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In the past 20 years, the analysis of individual change has become a key focus 
in educational research. There are several parametric analyses that centre upon 
quantifying change. Some researchers state that such analyses should only 
occur if the measure itself remains completely unchanged across waves, arguing 
that it is not possible to link or connect the scores, either methodologically 
or conceptually, of measures whose content, wording, response categories, 
or response formats vary across waves. Because it is not always possible or 
warranted to use the exact same measure over time, however, it is vital to explore 
more fully the problem of analysing change and growth with measures that 
vary across waves. To this end, the primary objective of this paper is to expand 
upon the statistical work of Lloyd and Zumbo (2007) by introducing the non-
parametric hierarchical linear model (NPAR-HLM), a workable solution to the 
problem of analysing change/growth with measures that change over multiple 
waves. An example of the implementation of the solution is provided, as is a 
discussion of the solution’s assumptions, strengths, and limitations. 

Introduction

Individual change is the subject of significant attention in education. The analysis 
of such change is aimed at quantifying the amount by which individuals grow, mature, 
improve, and progress over time. By measuring and tracking changes over hours, 
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days, weeks, months, and even years, it is possible to reveal the temporal nature of 
development (Singer & Willett, 2003). 

Repeated measures analyses – a class of parametric methodologies that centre upon 
quantifying change over time – are often characterised by one set of individuals being 
measured more than once on the same (or commensurable) dependent variable. Some 
researchers state that such analyses should only occur if the measure itself remains 
completely unchanged across waves, arguing that it is not possible to link or connect 
the scores, either methodologically or conceptually, of measures whose content, 
wording, response categories, or response formats vary across waves (von Davier, 
Holland, & Thayer, 2004; Willett, Singer, & Martin, 1998). Because it is not always 
possible or warranted to use the exact same measure over time, however, it is vital to 
explore more fully the problem of analysing change and growth with measures that 
vary across waves. In fact, the practise of analysing change over time using measures 
that themselves change across waves is commonly found in educational research.

Lloyd and Zumbo (2007) introduce a solution to the problem of analysing change 
with time-variable measures – that is, measures whose content, wording, response 
categories, or response formats vary in some systematic way across waves. Their 
solution, called the non-parametric difference score (NPAR-Diff), involves using 
ranks in the place of original scores in regular parametric analyses. It is this use of 
ranks, instead of original scores, that makes the NPAR-Diff a non-parametric solution. 
Designed to explore change across two waves (e.g., pretest-posttest designs), the 
NPAR-Diff was created for applied researchers and can be implemented easily in 
everyday research settings.

Objective

It is recognised increasingly that there is a need to explore solutions for handling 
the problem of analysing change and growth when one uses time-variable measures 
across multiple waves. Therefore, the primary purpose of this paper is to expand upon 
the statistical and technical work laid out by Lloyd and Zumbo (2007), applying the 
non-parametric solution to the context of analysing change and growth across multiple 
(i.e., three or more) waves. In the next section, we further set the context of this paper 
by discussing three research scenarios in which one may utilise repeated measures 
analyses.

Setting the Context

Using Repeated Measures Analyses: Three Research Scenarios

There are three research scenarios in which repeated measures can be utilised: 
Scenario 1: Exact same measure across waves. In this scenario, one’s construct 

of choice makes it possible to use and re-use the exact same measure across all 
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waves, irrespective of the ever-changing age, cognitive development, and personal 
and scholarly experiences of the test-takers. The measures’ content, item wording, 
response categories, and response formats do not change whatsoever across waves. 

Scenario 2: Linkable time-variable measures. Time-variable measures are those 
whose content, wording, response categories, and/or response formats vary across 
waves in repeated measures designs. In this scenario, although the time-variable 
measures are not completely identical across waves, there is at least one anchor item 
shared by each of the measures, on whose scores traditional test linking or equating 
techniques (e.g., vertical scaling, item response theory techniques) can be performed 
(Kolen & Brennan, 2004). 

Scenario 3: Non-linkable time-variable measures. This scenario involves using 
measures whose content, item wording, response categories, and/or response formats 
may vary completely across waves (Mislevy, 1992). Take, for example, a mathematics 
achievement test administered at Grades 4, 7, and then 10: The measure administered 
at Grade 4 cannot be same as the measure at Grade 7 and, in turn, the Grade 7 measure 
cannot be the same as the Grade 10 measure. If they were the same, the reliability and 
validity of the test scores would be compromised, likely rendering the study useless 
(Singer & Willett, 2003). 

