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This study of person fit in attitude surveys was undertaken in order to investigate the 
influence of the inclusion of misfitting persons on item parameter estimates in analyses 
using the Partial Credit extension of the Rasch measurement model. It was 
hypothesised that the inclusion of misfitting persons in data sets used for the 
calibration of attitude survey instruments might compromise the measurement 
properties of those instruments. Using both actual and simulated data sets, the 
inclusion of misfitting cases was found to reduce item variance. Several 
characteristics of both item and person samples were found to influence the 
proportion of cases identified as misfitting. These characteristics must be considered 
before removing cases that, according to customary practice, appear to misfit. The 
residual based misfit indicators that are commonly reported in Rasch analyses, the 
weighted and unweighted mean squares, appear not to have the generality over all 
instruments nor the precision required to make clear decisions on the retention or 
elimination of cases from samples, and there is a need to seek better misfit indicators. 
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INTRODUCTION 

In analysing several attitude survey data sets, up to 25 per cent of cases have been identified as 
misfitting. In the case of one 40 item instrument that had been developed on a sound theoretical 
basis, classical item analysis suggested that the scale was coherent with a Cronbach alpha of 0.88, 
and Rasch analysis showed that all but three items fitted a coherent scale quite well. However, in a 
subsequent confirmatory factor analysis (CFA), many of the items were shown to have low factor 
loadings and relatively high error terms, and the fit indices for the hypothesised structure were 
disappointing (GFI=0.76). These findings led to the search for an explanation of the contradictory 
outcomes of the analyses. In the review of that instrument, a subset of items was selected, a 
number of misfitting cases were identified, and their removal resulted in acceptable GFI of 0.93. 
This observation raised questions about the influence of misfitting cases on the calibration of 
items and on the integrity of measures derived from the application of the instrument. It also led to 
a review of other scales that had been analysed previously using the Rasch model. The reviews of 
these instruments led to the questions: “What are the implications of this high incidence of 
questionable fit?”; “Does it compromise the inclusion (and exclusion) of items in the scale?”; and 
“What interpretations can be applied to persons who show either overfit or underfit?” The study 
has sought to address these and other related questions. 

LITERATURE REVIEW 

A review of the literature on fit indices revealed that there has been considerable emphasis on 
item fit, and even in introductory texts, the meanings attached to combinations of fit indices for 
items are explained well (Bond and Fox, 2001, pp.179-183). However, with the exception of 
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Wright and Masters (1982) and Wright (1995), the literature has been relatively silent on the 
implications of fit indices for persons. Wright quoted Rudner et al. (1995) who said: 

Nearly twenty years after Sato introduced his caution index, person fit statistics still 
seem to be in the realm of potential... The research has been largely unsystematic, the 
research has been largely atheoretical, the research has not been explored in applied 
settings. (p.23) 

This criticism appears to be harsh, as a considerable body of work has emerged since the late 
1980s. However, in most of the studies of fit indices, dichotomous test data have been the main 
concern. Attitude instruments warrant specific attention for several reasons. They are rarely high 
stakes activities for respondents and so respondent behaviour may be rather different from that 
observed in tests, and the number of response categories may interact with misfit indicators. 

Two broad sets of issues are canvassed in this review. First, a range of issues identified as being 
of current interest in educational research and measurement are reviewed. Then literature on 
indices for the estimation of person fit is examined. 

The Centrality of Measurement 
Following concerns about the status of measurement in the social sciences, Stevens in 1946, 
proclaimed that measurement was the "assignment of numerals to objects or events according to a 
rule." Michell (1997) has shown that such assignment is a necessary but insufficient basis for true 
measurement as it does not require additivity. Such assignment may produce an ordered sequence, 
but not an interval one. Wright and Masters (1982, p.3) argued that measurement requires: 

• the reduction of experiences to one dimensional abstraction; 

• more or less comparisons among people and items; 

• the idea of a linear magnitude inherent in positioning objects along a line; and 

• a unit determined by a process which can be repeated without modification over the 
range of the variable. 

Harwell and Gatti (2001) have argued that the application of item response theory (IRT) is 
essential to convert the ordered observations that arise from the application of survey instruments 
to true measures. 

In the physical world, measures are objectively observable and conformity with measurement is 
also observable. For example, if a ruler can be placed adjacent to an object, its length can be 
measured using that ruler. In the social sciences, constructs of interest are often latent. 
Instruments, such as questionnaires, are said to make the construct 'observable', but fitness for 
measurement cannot be directly observed. In the social sciences, fit indices are used to 
demonstrate compatibility with measurement. 

Current Issues in Measurement 
Keeves and Masters (1999) identified a number of issues that may impact upon effective 
measurement using the Rasch model and that are in need of further research. They included 
dimensionality, significance tests, reliability, and threshold relationships. These issues bear on the 
study of fit indices, since variations in fit estimates may result from person misfit but also from 
other characteristics of the items used in the assessment of a trait. 
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Dimensionality 
A vital characteristic of sets of items that purport to measure a construct is that the items are 
unidimensional. Under Rasch analysis, if all items cohere to form a single scale, 
unidimensionality may be asserted. However, Kline (1993) claimed that the Rasch model is 
insensitive to departures from unidimensionality. Often, constructs of interest in the social 
sciences are complex and are represented by a set of correlated factors. In these cases, it may be 
difficult to assert unidimensionality. Attitudes are often complex cognitive and conative 
constructs and theory about them often involves several components. This is certainly the case 
with the attitude survey instruments used in this study. Whether these constructs constitute several 
dimensions, or whether the factors operate in concert and comply with the assumption of 
unidimensionality, must be established. Bejar (1983, p.31) suggested: 

Unidimensionality does not imply the performance on items is due to a single 
psychological process. In fact, a variety of psychological processes are involved in 
responding to a set of items. However, as long as they function in unison – that is, 
performance on each item is affected by the same process in the same form – 
unidimensionality will hold. 

Nonetheless, if a claim is advanced that attitudes are being measured, it is necessary to show that 
the responses to survey items do comply with the requirement of unidimensionality. Keeves and 
Masters (1999) proposed that CFA be used to verify item structure and suggested that, in 
structures with multiple factors, if more variance is explained by the single factor than by the 
other factors in a nested model, then an assumption of unidimensionality is warranted. They also 
suggested that both person and item fit should be checked to demonstrate unidimensionality. 

