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In the past 20 years, the analysis of individual change has become a key focus
in educational research. There are several parametric analyses that centre upon
quantifying change. Some researchers state that such analyses should only
occur if the measure itself remains completely unchanged across waves, arguing
that it is not possible to link or connect the scores, either methodologically
or conceptually, of measures whose content, wording, response categories,
or response formats vary across waves. Because it is not always possible or
warranted to use the exact same measure over time, however, it is vital to explore
more fully the problem of analysing change and growth with measures that
vary across waves. To this end, the primary objective of this paper is to expand
upon the statistical work of Lloyd and Zumbo (2007) by introducing the non-
parametric hierarchical linear model (NPAR-HLM), a workable solution to the
problem of analysing change/growth with measures that change over multiple
waves. An example of the implementation of the solution is provided, as is a
discussion of the solution’s assumptions, strengths, and limitations.

Introduction
Individual change is the subject of significant attention in education. The analysis
of such change is aimed at quantifying the amount by which individuals grow, mature,

improve, and progress over time. By measuring and tracking changes over hours,
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days, weeks, months, and even years, it is possible to reveal the temporal nature of
development (Singer & Willett, 2003).

Repeated measures analyses — a class of parametric methodologies that centre upon
quantifying change over time — are often characterised by one set of individuals being
measured more than once on the same (or commensurable) dependent variable. Some
researchers state that such analyses should only occur if the measure itself remains
completely unchanged across waves, arguing that it is not possible to link or connect
the scores, either methodologically or conceptually, of measures whose content,
wording, response categories, or response formats vary across waves (von Davier,
Holland, & Thayer, 2004; Willett, Singer, & Martin, 1998). Because it is not always
possible or warranted to use the exact same measure over time, however, it is vital to
explore more fully the problem of analysing change and growth with measures that
vary across waves. In fact, the practise of analysing change over time using measures
that themselves change across waves is commonly found in educational research.

Lloyd and Zumbo (2007) introduce a solution to the problem of analysing change
with time-variable measures — that is, measures whose content, wording, response
categories, or response formats vary in some systematic way across waves. Their
solution, called the non-parametric difference score (NPAR-Diff), involves using
ranks in the place of original scores in regular parametric analyses. It is this use of
ranks, instead of original scores, that makes the NPAR-Diff a non-parametric solution.
Designed to explore change across two waves (e.g., pretest-posttest designs), the
NPAR-Diff was created for applied researchers and can be implemented easily in
everyday research settings.

Objective

It is recognised increasingly that there is a need to explore solutions for handling
the problem of analysing change and growth when one uses time-variable measures
across multiple waves. Therefore, the primary purpose of this paper is to expand upon
the statistical and technical work laid out by Lloyd and Zumbo (2007), applying the
non-parametric solution to the context of analysing change and growth across multiple
(i.e., three or more) waves. In the next section, we further set the context of this paper
by discussing three research scenarios in which one may utilise repeated measures
analyses.

Setting the Context
Using Repeated Measures Analyses: Three Research Scenarios
There are three research scenarios in which repeated measures can be utilised:

Scenario 1: Exact same measure across waves. In this scenario, one’s construct
of choice makes it possible to use and re-use the exact same measure across all
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waves, irrespective of the ever-changing age, cognitive development, and personal
and scholarly experiences of the test-takers. The measures’ content, item wording,
response categories, and response formats do not change whatsoever across waves.

Scenario 2: Linkable time-variable measures. Time-variable measures are those
whose content, wording, response categories, and/or response formats vary across
waves in repeated measures designs. In this scenario, although the time-variable
measures are not completely identical across waves, there is at least one anchor item
shared by each of the measures, on whose scores traditional test linking or equating
techniques (e.g., vertical scaling, item response theory techniques) can be performed
(Kolen & Brennan, 2004).

Scenario 3: Non-linkable time-variable measures. This scenario involves using
measures whose content, item wording, response categories, and/or response formats
may vary completely across waves (Mislevy, 1992). Take, for example, a mathematics
achievement test administered at Grades 4, 7, and then 10: The measure administered
at Grade 4 cannot be same as the measure at Grade 7 and, in turn, the Grade 7 measure
cannot be the same as the Grade 10 measure. If they were the same, the reliability and
validity of the test scores would be compromised, likely rendering the study useless
(Singer & Willett, 2003).