Although Scenario 3 has been characterised as the situation in which one’s measures 
share no common items across waves, it is also possible to encounter Scenario 3 in two 
additional situations: (a) when one has linkable time-variable measures but a small 
sample size, or (b) when one does not have the ability to compare the sample’s scores 
to those of a norming group. In the case of small sample sizes, it is not necessarily 
advisable to link or connect the scores of measures, even if the measures share common 
items.

As Scenario 1 (exact same measure across waves) illustrates, certain constructs 
can indeed be measured using the exact same measure across all testing occasions 
– irrespective of the ever-changing age, cognitive development, and personal and 
scholarly experiences of the test-takers. As Scenario 2 (linkable time-variable 
measures) and particularly Scenario 3 (non-linkable time-variable measures) depict, 
however, there are often situations in which one’s construct of choice makes using 
and re-using the exact same measure across waves unreasonable and even impossible. 
Kolen and Brennan (2004) remind readers that, when test forms cannot be made to be 
identical, it may be impossible to equate. So what is one to do, then, if the use of time-
variable measures is necessary and unavoidable? 

To this end, the problem motivating this paper surrounds the analysis of change and 
growth with non-linkable time-variable measures (i.e., Scenario 3). Of course, Scenario 
2 is also relevant because the problem of handling linkable time-variable measures has 
been relatively under-studied and under-documented in the test linking and change/
growth literatures. Many of the strategies currently being used in the change/growth 
literature as means of handling the motivating problem, such as vertical scaling and 
item response theory techniques (see Kolen & Brennan, 2004), are often only useful to 
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large testing organisations that have access to very large numbers of test-takers and/or 
expansive item pools. Practically speaking, researchers in everyday research settings 
must often make due with small sample sizes and novel, never-before-used measures. 
It is for this reason that this paper introduces a workable solution to the problem of 
analysing change/growth with time-variable measures administered over multiple 
waves – one that can be implemented easily in everyday research settings. In the next 
section, the value of merging non-parametric and parametric approaches is discussed.

Bridging the Non-Parametric/Parametric Gap

Researchers often underestimate or overlook the utility of non-parametric statistical 
methods. Introductory statistics course instructors frequently isolate ‘rank speak’ into 
separate units that appear to students and/or day-to-day researchers to be disconnected 
from the general flow of the material (Conover & Iman, 1981), and textbook writers 
frequently convey the erroneous impression that non-parametric analyses are ‘always’ 
less powerful than their parametric counterparts (Zimmerman & Zumbo, 2005). 
There can, however, be great utility in bridging the gap between non-parametric and 
parametric statistical methods, as noted by Conover and Iman (1981), Conover (1999), 
and Zimmerman and Zumbo (1993, 2005).

Indeed, this gap has already been bridged in various contexts, such as the Spearman 
correlation coefficient (Conover, 1999; Conover & Iman, 1981). Seldom, however, has 
this bridge been extended to the problem of analysing change/growth, particularly with 
time-variable measures. By expanding upon the previous research of Conover and his 
colleagues – whereby the bridge between non-parametric and parametric methodologies 
is extended to the problem of analysing change/growth with time-variable measures 
– it is now possible to perform a new change/growth analysis: the non-parametric 
hierarchical linear model (NPAR-HLM) for multi-wave data that cannot be linked or 
equated. Justification for this strategy is further provided by Lloyd (2006) and Lloyd 
and Zumbo (2007), and by Braun (1988), who describes a percentile-based method by 
which to bridge the non-parametric/parametric gap, both within proper longitudinal 
designs and repeated cross-sectional (pseudo-longitudinal) designs. 

The Non-Parametric HLM: The Conover Solution for Multi-Wave Data

The NPAR-HLM involves rank transforming (or ordering) individuals’ original 
longitudinal test scores within wave pre-analysis, and then using these ranks in the 
place of the original scores in subsequent hierarchical linear modelling analyses. We 
refer to the general approach of converting original scores into ranks pre-analysis 
as the Conover solution, in recognition of the seminal work of W. J. Conover (e.g., 
Conover, 1999; Conover & Iman, 1981) whose research not only inspired the NPAR-
HLM, but also provides evidence for the solution’s statistical viability. 

A rank depicts the position of a test-taker on a variable relative to the positions 
held by all other test-takers. Ranking or rank transforming refers to the process of 
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transforming a test-taker’s original score to a rank relative to other test-takers – 
suggesting a one-to-one function f from the set {X1, X2, …, XN} (the sample values) to 
the set {1, 2,…, N}(the first N positive integers) (Zimmerman & Zumbo, 1993).