Significance 
Keeves and Masters (1999) indicated that traditional significance testing, which assumes simple 
random samples, is inadequate in social science research because simple random samples rarely 
exist. The problems that ensue when clustered samples are taken to be random, for example 
underestimation of variance and overestimation of significance, are well known (Kish, 1987). 
Clustering may apply to items and to the persons who respond to the instruments. While 
clustering of subjects is well known, the clustering of items is less frequently acknowledged. 
Keeves and Masters noted that the use of common item stems for multiple responses leads to item 
clustering and a breach of the assumption of item independence. However, Linacre (1995) has 
contended that a breach of local independence is less serious than other deviations from 
measurement model assumptions. 

Whatever the cause of departure from ideal model behaviour, for valid measurement it is 
necessary to quantify this deviation. This is done with a range of fit statistics, and it has been 
common practice to accept items as fitting if their Infit and Outfit Mean Square values lie within a 
specified range (often 0.83 to 1.20). Fit statistics are transformed to produce a t statistic and the 
critical values are usually set at ±2. However, Karabatsos (2000) and Smith (1991) have shown 
that IMS and OMS deviate from normality. Karabatsos also argued that  the value of the t statistic 
was sensitive to sample size and that reliance on the t statistic could lead to the false detection of 
misfit. Item fit is often judged on the basis of responses from very large numbers of cases, while 
person fit is based on a much more modest number of items. Both the magnitude of Infit and 
Outfit statistics (and other fit indices) and their corresponding t values warrant consideration as do 
the structure of the samples of items and persons that lead to the data sets that are analysed. 
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Reliability Indices 
Keeves and Masters (1999) pointed out that the traditional scale reliability index (Cronbach alpha) 
is of limited value as an indicator of scale coherence as it is not generalisable. It is dependent upon 
both the sample of items and the sample of persons used in the calibration. Baker (2001, pp.52-
56) provided a very good account of group invariance which leads to the generality of Rasch 
parameters. Two important instrument parameters are reported in Rasch analyses conducted using 
Quest (Adams and Khoo, 1999). The Person Estimate Reliability is an indication of the precision 
of the instrument and shows how well individuals can be distinguished by the instrument and 
which should be reported routinely in calibrating instruments. Andrich (1982) has shown that this 
index is virtually identical to the KR-20 or its generalisation, Cronbach alpha. The Item Estimate 
Reliability shows how well the items that form the scale are discriminated by the sample of 
respondents. Wright and Masters (1982, pp.90-92) argued that good item separation is a necessary 
condition for effective measurement. 

Threshold Parameters 
Attitude survey items usually present multiple response options and so for each item there are 
multiple item thresholds. Disordered threshold parameters are the subject of disagreement. Keeves 
and Masters (1999) cited Samejina (1997) who argued that thresholds need not be ordered. Adams 
and Khoo  (1999) identified three types of threshold parameter and suggested that, in order to 
establish coherence in response patterns, only the Thurstone thresholds need be ordered. In some 
of the data sets that were analysed in this study, disordered Andrich and Masters thresholds (Taus 
and Deltas in Quest output) were associated with poor person fit. However, there have also been 
other complicating factors, such as skewed response patterns and low frequencies of some 
response options. Keeves and Masters suggested that if thresholds were disordered, it may be 
possible to redefine categories so that they become ordered. However, Andrich (1995) has advised 
strongly against this practice, arguing that it violates the assumptions of the Rasch measurement 
model. This matter is of some importance in attitude surveys, as most use multiple response 
categories and therefore each item has several threshold levels. 

The Measurement of Attitude 
In testing, it is common to identify a single construct of interest and to ensure that items are 
related to that attribute. Multidimensionality is a problem for test developers. For example, where 
mathematical test items are presented as word problems, the test takers' language comprehension 
as well as their mathematical skill are involved in the responses that are generated. However, 
attitudes are often complex cognitive and conative, as well as affective, constructs and theory 
about them often involves several components. This is certainly the case with the attitude survey 
instruments used in this study. Whether these constructs constitute several dimensions, or whether 
the factors operate in concert and comply with the assumption of unidimensionality, must be 
established. 

Weiss  and Yoes (1991, pp 72-74) identified four assumptions made of measures. They were: 
• if a respondent holds a certain attitude, s/he will respond honestly to an item which taps that 

attitude; 

• the choices that respondents make among response options indicate the strength of the 
underlying attitude trait that they hold; 

• the responses that participants make to particular items are not influenced by the presence of 
other items in the instrument; 

• the pattern of responses to items will conform to a probability function. 
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These assumptions present challenges to the developers and users of attitude survey instruments 
as there are many problems that are unique to attitude measurement. There are analogous 
problems in testing, and guessing, carelessness and prior knowledge of particular items are all 
acknowledged as threats to test data as a basis for valid achievement measurement (Bond and Fox, 
2001, p.178). Anderson (1997, pp.891-3) identified a number of threats to valid attitude 
measurement, including social desirability, acquiescence, self awareness, irrationality, 
inadmissibility, self-incrimination and politeness. These influences may have several effects on 
attitude measures. First, most are likely to decrease overall variation in responses, although some 
may increase it. Second, they may lead to reduced precision in item and scale parameters. They 
may also influence the fit of persons to the instrument in that those who hold strong views on 
some aspects of a construct may provide responses biased by a factor such as social desirability. In 
addition, and in contrast to achievement tests, responding to attitude survey instruments is rarely a 
high stakes activity. For this reason, some participants may respond carelessly to an instrument 
and therefore compromise its calibration. The influences of response behaviours such as these on 
item and person parameters must be established so that where possible, cases that reveal these 
behaviours can be identified in data sets and appropriate actions taken by analysts. 

Item and Person Fit 
Two aspects of item and person fit appear in the literature. One is a technical issue of which fit 
parameters to use, the distributional properties of those indices, and their sensitivity to departures 
from expected response behaviours – that is, their ability to detect cases of misfit and to accept 
fitting cases. The second aspect of item and person fit entails the interpretation of fit indices and 
the actions that an analyst might take in dealing with cases of misfit. 

