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“Knowledge needs to be presented to, or accessed by, students through a
variety of means, enabling them to construct the knowledge and make sense
of it, and then transform it” (Perso, 2007).

Introduction

The one theorem just about every student remembers from school is the
theorem about the side lengths of a right angled triangle which Euclid

attributed to Pythagoras when writing Proposition 47 of The Elements.
Usually first met in middle school,1 the student will be continually exposed
throughout their mathematical education to the formula b2 + c2 = a2, where
a is the length of the hypotenuse. It is used to determine the length of a
triangle’s sides, to measure the distance between points in the plane, in
trigonometry, and in tertiary study as the Euclidean metric in n-dimen-
sional space. Possibly the second most familiar equation, that of a circle 
x2 + y2 = r2, is another incarnation of the Pythagorean theorem. The ratio of
diameter to circumference was also of particular interest to the students of
Pythagoras.

It is so important in school mathematics and in mathematical thinking
that the student deserves to be able to derive the Pythagorean theorem with
an appropriate degree of rigour. Our aim, in this article, is to provide a
repertoire of derivations that range from the visual and geometrical to the
algebraic and, in doing so, expose the interconnectedness of many parts of
the school curriculum. We begin, following the advice of Cavanagh (2008),
by “allowing students to explore concrete examples”. The simple case for a
right isosceles triangle is easily seen to be true by construction. The
construction can then generalised to any right-angled triangle. The student
performs “dissections and recombinations of shapes”, (de Mestre, 2003;
Coad, 2006) requiring no algebra or non-geometric manipulation.

The simple visual demonstration, used initially, can be revisited for two
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rigorous geometrical proofs, one reinforcing the concepts of supplementary
and complementary angles and the other providing a useful application for
the properties of angles of a traversal of parallel lines. Further developing
the geometry, at this stage, leads to a geometric proof of the algebraic
squaring of sums formula, (b + c)2 = b2 + 2bc + c2. We conclude by using the
“squaring of sums” formula to give the simple and common ancient Hindu
proof of the Pythagorean theorem favoured by Gough (2001).

The history and methods of proof of the Pythagorean theorem are, to this
day, of great interest to the mathematical mind. A new aspect of the story
that we bring here is a demonstration of the proof of the theorem using a
hinged wooden toy, that can be used as a “prop” to dramatically transform
two squares of area b2 and c2 to form a square of area a2.

A Socratic proof

Let us begin with a little more history to enrich the learning
environment. In Meno, one of Plato’s famous “Socratic
dialogues” (Hamilton & Cairns, 1961), Socrates leads a
slave boy to construct a square with double the area of a
given square. Three other squares of the same size are
placed together with the first and each is divided along a
diagonal into two isosceles triangles. Two of the isosceles
triangles make up the original square and four make up the
shaded square of double the area (Figure 1). 

It is mathematical folklore that Socrates adapted his original demon-
stration of doubling the area of a square into a proof of the Pythagorean
Theorem for the case of a right isosceles triangle. Any proof of this partic-
ular instance of the Pythagorean Theorem using eight isosceles triangles
has loosely been called the “Socratic proof”. The rearrangement may be
done in many different ways, so there is no unique Socratic proof. Heath
(1956, p. 352) and Loomis (1940, p. 102) name several authors of this style
of proof. 

The version that we give below can be constructed as a wooden “toy”
used to demonstrate the derivation. Similar hinged “toys”, such as the
Dudeney dissection, transforming an equilateral triangle into a square, are
charming in their appeal to all ages (de Mestre 2003, Frederickson 2008).
The student can perform the proof for themselves using two paper squares
cut into four isosceles triangles. Draw a line on a piece of paper and arrange
the squares so they have a diagonal on the line and they form two sides of
triangle ABC which can be drawn on the piece of paper.