Although Scenario 3 has been characterised as the situation in which one’s measures
share no common items across waves, it is also possible to encounter Scenario 3 in two
additional situations: (a) when one has linkable time-variable measures but a small
sample size, or (b) when one does not have the ability to compare the sample’s scores
to those of a norming group. In the case of small sample sizes, it is not necessarily
advisable to link or connect the scores of measures, even if the measures share common
items.

As Scenario 1 (exact same measure across waves) illustrates, certain constructs
can indeed be measured using the exact same measure across all testing occasions
— irrespective of the ever-changing age, cognitive development, and personal and
scholarly experiences of the test-takers. As Scenario 2 (linkable time-variable
measures) and particularly Scenario 3 (non-linkable time-variable measures) depict,
however, there are often situations in which one’s construct of choice makes using
and re-using the exact same measure across waves unreasonable and even impossible.
Kolen and Brennan (2004) remind readers that, when test forms cannot be made to be
identical, it may be impossible to equate. So what is one to do, then, if the use of time-
variable measures is necessary and unavoidable?

To this end, the problem motivating this paper surrounds the analysis of change and
growth with non-linkable time-variable measures (i.e., Scenario 3). Of course, Scenario
2 is also relevant because the problem of handling linkable time-variable measures has
been relatively under-studied and under-documented in the test linking and change/
growth literatures. Many of the strategies currently being used in the change/growth
literature as means of handling the motivating problem, such as vertical scaling and
item response theory techniques (see Kolen & Brennan, 2004), are often only useful to
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large testing organisations that have access to very large numbers of test-takers and/or
expansive item pools. Practically speaking, researchers in everyday research settings
must often make due with small sample sizes and novel, never-before-used measures.
It is for this reason that this paper introduces a workable solution to the problem of
analysing change/growth with time-variable measures administered over multiple
waves — one that can be implemented easily in everyday research settings. In the next
section, the value of merging non-parametric and parametric approaches is discussed.

Bridging the Non-Parametric/Parametric Gap

Researchers often underestimate or overlook the utility of non-parametric statistical
methods. Introductory statistics course instructors frequently isolate ‘rank speak’ into
separate units that appear to students and/or day-to-day researchers to be disconnected
from the general flow of the material (Conover & Iman, 1981), and textbook writers
frequently convey the erroneous impression that non-parametric analyses are ‘always’
less powerful than their parametric counterparts (Zimmerman & Zumbo, 2005).
There can, however, be great utility in bridging the gap between non-parametric and
parametric statistical methods, as noted by Conover and Iman (1981), Conover (1999),
and Zimmerman and Zumbo (1993, 2005).

Indeed, this gap has already been bridged in various contexts, such as the Spearman
correlation coefficient (Conover, 1999; Conover & Iman, 1981). Seldom, however, has
this bridge been extended to the problem of analysing change/growth, particularly with
time-variable measures. By expanding upon the previous research of Conover and his
colleagues—whereby the bridge between non-parametric and parametric methodologies
is extended to the problem of analysing change/growth with time-variable measures
— it is now possible to perform a new change/growth analysis: the non-parametric
hierarchical linear model (NPAR-HLM) for multi-wave data that cannot be linked or
equated. Justification for this strategy is further provided by Lloyd (2006) and Lloyd
and Zumbo (2007), and by Braun (1988), who describes a percentile-based method by
which to bridge the non-parametric/parametric gap, both within proper longitudinal
designs and repeated cross-sectional (pseudo-longitudinal) designs.

The Non-Parametric HLM: The Conover Solution for Multi-Wave Data

The NPAR-HLM involves rank transforming (or ordering) individuals’ original
longitudinal test scores within wave pre-analysis, and then using these ranks in the
place of the original scores in subsequent hierarchical linear modelling analyses. We
refer to the general approach of converting original scores into ranks pre-analysis
as the Conover solution, in recognition of the seminal work of W. J. Conover (e.g.,
Conover, 1999; Conover & Iman, 1981) whose research not only inspired the NPAR-
HLM, but also provides evidence for the solution’s statistical viability.

A rank depicts the position of a test-taker on a variable relative to the positions
held by all other test-takers. Ranking or rank transforming refers to the process of
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transforming a test-taker’s original score to a rank relative to other test-takers —
suggesting a one-to-one function f from the set {X, X, ..., X } (the sample values) to
the set {1, 2,..., N}(the first N positive integers) (Zimmerman & Zumbo, 1993).

