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Data from the Oregon Youth Study, consisting of the verbal behavior of 210 adolescent boys determined
to be at risk for delinquency (targets) and 210 of their friends (peers), were analyzed for their
conformance to the complete family of matching theory equations in light of recent findings from the
basic science, and using recently developed analytic techniques. Equations of the classic and modern
theories of matching were fitted as ensembles to rates and time allocations of the boys’ rule-break and
normative talk obtained from conversations between pairs of boys. The verbal behavior of each boy in a
conversation was presumed to be reinforced by positive social responses from the other boy. Consistent
with recent findings from the basic science, the boys’ verbal behavior was accurately described by the
modern but not the classic theory of matching. These findings also add support to the assertion that
basic principles and processes that are known to govern behavior in laboratory experiments also govern
human social behavior in undisturbed natural environments.
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_______________________________________________________________________________

The application of basic behavior-analytic
principles to socially relevant human behavior
has most often taken the form of therapeutic
intervention, where basic principles are used
to engineer human social environments to
produce desired outcomes (e.g., O’Leary &
O’Leary, 1977). Far less common are purely
observational studies in natural environments,
where the question under investigation is
whether basic principles discovered in the
laboratory also govern behavior in unengi-
neered natural environments. Applied re-
search has shown that many basic behavior-
analytic principles can be used to change
clinically significant human behavior in social
environments. Although such findings are
obviously of practical value, it does not
necessarily follow from them that the basic
principles are also operating in the absence of
specific interventions. From a basic science
perspective this is an important issue. Specif-
ically, do the variables and processes that

govern behavior in laboratory environments
also govern naturally occurring behavior in
undisturbed environments? It might seem that
the second of Newton’s well known rules of
scientific reasoning would be sufficient to
answer this question in the affirmative:

To the same natural effects we must, as far as
possible, assign the same causes. As to respiration
in a man, and in a beast; the descent of stones in
Europe and in America; the light of our culinary
fire and of the sun… (Newton, 1999/1726).

This rule is usually interpreted to mean that,
in the absence of contrary evidence, like
phenomena must have like causes. Hence, just
as the light of our culinary fire and of the sun
must have the same causes and must operate
in the same way, so too must adaptive behavior
in the laboratory and in the natural environ-
ment. This rule will be sufficient for many
students of human behavior, as it certainly was
for Skinner, judging from books like Science
and Human Behavior. But the caveat in the rule
is the condition, ‘‘in the absence of contrary
evidence.’’ Many philosophers and psycholo-
gists would no doubt argue that behavior in
natural environments, especially human be-
havior in natural social environments, may be
just the sort of phenomenon where contrary
evidence, such as intentional choice, could be
found. This makes it necessary to demonstrate
specifically that the basic principles govern
behavior in both engineered environments
and undisturbed natural environments.
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Philosopher of science, Terry L. Smith,
discussed this issue in the context of the
analogy between operant conditioning and
evolution by natural selection (McDowell,
1991, 2004: Skinner, 1981; Staddon & Simmel-
hag, 1971). Smith (1983) pointed out that
selective animal breeding, that is, artificial or
engineered selection, was known to be useful
in producing desired animal phenotypes long
before it was suggested that the same process
might occur naturally and be responsible for
phenotypic differences among species. Given
the known results of selective animal breeding,
one might think again that Newton’s second
rule of scientific reasoning would occasion
widespread support for the idea of natural
selection, but this did not happen. Evidently,
the caveat in the rule also was salient in the
case of natural selection. The diversity of
species may be just the sort of phenomenon
where contrary evidence, such as independent
acts of creation, could be found. It was not
until Darwin’s extensive documentation in On
the Origin of Species that the idea of natural
selection began to be taken seriously. Smith
(1983) noted that

Darwin discussed animal breeding in Chapter
One of a fifteen chapter book [On the Origin of
Species]—as a way of motivating the plausibility
of his claim that natural selection plays a
central role in the origin of species. The next
fourteen chapters, however, contained the
main argument, which was designed to show
that natural contingencies play the same role as
the artificial contingencies practiced by breed-
ers (p. 151, italics in the original).

