been identified as
the average peak forces in one revolution in the
Y direction (   y), all the input values for the
MLR-ITWP system were clearly defined. The
second run of experiments and data analyses
were then conducted.

Tool Wear Monitoring Experiment
Cutting Condition Selection

General cutting conditions usually refer to
three major cutting parameters: feed rate, spin-
dle speed, and depth of cut. From the body of
research concerning tool wear (Lin & Lin, 1996;
Susanto & Chen, 2002), spindle speed was not a
significant factor in predicting tool wear. To
simplify the study, spindle speed was therefore
fixed in the study; only feed rate and depth of
cut varied. The values of the cutting conditions
were as follows:

Feed rate (x4):  5, 7, 9, 11, 
and 13 inches/minute

Depth of cut (x3): 0.02, 0.03, 
0.04, 0.05, and 0.06 inches

Spindle speed: 1,200 rpm

Tool Wear
In the beginning of the experiment, all of 

the tool wears of the industry-used inserts were
classified into five range groups (0.20-0.29, 
0.30-0.39, 0.40-0.49, 0.50-0.59, and 0.60-0.69
mm), with the first group considered the lightest
wear and the last group the heaviest wear. 
During the experiment, two sets of the inserts 
in the 0.60-0.69 mm group were worn out 
quickly and fractured in the third cut, which 
was quite different from the other inserts (which
remained almost intact during the experiment).
For this reason, it could be concluded that the
tool life ends for this kind of coated carbide
insert when it reaches the wear range of 0.60 mm.

Because many more industry-used inserts
broke during the experiment with no replace-
ments available, the researchers decided to 
artificially grind new inserts to the appropriate
level of wear. In the study, the inserts were 
finely ground to even artificial tool wear with
values of 0.25, 0.35, 0.45 and 0.55 mm (the
0.60 mm tool wear limit was observed).

Experimental Design
With two factors from the cutting condition

and one factor from the tool wear, the experi-
mental design was a factorial design with three

factors: feed rate (x5), depth of cut (x5), and
tool wear (x4). Therefore, 100 experiments were
needed for the purpose of training the monitor-
ing system. The data to be collected were the
cutting forces (that is, the best predicting cutting
force representation concluded from the first
part of the study: the average peak forces in the
Y direction). 

Results of Monitoring Tool Wear
The multiple-linear-regression model of

tool wear, the MLR-ITWP system in Figure 1,
was built with the help of the statistical software
package JMP. The regression model considers
the interactions among these three factors in the
analysis, according to the following equation:

2)

Where Vb = tool wear (flank); F = feed rate; D
= depth of cut; y = cutting force (the most sig-
nificant force representation revealed previous-
ly); and βi (i = 0, 1, … 7) = the coefficients to
be decided.

Using the JMP software, all the coefficients
βi in the model were decided, and the following
regression model was obtained:

3)

The analysis of variance of the regression
model showed that the F ratio was smaller than
.0001, which shows that this model is very sig-
nificant for predicting tool wear. 

Verification of the MLR-ITWP System
Once the regression model was formed, the

MLR-ITWP system was built. To evaluate the
performance of the developed system, nine sets
of data were used for testing. The testing data
sets were different from the 100 sets of training
data used to produce the regression models. 

The actual tool wear and the tool wear pre-
dicted with the testing data through the regres-
sion model were then compared. Nine sets of
testing data were used to compare the actual
wear with the predicted wear. The average error
is ± 0.039 mm.

Figure 6 compares predicted and measured
tool wear magnitude for all nine test cuts. The
results suggest that the proposed MLR-ITWP
system reasonably predicted tool wear in an
online, real-time fashion.

Vb = β0 + β1F + β2D + β3Fc + β4F*D +
β5D*Fc+ β6Fc*F+ β7F*D*Fc
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Conclusions
A new in-process tool wear prediction

(MLR-ITWP) system in milling operations 
has been set up, developed, and examined. 
The system showed the capability of predicting
tool wear during the machining process. 

The conclusions of this study are sum-
marized as follows:

1. The average peak forces in the Y direc-
tion in a revolution best predict the tool
wear among the force directions and the
modes considered in the current study.

2. This proposed MLR-ITWP system can
predict the tool wear value to have aver-
age error of ± 0.039 mm compared with
the actual tool wear. 

3. The proposed ITWP system has some
limitations, which suggest the following
possible directions for further research:

a. The tool wear used for developing
the system was changed from indus-
try produced to artificially ground.
The difference between the two
wears needs further study.

b. During the experiment, the
researchers found that tool wear 
prediction is strongly affected by 

the existence of tool chatter.
Therefore, the study of chatter 
prediction and control is also 
necessary for the development 
of automated machining. 

c. A MLR model has the limitation 
that it lacks the capability to learn—
it does not allow any future data
inputs. It is valuable to explore tools
such as SPC, EMP, and DOE to
assist in overcoming the problem 
in the future research.

d. A MLR model is limited in its abili-
ty to simulate complex, nonlinear
phenomena. Other ITWM systems
that employ expert systems as deci-
sion mechanisms have value for
future research.

e. This research is limited to one type
of tool insert and one type of work-
piece material. Enlarging this system
to include more cutting tools and
materials for workpieces could make
the results of this line of research
more practical for implementation 
in industry. 

In summary, this study provides the authors
with a better position in continuing the tool
monitoring system to enable an automated
machining process for more efficient manufac-
turing in the future. 

Dr. Jacob C. Chen is an assistant professor
in the Department of Industrial Engineering and
Management at Ching-Yun University, Taiwan. 

Dr. Joseph C. Chen is a professor in the
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Actual

Predicted

Figure 6.  The comparisons of the 
actual and predicted tool wears.
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