For example, if Test-taker X earned a score of 12, Test-taker Y earned a score of 13, 
and Test-taker Z earned a score of 14, then the test-takers’ respective ranks would be 
1, 2, and 3 (where a rank of 1 is assigned to the test-taker with the lowest score).1 As 
Zimmerman and Zumbo (2005) remind readers, inasmuch as test-takers’ scores are 
represented in terms of their position relative to other test-takers in the same wave, a 
rank is similar to a percentile score. A percentile score is a type of rank that represents 
an original score as the percentage of test-takers in an external norming group whose 
score falls below that score. Unfortunately, referring to the scores of a norming sample 
is not always practical or possible. 

In general, researchers can effectively use ranks in situations in which regular 
statistical assumptions (e.g., normality) are not or cannot be met (see, for example, 
Beasley & Zumbo, 2003; Conover, 1999; Zimmerman & Zumbo, 1993). Zimmerman 
and Zumbo (1993, 2005) note that using ranks in parametric analyses can, in fact, 
often improve the validity and power of significance tests for non-normal distributions. 
Moreover, ranks used in parametric analysis often produce similar results to those of 
traditional non-parametric tests (Zimmerman & Zumbo, 2005), and can be used in 
multi-wave designs. 

Assumptions of the NPAR-HLM Solution

As with any methodological tool, the NPAR-HLM solution comes with its own set of 
assumptions.2 First, the scale for the measures’ original scores must be ordinal, interval, 
or ratio. If so, then the original scores can be converted into ranks in a meaningful 
fashion. If, however, the scale is categorical, then there is no way of meaningfully 
converting the original scores into ranks.

Second, there must be heterogeneous change in the ranks across waves, meaning 
that all test-takers do not change the same amount across waves. Imagine that Test-
Taker X earns a rank = 1 across all waves and Test-Taker Y earns a rank = 2 across 
all waves. In this example, both test-takers’ rank-based change scores equal zero, 
suggesting homogeneous change which, for reasons outlined by Zumbo (1999), is 
not permissible in change-over-time analyses. It should be noted that homogeneous 
change is not a problem endemic to only the Conover solution. Homogeneous change 
also degrades the value of calculating simple difference scores (Zumbo, 1999).

Finally, the NPAR-HLM solution requires that a commensurable (or comparable 
or similar) construct is measured across all waves of the study. Although the means 
by which one can assess the commensurability of time-variable measures is beyond 
the scope of this paper, commensurability generally means that the same primary 
dimension or latent variable is driving the test-takers’ responses across waves (Lloyd 
& Zumbo, 2007). A latent variable is an unobserved variable that accounts for the 
correlation among one’s observed or manifest variables. Ideally, psychometricians 
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design measures such that the latent variable that drives test-takers’ responses is a 
representation of the construct of interest.

How Utilising the NPAR-HLM Changes the Research Question 

It is important to note that, when one applies the NPAR-HLM to the problem of 
analysing change/growth with time-variable measures, one changes the research 
question being investigated: One is no longer investigating the factors that contribute 
to test-takers’ performance growth across the waves. Instead, one is examining the 
factors that contribute to the consistency, or lack thereof, of test-takers’ rank order 
across waves. Put another way, the NPAR-HLM allows for exploration in changes in 
relative rank across waves, rather than rates of change.

Change in relative rank across waves may appear, at first blush, to be a less preferred 
focus than performance growth. When one deals with time-variable measures, however, 
performance growth results based on original scores are not interpretable, essentially 
because the various measures’ scores have not been placed onto any sort of common 
metric. Therefore, there is “no way of assigning a useful interpretation to observed 
differences in gains” (Braun, 1988, p. 174). The fact that the rank transformation 
changes the research question is not new to research methodologists. For example, 
the Spearman correlation coefficient measures the degree of monotonic relationship 
between two variables, as compared to the Pearson correlation coefficient which 
measures the degree of a linear relationship between two variables.

Introducing the NPAR-HLM in the Context of an Example

Imagine that a researcher is interested in exploring whether or not there are gender 
differences in the rank-based longitudinal reading achievement scores of a group 
of test-takers. Obtained were the original (raw) scores on the Stanford Diagnostic 
Reading Test (SDRT), a standardised test of reading comprehension designed by 
Harcourt Assessment (Karlsen & Gardner, 1978-1996). 