Behavior analysts are still mostly at work on
their Chapter One. There is no doubt that it is
an extensive and valuable Chapter One,
however, and that it is an important source
for the remaining chapters, the main argu-
ment.

A large number and wide variety of basic
behavior-analytic phenomena, principles, and
theories can be studied in unengineered
natural environments. Among the most chal-
lenging of these are the mathematical ac-
counts that began appearing in the basic
science literature around 1960, and that have
become increasingly prevalent. Probably the
most successful mathematical account in basic
behavior analysis is matching theory, although
there are many others, such as contingency
discriminability theory (Davison & Jenkins,

1985), behavioral momentum theory (Nevin,
1992), stay-switch theory (MacDonall, 2000),
and hyperbolic discounting theory (Mazur,
1997), to name a few. Matching theory consists
of a family of equations, some with absolute
response rates as dependent variables, and
some with relative response rates, that is,
proportions or ratios of response rates, as
dependent variables. A few studies have
evaluated absolute response rate forms of
matching theory in natural unengineered
environments (e.g., Fernandez & McDowell,
1995; Martens & Houk, 1989; McDowell, 1981,
1982), and a few have evaluated relative
response rate forms of matching theory in
such environments (e.g., Borrero & Vollmer,
2002; Houston, 1986; Oliver, Hall, & Nixon,
1999; Snyder & Patterson, 1995; Symons,
Hoch, Dahl, & McComas, 2003). Behavior
consistent with the matching theory equations
was reported in all of these studies. Reed,
Critchfield and Martens (2006) and Vollmer
and Bourret (2000) found that the behavior of
athletes in sporting events was also consistent
with a relative response rate equation of
matching theory. Although athletic competi-
tions take place in unengineered environ-
ments, they entail the additional constraints
of game rules, which complicate the interpre-
tation of findings from these competitions.

In the research presented in this article, the
verbal behavior of 210 adolescent boys who
were determined to be at risk for delinquent
behavior (targets) and 210 of their friends
(peers) was studied. Pairs of boys engaged in
conversations and the verbal behavior of each
target boy and each peer boy was recorded and
categorized as either ‘‘rule-break’’ or ‘‘norma-
tive’’. Positive social responses from each boy
to the other were also recorded. These data
were then analyzed for their conformance to
the complete family of matching theory
equations in light of recent findings from the
basic science, and using recently developed
analytic techniques. Previous researchers have
reported that human verbal behavior support-
ed by social consequences in engineered
environments was well described by matching
theory (Borrero et al., 2007; Conger & Killeen,
1974; Pierce, Epling, & Greer, 1981). The
principal purpose of the present article is to
add to and extend the literature on the
governance by matching theory of naturally
occurring human behavior, which in this case

416 J. J MCDOWELL and MARCIA L. CARON



happens to be verbal behavior. A second
purpose is to introduce applied researchers
to modern theoretical developments, and to
new analytic procedures from the basic science
that are relevant to applications of matching
theory. And a final purpose is to add to the
basic-science literature that compares the
classic version of matching theory with a
modern version of the theory.