Technical Aspects of Misfit Detection 
The expected response pattern of persons to items is a Guttman pattern, but with added random 
variance. If a strictly Guttman pattern were to be observed for all respondents, the response model 
would be deterministic rather than stochastic. The Rasch measurement model is indeed a 
stochastic one. The ideal Guttman pattern is expected to be approximated but not followed 
precisely and a range of indices have been developed to quantify the deviation of responses from 
the Guttman pattern. 

Bond and Fox (2001, p.170) reported that Rasch had proposed the use of a chi-square fit statistic 
to identify how well a data set conformed to the simple logistic measurement model. Once the 
item difficulty and person location have been estimated from the data set, the expected response 
for each person to each item can be calculated using an extension of the basic Rasch formula 
(Wright and Masters, 1982, p.42). The difference between the expected and observed responses is 
the response residual and is used to compute a chi-square statistic. 

Two fit indices are common. The unweighted mean square index, commonly called the Outfit 
Mean Square (OMS), is the mean of the squared standardised residuals. To calculate the OMS for 
items, the squared residuals are summed over all persons, and for cases the squared residuals are 
summed over all items. The information weighted mean square, commonly called the Infit Mean 
Square (IMS), is the sum of standardised residuals weighted by the variance of the item-person 
response. For items close to the person location, the variance is at a maximum, while for items 
that are remote from the person location, the variance is low. Thus, the residuals for well targeted 
items and persons are weighted up, and for more remote items and persons, the residuals are 
weighted down. The IMS is therefore less sensitive to unexpected responses for extreme 
observations and more sensitive to deviations from expectation for well targeted items and 
persons. These indices are described fully in Wright and Masters (1982, pp.94-105). 
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Li and Olejnik (1997) compared the performances of five misfit indicators, examining their ability 
to detect underfit and overfit in unidimensional and two dimensional data sets, and they 
investigated the influence of test length on misfit detection. They found no correlation between 
trait estimate and misfit with any of the indicators, which suggests that the concerns expressed by 
Keeves and Masters (1999) about misfit and trait range (see below) are not a matter of great 
concern. They also found that the misfit indicators investigated performed equally well under 
most conditions, although one, Lz was better in detecting underfit in scales that revealed 
multidimensionality. Li and Olejnik reported that all indicators investigated deviated substantially 
from a normal distribution. This raises a question about the transformation that is used as a basis 
for computing t statistics for the indicators. 

Karabatsos (2000) has been less supportive of the range of misfit indicators that have been used in 
Rasch analyses. He expressed dissatisfaction with the use of residual based misfit indicators, 
arguing that misfit indicators based on residuals have unsatisfactory distributional properties. The 
distributional problem arises from the fact that the residual is the difference between an integer 
observed score and a non-integer expected score. Karabatsos showed that score residuals are non-
linear functions of (β-δ) (cf. Li and Olejnik, (1997) above) and therefore that residual-based fit 
indices may not indicate the same degree of misfit for different regions of the (β-δ) range. He also 
argued that the person-item response is used to estimate both β and δ, and as these are used to 
compute expected values and therefore residuals, it may understate misfit. Karabatsos also 
showed that the distributions of residuals, IMS and OMS vary with sample size, test length, the 
person ability distribution, and the item difficulty distribution. With such variations between 
instruments, and even between applications of the same instrument, different critical values of 
misfit indicators would be required in order to identify cases of misfit. Further, there are no a 
priori guidelines on what these critical values might be. 

Karabatsos also argued that the use of t statistics for IMS and OMS is illogical. He cited work by 
Smith (1991) who showed that the distributions of IMS, OMS, and the corresponding t 
distributions are sensitive to sample size, test length, and person ability and item difficulty 
distributions. Karabatsos (2000, pp.167-169) went on to show that t(IMS) was sensitive to sample 
size. However, he did this by repeatedly duplicating a data set and producing a set of t statistics 
for each item and each N and showed that the t values rapidly diverged. In the original data set, all 
items had a t(IMS) <|2|, but with N>8,000 no items were within this range. Unfortunately, the 
method that Karabatsos used is flawed, because it does not simulate large samples of independent 
observations drawn from a population. The technique of repeating observations results in no 
change in the deviation from the mean but with an increase in N leads to reduced error variance 
and therefore artificially inflated t values. A better alternative would have been to identify the 
ability and difficulty distributions and to simulate data sets of increasing size based on those 
distributions, and then to look at the t distributions. Nonetheless, there is a problem of t statistics 
being sensitive to sample size and test length, and possibly other variables, and this makes the use 
of the t statistic in setting acceptance criteria for items or persons questionable. 

Reise (2000) has proposed the use of a multilevel modelling approach in which item responses are 
thought of as being nested within persons. In this approach, the slope of the person response 
function is used to indicate response consistency. The person response function slope can also be 
used as a criterion variable to investigate the effects of between person variables and therefore to 
investigate the causes of person misfit. 

Many others have contributed to the literature on person misfit (Bell, 1982; Linacre, 1998; Meijer, 
1996, 1997; Meijer, Muijtjens, and van der Vleuten, 1996; Smith, 1991; Wright, 1995). In 
particular, Meijer and his colleagues have investigated alternative misfit indicators and the 
distributional properties of a range of fit statistics. Rudner, Bracey and Skaggs (1996) used person 
fit indices in an investigation of an achievement test (the National Assessment of Educational 
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Progress), and found that using person fit indices to identify and remove improbable responses did 
little to improve an already sound instrument. However, as Karabatsos (2000, p.170) pointed out, 
most of the work that has been done on person misfit has been directed at the dichotomous 
responses of achievement tests rather than the more complex situation of attitude survey 
instruments. 

This study was not designed to be a technical evaluation of misfit indicators. Nor was it designed 
to find alternative indicators of misfit. Rather, it was designed to use readily available fit statistics 
and to examine some problems that had arisen in practice in the analyses of attitude survey 
instruments, to explore options for analysts in detecting person misfit when it occurs, and to 
suggest strategies for managing the analysis of data sets in which person misfit is apparent. 
However, understanding the technical limitations of misfit indicators is essential in interpreting 
their operation in practice. 