For example, if Test-taker X earned a score of 12, Test-taker Y earned a score of 13,
and Test-taker Z earned a score of 14, then the test-takers’ respective ranks would be
1, 2, and 3 (where a rank of 1 is assigned to the test-taker with the lowest score).! As
Zimmerman and Zumbo (2005) remind readers, inasmuch as test-takers’ scores are
represented in terms of their position relative to other test-takers in the same wave, a
rank is similar to a percentile score. A percentile score is a type of rank that represents
an original score as the percentage of test-takers in an external norming group whose
score falls below that score. Unfortunately, referring to the scores of a norming sample
is not always practical or possible.

In general, researchers can effectively use ranks in situations in which regular
statistical assumptions (e.g., normality) are not or cannot be met (see, for example,
Beasley & Zumbo, 2003; Conover, 1999; Zimmerman & Zumbo, 1993). Zimmerman
and Zumbo (1993, 2005) note that using ranks in parametric analyses can, in fact,
often improve the validity and power of significance tests for non-normal distributions.
Moreover, ranks used in parametric analysis often produce similar results to those of
traditional non-parametric tests (Zimmerman & Zumbo, 2005), and can be used in
multi-wave designs.

Assumptions of the NPAR-HLM Solution

As with any methodological tool, the NPAR-HLM solution comes with its own set of
assumptions.? First, the scale for the measures’ original scores must be ordinal, interval,
or ratio. If so, then the original scores can be converted into ranks in a meaningful
fashion. If, however, the scale is categorical, then there is no way of meaningfully
converting the original scores into ranks.

Second, there must be heterogeneous change in the ranks across waves, meaning
that all test-takers do not change the same amount across waves. Imagine that Test-
Taker X earns a rank = 1 across all waves and Test-Taker Y earns a rank = 2 across
all waves. In this example, both test-takers’ rank-based change scores equal zero,
suggesting homogeneous change which, for reasons outlined by Zumbo (1999), is
not permissible in change-over-time analyses. It should be noted that homogeneous
change is not a problem endemic to only the Conover solution. Homogeneous change
also degrades the value of calculating simple difference scores (Zumbo, 1999).

Finally, the NPAR-HLM solution requires that a commensurable (or comparable
or similar) construct is measured across all waves of the study. Although the means
by which one can assess the commensurability of time-variable measures is beyond
the scope of this paper, commensurability generally means that the same primary
dimension or latent variable is driving the test-takers’ responses across waves (Lloyd
& Zumbo, 2007). A latent variable is an unobserved variable that accounts for the
correlation among one’s observed or manifest variables. Ideally, psychometricians
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design measures such that the latent variable that drives test-takers’ responses is a
representation of the construct of interest.

How Ultilising the NPAR-HLM Changes the Research Question

It is important to note that, when one applies the NPAR-HLM to the problem of
analysing change/growth with time-variable measures, one changes the research
question being investigated: One is no longer investigating the factors that contribute
to test-takers’ performance growth across the waves. Instead, one is examining the
factors that contribute to the consistency, or lack thereof, of test-takers’ rank order
across waves. Put another way, the NPAR-HLM allows for exploration in changes in
relative rank across waves, rather than rates of change.

Change in relative rank across waves may appear, at first blush, to be a less preferred
focus than performance growth. When one deals with time-variable measures, however,
performance growth results based on original scores are not interpretable, essentially
because the various measures’ scores have not been placed onto any sort of common
metric. Therefore, there is “no way of assigning a useful interpretation to observed
differences in gains” (Braun, 1988, p. 174). The fact that the rank transformation
changes the research question is not new to research methodologists. For example,
the Spearman correlation coefficient measures the degree of monotonic relationship
between two variables, as compared to the Pearson correlation coefficient which
measures the degree of a linear relationship between two variables.

Introducing the NPAR-HLM in the Context of an Example

Imagine that a researcher is interested in exploring whether or not there are gender
differences in the rank-based longitudinal reading achievement scores of a group
of test-takers. Obtained were the original (raw) scores on the Stanford Diagnostic
Reading Test (SDRT), a standardised test of reading comprehension designed by
Harcourt Assessment (Karlsen & Gardner, 1978-1996).