Data were collected for 653 children (nfemale = 336, nmale = 317), each of whom was 
assessed across five waves: Grades 2, 3, 4, 5, and 6, inclusive. As discussed more fully 
in a later section, test-takers missing one or more waves of SDRT data were excluded 
from analyses. 

The SDRT administration involves each test-taker’s receiving a booklet, reading 
the short passages within the booklet, and providing responses to multiple-choice 
questions based on the reading in a prescribed time limit (Lesaux & Siegel, 2003). 
Because test-takers’ reading comprehension changes with time, the SDRT has been 
changed developmentally (i.e., across waves) by the test developer (Karlsen & Gardner, 
1978-1996). It should be noted that the SDRT is an example of a non-linkable time-
variable measure, because the actual paragraphs read and the questions asked differ at 
each grade level. 
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As Table 1 and Figure 1 depict, the descriptive statistics for each wave of SDRT 
original scores vary widely.

Because this example involves data collected over three or more waves, it is 
possible to conduct a two-level HLM analysis of change: Test-takers’ rank-transformed 
test scores (the Level 1 outcome variable) are nested within test-takers (the Level 2 
grouping units), with each test-taker’s gender serving as the Level 2 predictor variable. 
It should be noted that gender was chosen as the Level 2 predictor for illustrative 
reasons only.

The key to implementing the NPAR-HLM is that one must first rank transform the 
data within wave, with the mean rank being assigned to ties – a process that requires 
data being entered in the spreadsheet in person-level format, in which one row 
represents one test-taker, with time-related variables represented along the horizontal 
of the spreadsheet. After the rank transformation has been completed, one can then 
transpose the data into person-period format, in which each test-taker has multiple 
rows (one for each wave) and, in turn, proceed with the change/growth analysis.

Figure 2 illustrates that Test-Taker X, for example, earns a rank of 2 for Wave 1 
(Grade 2) because his original Wave 1 score (30) is between those of Test-Taker Y (27, 
Rank = 1) and Test-Taker Z (36, Rank = 3). Recall from an earlier section that a rank 
of 1 is assigned to the test-taker with the lowest within-wave score.

Statistical Models and Equations

When dealing with nested data, two sets of analyses are performed: unconditional 
and conditional. By doing so, one can then determine what improvement in the 
prediction of the outcome variable is made after the addition of the predictor variable(s) 
to the model (Singer & Willett, 2003).

Table 1
Descriptive Statistics for Each of the Five Waves of SRDT Original (Raw) Scores (N 
= 653)

Original Variable 
Name Min Max M SD Skew Kurtosis

grade2original 12 40 36.24 3.99 -2.50 8.47

grade3original 10 45 35.99 6.18 -1.20 1.50

grade4original 8 54 41.48 7.39 -1.36 2.09

grade5original 4 54 44.46 6.47 -2.13 6.96

grade6original 11 54 41.17 8.33 -1.00 0.74
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Figure 1. Histograms of the original (raw) scores across five waves: Grade 2 (top 
left), Grade 3 (top right), Grade 4 (middle left), Grade 5 (middle right), and Grade 6 
(bottom left). Note that each of the distributions is skewed negatively.



When Measures Change over Time

89

   

Example Original Variables Resultant Rank-Transformed Variables

grade2
original

grade3
original

grade4
original

grade2
rank

grade3
rank

grade4
rank

Test-Taker X 30 31 29 2 1 1
Test-Taker Y 27 32 30 1 2.5 2
Test-Taker Z 36 32 35 3 2.5 3

Figure 2. An example person-level data matrix showing three waves of hypothetical 
original SDRT scores and their corresponding within-wave ranks.

Unconditional HLM models (sometimes called baseline or null models) generally 
involve computing the proportion of variance in the outcome variable that can 
be explained simply by the nesting of the Level 1 outcome variable (the repeated 
measures) within the Level 2 grouping units (the test-takers). Therefore, the Level 2 
predictor variable, gender, is not included in the unconditional model. 

The Level 1 model is a linear individual growth model, and represents the within-
person (test-taker) variation. The Level 2 model expresses variation in parameters 
from the growth model as random effects unrelated to any test-taker level predictors 
(Singer, 1998), and represents the between-person (test-taker) variation. 

Using the notation of Raudenbush and Bryk (2002), in which each level is written as 
a series of separate but linked equations, the relevant models and notation follow. The 
models and equations are expressed and formatted in a manner largely consistent with 
Raudenbush and Bryk (2002), Singer and Willett (2003), and Singer (1998); the only
difference is that the dependent variable now represents test-takers’ within-wave ranks
(Yti

R), not the original scores. It should be noted that we present the equations in this 
paper primarily for the purpose of completeness, and for aiding in the interpretation 
of the results.