Practical Aspects of Misfit 
Keeves and Masters (1999) argued that current practices for the detection of misfit are rather ad 
hoc, and that better procedures are required. They suggested that many misfitting persons are 
those at the extremities of the trait distributions, and that where |β-δ|>2, and they misfit, these 
cases should be removed from analyses. They also suggested that in analyses, these extreme cases 
should be weighted down, and those closer to (β-δ)=0 should be weighted up to improve 
estimates. The IMS does place greater weight on the more informative person item interactions 
that are closer to (β-δ)=0. 

The issue of person location and fit on a trait measure is an interesting one. If it is argued that an 
instrument will only have sufficient precision over a limited range (|β−δ|<2), then either a range of 
instrument forms will be required to tap the full extent of the trait range in a population or a form 
of adaptive measurement, with the attendant concerns of item independence, will have to be 
pursued. With the common use of polytomous responses in attitude survey instruments, the 
|β−δ|<2 range restriction can be extended to |β−(δ+τ)|<2 since the thresholds show considerably 
greater spread than the item locations. The influence of person location on fit parameter estimates 
warrants attention, and at the instrument level, the influence of targeting (or mistargeting) also 
warrants investigation. 

Bond and Fox (2001, pp177-183) suggested ranges of acceptable fit statistics for various test and 
survey instruments and provide some discussion of the meanings that might be attached to misfit. 
However, given the concerns raised by Karabatsos (2000) about the distributional properties of 
residual based fit statistics and about factors that influence them, there is a need to explore their 
distributions and the sample and item characteristics that might shape them in order to develop 
advice that is both soundly based and that is useful to practitioners. 

METHOD 

Two main approaches are followed in this analysis of misfit indicators and of the factors 
associated with cases being identified as misfitting. First, two data sets that had previously been 
analysed by the author are reanalysed in order to reveal the numbers of cases that are identified as 
misfitting. In the discussion below, they are referred to as real data sets. Second, two series of 
simulation exercises are employed to generate data sets with controlled characteristics. 

Analysis of Real Data Sets 
The two real data sets selected for the study were the Course Experience Questionnaire (CEQ) 
that had been administered in 1996 (Johnson, 1997) and the Multidimensional School Anger 
Inventory (MSAI) (Smith, Furlong, Bates, and Laughlin, 1998) that had been administered in 
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secondary schools in Adelaide in 2000.1 Summaries of these data sets are shown in Table 1. A 
third data set had been selected for the study, but in analyses many items were found to be 
skewed, some item response categories had quite low frequencies, and many showed threshold 
reversals. When misfitting cases were removed, item estimates became unstable, and this made 
the data unsuitable for close simulation (described below). For this reason, no results are reported 
for it.  

Table 1: Summary of real data sets 
 CEQ MSAI36 
No. of respondents (N) 51,631 1,400 
Number of Items (L) 17 36 
Response Categories 5 4 
Item Std Dev 0.41 0.76 
Person Mean 0.58 -0.25 
Person Std Dev 0.94 0.43 

 

The data sets were refined under the partial credit variant (Wright and Masters, 1982) of the Rasch 
logistic measurement model using Quest (Adams and Khoo, 1999). For the CEQ, eight items were 
found to misfit and were removed, one at a time, leaving a final set of 17 fitting items. For the 
MSAI, no items were removed. 

In the Rasch analysis, person estimates were generated and exported to an Excel file in which 
cases were sorted by their misfit parameters. In this way, the numbers of overfitting, fitting, and 
underfitting cases could be counted easily. 

Using the complete data sets, that is without removing cases identified as misfitting, confirmatory 
factor analyses (CFAs) were undertaken. Subsequently, cases that were identified as misfits were 
removed and the CFAs repeated in order to provide an indication of data fit to the hypothesised 
structure with and without the misfitting cases, independent of the Rasch method used to identify 
case misfits. 

Further Rasch analyses were undertaken following the removal of underfitting, overfitting, and 
finally all misfitting cases. In these analyses, item parameters were tabulated in order to examine 
the influences on item parameter estimates of the removal of the different types of misfitting 
cases. 

Generation and Analysis of Simulated Data Sets 
Two forms of data simulation were used, namely close simulation of real data sets and constrained 
simulation in which sample and item parameters were controlled. 

Close Simulation 
In close simulation, the real data sets were analysed and the item parameter estimates (locations 
and category thresholds) and person estimates were used to generate data sets that were close 
analogues of the real data. Using the trait level for each person in the original data set, a set of 
responses to items with parameters identical to those in the real data set were generated using the 
ConQuest generate command (Wu, Adams, and Wilson, 1998). The data set produced in this way 
is an analogue of the original real set and conforms to the Rasch model with what may be referred 
to as an 'expected' amount of noise. The misfit parameters of the closely simulated sample should 
follow a null distribution, given the item and person sample characteristics, and therefore model 

                                                 
1 These data were collected by Boman (2002) as a component of his PhD research. Permission to use this data set is 
gratefully acknowledged. 
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the proportions of cases that can be expected, under the Rasch model, to overfit, fit and underfit. 
Such closely simulated data sets provide a useful reference standard for the real data sets with 
their mixture of fitting cases and those cases that reflect aberrant responses. 

Following Rasch analysis, the closely simulated data sets were contaminated with deliberately 
overfitting and underfitting (extreme) cases and the contaminated data sets were reanalysed. The 
overfitting cases were generated in Excel using the extended (polytomous) Rasch formula to 
calculate a set of Guttman patterned responses for a range of abilities from -3.0 to +3.0 logits. 
(Beyond this range, scores are zero or perfect, carry no information, and parameters cannot be 
estimated). The overfitting cases follow a deterministic pattern and show minimum noise and 
maximum signal. The underfitting cases were also produced using Excel and were randomly 
generated responses to each item. The random responses were noise only and had no signal 
content, except by chance. The IMS and OMS distributions of the extreme overfitting and 
underfitting cases were examined. This was done in order to locate optimum critical values for the 
IMS and OMS statistics to retain as much of the distribution of fitting cases, but to exclude as 
many misfitting cases as possible. 