Data were collected for 653 children (n,, .. =336, n_ = 317), each of whom was
assessed across five waves: Grades 2, 3, 4, 5, and 6, inclusive. As discussed more fully
in a later section, test-takers missing one or more waves of SDRT data were excluded
from analyses.

The SDRT administration involves each test-taker’s receiving a booklet, reading
the short passages within the booklet, and providing responses to multiple-choice
questions based on the reading in a prescribed time limit (Lesaux & Siegel, 2003).
Because test-takers’ reading comprehension changes with time, the SDRT has been
changed developmentally (i.c., across waves) by the test developer (Karlsen & Gardner,
1978-1996). 1t should be noted that the SDRT is an example of a non-linkable time-
variable measure, because the actual paragraphs read and the questions asked differ at
each grade level.
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As Table 1 and Figure 1 depict, the descriptive statistics for each wave of SDRT
original scores vary widely.

Because this example involves data collected over three or more waves, it is
possible to conduct a two-level HLM analysis of change: Test-takers’ rank-transformed
test scores (the Level 1 outcome variable) are nested within test-takers (the Level 2
grouping units), with each test-taker’s gender serving as the Level 2 predictor variable.
It should be noted that gender was chosen as the Level 2 predictor for illustrative
reasons only.

The key to implementing the NPAR-HLM is that one must first rank transform the
data within wave, with the mean rank being assigned to ties — a process that requires
data being entered in the spreadsheet in person-level format, in which one row
represents one test-taker, with time-related variables represented along the horizontal
of the spreadsheet. After the rank transformation has been completed, one can then
transpose the data into person-period format, in which each test-taker has multiple
rows (one for each wave) and, in turn, proceed with the change/growth analysis.

Figure 2 illustrates that Test-Taker X, for example, earns a rank of 2 for Wave 1
(Grade 2) because his original Wave 1 score (30) is between those of Test-Taker Y (27,
Rank = 1) and Test-Taker Z (36, Rank = 3). Recall from an earlier section that a rank
of 1 is assigned to the test-taker with the lowest within-wave score.

Statistical Models and Equations

When dealing with nested data, two sets of analyses are performed: unconditional
and conditional. By doing so, one can then determine what improvement in the
prediction of the outcome variable is made after the addition of the predictor variable(s)
to the model (Singer & Willett, 2003).

Table 1
Descriptive Statistics for Each of the Five Waves of SRDT Original (Raw) Scores (N
=653)

Original Variable

Name Min Max M SD Skew Kurtosis
grade2original 12 40 36.24 3.99 -2.50 8.47
grade3original 10 45 35.99 6.18 -1.20 1.50
gradedoriginal 8 54 41.48 7.39 -1.36 2.09
gradeb5original 4 54 44.46 6.47 -2.13 6.96
grade6original 11 54 41.17 8.33 -1.00 0.74
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Figure 1. Histograms of the original (raw) scores across five waves: Grade 2 (top
left), Grade 3 (top right), Grade 4 (middle left), Grade 5 (middle right), and Grade 6
(bottom left). Note that each of the distributions is skewed negatively.
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Example Original Variables Resultant Rank-Transformed Variables
A A
4 N O N
grade2 grade3 grade4 grade2 grade3 grade4
original original original rank rank rank
Test-Taker X 30 31 29 2 1 1
Test-Taker Y 27 32 30 1 2.5 2
Test-Taker Z 36 32 35 3 25 3

Figure 2. An example person-level data matrix showing three waves of hypothetical
original SDRT scores and their corresponding within-wave ranks.

Unconditional HLM models (sometimes called baseline or null models) generally
involve computing the proportion of variance in the outcome variable that can
be explained simply by the nesting of the Level 1 outcome variable (the repeated
measures) within the Level 2 grouping units (the test-takers). Therefore, the Level 2
predictor variable, gender, is not included in the unconditional model.

The Level 1 model is a linear individual growth model, and represents the within-
person (test-taker) variation. The Level 2 model expresses variation in parameters
from the growth model as random effects unrelated to any test-taker level predictors
(Singer, 1998), and represents the between-person (test-taker) variation.

Using the notation of Raudenbush and Bryk (2002), in which each level is written as
a series of separate but linked equations, the relevant models and notation follow. The
models and equations are expressed and formatted in a manner largely consistent with
Raudenbush and Bryk (2002), Singer and Willett (2003), and Singer (1998); the only
difference is that the dependent variable now represents test-takers’” within-wave ranks
(Y;"), not the original scores. It should be noted that we present the equations in this
paper primarily for the purpose of completeness, and for aiding in the interpretation
of the results.