Classic and Modern Matching Theory

The classic theory of matching consists of
three equations, namely,

B1

B2
~

r1

r2
, ð1Þ

B1~
kr1

r1zr2zre
, ð2Þ

and

B2~
kr2

r1zr2zre
, ð3Þ

where the Bs in all equations represent
response rates, the rs represent reinforcement
rates, and the numerical subscripts refer to
each of two response alternatives. Equation 1 is
the original matching equation (Herrnstein,
1961) expressed in ratio form, and states that
organisms allocate their behavior to each of
two response alternatives in the same propor-
tion or, equivalently, in the same ratio, as
reinforcement is distributed across those
alternatives. Equations 2 and 3 express the
absolute response rate on each of the two
concurrently available alternatives as a func-
tion of the rates of reinforcement obtained
from both alternatives. These single-alternative
forms were derived from Equation 1 by
Herrnstein (1970), who assumed that there is
an ever present rate of background behavior,
Be , supported by a rate of background rein-
forcement, re , in a two-alternative environ-
ment, and that the sum of the rates of
responding on the two alternatives and on
the background alternative, B1 + B2 + Be, is
constant with respect to changes in reinforce-
ment properties. This sum is represented by
the parameter, k, in Equations 2 and 3
(McDowell, 1986). This constant-k assumption
is necessary in order to obtain Equations 2
and 3 from Equation 1. Note that when there
is no second source of arranged reinforcement

(r2 5 0), Equation 2 reduces to the familiar
Herrnstein hyperbola (Herrnstein, 1970) for
single-alternative responding. Similarly, when
there is no first source of arranged reinforce-
ment (r1 5 0), then Equation 3 also reduces to
the familiar Herrnstein hyperbola. Equations
1–3 and the derivation of Equations 2 and 3 are
discussed in detail by McDowell (1986). Equa-
tions 1–3 can also be expressed in time
allocation forms, where the dependent vari-
ables are T1 and T2, the amount of time spent
engaging in each alternative. Note finally that
Equations 1–3 contain two parameters, k and re .

All translational applications of matching
theory either have entailed Equation 1, some-
times expressed in an equivalent proportional
form, and sometimes expressed in a power
function form (as in Equation 4 below), or
they have entailed a single-alternative equation
like Equations 2 and 3, with one source of
reinforcement contingent on the behavior of
interest, as just described. No translational
applications of matching theory have exam-
ined Equations 2 and 3 in the context of a
concurrent schedule and, interestingly, very
few basic-science applications have done so.
Yet the strongest test of matching theory on
data from concurrent schedules entails con-
sidering all three equations, one that describes
the ratio of response rates, and two that
describe the absolute rates of responding in
the two components (McDowell, 1986). This is
a strong test of the theory because it engages
the theory’s constant-k assumption, and also
because it constrains the data more severely
than does considering Equation 1 alone. Note
that no additional experimentation or data
collection is necessary to consider all three
equations, as compared to considering just
Equation 1. Whatever data are collected to test
Equation 1 are simply further constrained by
applying Equations 2 and 3 as well.

A key vulnerability of classic matching
theory is its constant-k assumption (Herrn-
stein, 1974; McDowell, 1986). As noted earlier,
this assumption is required in order to derive
Equations 2 and 3 from Equation 1. But as
early as 1984 experimental evidence began to
appear that suggested the assumption did not
hold (McDowell & Wood, 1984). In the past
20 years or so, a considerable amount of
evidence has accumulated indicating that the
assumption is in fact false (McDowell, 2005,
but cf. McLean, 2006). But if the constant-k
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assumption is false, then Equations 2 and 3
cannot be derived legitimately from Equation
1, and this means that the so-called quantita-
tive law of effect (Herrnstein, 1970), which is a
form of Equations 2 and 3, as explained
earlier, does not follow from Equation 1. It
has been known for some time that Equation 1
fails to describe much of the data from two-
alternative experiments (Baum, 1974, 1979;
Wearden & Burgess, 1982). Based in part on
the extensive literature showing the limited
applicability of Equation 1, and on the
experimental evidence against the constant-k
assumption, McDowell (2005) concluded that
all three equations of classic matching theory
were false, or at best applied only in limited
circumstances.

The sole survivor of the disconfirmatory
evidence is the power-function version of
Equation 1, which was discussed by Staddon
(1968) and Baum and Rachlin (1969), and was
formalized and studied extensively by Baum
(1974, 1979), and later by Wearden and
Burgess (1982). McDowell (1986) noted that
the logic Herrnstein (1970) used to obtain
single-alternative forms from Equation 1 also
could be used to obtain single-alternative
forms from the power function version of
Equation 1. In other words, matching theory
could be rebuilt on a new foundational
equation that was known to accurately describe
a large body of data from many vertebrate
species, including humans (Baum, 1974, 1979;
Wearden & Burgess, 1982).