Constrained Simulation 
The real data sets varied in sample size, instrument length, the number of response options, item 
variance, person variance and the targeting of the instruments. In order to explore the influences 
of these variables on both scale measurement properties and the proportion of cases identified as 
misfitting, two constrained simulation series were conducted. In the first, item and person 
variance and instrument targeting were controlled. Five levels of item variance, from 0.04 to 1.00, 
were chosen and seven levels of person variance, from 0.04 to 1.96, were chosen. This resulted in 
35 combinations of item and person variance. In addition, three levels of instrument targeting 
were tested by using mean person locations of 0.25, 0.50 and 1.00. In all, there were 105 
combinations of the three variables. One data set was generated for each condition. For each data 
set, the number of cases was set to 500 and the number of items to 20, with five response 
categories for each item. 

In the second constrained simulation series, sample size, instrument length and the number of 
response options were varied. Samples of size 20, 50, 100, 200, 500, 1000 and 10,000 and with 
10, 20, 30, 50 and 70 items were simulated. For each combination of sample size and instrument 
length, items with three, six, and nine response options were simulated. In all data sets item and 
sample variance were set at 0.36 and 0.64 and the person mean was set to 0.00. Again, 105 data 
sets, one for each combination of sample size, instrument length and number of response 
categories, were generated. 

All simulated data files were produced using the ConQuest generate command (Wu et al., 1998). 

RESULTS AND DISCUSSION 

Because of the large number of data files that were analysed and the many different analyses that 
were conducted, the detailed results of this study are quite extensive. Only very brief summaries 
of these results are reproduced in this paper. The simulated data sets, command files and detailed 
output files are available from the author. 

Analyses of Real Data Sets 

The Effects on Item Parameter Estimates of Removing Misfitting Cases 
Following refinement of the instruments, case parameters including fit statistics, were generated. 
The proportions of cases that were found to misfit are shown in Table 2. Using criteria modified 
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after Bond and Fox (2001, p.179), cases were identified as underfitting if the IMS was greater 
than 1.5 and as overfitting if IMS was less than 0.60. Despite differences in some characteristics 
of the two instruments, similar proportions of cases were identified as underfitting and overfitting.  

Table 2: Summary of cases identified as misfits in real data sets 
Data set Total 

cases 
Underfitting 

cases 
Overfitting 

cases 
Misfitting 

cases 
Fitting 
cases 

CEQ 51,631 5,449 
10.55%

7,093 
13.74%

12,542 
24.29% 

39,089 
75.71%

MSAI 1,400 164 
11.71%

181 
12.93%

345 
24.64% 

1055 
75.36%

After removing underfitting cases only, overfitting cases only, and then all misfitting cases, 
item parameters were estimated. Both the dispersion of item locations, that is between item 
dispersion, and item threshold ranges, within item dispersion, increased following the 
removal of underfitting cases and decreased following the removal of overfitting cases. The 
removal of underfits has a stronger influence on parameter estimates, and this is shown 
when all misfits are removed, as within and between item parameter dispersion increased. 
These trends are illustrated in Table 3 for item locations and in Table 4 for within item 
threshold ranges. 

Table 3: Summary of the influence of case removal on item locations for real data sets 
Data Set Location All cases 

retained 
Underfitting 

cases removed 
Overfitting 

cases removed 
Misfitting 

cases removed 
CEQ Minimum -0.53 -0.66 -0.50 -0.63 
 Maximum 0.64 0.77 0.60 0.70 
 Range 1.17 1.43 1.10 1.33 
MSAI Minimum -1.30 -1.53 -1.23 -1.46 

 Maximum 1.13 1.18 1.08 1.12 
 Range 2.43 2.71 2.31 2.58 

Table 4: Mean Thurstone threshold range under various case deletion conditions for 
real data sets 

Data Set Threshold 
Range 

All cases 
 

Underfitting 
cases removed 

Overfitting 
cases removed 

Misfitting 
cases removed 

CEQ τ4-τ1 4.05 4.87 3.70 4.46 
MSAI τ3-τ1 2.09 2.47 1.92 2.28 

The greater dispersion of thresholds within items can be explained with reference to a plot of 
category probability curves. A sample set of curves is depicted in Figure 1 (produced using 
RUMM (Sheridan, Andrich, and Luo, 1997) for an item from the MSAI data set). The responses 
of persons who underfit reveal a higher than expected amount of noise. When they have low trait 
levels, their expected response would be category '0', but any noise must involve choosing a 
category greater than this. Thus, the inclusion of underfitting cases must move the threshold up 
the scale, and the removal of these cases must move it down the scale. The converse holds for 
misfitting persons with high trait estimates. Thus, the removal of misfitting cases must lead to 
greater differences between the extreme category thresholds. To a lesser extent this also holds for 
most intermediate thresholds. For the item shown in Figure 1, which has two intermediate 
categories, for trait levels where a '1' is the expected response, a noisy response may involve 
selecting a lower or higher category. But since there are two higher categories and only one lower 
option, it is likely that the threshold for the expected category will be moved up the scale by the 
inclusion of misfits and down the scale by their removal. However, such threshold movement 
should be less than in the case of the extreme categories.  

A similar explanation can be invoked for the movements in item locations. When persons respond 
to items with low locations, most respondents can be expected to select the higher category 
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options. However, underfitting persons show a greater tendency to select other response categories 
and as a result the inclusion of their responses leads to a higher estimate of the item location. 
Their removal leaves the location estimate at a lower position on the scale. The converse 
argument explains the higher location estimate of the more difficult to endorse items that are 
located at the positive end of the scale. 

 
Figure 1: Category probability curves for a four-response polytomous item 

Overfitting cases show less than the expected noise. When they are removed, item parameters are 
estimated using data from the remaining cases which include those that show both an expected 
amount of variation and those that show greater than expected variation. For the lowest response 
categories, noise must move the estimated parameters up the scale, and for highest response 
categories it must shift the estimates down the scale. Thus the removal of overfitting cases results 
in a compression of item parameter estimates. 

The Influence of Misfit on Scale Properties 
Wright and Masters (1982, pp.90-91) argued that effective measurement depends upon separation 
of items along a scale. This evokes the Guttman requirement of having items placed uniformly 
along a scale and for items to discriminate consistently among respondents. The effect of 
increasing the dispersion of parameters both within and between items suggests that the removal 
of misfitting, and especially underfitting, cases should enhance the effectiveness of the scale for 
measurement. In order to test this, summary scale parameters for data subsets under various 
deletion conditions were generated and are shown in Table 5.  