The HLM model in Equations 1 and 2 is expressed as the sum of two parts. The
fixed part contains two fixed effects — for the intercept and for the effect of wave (time).
The random part contains three random effects — for the intercept, the wave slope, and
the within-test-taker residual (e,) (Singer, 1998).
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Unconditional Model Level 1 (Within-Person)

R

Yo =%+ (Wave)n €,

where:

e YR =test-taker i’s rank-based literacy score on
wave t; the superscript R denotes the use of ranks in
the place of original scores;

e wave = time or measurement occasion (coded
Grade 2=0, Grade 3=1, Grade 4= 2, Grade 5=3, (1)
and Grade 6 = 4);

o = test-taker i’s true initial status (the value of
the outcome when wave; = 0);

e my; = test-taker i’s true change in relative rank
during the period under study; and

e g = the portion of test-taker i’s outcome that is
unpredicted at wave t (the within-person residual).

Unconditional Model Level 2 (Between-Person)

TCoi 21800+r0i )
7Z'1i 21610"_ rli ,
where:

e 1 = true initial status;

e my;=true change in relative rank; (2)

e fuand By = Level 2 intercepts (the
population average initial status and change
in relative rank, respectively); and

e rgand ry; = Level 2 residuals (representing
those portions of initial status or rate of
change that are unexplained at Level 2; in
other words, they represent deviations of the
individual change trajectories around their
respective group average trends).

Having already fit the unconditional model in Equations 1 and 2, Equations 3 and 4
involve an HLM model which explores whether or not variation in the intercepts and
slopes is related to the Level 2 predictor, gender (Singer, 1998).
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Conditional Model Level 1 (Within-Person)
R
Yti = oo T 70 (Wave)t, + eti,

where: 3)

e Notation the same as in Equation
1 (Unconditional Model Level 1)

Conditional Model Level 2 (Between-Person)

TCoi ~ ﬂoo+ﬂ01(gender)i+r0i )
70~ ﬂ10+ﬂ11(gender)i+rli '

where:

e gender = Level 2 predictor of
both initial status and change
(coded male = 0 and female = )
1); and

o foand B3 = Level 2 slopes
(representing the effect of
gender on the change
trajectories, and which provide
differences in initial status and
changes in relative rank,
respectively).

e All other notation the same as in
Equation 2 (Unconditional
Model Level 2)

Explanation of the Statistical Output

Unconditional model. As Table 2 shows, the parameter value 327.00 represents the
estimate of the average intercept across test-takers (the average value of the dependent
variable when wave = 0). Therefore, the average person began with a rank of 327.
The fact that this estimate is statistically significant (p = .00) simply means that this
average intercept is significantly different from zero. This finding is not particularly
useful, and is to be expected given that as various test-takers improve their rank over
time, other test-takers worsen. Therefore, change in relative rank is a zero sum game
within a closed set.?
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Table 2 also shows that the parameter estimate for wave (0.01) is statistically non-
significant (p = 1.0) revealing that, on average, test-takers’ rank trajectories were flat.
In other words, the average test-taker’s rank relative to other test-takers did not change
across the five waves (i.e., from Grade 2 to Grade 6).

Table 2
Unconditional Model Output: Estimates of Fixed Effects

Parameter Estimate  Standard df Test p-Value

Error Statistic

Intercept .
P (72.0' ) 327.00 6.52 652 50.15 .00*

Wave .
( 72.1' ) 0.01 1.64 652 0.00 1.00

Note. * p <.05; Wave coded Grade 2 = 0, Grade 3 =1, Grade 4 = 2, Grade 5 = 3, and
Grade 6 = 4.

In order to postulate the appropriate individual growth model, any properties
imposed on the model’s composite residual (in this case, the difference between the
observed and the expected value of YR for individual i on wave t) must match those
required by the data. In specifying a model’s stochastic component, one should allow
for heteroscedasticity and autocorrelations among the composite residuals (Singer &
Willett, 2003).

