
Computer numerical control (CNC)

machines have been very successful in increas-

ing productivity, repeatability, and accuracy of

parts, reducing production and labor costs, and

lowering operator skill in manufacturing indus-

try (Degarmo, Black, & Kohser, 1999). In order

to assure machined part quality, the operator tra-

ditionally inspects the machined parts by stop-

ping the machine, cleaning the workpiece, and

removing the workpiece from the machine table.

Then, the inspection instruments are able to

measure quality characteristics, such as surface

roughness, inspected by a stylus profilometer. It

is very time and cost consuming to conduct a

quality inspection of machined parts in this

manner.  If there were an in-process inspection

technique that could be used to measure quality

characteristics of machined parts in a real-time

manner without stopping the machine and

removing the workpiece, productivity could be

increased and time and money could be saved. 

To develop an in-process quality control

system, a sensor technique and a decision-mak-

ing algorithm need to be applied during machin-

ing operations. Several sensor techniques have

been used in the in-process prediction of quality

characteristics in machining operations. For

example, an accelerometer sensor was used to

monitor the vibration of milling operations to

develop an on-line surface roughness measuring

technique in end milling operations (Chen &

Lou, 1999; Jang, Choi, Kim, & Hsiao, 1996).

An ultrasonic sensor was used to develop an in-

process measurement of ultrasonic beams from

surface roughness in milling operations (Coker

& Shin, 1996). An acoustic emission sensor was

used to monitor transient stress waves to esti-

mate surface roughness in grinding (Susic &

Grabec, 1995). A dynamometer sensor can be

used to generate cutting forces in machining;

however, the effects of surface roughness caused

by cutting forces have not been taken into con-

sideration in past research. Lee and Lin (2000)

indicated that cutting forces have the most sig-

nificant impact on the quality of machined parts

in end milling operations. Therefore, cutting

force is to be included in developing cutting

parameters affecting a surface roughness

recognition system in end milling operations.

After a sensor has been selected to monitor

machining operations, a proper decision-making

algorithm needs to be developed to establish a

recognition system by using the data collected

from the sensor. Many decision-making algo-

rithms have been developed throughout the past

decade. For example, fuzzy logic, neural net-

work, and neural fuzzy systems have been

applied in the in-process surface roughness

recognition (IPSRR) system (Chen & Savage,

2001; Coker & Shin, 1996; Chen & Lou, 1999,

2000; Susic & Grabec, 1995; Tsai, Chen, &

Lou, 1999). Recently, a statistical approach has

been effectively used for prediction, process

optimization, and process control in manufac-

turing areas (Montgomery, 1997). For example,

Fuh and Wu (1995) and Chen and Lou (1999)

proposed a statistical model for surface quality

prediction in end milling operations. 

In this research, a multiple linear regression

(MLR)-based IPSRR system using a dynamome-

ter was applied to predict surface roughness using

cutting force, spindle speed, feed rate, and depth of

cut as input parameters in end milling operations. 

What We Did
An MLR-IPSRR system was developed and

implemented in two steps: 

1. The magnitude of the cutting force in the

end milling operation that had the highest

correlation for predicting surface rough-

ness of the finished parts was identified.

2. The MLR-IPSRR system, including the

above-mentioned cutting force and cutting

parameters, was developed and tested.

Procedure
Figure 1 illustrates the experimental setup

consisting of the hardware and software used to

accomplish the two steps.
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The hardware included:

• A Fadal vertical CNC milling machine

with multiple tool changing and a 15 HP

spindle.

• A Kistler 9257B type dynamometer sen-

sor, which provided dynamic measure-

ment of the three orthogonal components

of a force signal (Fx, Fy, and Fz).

• A Micro Switch 922 series 3-wire DC

proximity sensor, used to collect the

signal for counting the rotations of the

spindle as the tool was cutting.

• A power supplier, used to amplify the

signals from the proximity and the

dynamometer sensors. This amplified

signal was then sent to the A/D board.

• An omega CIO-DAS-1602/12 A/D

converter, used to convert both the

dynamometer and proximity sensor data

from analog to digital signals. 

• A P5 133 personal computer, which was

connected to collect data from the A/D

converter output via an I/O interface.

• A 6061 aluminum workpiece with dimen-

sions of 1.00" x 1 .00" x 1.00", which was

cut in the end milling operations.

In order to control end milling operations

and analyze the spindle revolution and cutting

force signals, the following software was

required: (a) Basic CNC codes, which were

applied to conduct cutting operations, and (b)

A/D converter software, which was used to con-

vert data (proximity and cutting forces) from

analog signals to digital values.   Using the

hardware and software setups, tests of cut were

performed. Figure 2 shows the data obtained

from this experimental run using spindle speed

(S = 2500 rpm), feed rate (F = 8 ipm), and

depth of cut (D = 0.08 in.). 