The item standard deviations show effects consistent with the greater dispersion of between and 
within item parameters noted above. Item standard deviations increased following the removal of 
underfitting cases, and decreased after the removal of overfitting cases. In accordance with these 
changes, person estimate standard deviations increased as item dispersion increased. The item 
estimate reliability for the CEQ data set was at a maximum value of 1.00. This statistic appears to 
be influenced by sample size and, with a sample size over 50,000 cases, there is little scope for 
change. The removal of under- and overfitting cases has little influence on it. Similarly, the case 
estimate reliability is little changed by the removal of misfitting cases. 

Confirmatory Factor Analyses of Real Data Sets 
The variances of items and cases carry the statistical information of a data set. In deciding to 
remove cases identified as misfits, the assumption is made that the level of under- or overfit 
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apparent in the case, that is the deviation from expectation, makes the case either an outlier or 
suggests that it does not belong to the population of observations that are consistent with the 
Rasch measurement model. Setting very rigorous acceptance criteria, such as 0.91<IMS<1.10, is 
likely to result in the removal of observations whose variances contribute information to the 
model. Setting very lenient criteria, such as 0.10<IMS<5.00, would lead to the inclusion of 
random observations with little or no information content. The issue is to decide where to set 
acceptance criteria. In order to know whether the acceptance criteria used in the analyses of the 
real data sets were useful, confirmatory factor analyses (CFAs) were carried out on the complete 
data sets and again on the data sets from which cases, identified in the Rasch analysis as 
misfitting, had been removed. If the CFA model fit statistics show an improvement it can be 
assumed that the removal of cases identified as misfitting has resulted in the removal of noise 
from the data. If the CFA fit indicators are worse, it suggests that cases carrying useful 
information have been removed. 

Table 5: Summary of scale parameters for real data sets under different case deletion 
conditions 

Data Set Cases Mean item 
location (sd) 

Item reliability Mean person 
estimate (sd) 

Case reliability

CEQ All cases 
retained 

0.00 
(0.35) 

1.00 0.49 
(0.87) 

0.88 

 Underfits 
removed 

0.00 
(0.43) 

1.00 0.59 
(0.99) 

0.89 

 Overfits 
removed 

0.00 
(0.33) 

0.99 0.48 
(0.83) 

0.87 

 All misfits 
removed 

0.00 
(0.41) 

1.00 0.58 
(0.94) 

0.89 

MSAI All cases 
retained 

0.01 
(0.67) 

0.97 -0.21 
(0.42) 

0.76 

 Underfits 
removed 

0.01 
(0.87) 

0.97 -0.27 
(0.45) 

0.77 

 Overfits 
removed 

0.01 
(0.63) 

0.97 -0.20 
(0.40) 

0.76 

 All misfits 
removed 

0.00 
(0.76) 

0.96 -0.25 
(0.43) 

0.76 

A summary of the results of the CFAs is shown in Table 6. The results are mixed. For the CEQ 
data set, improvements in all fit indices follow the removal of cases identified as misfitting 
(reduced data sets). However, for the MSAI data set, the reverse is true. The same critical values 
of IMS were used for both data sets, but for the MSAI set, the CFA suggests that information has 
been lost while for the CEQ set, it suggests that random variation has been reduced. These results 
suggest that it may not be sensible to use the same criteria to decide case fit for data sets of 
difference characteristics. 

Table 6: Summary of comparisons of CFA analyses of complete and reduced data sets 
Data set Cases GFI PGFI RMSEA RMR 

Complete 0.982 0.629 0.041 0.028 CEQ 
(I factor) Reduced 0.983 0.630 0.039 0.025 

Complete 0.937 0.777 0.037 0.032 MSAI 
(4 factor nested) Reduced 0.931 0.771 0.038 0.032 

GFI = Goodness of Fit Index; PGFI = Parsimonious Goodness of Fit Index;  
RMSEA = Root Mean Square Error of Approximation; RMR = Root Mean Square Residual 

Finding Critical Misfit Values 
In order to decide on critical values to separate fitting cases from those that substantially fail to fit 
the measurement model, it is necessary to explore the distributions of IMS and OMS misfit 
indicators. The two real data sets were analysed and the case parameters exported to an Excel file 
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for closer examination. Item parameters were also exported to a file for later use as anchor values. 
The item parameters and case estimates were used to generate a closely analogous data set that 
fitted the Rasch model. In addition, two sets of contaminating values were then generated for each 
real data file. One set conformed to a strict Guttman pattern and the other set were random 
responses. The former should reveal the IMS and OMS distributions expected of strictly 
overfitting data and the latter should have distributions representing severely underfitting cases. 

The closely simulated data set provides a null distribution of fit indicators, given the 
characteristics of the instrument and the ability distribution of the respondents, as the data set 
includes Rasch modelled responses with expected deviations from the ideal deterministic Guttman 
pattern. The two constructed data sets, the Guttman and random response patterns, provide 
distributions of fit indicators for worst-case overfitting and underfitting responses respectively. 
The real data sets include a mixture of fitting and misfitting responses. Critical values of IMS and 
OMS ascertained in the analysis of the closely simulated and constructed response data sets can 
then be applied to the real data set in order to find the optimal IMS and OMS values that retain the 
highest proportion of fitting cases, and therefore retain the maximum amount of statistical 
information, and exclude the greatest proportions of overfitting and underfitting responses. 

The data sets with the contaminated cases were analysed using anchored item parameters derived 
from the original Rasch analyses. Summary statistics for the distributions of IMS and OMS misfit 
indicators are shown in Table 7. 

Table 7:  Summary statistics of distributions of IMS and OMS misfit 
indicators for real data sets and 'constructed' responses 

Data set Cases IMS OMS 
  Mean Sd Mean sd 
CEQ Real 1.02 0.63 1.03 0.65 
 Close Sim 1.00 0.33 1.00 0.33 
 Guttman 0.23 0.21 0.21 0.15 
 Random 2.63 0.64 2.66 0.66 
MSAI Real 1.04 0.47 1.04 0.49 
 Close Sim 1.00 0.22 1.00 0.25 
 Guttman 0.30 0.20 0.24 0.09 
 Random 2.07 0.39 2.32 0.47 

Critical Misfit Values for the CEQ Data Set 
If the distributions of the misfit statistics were normal, it would be possible to use the means and 
standard deviations to identify positions on the scale at which optimum separations between 
overfitting and fitting cases at one end and between fitting and underfitting cases at the other. 
However, the distributions are not normal. Figure 2 shows the observed IMS distribution for the 
CEQ data set.  It can be assumed that this distribution includes overfitting, fitting and underfitting 
cases.  