The HLM model in Equations 1 and 2 is expressed as the sum of two parts. The 
fixed part contains two fixed effects – for the intercept and for the effect of wave (time). 
The random part contains three random effects – for the intercept, the wave slope, and 
the within-test-taker residual (eti) (Singer, 1998).
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Having already fit the unconditional model in Equations 1 and 2, Equations 3 and 4 
involve an HLM model which explores whether or not variation in the intercepts and 
slopes is related to the Level 2 predictor, gender (Singer, 1998).

   

Unconditional Model Level 1 (Within-Person) 

ewaveY titiii

R

ti ,10 )( ++= ππ

where:  
• Yti

R = test-taker i’s rank-based literacy score on 
wave t; the superscript R denotes the use of ranks in 
the place of original scores;  

• wave = time or measurement occasion (coded 
Grade 2 = 0, Grade 3 = 1, Grade 4 = 2, Grade 5 = 3, 
and Grade 6 = 4); 

• π0i = test-taker i’s true initial status (the value of 
the outcome when waveti = 0); 

• π1i = test-taker i’s true change in relative rank 
during the period under study; and 

• eti = the portion of test-taker i’s outcome that is 
unpredicted at wave t (the within-person residual). 

(1) 

   

Unconditional Model Level 2 (Between-Person) 

r ii += 0000 βπ

r ii += 1101 βπ
 
where: 

• π0i = true initial status; 
(2) • π1i = true change in relative rank; 

 and β• β00 10 = Level 2 intercepts (the 
population average initial status and change 
in relative rank, respectively); and 

• r0i and r1i = Level 2 residuals (representing 
those portions of initial status or rate of 
change that are unexplained at Level 2; in 
other words, they represent deviations of the 
individual change trajectories around their 
respective group average trends). 

,

,
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Explanation of the Statistical Output

Unconditional model. As Table 2 shows, the parameter value 327.00 represents the 
estimate of the average intercept across test-takers (the average value of the dependent 
variable when wave = 0). Therefore, the average person began with a rank of 327. 
The fact that this estimate is statistically significant (p = .00) simply means that this 
average intercept is significantly different from zero. This finding is not particularly 
useful, and is to be expected given that as various test-takers improve their rank over 
time, other test-takers worsen. Therefore, change in relative rank is a zero sum game 
within a closed set.3

   

Conditional Model Level 1 (Within-Person) 

ewaveY titiii
R

ti ,10 )( ++= ππ

(3) where: 

• Notation the same as in Equation 
1 (Unconditional Model Level 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Conditional Model Level 2 (Between-Person) 

rgender iii ++= 001000 )(ββπ

rgender iii ++= 111101 )(ββπ

where: 
• gender = Level 2 predictor of 

both initial status and change 
(coded male = 0 and female = 
1); and 

(4) 

 and β• β01 11 = Level 2 slopes 
(representing the effect of 
gender on the change 
trajectories, and which provide 
differences in initial status and 
changes in relative rank, 
respectively). 

• All other notation the same as in 
Equation 2 (Unconditional 
Model Level 2)

,

,
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Table 2 also shows that the parameter estimate for wave (0.01) is statistically non-
significant (p = 1.0) revealing that, on average, test-takers’ rank trajectories were flat. 
In other words, the average test-taker’s rank relative to other test-takers did not change 
across the five waves (i.e., from Grade 2 to Grade 6).

Table 2
Unconditional Model Output: Estimates of Fixed Effects

Note. * p < .05; Wave coded Grade 2 = 0, Grade 3 = 1, Grade 4 = 2, Grade 5 = 3, and 
Grade 6 = 4.

In order to postulate the appropriate individual growth model, any properties 
imposed on the model’s composite residual (in this case, the difference between the 
observed and the expected value of YR for individual i on wave t) must match those 
required by the data. In specifying a model’s stochastic component, one should allow 
for heteroscedasticity and autocorrelations among the composite residuals (Singer & 
Willett, 2003).

The type of covariance structure specified here for the composite residual was 
the unstructured error covariance matrix, in which each element of the hypothesised 
error covariance structure takes on the value demanded by the data. Because of its 
parsimonious nature, an unstructured error covariance matrix is viewed as being 
desirable for exploratory analyses (Singer & Willett, 2003) and, therefore, deemed 
appropriate for this paper’s illustration of the NPAR-HLM.