The type of covariance structure specified here for the composite residual was
the unstructured error covariance matrix, in which each element of the hypothesised
error covariance structure takes on the value demanded by the data. Because of its
parsimonious nature, an unstructured error covariance matrix is viewed as being
desirable for exploratory analyses (Singer & Willett, 2003) and, therefore, deemed
appropriate for this paper’s illustration of the NPAR-HLM.

Recall from Table 2 that the main effect of wave was statistically non-significant
— meaning that the average test-taker’s rank trajectory was flat. As Table 3 details,
even though the average test-taker’s rank relative to other test-takers did not change
across the five waves (i.e., from Grade 2 to Grade 6), the variance in the intercepts
(20002.27) and the slopes (471.5) are both statistically significant (p = .01), revealing
individual differences in both the test-takers’ relative starting rank and their change in
relative rank, respectively.
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Table 3
Unconditional Model Output: Estimates of Variance Parameters

Parameter Estimate Standard Error p-Value

Variance of intercept (var -
ptivar(7T o) 20002.27 1557.8 0.01*

Variance of slopes (var -
pes (var( 777; ) 4715 106.2 0.01*

Note. * p < .05.

It is this variance in individual test-takers’ intercepts and slopes (not the average
slopes) that is particularly compelling, because this variance justifies the addition of
predictor variables in Level 2 of the conditional model (in this case, gender). Recall
that, in any HLM growth model, it is surmised that a given Level 2 predictor is added
for the purpose of explaining differences in individual test-takers’ Level 1 intercepts
and slopes (Singer & Willett, 2003). Table 3, in essence, reveals that re-running the
analysis with the Level 2 addition of gender is a statistically defensible next step.

Conditional model. Table 4 illustrates the output from the conditional HLM analysis.
Conditional HLM models generally involve computing the proportion of variance in
the outcome variable that can be explained not only by the nesting of the Level 1
scores within the Level 2 grouping units, but also by the inclusion of the predictor
variable (in this case, gender) in the analysis.

The parameter estimate for gender, 48.87 is statistically significant (p = .00),
revealing a relationship between initial status and gender. This finding suggests that
female test-takers, on average, begin with a rank 48.87 higher than that of males (males
coded 0, females coded 1).

A regrettable limitation of the NPAR-HLM, and of non-parametric solutions in
general, is the difficulty it presents in terms of interpreting interactions (Sawilowsky,
1990). It is for this reason that the wave x gender interaction term, although presented
in Table 4 for completion, is not explained here. This issue is discussed in more detail
in a later section.

Strengths of the NPAR-HLM

The non-parametric HLM — offered as a means of handling the problem of analysing
change and growth with time-variable measures collected over three or more waves —
has several strengths:

Ease of use. The first strength relates to the ease of implementation of the NPAR-
HLM. As Conover and Iman (1981) observe, it is often more convenient to use ranks

93



Lloyd, Zumbo, and Siegel

Table 4
Conditional Model Output: Estimates of Fixed Effects

Parameter Estimate Standard df Test Statistic p-Value

Error

Intercept ( 7Z.Oi )

301.85 9.26 651 32.57 00*
Wave ( 774; ) -2.46 2.35 651 -1.04 29
Gender 48.87 12.91 651 3.78 .00*
Wave * Gender 4.79 3.28 651 1.46 14

Note. * p <.05. Wave coded Grade 2 =0, Grade 3 =1, Grade 4 = 2, Grade 5 = 3, and
Grade 6 = 4. Gender coded male = 0 and female = 1.

in a parametric statistical program than it is to write a program for a non-parametric
analysis. Furthermore, all of the steps required for the implementation of the NPAR-
HLM (i.e., rank transforming data within waves, restructuring the data matrix,
conducting hierarchical/mixed-effect analyses, etc.) can be easily performed using
commonly-used statistical software packages, such as SPSS and SAS.* Given the
widespread use of such software packages in educational research settings, the NPAR-
HLM is particularly appealing from a practical standpoint.

Bridges the parametric/non-parametric gap. Second, by rank transforming the data
pre-analysis, one is able to bridge the gap between parametric and non-parametric
statistical methods, thereby providing “a vehicle for presenting both the parametric
and nonparametric methods in a unified manner” (Conover & Iman, 1981, p. 128).
Unfortunately, introductory statistics courses and textbooks very often treat the two
methods as if they are completely distinct from one another when, in fact, there can be
great strength in marrying the two (Conover, 1999; Conover & Iman, 1981).