In a related study (Curtis, 2003) it has been shown that the distribution of IMS depends upon 
factors such as item and person variance and the number of response options. Thus, a 'standard' 
null distribution for IMS under all circumstances cannot be assumed. The distribution of 
simulated fitting cases (see 'Fits' in Figure 3) may be taken as a null distribution of the statistic. 
This particular null distribution has been modelled using the person and item parameters 
estimated in the analysis of the data set and is therefore the best estimate of the null distribution 
for the conditions under which these data were collected. For this distribution, the points at which 
2, 5, and 10 per cent of cases are cut at each end of the distribution are shown in Table 8. The IMS 
values at any of these cut points could be used to set critical values for accepting responses as 
fitting. However, it would be much more satisfactory to look also at the characteristics of 
misfitting cases before deciding on critical values for fit statistics.  
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Figure 2: The observed IMS distribution for the CEQ data set 

Table 8: Cut points for the IMS null distribution for CEQ data 
Distribution CEQ MSAI 

tails Overfits Underfits Overfits Underfits 
2% 0.46 1.76 0.56 1.48 
5% 0.52 1.58 0.64 1.38 

10% 0.59 1.42 0.72 1.28 

Figure 3 shows the modelled IMS distributions for simulated overfitting, fitting and underfitting 
cases for the CEQ data set. In a modelling exercise conducted using Excel, a mix of 7 per cent 
overfitting, 76 per cent fitting, and 17 per cent underfitting cases most closely approximated the 
IMS distribution of the real data set. Those proportions of the three categories of cases are 
reflected in Figure 3. 

 
 

Figure 3: Modelled IMS distributions for overfitting (Guttman), fitting and underfitting 
(random) responses for simulated CEQ data 
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The distribution of overfitting cases is bimodal. Inspection of these constructed cases revealed 
that, while most Guttman responses have IMS values below 0.5, those cases with scores close to 
zero and perfect have IMS values of between 0.6 and 0.8 and therefore in a range that is generally 
acceptable. However, most of these cases have OMS values below 0.5. Thus, seriously overfitting 
cases can be discriminated from closely simulated fitting cases by using both IMS and OMS 
values. Values of 0.5 for both misfit indicators would remove all but approximately five per cent 
of Guttman modelled responses, and since overfitting cases make up a modest percentage (seven 
per cent) in the two data sets investigated in this study, setting critical IMS and OMS values at 0.5 
would result in the inclusion of approximately 0.04 per cent of all cases being overfits. This 
critical value (0.5) would exclude approximately four per cent of modelled fitting CEQ cases and 
approximately one per cent of fitting MSAI cases. It is worth noting that the use of the two misfit 
indicators, IMS and OMS, together optimises discrimination between fitting and overfitting cases. 

In order to discriminate fitting and underfitting cases, Bond and Fox (2001, p.179) recommended 
a critical IMS value of 1.4. However, the IMS distribution has been shown to be influenced by 
several instrument and sample variables, and it may not be useful to propose a single critical value 
of this misfit indicator. With the CEQ data set, the observed IMS distribution can be modelled 
best using a combination of 7, 76, and 17 per cent of Guttman, fitting, and random cases. In 
Figure 3, the distributions of fitting and random cases cross at an IMS value of about 2.0. This 
may be one convenient point at which separate the two distributions. However, the null IMS 
distribution for the CEQ data set characteristics revealed that rather lower values of IMS would 
exclude relatively small proportions of fitting cases, and that a critical IMS value of 1.76 (see 
Table 8) would exclude only two per cent of fitting cases. Inspection of the distribution of random 
data revealed that setting this critical value would admit 9.7 per cent of randomly generated cases. 
But underfitting cases are thought to account for 17 per cent of the observed IMS distribution for 
the CEQ data, and so this criterion level would lead to a contamination rate of 1.6 per cent. The 
contamination rates (percentages of random cases that would be admitted) for critical IMS values 
of 1.58 and 1.42 would be 0.8 per cent and 0.4 per cent respectively. 

In seeking to optimise the discrimination of overfitting from fitting cases, it was possible to use 
both IMS and OMS misfit indicators. However, this is not a useful strategy for underfitting cases 
as the OMS distributions for fitting and underfitting cases both have greater variance than do the 
IMS distributions and there is a high correlation between IMS and OMS values above 1.5. Thus, 
although a clean separation of fitting and underfitting cases is not possible, the use of critical IMS 
values in the range 1.4 to 1.8 do provide a range of acceptable discriminations. Precisely where to 
locate the critical value depends upon the proportion of fitting cases that can be eliminated and the 
proportion of random cases that are accepted. The exclusion of fitting cases represents a potential 
loss of information, while the inclusion of random cases represents an acceptance of 'noise' that 
must inflate the standard errors of parameter estimates. 

Critical Misfit Values for the MSAI Data Set 
The IMS distribution for the MSAI data set is shown in Figure 4. This data set shows less 
variation than is the case for the CEQ data set (sd=0.47, cf 0.63 for the CEQ data). It is assumed 
that the observed MSAI data set includes some underfitting and some overfitting cases.  