Recall from Table 2 that the main effect of wave was statistically non-significant 
– meaning that the average test-taker’s rank trajectory was flat. As Table 3 details, 
even though the average test-taker’s rank relative to other test-takers did not change 
across the five waves (i.e., from Grade 2 to Grade 6), the variance in the intercepts 
(20002.27) and the slopes (471.5) are both statistically significant (p = .01), revealing 
individual differences in both the test-takers’ relative starting rank and their change in 
relative rank, respectively. 

                   

Parameter 

   

Estimate

   

Standard

Error

        

df

             

Test         

Statistic 

         

p-Value

Intercept (π i0 )
327.00 6.52 652 50.15 .00*

Wave (π i1 )
0.01 1.64 652 0.00 1.00
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Table 3
Unconditional Model Output: Estimates of Variance Parameters

Note. * p < .05.

It is this variance in individual test-takers’ intercepts and slopes (not the average 
slopes) that is particularly compelling, because this variance justifies the addition of 
predictor variables in Level 2 of the conditional model (in this case, gender). Recall 
that, in any HLM growth model, it is surmised that a given Level 2 predictor is added 
for the purpose of explaining differences in individual test-takers’ Level 1 intercepts 
and slopes (Singer & Willett, 2003). Table 3, in essence, reveals that re-running the 
analysis with the Level 2 addition of gender is a statistically defensible next step.

Conditional model. Table 4 illustrates the output from the conditional HLM analysis. 
Conditional HLM models generally involve computing the proportion of variance in 
the outcome variable that can be explained not only by the nesting of the Level 1 
scores within the Level 2 grouping units, but also by the inclusion of the predictor 
variable (in this case, gender) in the analysis. 

The parameter estimate for gender, 48.87 is statistically significant (p = .00), 
revealing a relationship between initial status and gender. This finding suggests that 
female test-takers, on average, begin with a rank 48.87 higher than that of males (males 
coded 0, females coded 1).

A regrettable limitation of the NPAR-HLM, and of non-parametric solutions in 
general, is the difficulty it presents in terms of interpreting interactions (Sawilowsky, 
1990). It is for this reason that the wave x gender interaction term, although presented 
in Table 4 for completion, is not explained here. This issue is discussed in more detail 
in a later section.

Strengths of the NPAR-HLM

The non-parametric HLM – offered as a means of handling the problem of analysing 
change and growth with time-variable measures collected over three or more waves – 
has several strengths: 

Ease of use. The first strength relates to the ease of implementation of the NPAR-
HLM. As Conover and Iman (1981) observe, it is often more convenient to use ranks 

   

Parameter Estimate Standard Error p-Value

Variance of intercept (var(π i0 )
   

20002.27

                

1557.8

         

0.01*

Variance of slopes (var(π i1 )
        

471.5

                

106.2

         

0.01*
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Table 4
Conditional Model Output: Estimates of Fixed Effects

Note. * p < .05. Wave coded Grade 2 = 0, Grade 3 = 1, Grade 4 = 2, Grade 5 = 3, and 
Grade 6 = 4. Gender coded male = 0 and female = 1.

in a parametric statistical program than it is to write a program for a non-parametric
analysis. Furthermore, all of the steps required for the implementation of the NPAR-
HLM (i.e., rank transforming data within waves, restructuring the data matrix, 
conducting hierarchical/mixed-effect analyses, etc.) can be easily performed using 
commonly-used statistical software packages, such as SPSS and SAS.4 Given the 
widespread use of such software packages in educational research settings, the NPAR-
HLM is particularly appealing from a practical standpoint.

Bridges the parametric/non-parametric gap. Second, by rank transforming the data 
pre-analysis, one is able to bridge the gap between parametric and non-parametric 
statistical methods, thereby providing “a vehicle for presenting both the parametric 
and nonparametric methods in a unified manner” (Conover & Iman, 1981, p. 128). 
Unfortunately, introductory statistics courses and textbooks very often treat the two 
methods as if they are completely distinct from one another when, in fact, there can be 
great strength in marrying the two (Conover, 1999; Conover & Iman, 1981). 

Makes use of the ordinal nature of data. Third, the NPAR-HLM makes use of the 
inherent ordinal nature of continuous-scored data: A test-taker with a low original score 
relative to other test-takers in his wave will also yield a low relative rank. Similarly, 
a test-taker with a high test-score will also yield a high rank. As a result, within-wave 
order among the test-takers is preserved. By ranking test-takers’ scores within-wave 
pre-analysis, it is possible to put the longitudinal test scores onto a common metric, 
thereby providing a standard against which test-takers’ scores can be measured and 
compared. 