Like the classic version of matching theory,
the rebuilt, or modern, version also consists of
three equations, which are

B1

B2
~

c2e

c1e

r1

r2

� �a

, ð4Þ

B1~k c1e
1

r1

� �a

z
c1e

c2e

r2

r1

� �a

z1

� �{1

, ð5Þ

and

B2~k c2e
1

r2

� �a

z
c2e

c1e

r1

r2

� �a

z1

� �{1

, ð6Þ

where the Bs, rs, and subscripts, including the
e subscript, which refers to the background
alternative, have the same meanings as in
Equations 1–3. Equation 4 is the familiar
power function matching equation, also re-

ferred to as the generalized matching law. It is
the foundation of the modern theory of
matching, and introduces to the classic Equa-
tion 1 an exponent, a, on the reinforcement
rate ratio, and a bias parameter, here repre-
sented by c2e/c1e , as a factor of the exponen-
tiated reinforcement rate ratio. The single-
alternative Equations 5 and 6 were obtained
from Equation 4 by McDowell (1986, 2005)
using the Herrnstein (1970) logic, as noted
earlier. The parameter, re , is incorporated in
the two c parameters in Equations 5 and 6
because it is not independently estimable in
these equations (McDowell, 2005). Equations
5 and 6 also include a simplification recom-
mended by McDowell (2005), namely, that the
three exponents appearing in their original
derivation be made equal.

Although Equations 5 and 6 are notationally
complicated, they are conceptually straightfor-
ward. Just as for Equations 2 and 3, response
rates in Equations 5 and 6 are functions of
reinforcement rates obtained from both alter-
natives of the concurrent schedule, but now the
exponent, a, that appears in Equation 4 is
carried over by the derivation to the single-
alternative forms. In addition, there are three
parameters that include bias, one for each
comparison of a target alternative with the
background, c1e and c2e , and one for the
comparison of the two target alternatives with
each other. McDowell (2005) showed that this
third bias parameter necessarily equals c2e/c1e

when the recommended exponent simplifica-
tion is used. Notice that Equations 4, 5, and 6
reduce to Equations 1, 2, and 3 when the
exponent and all bias parameters in the
equations equal unity. As noted for Equations
1–3, Equations 4–6 can also be expressed with
time allocation as the dependent variable. Note
finally that Equations 4–6 contain four indepen-
dently estimable parameters, k, a, c1e , and c2e .

McDowell (2005) showed that the modern
theory of matching predicts the violation of
the constant-k assumption in the classic theory,
and accurately describes at least some data that
violate that theory’s constant-k assumption. In
addition, Dallery, Soto, and McDowell (2005)
directly tested the classic and modern theories
of matching on data from human subjects
working on concurrent schedules of monetary
reinforcement in the laboratory. They used an
ensemble method (McDowell, 2005) to f it all
three equations of the classic and the modern
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theories simultaneously to sets of data from
individual subjects using shared parameters.
Dallery et al. found that the modern, but not
the classic, theory of matching accurately
described the behavior of their subjects.

Just as for the classic theory, the strongest
test of the modern theory of matching entails
considering all three of its equations. In the
present article, Equations 1–3 and Equations
4–6 were fitted as ensembles to the boys’
verbal-behavior data. To be consistent with
findings from the basic science, the latter, but
not the former set of equations must describe
the data well.

METHOD

All procedures described in this section,
including the coding of videotapes, were
conducted by researchers at the Oregon Social
Learning Center (OSLC).