Makes use of the ordinal nature of data. Third, the NPAR-HLM makes use of the
inherent ordinal nature of continuous-scored data: A test-taker with a low original score
relative to other test-takers in his wave will also yield a low relative rank. Similarly,
a test-taker with a high test-score will also yield a high rank. As a result, within-wave
order among the test-takers is preserved. By ranking test-takers’ scores within-wave
pre-analysis, it is possible to put the longitudinal test scores onto a common metric,
thereby providing a standard against which test-takers’ scores can be measured and
compared.

94



When Measures Change over Time

Requires no common/linkable items. Unlike many other test linking methods and
strategies, the NPAR-HLM can be implemented not only in situations in which one’s
study involves time-variable measures that can be linked, but also situations in which
the time-variable measures share no linkable items whatsoever. Hence, unlike vertical
scaling, equating, and their linking counterparts, the NPAR-HLM provides a means by
which researchers can study change and growth — whether or not the measures contain
linkable items. It is anticipated that this particular feature of the NPAR-HLM will likely
prove appealing to researchers studying constructs thought to change developmentally
(e.g., academic achievement).

Requires no norming group. Recall from an earlier section that a norming group
(normative sample) is a large sample, ideally representative of a well-defined
population, whose test scores provide a set of standards against which the scores of
one’s sample can be compared (Gall, Borg, & Gall, 1996). Due to time and financial
constraints, it is not always possible to compare the scores of one’s sample to those of
an external norming sample. As such, a fifth strength of the NPAR-HLM is that it can
be conducted using simply the scores of the immediate sample of test-takers.

Limitations of the NPAR-HLM

As with any methodological tool, the NPAR-HLM has various limitations:

Problems interpreting interactions. As described in an earlier section, a regrettable
limitation of the NPAR-HLM, and of non-parametric methods in general, is the
difficulty it presents in terms of interpreting interactions. Sawilowsky (1990) describes
the problems one can encounter when substituting ranks in two- or higher-way designs.
For example, Sawilowsky, Blair, and Higgins (1989) found that the null hypothesis for
interaction can actually change from false to true when one substitutes ranks in a finite
population which can, in turn, have a negative impact on power. It is for such reasons
that the NPAR-HLM is best suited for exploring main effects, rather than interactions.
For the specific situations in which ranks may be used to detect interactions, please
refer to Thompson (1991).

Within-wave ranks are bounded. As described earlier, rank transforming refers to
the process of converting a test-taker’s original score to rank relative to other test-
takers — suggesting a one-to-one function f from the set {X, X,, ..., X } (the sample
values) to the set {1, 2,..., N}(the first N positive integers) (Zimmerman & Zumbo,
1993). The values assigned by the function to each sample value in its domain are the
number of sample values having lesser or equal magnitude. Consequently, the ranks
are bounded from above by N.

Imagine that, on a standardised test of intelligence, Test-Taker W earns a score
100, Test-Taker X earns a score of 101, Test-Taker Y earns a score of 102, and Test-
Taker Z earns a score of 167. Test-Taker Z’s score, relative to the other test-takers,
is exceptional. Despite her exceptional performance on the measure, however, Test-
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Taker Z’s test score is masked by the application of ranks: Test-taker W = 1, Test-taker
X =2, Test-taker Y = 3, and Test-taker Z = 4. As a result, one limitation of the Conover
solution is that there may be problems associated with the inherent restriction of range
it places on data. Differences between any two ranks range between 1 and N — 1,
whereas the differences between original sample values range between 0 and infinity
(Zimmerman & Zumbo, 1993).

It should be noted that this limitation is also a strength because as Zimmerman and
Zumbo (1993) note, as a result, “any outliers among the original sample values are
not represented by deviant values in the rank” (p. 487) making the NPAR-HLM less
sensitive to outlying data points within a wave of data, than the more typically-used
parametric version of HLM growth models.

Difficulties associated with handling missing data. Recall from an earlier section
that only those test-takers for whom data were available at each and every wave were
retained in the analyses. As most educational researchers will note, no discussion
about change and growth is complete without a complementary discussion about
one unavoidable problem: missing data. In longitudinal designs, particularly those
that span months or years, it is extremely common to face problems associated with
participant dropout, attrition, as well as participants who join, or return to the study,
in later waves.