   

             

Parameter 

   

Estimate

     

Standard

Error

         

df

             

Test Statistic 

          

p-Value

Intercept (π i0 )
       

301.85

             

9.26

         

651

             

32.57 .00*

Wave (π i1 )
-2.46 2.35 651 -1.04 .29

Gender 48.87 12.91 651 3.78 .00*

Wave * Gender 4.79 3.28 651 1.46 .14
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Requires no common/linkable items. Unlike many other test linking methods and 
strategies, the NPAR-HLM can be implemented not only in situations in which one’s 
study involves time-variable measures that can be linked, but also situations in which 
the time-variable measures share no linkable items whatsoever. Hence, unlike vertical 
scaling, equating, and their linking counterparts, the NPAR-HLM provides a means by 
which researchers can study change and growth – whether or not the measures contain 
linkable items. It is anticipated that this particular feature of the NPAR-HLM will likely 
prove appealing to researchers studying constructs thought to change developmentally 
(e.g., academic achievement).

Requires no norming group. Recall from an earlier section that a norming group 
(normative sample) is a large sample, ideally representative of a well-defined 
population, whose test scores provide a set of standards against which the scores of 
one’s sample can be compared (Gall, Borg, & Gall, 1996). Due to time and financial 
constraints, it is not always possible to compare the scores of one’s sample to those of 
an external norming sample. As such, a fifth strength of the NPAR-HLM is that it can 
be conducted using simply the scores of the immediate sample of test-takers. 

Limitations of the NPAR-HLM

As with any methodological tool, the NPAR-HLM has various limitations: 
Problems interpreting interactions. As described in an earlier section, a regrettable 

limitation of the NPAR-HLM, and of non-parametric methods in general, is the 
difficulty it presents in terms of interpreting interactions. Sawilowsky (1990) describes 
the problems one can encounter when substituting ranks in two- or higher-way designs. 
For example, Sawilowsky, Blair, and Higgins (1989) found that the null hypothesis for 
interaction can actually change from false to true when one substitutes ranks in a finite 
population which can, in turn, have a negative impact on power. It is for such reasons 
that the NPAR-HLM is best suited for exploring main effects, rather than interactions. 
For the specific situations in which ranks may be used to detect interactions, please 
refer to Thompson (1991). 

Within-wave ranks are bounded. As described earlier, rank transforming refers to 
the process of converting a test-taker’s original score to rank relative to other test-
takers – suggesting a one-to-one function f from the set {X1, X2, …, XN} (the sample 
values) to the set {1, 2,…, N}(the first N positive integers) (Zimmerman & Zumbo, 
1993). The values assigned by the function to each sample value in its domain are the 
number of sample values having lesser or equal magnitude. Consequently, the ranks 
are bounded from above by N. 

Imagine that, on a standardised test of intelligence, Test-Taker W earns a score 
100, Test-Taker X earns a score of 101, Test-Taker Y earns a score of 102, and Test-
Taker Z earns a score of 167. Test-Taker Z’s score, relative to the other test-takers, 
is exceptional. Despite her exceptional performance on the measure, however, Test-
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Taker Z’s test score is masked by the application of ranks: Test-taker W = 1, Test-taker
X = 2, Test-taker Y = 3, and Test-taker Z = 4. As a result, one limitation of the Conover 
solution is that there may be problems associated with the inherent restriction of range 
it places on data. Differences between any two ranks range between 1 and N – 1, 
whereas the differences between original sample values range between 0 and infinity 
(Zimmerman & Zumbo, 1993).

It should be noted that this limitation is also a strength because as Zimmerman and 
Zumbo (1993) note, as a result, “any outliers among the original sample values are 
not represented by deviant values in the rank” (p. 487) making the NPAR-HLM less 
sensitive to outlying data points within a wave of data, than the more typically-used 
parametric version of HLM growth models.

Difficulties associated with handling missing data. Recall from an earlier section 
that only those test-takers for whom data were available at each and every wave were 
retained in the analyses. As most educational researchers will note, no discussion 
about change and growth is complete without a complementary discussion about 
one unavoidable problem: missing data. In longitudinal designs, particularly those 
that span months or years, it is extremely common to face problems associated with 
participant dropout, attrition, as well as participants who join, or return to the study, 
in later waves. 