Subjects

The subjects were 210 13- to 14-year-old boys
participating in the fifth phase of the longitu-
dinal Oregon Youth Study (OYS; Capaldi &
Patterson, 1987), plus 210 similarly-aged male
friends who served as their partners. Each pair
consisted of one target child from the OYS and
a friend, the peer child, who participated in
this portion of the study only. The target boys
had been recruited for the OYS at ages 9 and
10 in two waves during 1983 and 1984 from 10
elementary schools in high-crime neighbor-
hoods of a medium-sized city in the northwest-
ern United States. These boys were considered
to be at risk for juvenile delinquency because
they came from neighborhoods with higher
than average rates of juvenile delinquency.
The resulting samples were 90% European
American, of lower socioeconomic status, and
with a relatively high percentage of unem-
ployed parents. The peer boys were selected by
asking each target boy and his parents to name
the male friend with whom the target child
spent the most time. Boys from the first of two
waves of the OYS comprised sample e5 (n 5
129); boys from the second wave comprised
sample n4 (n 5 81).

Procedure

During the first four phases of the OYS, the
target boys and their parents completed

various surveys and experimental tasks on
multiple occasions at the OSLC. During both
waves of the fifth phase, each pair of boys
participated in a videotaped 25-min session. At
the start of each 25-min session, a researcher
seated the 2 boys in front of a video camera set
up in a room at the OSLC. In accordance with
the directions of the Peer Interaction Task
(Forgatch, Fetrow, & Lathrop, 1985; Panella &
Henggeler, 1986), the researcher told the boys
that they were to engage in conversation for
25 minutes about a variety of topics to be
announced by the researcher. Each session
started with a 5-min warm-up discussion about
planning an activity together, followed by four
5-min segments with four randomly-ordered,
assigned problem-solving discussions related
to self-selected problems with the target child’s
and peer child’s parents and peers. The
researcher was present in the room only to
introduce each topic; during the discussions
the boys were alone.

Videotapes of the boys’ conversations were
transcribed and coded by trained observers.
The boys’ verbal behavior was coded into two
mutually exclusive categories: rule-break talk
and normative talk. As defined for this study,
rule-break talk contained some element that
indicated a violation of legal and/or conven-
tional norms of conduct. Examples of rule-
break talk included climbing out of bedroom
windows, lying to parents, cheating at school,
engaging in criminal behavior, and behaving
defiantly. Examples of normative talk included
gossiping about friends, and talking about
school, family, or what to do for fun. These
categories constituted two mutually exclusive,
concurrently available response alternatives.
The frequencies and durations of verbal bouts
were recorded for each boy. Each bout began
when a boy started speaking and ended when
the boy stopped speaking. This permitted the
calculation of both response rates and time
allocations.

In addition to coding for content, social
consequences from the ‘‘other’’ boy (namely,
the peer child when the target child’s behavior
was under consideration, and the target child
when the peer child’s behavior was under
consideration) for bouts of both rule-break
and normative talk were also coded into two
mutually exclusive categories: positive social
responses and nonpositive social responses. A
positive social response was assumed to rein-
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force a bout of talk if it immediately followed
that bout in the behavior stream. Examples of
positive social responses included making
approving statements, smiling, nodding,
laughing, and giving a thumbs-up. Nonpositive
social responses included anything other than
positive social responses, including remaining
silent. Frequencies of positive social responses
for each category of verbal behavior were
recorded for each boy. This permitted the
calculation of reinforcement rates for each
category of verbal behavior.

Samples e5 and n4, which corresponded to
the two waves of the OYS, were coded
separately by two sets of coders following the
instructions from the Topic Code (Poe, Dish-
ion, Griesler, & Andrews, 1990). Coders were
blind to all other data related to the partici-
pants, and they were involved in only the
coding of the data. Reliability scores were
calculated for a randomly-selected 12% of
pairs in sample e5 and 15% of pairs in sample
n4. Mean percent agreements of 90.0 and 94.2,
and kappa coefficients of 0.735 and 0.674 were
obtained for samples e5 and n4, respectively
(Dishion, Spracklen, Andrews, & Patterson,
1996).