The Cutting Forces Analysis
From Figure 2, the cutting force data were

collected from the dynamometer sensor; these

three forces (Fx, Fy, and Fz) cannot individually

represent the actual force affecting surface rough-
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Figure 1. Experimental setup for the proposed MLR-IPSRR system.

Figure 2. Proximity and cutting force digital data using cutting condition
S = 2500 rpm,  F = 8 ipm, and D = 0.08 in.
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ness. Four cutting force magnitudes

( r_xy, r_xy_peak, z, and r_xyz) were consid-

ered as possible candidates for an input factor for

the MLR-IPSRR system. They are defined as:

1. Average resultant force of the x and y

directions per revolution ( r_xy).

By using the following equation, one could

find the individual resultant force (Fr_xy) from

the x and y directions as shown in Figure 3.

(1)

where i is the data point in one revolution.

Then, the average resultant force in

one revolution ( r_xy) could be

given as: 

, (2)

where i = 1, 2, . . . m and m is the total data

points in one revolution.

2. Average resultant peak force ( r_xy_peak).

By using the data shown in Figure 3, one

could also identify the peak force (Fr_xy_peak) from

the average resultant forces of the x and y direc-

tions ( r_xy) in the cut period of each tooth.

Then, the average resultant peak force in each

revolution ( r_xy_peak) could be given as: 

, (3)

where i = 1, 2,. . . r and r is the number of cut-

ting tool teeth. In this study, r = 4.

3. Average z direction cutting force per

revolution ( z).

The third type of force analyzed in this

study was the average cutting force in the z

direction per revolution ( z) and could be

given as:

, (4)

where i = 1, 2, . . . m and m is the total data

points in one revolution.

4. Average resultant force of x, y, and z

directions per revolution ( r_xyz).

The researcher also wanted to analyze the

average resultant force of the x, y, and z direc-

tions in one revolution ( r_xyz). The force is

given as:

,  (5)

where i is the data point in one revolution.

Then, the average resultant force in one

revolution ( r_xyz) could be given as: 

,  (6)

where i = 1, 2, 3. . . m and m is the total data

points in one revolution.

After the above-mentioned cutting forces

were formed, we examined the correlation coef-

ficient between these cutting forces and surface

roughness. Equation 7 was used to compute the
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Figure 3. Individual resultant cutting force Fr_xy and four peak forces
in one revolution at cutting condition of F = 20 ipm, S = 2000 rpm, D = 0.08 in.
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correlation coefficient between surface rough-

ness (Ra) and the average resultant force of the

x and y directions ( r_xy).

, (7)

where  is the correlation coefficient between the

average resultant cutting force ( ) and

surface roughness, Rai is the ith surface rough-

ness, i = 1, 2, . . . n (n is total data sets; here

n = 384), and  is the ith average resultant cutting

force of the x and y directions, i = 1, 2, . . . n ,

(n is total data sets; here n = 384). 

Similarly, the,, and were calculated. The

largest value of correlation coefficients between

the above-mentioned cutting forces and surface

roughness represented the most significant cut-

ting force, which was then used in the develop-

ment of the MLR-IPSRR system. 

Experimental Design
In order to identify the most significant

cutting force for the MLR-IPSRR system, an

experimental design matrix was used to run and

collect the training data. The experimental

design matrix, including eight levels of feed rate

(6, 8, 10, 12, 14, 16, 18, and 20 ipm), four levels

of spindle speed (1750, 2000, 2250, and 2500

rpm), and three levels of depth of cut (0.04,

0.06, and 0.08 in.), was designed for the experi-

ments with two replicates of each experiment.

Two end milling tools (1/2 in. with four teeth)

were used to cut the workpiece. Therefore, a

total of 8*4*3*2*2 = 384 sets of training data

were collected. Cutting forces (Fx, Fy, and Fz)

were collected using a dynamometer, as shown

in Figure 1.  The average resultant force of the x

and y directions , average resultant

peak force , average cutting force

of the z direction , and average resultant

force of the x, y, and z directions 

were calculated using Equations 2, 3, 4, and 5. 

The 384 specimens were measured offline

with a Pocket Surf stylus type profilometer (pro-

duced by Federal Products Co.) to obtain surface

roughness (Ra) in this study. A JMP (a product

of the SAS Institute) statistical software package

was used to calculate the correlation coefficient

between surface roughness and cutting forces.

The results were

therefore, the average resultant peak force of the

x and y directions had the highest

correlation coefficient with surface roughness

and was selected as the input parameter for the

MLR-IPSRR system. 

