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Consider the sequence 

Thomas notes that the sequence converges to (1965, pp. 840–841). By
observation, the sequence of numbers in the numerator of the above
sequence, have a pattern of generation which is the same as that in the
denominator. That is, the next term is found by multiplying the previous term
by six and then subtracting the term before the previous one. This sequence
can be expressed as the second order difference equation tn+2 = 6tn+1 – tn.

In order to find the value, that the above sequence of rational numbers
converges to, both the difference equation generating the numerators and
that generating the denominators has to be solved. This is necessary in order
to obtain an explicit expression for the elements of the sequence in terms of
the term number n. Then the effect of allowing n → ∞ can be determined.

The solution of a second order difference-equation with constant coeffi-
cients is carried out as indicated in the web document (Polyanin, 2004).

The general case is usually expressed as tn+2 = atn+1 + btn = 0 and this leads
to what is called the characteristic equation λ2 + aλ + b = 0. In this case, a = –6
and b = 1, giving λ2 – 6λ + 1 = 0, the solutions of which are .

If the roots of the characteristic equation are real and distinct, as they are
here, namely and , this leads to a particular solution
of the difference equation, which is tn = c1(λ1)

n + c2(λ2)
n.

Applying the particular solution to the sequence of numbers in the numer-
ator gives the following pair of simultaneous equations:

(1)

(2)

Solving these manually or with a CAS enabled calculator gives:

and
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Applying the particular solution to the sequence of numbers in the denomi-
nator gives the following pair of simultaneous equations.

(3)

(4)

Solving these gives and .

The initial sequence of fractions can now be expressed explicitly as a function
of n, the term number as follows

Now because | 3 – | < 1, as n → ∞ the value of → 0.

Hence which simplifies to .

I now wondered if other rational sequences exist which converge to a surd
value. What about ?

The number to which the rational sequence converges, as shown above, is
determined by the ratio

and both c1 and k1 are solutions emanating from two simultaneous equations
with coefficients derived from solutions to the characteristic equation. Hence,
if the rational sequence is to converge to then the discriminant of the
characteristic equation must be an element of 

X = {3, 12, 27, 48, …} that is, X = {x: x = 3n2, n ∈ z }.

The characteristic equation λ2 + λa + b = 0 has solutions 

Consider b = 1 as previously: the discriminant is a2 – 4; if the roots are to be
real and distinct then a2 – 4 > 0 ⇒ | a | > 2 and because a is negative, a < –2.

Try: a = –3: a2 – 4 = 5 which is not an element of X;
a = –4: a2 – 4 which is an element of X.

So a difference equation needed to generate the numerators and denomina-
tors of a rational sequence which converges to is tn+2 = 4tn+1 – tn.
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The next step is to find the element in the sequence after . 

This is necessary in order to fully define the terms occurring in both the
numerator and denominator using a second order difference equation. To
assist in this trial and error search, a spreadsheet was used, as shown in Figure 1.

Once the spreadsheet is established with the appropriate cell formula to
generate the numerators, denominators and is filled down, the following is
carried out. First the values of a = –4 and b = 1 are entered. Then the numer-
ator = 1 and denominator = 1 of the first fraction are entered. Finally, trial
values for the numerator and denominator of the second fraction are entered
and systematically altered until the fractions converge to the sought after surd
as they have in Figure 1. 

This method was repeated in order to find rational sequences which
converge to each of the surds involving prime numbers less than twenty. In
each case, calculations as shown above were carried out in order to prove the
result indicated by the spreadsheet. A summary of the results is shown below.

Summary of converging sequences found with b = 1

1
1

Figure 1. Searching for term two of the sequence.
Note: This spreadsheet can be downloaded from www.aamt.edu.au/Professional-learning/Journals/files
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The effect of changing the value of “b” in the characteristic equation is now
examined. In order to find the restrictions placed on the value of “b” it must
be remembered that one of the solutions of the characteristic equation of the
difference equation must have a magnitude less than 1 to get convergence as
n → ∞ (as discussed earlier). If a is always negative, the root which can have
a magnitude less than 1 will be

and hence 

It must also be remembered that b cannot be zero because the characteristic
equation would not have two distinct roots. The restrictions on “a” and “b” can
be summarised as follows: a ∈ Z and a < 0, b ∈ Z and (a – 1) < b < –(a + 1) 
and b ≠ 0 and if b > 0 then b < .

For a = –4 the following values of b satisfy the above criteria: –4, –3, –2, –1, 1, 2.

Obviously converging sequences can be found when b values other than 1 are
used. Points of note were:
1. The sequence terms had common factors in the numerator and denom-

inator.
2. When b is negative the sequence was oscillatory convergent.
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Sequences which converge to surdic expressions

The second term in the sequence, the one after , determines the value to
which the sequence converges. We know that for a =    6 and b = 1 and a second
term of , the sequence converges to . If the second term is altered to,

1
1

27
5

say, , to what will the sequence now converge? The new sequence is:

with extra terms being generated by tn+2 = 6tn+1 – tn.
Using the method shown previously it can be shown that this sequence

converges to

Hence, sequences of rational numbers generated by the same second order
difference equation in the numerator and denominator, converge to surds
and surdic expressions. This leads to finding a rational sequence which
converges to

The surdic expression contains so the values of a = –3 and b = 1 were
entered into the spreadsheet and, perhaps not surprisingly, when the second
rational number of was entered, the sequence converged to φ.

It is interesting to see the Fibonacci numbers generated in this way.
Because is also inherent in a characteristic equation with a = –7 and 

b = 1, another sequence was sought and found which converges to φ. 

This sequence has the even numbered terms of the previous sequence
removed and hence converges towards φ more quickly.

There are other ways to get in the surdic expression for the charac-
teristic equation; another is to use a = –1 and b = –1 this leads to 

This of course is the well known sequence of the ratio of successive values
of the Fibonacci sequence which is oscillatory convergent to φ.

Two other sequences which converge to φ are shown below.
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Note that in the last sequence the third term has converged to φ correct to
ten significant figures.

With regard to student coursework, this investigation seems to be ideally
suited to student project work. The only mathematical content that is not
included in the curriculum of upper secondary school mathematics, is the
solution of second-order constant-coefficient linear difference equations.
However, students will be aware of first order difference equations and their
recursive nature so the step up will be minimal.

As a forerunner or introduction to a project, students could be given the
first page and a bit of this article as an example of a problem solving report
which proves that the given sequence converges to . Each student could
then be given the task of determining a sequence which converges to their
own given surd. Those students who cannot make progress could then be
given page two of this article to assist them in their investigation. A CAS-
enabled calculator would be of assistance to students for solving the
simultaneous linear-quadratic equations and for the spreadsheet work if
computers were not available.
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