RESULTS

All analyses were conducted using data
supplied by the OSLC in the form of SPSS
files. Data were missing from 15 target boys in
the e5 sample and from 1 peer boy in the n4
sample. The entire 20 minutes of conversation
for each boy was used to generate a single data
record for that boy, consisting of two rein-
forcement rates, r1 and r2, two response rates,
B1 and B2, and two time allocations, T1 and T2.
Equations 1–3 and Equations 4–6 were fitted as
ensembles to the response rates and time
allocations of the e5 target boys (n 5 114), the
e5 peer boys (n 5 129), the n4 target boys
(n 5 81), and the n4 peer boys (n 5 80).
Hence, the data were separated into four
subsets, a target-boy and a peer-boy subset
from each sample. During their conversations,
the target boys’ verbal behavior was presumed
to be reinforced by the peer boys’ positive
social responses, and the peer boys’ verbal
behavior was presumed to be reinforced by the
target boys’ positive social responses, as de-
scribed in the Methods section. In all analyses,
rule-break talk was taken as response alterna-

tive 1 and normative talk was taken as response
alternative 2.

Ensemble fits of the classic theory to each
subset of the data entailed finding a single
shared k and re for Equations 1–3 that
minimized a quantity that might be referred
to as the normalized total residual sum of
squares, RSSNT, given by

RSSNT ~
RSS1

SS1
z

RSS2

SS2
z

RSS3

SS3
, ð7Þ

where the RSSs represent residual sums of
squares, the SSs represent total sums of
squares, and the numerical subscripts refer to
Equations 1 through 3. For example, RSS2 is
the sum of the squared residuals for the fit of
Equation 2 to a dependent variable (B2 or T2),
and SS2 is the sum of the squared deviations of
the dependent variable from its own mean.
The logarithmic transformation of Equation 1
was used in all fits, as is customary in the basic
science. This method of obtaining a single set
of shared parameter estimates by simulta-
neously fitting a set of equations to multiple
sources of variance was developed and dis-
cussed in detail by McDowell (2005). Percent-
ages of variance accounted for (%VAF) by
each equation were calculated from the
individual RSSs left by the ensemble fit. In
addition, an overall %VAF for the ensemble
was calculated from

%VAF~ 1{
RSS1zRSS2zRSS3

SS1zSS2zSS3

� �
|100: ð8Þ

This %VAF evaluates the sum of the indi-
vidual residual sums of squares against the sum
of the individual total sums of squares, and
thus provides an overall assessment of the
quality of the ensemble fit (McDowell, 2005).
The same ensemble method was used to
simultaneously fit the three equations of the
modern theory, yielding a single shared
estimate of k, a, c1e , and c2e , for each subset
of the data. The logarithmic transformation of
Equation 4,

log
B1

B2

� �
~a log

r1

r2

� �
z log

c2e

c1e

� �
, ð9Þ

was used in all fits, as is customary in the basic
science. Notice that the slope of the best-fitting
log transform is the exponent, a, of Equation
4, and that the antilog of its y-intercept is the
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bias parameter, in this case, c2e/c1e . A detailed
example of using this ensemble method of
curve fitting is given in the Appendix.

Goodness of Fit

Listed in Table 1 are the percentages of
variance accounted for by each set of equa-
tions, and its ensemble, for the response rates
and time allocations from each of the four
data subsets, e5-Target, e5-Peer, n4-Target,
and n4-Peer. The %VAFs in the e5-Average
and n4-Average rows of the table will be
discussed later. The majority of %VAFs for
the equations of classic matching theory and
their ensembles were negative for the four
data subsets (11 of 16 for both response rates
and time allocations). A negative %VAF means
the data deviate more from the fitted function
than from their own mean, in which case of
course the mean is a better predictor of the
data than the fitted function. The average
%VAFs across the four subsets of data for each
equation and for the ensemble are plotted on
the left sides of the top and bottom panels in
Figure 1. These are not the quantities that
appear in the e5-Average and n-4 Average rows
of Table 1, which refer to a different kind of
averaging that will be described later. As shown
in the figure, on average, the equations of
classic matching theory either accounted for
essentially no variance in the response rates
and time allocations (Equations 1 and 2), or
accounted for a negative amount of variance.