Figure 5 shows the modelled IMS distributions for simulated overfitting, fitting and underfitting 
cases for the MSAI data set. In a modelling exercise conducted using Excel, a mix of 7 per cent 
overfitting, 70 per cent fitting, and 23 per cent underfitting cases most closely approximated the 
IMS distribution of the real MSAI data set. Those proportions of the three categories of cases are 
reflected in Figure 5. 
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As was observed for the CEQ data set, the distribution of overfitting cases is bimodal. And, also 
similarly, most of these generated overfitting cases that have acceptable IMS values, have OMS 
values below 0.5. Thus, using a combination of critical IMS and OMS indices set at 0.5, it is 
possible to detect all but approximately 0.15 per cent of these serious cases of overfit. Since 
overfitting cases make up a only seven per cent of the modelled data, setting critical IMS and 
OMS values at 0.5 would lead to the inclusion of fewer than one overfitting case in 1,000 and 
would exclude approximately four in 1,000 modelled fitting cases. 
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Figure 4: Observed IMS distribution for the MSAI data set 

Modelled MSAI IMS Distributions 
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Figure 5: Modelled IMS distributions for overfitting (Guttman), fitting and underfitting 

(random) responses for simulated MSAI data 

The OMS statistic does not assist in the discrimination of fitting and underfitting cases, and the 
IMS distributions of these two data sources overlap. In Figure 5, the IMS distributions of the 
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modelled fitting cases and the randomly generated cases cross at approximately 1.6. This appears 
to be the optimal value at which to discriminate fitting from underfitting cases. At this value, 11.4 
per cent of the 27 per cent of randomly generated cases in the sample or 3 per cent of the accepted 
sample would be contaminated with observations that were mere noise, and 0.7 per cent of the 70 
per cent of modelled fitting cases, or 5 per cent of valid cases would be excluded. 

Thus critical values for both the IMS and OMS of 0.6 would provide very good discrimination of 
fitting from overfitting cases. Setting a critical value for the IMS of 1.6, and perhaps even a little 
higher, would appear to provide the best available discrimination between fitting and underfitting 
cases for the MSAI data set. 

CONCLUSIONS 

The research had three purposes. The first was to investigate the influence on item parameters of 
the inclusion of misfitting cases. The second was to identify the characteristics of samples of both 
items and respondents that influence the distributions of person fit statistics. A third objective was 
to attempt to suggest a sound basis for establishing critical values of misfit indicators for attitude 
survey data. 

The analyses undertaken on two real data sets in this study have shown that the inclusion of 
responses that underfit the Rasch measurement model, and that may reflect carelessness in 
responding, increase the standard errors of item estimates, reduce the range of item locations on 
the scale, and reduce the inter-threshold range within items. Thus, the inclusion of misfitting cases 
compromises the measurement properties of the scale formed by the instrument. Close simulation 
of the two real data sets, using the item parameters and the distribution of person estimates 
obtained from the real data sets, has shown that the real data sets appear to include approximately 
seven per cent overfitting cases and from 17 to 23 per cent of underfitting cases. Together, these 
findings suggest that it is important to examine person fit as well as item fit in the analysis of data 
sets and to remove, at least for the purposes of calibration, those cases as well as items, that reveal 
substantial misfit. 

The analyses of constrained simulation data sets has shown that instrument mis-targeting, item 
and person variance, instrument length, and the number of response options all influence the 
distributions of the IMS and OMS misfit statistics for persons. This finding suggests that it is 
possible to provide only broad guidelines about the critical values that might be used in order to 
discriminate fitting from misfitting cases. From the data sets analysed, it would appear that 
relatively lenient critical values can be set for the IMS and OMS misfit statistics for persons. The 
recommendation of an acceptable range from 0.6 to 1.5 (Bond and Fox, 2001, p.179) might be 
relaxed for attitude survey instruments to 0.5 and 1.6, but that to discriminate well between fitting 
and overfitting cases, both the IMS and OMS statistics should be used. 

In the development of new instruments, it is desirable to establish optimum critical values for 
these misfit statistics, in order to eliminate as many misfitting cases as possible but to retain the 
variance of the greatest proportion of fitting cases. The close simulation technique demonstrated 
in this study provides a method for establishing optimum critical values for misfit statistics. 
However, these statistics are not able to completely discriminate between fitting and misfitting 
cases. The effectiveness of alternative misfit statistics that may be developed could be judged on 
their discriminating power, and the use of real and closely simulated data sets would assist in 
demonstrating that power. 

Before analysts remove cases from data sets, the meanings attached to over- and under-fitting 
must be understood. Randomly generated responses reveal underfit. In a separate study (Curtis, 
2003) pattered responses, the equivalent of so-called 'doodling', also lead to underfit and 
carelessness may also produce somewhat random responses. Thus underfit, as indicated by high 
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IMS values, should lead analysts to examine the returns of individuals who evince it. The 
inclusion of these cases in instrument calibration has been shown to compromise the measurement 
properties of the instrument. However, in using an established instrument, and especially if 
anchored item parameters are being used, underfitting cases should be examined closely. It is 
possible that these individuals are revealing differential item function in the instrument, and this 
possibility warrants investigation. If the cases are to be excluded from trait estimation, a sound 
case must be made. This is analogous to the removal of outliers from more common forms of 
analysis. 

Overfit is a clear statistical construct in that it applies to cases that reveal much less variance than 
is expected in a stochastic response model. However, its practical meaning is less obvious. 
Random responses that may be attributed to doodling or carelessness and that lead to underfit can 
be expected. However, for candidates to deliberately set out to overfit the model would require 
them to apprehend which items were low on the trait and which were high and to generate 
responses that were overly consistent with this pattern of item locations. Acquiescence and social 
desirability, identified by Anderson (1997), may also lead to overfit. Another possible source of 
overfit lies with persons who select intermediate response categories for all items. This might 
occur if the candidate had decided, without reading the items, to check the central response 
options. However, it is feasible for candidates to choose these options thoughtfully as the most 
indicative of their views. Given these conditions, there can be no basis for removing cases that 
show overfit and that also have a consistent middle-category set of responses. This problem can 
be ameliorated by ensuring that there are substantial differences in item locations, so that the 
middle category of one item is located at a trait level that corresponds to either a low or a high 
response category in other items. 

If candidates check all the left-most or all the right-most options, and if there are some reversed 
scored items, then these returns will reveal underfit. With items that are all worded in the same 
sense, these response patterns would yield overfit. Thus the inclusion of reverse-scored items in 
instruments is advantageous for analysts. 

The use of information about person fit in Rasch analyses is informative, especially during the 
instrument development phase. In the analysis of data sets collected using established attitude 
survey instruments, it is desirable also to examine person fit. Unlike achievement tests, attitude 
surveys are often anonymous and even if individuals are identified, they are most often low stakes 
activities for participants. For this reason, researchers might expect that some respondents will be 
careless and that such data may compromise the effectiveness of the instrument as a measurement 
tool. Deleting these cases from the analysis may improve the instrument's measurement properties, 
and removing misfitting cases may lead to more precise scaled data that may then be used as 
inputs in other forms of analysis. 
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