The Proposed MLR-IPSRR System 
After the most significant force was identi-

fied, the MLR-IPSRR system shown in Figure 4

was proposed.  From Figure 4, one can see the
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Figure 4. The structure of the proposed MRL-IPSRR system.
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input parameters (average resultant peak force

[ ], spindle speed [S], feed rate [F],

and depth of cut [D]) and the output parameter

(surface roughness [Ra]) used to generate the

MLR-IPSRR system. The proposed MLR-

IPSRR system is given as: 

where  are coefficients of the regression model,

Rai is the surface roughness,  Fi is the feed rate,

Si is the spindle speed, Di is the depth of cut,

is the average resultant peak force of

the x and y directions, and εi ~ N(0, σ2), where

i is the number of data sets. To obtain data for

the development of a multiple regression predic-

tion model, a total of 384 experimental runs

have taken place using the cutting combination

indicted in the experimental design section.

Therefore, in this study, i = 1, 2, 3,°K384.

Analysis and Results of the System
After utilizing the JMP software package,

the results of the surface roughness MLR model

were generated as follows:

Ra (predicted) = 57.066-0.024*S + 4.142*F -

0.001*(S - 2125)*(F-13) + 491.056*D +

0.630*(S - 2125)*(D - 0.06) + 41.820*(F -

13)*(D - 0.06) - 0.351* -0.0007*

(S - 2125)*( - 75.787) + 0.015*

(F - 13)*( - 75.787) - 0.326*

(D - 0.06)*( - 5.787) + 0.099*

(S - 2125)*(F - 13)*(D - 0.06) - 0.0001*(S -

2125)*(F - 13)*( - 75.787) + 0.01*

(S - 2125)*(D - 0.06)*( - 5.787) +

0.722*(F - 13)*(D - 0.06)* ( - 75.787)

-0.0016*(S - 2125)*(F - 13)*(D - 0.06)*

(- 75.787)

The effect of tests showed that the feed rate,

spindle speed, average resultant peak force, and

depth of cut influenced the surface roughness

significantly since the p values of each main

effect (feed rate, spindle speed, average resultant

peak force, and depth of cut) were less than a =

0.01 significant level). That is, the surface

roughness was mainly determined by the feed

rate, spindle speed, average resultant peak force,

and depth of cut in end milling operations. The

MLR model was also significant with the p

value less than a = 0.01. Therefore, the MLR

model can be effectively used in this research.

Once the MLR model had been established,

the MLR recognition model was tested using 20

sets of cutting conditions that were different

from the cutting conditions of experimental

designs. The MLR-IPSRR model was imple-

mented in the prediction of the surface rough-

ness while the machining process was taking

place. The results of the predicted surface

roughness (Rai
MR) were compared with the fin-

ished parts (Rai-m) that were measured by using

a Pocket Surf portable surface roughness gauge.

Then, the individual precision _i
MLR of each

experimental run (i) was evaluated based on the

following equations.

(8)

(9)

where Φi
MLR is the precision of ith testing run,

and Φ– MLR is the average precision of the 20 test-

ing data, i = 1. . .20.

The results showed that the capability of the

surface roughness prediction was about 86% for

the testing experimental data in this study.

Therefore, one can see that the surface rough-

ness (Ra) can be predicted effectively by the

above-mentioned MLR-IPSRR system. 

What We Learned
The purpose of this study was to analyze

cutting forces to find out the most significant

cutting force magnitude that affected surface

roughness and to evaluate whether a MLR

approach for surface roughness recognition could

be used for prediction in the IPSRR system. Our

main conclusions are summarized as follows:

• The average resultant peak force ( )

was identified to be the most significant force

to affect surface roughness in this study.
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• Spindle speed, feed rate, average peak cutting

force, and depth of cut are significant in

affecting surface roughness in end milling

operations and the determination of the

coefficient is R2 of 0.62 in the MLR model.

• The MLR-IPSRR system is approximately

86% accurate in predicting surface roughness

while the machining process is taking place.

This research assumed that the CNC

milling machine was effective and stable to

conduct all experiments under each cutting con-

dition using an HSS end mill to cut 6061 alu-

minum material. We believe that the proposed

IPSRR system could eventually be implemented

in the new age of CNC machines.  This would

be more likely if additional research and testing

could be done such as (a) including different

tool material, tool radius, workpiece material,

and lubricants in the system and (b) using dif-

ferent methodologies, such as fuzzy logic,

neural networks, and fuzzy nets, to provide the

IPSRR system with a learning capability.  With

this capability, the system could be adopted to

different machines produced from different

CNC manufacturers. 
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