Hence, in none of these cases did the fitted
function on average predict the data better
than the mean.

The %VAFs for the equations of modern
matching theory and their ensembles are also
listed in Table 1. Over the four data subsets
they ranged from 25% to 61% with a median
of 48% for the response rates, and from 4% to
56% with a median of 43% for the time
allocations. The average %VAFs across the
four data subsets for each equation and their
ensemble are plotted on the right sides of the
panels in Figure 1. Again, these are not the
quantities that appear in the e5-Average and
n4-Average rows of Table 1. As shown in the
figure, the equations of modern matching
theory and their ensemble on average ac-
counted for about half the variance in the
boys’ verbal response rates and time alloca-
tions.

Properties of the Boys’ Verbal Behavior

Parameter estimates from the ensemble fits
of the classic and modern matching theory
equations are listed in Table 2 for fits to
response rates and time allocations. Again,
the parameter estimates in the e5-Average and
n4-Average rows of the table will be discussed
later. Notice that estimates of the shared
exponent, a, in Equations 4–6 for the four
data subsets consistently fell between about 0.7
and about 0.9, and averaged about 0.8 for both
response rates and time allocations. This

Table 1

Percentages of variance accounted for by Equations 1, 2, 3, and their ensemble, (the classic
theory), and by Equations 4, 5, 6, and their ensemble (the modern theory) for response and time
allocation data.

Sample-Child

Classic Modern

Eq. 1 Eq. 2 Eq. 3 Ensemble Eq. 4 Eq. 5 Eq. 6 Ensemble

Responses

e5-Target 218 216 248 237 49 59 41 46
e5-Peer 229 212 276 258 55 56 37 42
n4-Target 28 15 243 225 49 59 25 36
n4-Peer 39 36 10 17 61 61 27 37
e5-Average 220 234 2121 293 97 95 82 86
n4-Average 46 25 22 0 92 96 85 90

Time

e5-Target 23 28 228 221 47 50 40 42
e5-Peer 220 223 258 248 51 49 40 42
n4-Target 24 19 285 233 44 56 4 30
n4-Peer 30 9 21 17 55 46 41 43
e5-Average 6 43 282 268 94 92 92 92
n4-Average 46 4 250 221 87 95 72 84
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means that the boys’ verbal behavior was not
perfectly controlled by the reinforcement rate
ratios (in which case the exponent would
equal unity), a finding that is referred to as
undermatching, and is almost always obtained
in laboratory experiments with human and
animal subjects (Baum, 1974, 1979; Davison &
McCarthy, 1988; Wearden & Burgess, 1982).
Also noteworthy is the ratio of the two c
parameters, c2e/c1e, which consistently fell

between about 0.3 and about 0.5, indicating
a strong bias in favor of normative talk (recall
that rule-break talk is in the numerator of
Equation 4) for all boys in both samples and
for both response rates and time allocations.
This means that all boys had a constant
proportional preference for normative talk
over rule-break talk.

Figure 2 is a plot of the response rate (top
panels) and time allocation (bottom panels)
data for the e5 target boys, along with plots of
Equations 4, 5 and 6 from the ensemble fit.
Because the latter two equations are functions
of two variables they describe surfaces, as
shown in the center and right panels of the
figure. The %VAFs and parameters for all fits
in Figure 2 are given in Tables 1 and 2.

The straight lines in the left panels of
Figure 2 are plots of the log transforms of
Equation 4 from the ensemble fit. Notice that
for both response rates and time allocations
the line intersects the y-axis at a negative value,
reflecting the strong bias in favor of normative
talk (which appears in the denominator of the
ratios). The slopes of these lines are also
slightly less than one, reflecting exponents of
about 0.8. The scatter around the fitted lines
reflects the %VAFs of about 50%.