The complexity (even messiness!) of many longitudinally-collected data sets can 
have serious implications for growth analyses. Singer and Willett (2003) remind 
readers that, when fitting a growth model:

You implicitly assume that each person’s observed records are a random sample 
of data from his or her true growth trajectory. If your design is sound, and 
everyone is assessed on every planned occasion, your observed data will meet 
this assumption. If one or more individuals are not assessed on one or more 
occasions, your observed data may not meet this assumption. In this case, your 
parameter estimates may be biased and your generalizations incorrect (p. 157).

One possible strategy for circumventing, or at least mitigating the effect of, missing 
data is to impute the missing original or standardised scores prior to rank-transforming 
the data within-wave pre-analysis. Because detailed discussion of various imputation 
methods are beyond the scope of this paper, and because missing data discussion is 
largely case-dependent, readers are referred to Schumacker and Lomax (2004) for 
discussion about handling missing data. 

Makes use of the ordinal nature of data. Recall that the fact that the NPAR-HLM
makes use of the ordinal nature of continuous-scored data was previously identified 
as one of the solution’s strengths. Unfortunately, precisely what the NPAR-HLM wins 
by, it also loses by. Because of the rank transformation of the original or standardised 
scores: 
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... differences between raw scores are not necessarily preserved by the 
corresponding ranks. For example, a difference between the raw scores 
corresponding to the 15th and the 16th ranks is not necessarily the same as the 
difference between the raw scores corresponding to the 61st and 62nd ranks in a 
collection of 500 test scores (Zimmerman & Zumbo, 2005, p. 618). 

Conclusions

There are two primary reasons why investigating the problem of analysing change 
and growth with time-variable measures was undertaken in this paper. First, as Willett 
et al. (1998) and von Davier et al. (2004) describe, the rules about which tests are 
permissible for repeated measures designs are precise and strict. Given these conditions, 
it was necessary to investigate if and how repeated measures designs are possible 
– speaking both psychometrically and practically – when the measures themselves 
must change across waves. Second, given the substantial growth in longitudinal large-
scale achievement testing (Braun, 1988), it was – and is – necessary to find viable and 
coherent solutions to the problem so that researchers, educational organisations, policy 
makers, and testing companies can make the most accurate inferences possible about 
their test scores. 

Recall from an earlier section that it is not possible to explore growth in performance 
outcomes when one is dealing with measures that cannot be linked or equated (as is 
the case with many time-variable measures), because the various measures’ scores 
have not been placed onto any sort of common metric and, as a result, there is no 
way of interpreting the original scores in any meaningful way. To this end, readers 
were introduced to a novel solution for handling the problem of analysing change 
and growth with time-variable measures, particularly those that cannot be equated or 
linked.

It should, however, be stressed that the NPAR-HLM is by no means a universal 
panacea. As Linn (1993) notes, considering any one individual method as the ultimate 
solution to the problem of linking test scores is fundamentally unsound because:

The sense in which the scores for individual test-takers can be said to be 
comparable to each other or to a fixed standard depends fundamentally on the 
similarity of the assessment tasks, the conditions of administration, and their 
cognitive demands. The strongest inferences that assume the interchangeability 
of scores demand high degrees of similarity. Scores can be made comparable 
in a particular sense for assessments that are less similar. Procedures that make 
scores comparable in one sense (e.g., the most likely score for a student on 
a second assessment) will not simultaneously make the scores comparable in 
another sense (e.g., the proportion of test-takers that exceed a fixed standard). 
Weaker forms of linkage are likely to be context, group, and time dependent, 
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which suggests the need for continued monitoring of the comparability of scores 
(p. 100).

Because of the case-specific nature of the problem of analysing change and growth 
with time-variable measures (that can or cannot be linked), researchers are beseeched to 
prioritise the making of careful and trained judgements about their proposed measures 
– right at the outset of the study. The later one waits to make such judgements, the less 
accurate the inferences one makes from the measures’ scores. In conclusion, readers 
are advised to be mindful of the words of Kolen and Brennan (2004): “The more 
accurate the information, the better the decision” (p. 2). 

Endnotes

1. One can also assign ranks so that the test-taker with the highest score receives a 
rank of 1. It is, however, easier to think of test-takers receiving the highest score also 
receiving the highest rank value.

2. Lloyd (2006) discusses each of these assumptions in greater detail.

3. We thank an earlier reviewer for this observation.

4. Hierarchical analyses can also be performed using such statistical packages as 
HLM and MLwiN; however, these packages’ current versions are not able to convert 
original scores to ranks, so the rank transformation must be done in another statistical 
package pre-analysis.
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