The complexity (even messiness!) of many longitudinally-collected data sets can
have serious implications for growth analyses. Singer and Willett (2003) remind
readers that, when fitting a growth model:

You implicitly assume that each person’s observed records are a random sample

of data from his or her true growth trajectory. If your design is sound, and

everyone is assessed on every planned occasion, your observed data will meet

this assumption. If one or more individuals are not assessed on one or more
occasions, your observed data may not meet this assumption. In this case, your

parameter estimates may be biased and your generalizations incorrect (p. 157).

One possible strategy for circumventing, or at least mitigating the effect of, missing
data is to impute the missing original or standardised scores prior to rank-transforming
the data within-wave pre-analysis. Because detailed discussion of various imputation
methods are beyond the scope of this paper, and because missing data discussion is
largely case-dependent, readers are referred to Schumacker and Lomax (2004) for
discussion about handling missing data.

Makes use of the ordinal nature of data. Recall that the fact that the NPAR-HLM
makes use of the ordinal nature of continuous-scored data was previously identified
as one of the solution’s strengths. Unfortunately, precisely what the NPAR-HLM wins
by, it also loses by. Because of the rank transformation of the original or standardised
scores:
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. differences between raw scores are not necessarily preserved by the
corresponding ranks. For example, a difference between the raw scores
corresponding to the 15th and the 16th ranks is not necessarily the same as the
difference between the raw scores corresponding to the 61st and 62nd ranks in a
collection of 500 test scores (Zimmerman & Zumbo, 2005, p. 618).

Conclusions

There are two primary reasons why investigating the problem of analysing change
and growth with time-variable measures was undertaken in this paper. First, as Willett
et al. (1998) and von Davier et al. (2004) describe, the rules about which tests are
permissible for repeated measures designs are precise and strict. Given these conditions,
it was necessary to investigate if and how repeated measures designs are possible
— speaking both psychometrically and practically — when the measures themselves
must change across waves. Second, given the substantial growth in longitudinal large-
scale achievement testing (Braun, 1988), it was — and is — necessary to find viable and
coherent solutions to the problem so that researchers, educational organisations, policy
makers, and testing companies can make the most accurate inferences possible about
their test scores.

Recall from an earlier section that it is not possible to explore growth in performance
outcomes when one is dealing with measures that cannot be linked or equated (as is
the case with many time-variable measures), because the various measures’ scores
have not been placed onto any sort of common metric and, as a result, there is no
way of interpreting the original scores in any meaningful way. To this end, readers
were introduced to a novel solution for handling the problem of analysing change
and growth with time-variable measures, particularly those that cannot be equated or
linked.

It should, however, be stressed that the NPAR-HLM is by no means a universal
panacea. As Linn (1993) notes, considering any one individual method as the ultimate
solution to the problem of linking test scores is fundamentally unsound because:

The sense in which the scores for individual test-takers can be said to be

comparable to each other or to a fixed standard depends fundamentally on the

similarity of the assessment tasks, the conditions of administration, and their
cognitive demands. The strongest inferences that assume the interchangeability

of scores demand high degrees of similarity. Scores can be made comparable

in a particular sense for assessments that are less similar. Procedures that make

scores comparable in one sense (e.g., the most likely score for a student on

a second assessment) will not simultaneously make the scores comparable in

another sense (e.g., the proportion of test-takers that exceed a fixed standard).

Weaker forms of linkage are likely to be context, group, and time dependent,
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which suggests the need for continued monitoring of the comparability of scores
(p. 100).

Because of the case-specific nature of the problem of analysing change and growth
with time-variable measures (that can or cannot be linked), researchers are beseeched to
prioritise the making of careful and trained judgements about their proposed measures
—right at the outset of the study. The later one waits to make such judgements, the less
accurate the inferences one makes from the measures’ scores. In conclusion, readers
are advised to be mindful of the words of Kolen and Brennan (2004): “The more
accurate the information, the better the decision” (p. 2).

Endnotes

1. One can also assign ranks so that the test-taker with the highest score receives a
rank of 1. It is, however, easier to think of test-takers receiving the highest score also
receiving the highest rank value.

2. Lloyd (2006) discusses each of these assumptions in greater detail.
3. We thank an earlier reviewer for this observation.

4. Hierarchical analyses can also be performed using such statistical packages as
HLM and MLwiN; however, these packages’ current versions are not able to convert
original scores to ranks, so the rank transformation must be done in another statistical
package pre-analysis.
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