Figure 1

Figure 2
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A leaning Socratic proof

The method of the Socratic proof can be generalised to design a wooden
“toy” that will demonstrate the derivation for any right angled triangle, not
necessarily isosceles. This general construction is, in a sense, the same as
the Socratic proof with some vertical components pushed into a leaning,
non-vertical orientation, so we call this dissection a “leaning Socratic proof”.
There are many other approaches to teaching the proof of the Pythagorean
Theorem (for a selection, see Chambers, 1999). The advantage of a two-step
approach is that the Socratic proof is simple; an accessible starting point
which, when leaned on, leads directly to the general proof. Interest is stim-
ulated by a dramatic practical model. It is not necessary in the first instance
to understand the “proof without words” (a la Nelsen, 1993; 2000) given in
the diagram. However, the “toy” can be revisited to revise the concepts of
complementary and supplementary angles and their application in the
proof. The fact that α is the angle between two pairs of parallel lines is the
only other geometry needed.

Figure 3

Unlike the Socratic dissection, two of the “cuts” are not along a diagonal,
yet they retain the property of being at right angles to the hypotenuse. The
hypotenuse ‘leans’ away from horizontal and so the cuts lean away from
vertical when compared to the Socratic dissection. Similar dissections are
recorded by Loomis (1940, p. 112, p. 114) but the dissected pieces are not
rearranged the same way and are not suitable for a pivoting demonstration
aide.

Rotating the triangular pieces as before gives a six-sided polygon.
Turning over, or swivelling, the “top half” of that polygon, gives a square of
side length a, which completes the demonstration. Socrates might also have
swivelled the ‘top half ’ of his square but we would not notice any difference
on his diagram.

Another proof with a twist

In the “leaning Socratic proof ”, the “outer” squares were dissected, the
triangles rotated and finally, the upper half of the construction was rotated.
Rotating the upper half first, allows two copies of the original right triangle
to be dissected and these can be positioned to make up a square of side
length a (also see Nelson, 2000, p. 6). The indicated proof provides a useful
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application of the congruent angles created when a traversal crosses
parallel lines. This elegant visual derivation of the general theorem is more
suitable than the “leaning Socratic proof” for a Year 9 student to perform
with paper. Unfortunately a swivelling wooden toy demonstrating this proof
would fall apart! 

Figure 4

Geometry to algebra and back

When looking at the “proof with a twist” it
could be worthwhile to take a short detour
and see some interplay between geometry
and algebra. Taking the shaded section from
Figure 4, which has an area of 
b2 + c2 and adding two rectangles of area bc
we get a square of area (b + c)2 demon-
strating the algebraic “square of sums”
formula (b + c)2 = b2 + 2bc + c2 (Figure 5).

The formula (b + c)2 = b2 + 2bc + c2 can
be rearranged to give (b + c)2 – 2bc = b2 + c2

which we can see from the Hindu diagram to
the right (Figure 6) leaves the inner square
having the area b2 + c2 = a2 since the outer
square, taking away the four triangles, has
area (b + c)2 – 2bc. Despite its simplicity,
this is an indirect proof since it involves the
area (b + c)2 which is not a part of the
Pythagorean formula.

Conclusion

The Pythagorean theorem is a foundation
stone of mathematics. It is possibly the
simplest important mathematical theorem
and as such it deserves to be understood by
all students of mathematics. We have
suggested a sequence to make the deriva-
tion of this theorem attainable, beginning
with a demonstration of the isosceles case
leading to an arbitrary case which is
performed by dissecting and repositioning

Figure 5

Figure 6
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two squares of area b2 and c2 to form a square of area a2. This demonstra-
tion can be abstracted as a general geometrical proof of the theorem using
either the “leaning Socratic proof” or the similar “proof with a twist”. 

The interplay between the algebraic formula b2 + c2 = a2 and geometric
areas of shapes can be pushed further to show that (b + c)2 = b2 + 2bc + c2

which we can then use to wrap up the exploration with a favoured proof of
the central concept: the Pythagorean theorem.

By following the suggested sequence, students will have constructed the
knowledge, made sense of it and transformed it; geometry and algebra inter-
playing through a common theme. At the very least, students will have
experienced it happening!
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Prefix Symbol Factor

yotta Y 10
24

zetta Z 10
21

exa E 10
18

peta P 10
15

tera T 10
12

giga G 10
9

mega M 10
6

kilo k 10
3

hecto h 10
2

deka da 10
1

Prefix Symbol Factor

deci d 10
–1

centi c 10
–2

milli m 10
–3

micro μ 10
–6

nano n 10
–9

pico p 10
–12

femto f 10
–15

atto a 10
–18

zepto z 10
–21

yocto y 10
–24

Prefixes for SI Units