The coordinate origins of the surface plots
in the center and right panels of Figure 2 are
the bottom front corners where the two zero
tick labels are adjacent. This is the front corner
of the reinforcement rate floor. Reinforce-
ment rate for rule-break talk, r1, increases
along the right edges of the floor, and
reinforcement rate for normative talk, r2,
increases along the left edges. The vertical z-
axes represent response rates (top panels) or
time allocations (bottom panels). Notice that
the response rates and time allocations of
these boys’ rule-break talk (center panels)
increased with the rate of reinforcement for
rule-break talk provided by their peers, r1, and
decreased with the rate of reinforcement for
normative talk, r2. This decrease in responding
on one alternative of a concurrent schedule as
the reinforcement rate increases on the other
alternative is the well known contrast effect
that is routinely observed on concurrent
schedules in laboratory experiments.

The plots in the right panels of Figure 2
show that the rate and time allocation of the
boys’ normative talk increased with the rate of
reinforcement for normative talk (r2) provided

Fig. 1. Percentages of variance accounted for (%VAF)
by classic (left portions) and modern (right portions)
matching theory equations and their ensembles, averaged
over the four subsets of data for response rates (top panel)
and time allocations (bottom panel). Error bars represent
6 1 standard error.
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Table 2

Shared parameter estimates from ensemble fits of Equations 1, 2, and 3 (first two columns) and
from ensemble fits of Equations 4, 5, and 6 (columns 3 through 6). The ratios of the two c
parameters are listed in the last column.

Sample-Child

Classic Modern

c2e/c1ek re k a c1e c2e

Responses

e5-Target 8.00 2.26 9.14 0.76 3.03 1.01 0.33
e5-Peer 8.52 6.11 9.14 0.72 3.57 1.11 0.31
n4-Target 7.58 3.41 8.41 0.76 3.32 1.13 0.34
n4-Peer 7.60 1.91 8.19 0.88 3.30 1.53 0.46
e5-Average 7.88 4.75 9.63 0.64 4.29 1.42 0.33
n4-Average 7.84 1.98 8.64 0.74 3.68 1.48 0.40

Time

e5-Target 25.60 0.34 26.78 0.83 0.00 0.00 0.35
e5-Peer 27.41 3.56 28.88 0.78 1.91 0.59 0.31
n4-Target 26.12 0.40 25.60 0.74 0.00 0.00 0.33
n4-Peer 28.21 2.65 30.04 0.87 5.78 2.48 0.43
e5-Average 26.08 2.17 29.58 0.69 2.21 0.76 0.34

n4-Average 27.19 0.69 27.55 0.71 1.19 0.47 0.40

Fig. 2. Response rates (top panels) and time allocations (bottom panels) for the e5 target boys, along with plots of
the best fitting Equations 4, 5, and 6. The percentages of variance accounted for, parameter values, and residual analyses
for these fits are given in Tables 1, 2, and 3. Bias in favor of normative talk is indicated by the negative y-intercept of the
best fitting log transform of Equation 4 in the left panels, and by the generally higher levels of normative than rule-break
talk (right panels vs. center panels).
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by their peers, and decreased with the rate of
reinforcement their peers provided for rule-
break talk (r1), again showing the expected
contrast effect. Notice the generally higher
levels of normative talk, shown in the right
panels, than rule-break talk, again reflecting
the strong bias in favor of normative talk. Plots
of the other three data subsets showed similar
features, including the contrast effect that is
commonly observed in laboratory experi-
ments, and a strong bias for normative talk.

Residuals

While the equations of modern matching
theory appeared to provide a reasonable
description of these boys’ verbal behavior, it
is important to examine the residuals for
systematic trends that would indicate incorrect
function forms. Standardized residuals were
calculated for each fit and were plotted against
the dependent variable predicted by the fitted
equation. These plots were then examined for
linear trends by calculating the correlation
between the standardized residual and the
dependent variable predicted by the equation,
which is a common method of testing for
linear trends. Correlation coefficients for the
classic and modern fits are listed in Table 3.
For the classic theory, 23 of the 24 correlations
for the four data subsets were negative. The
mean correlations across the four data subsets
are plotted in the left portions of Figure 3 for
response rates (top panel) and time alloca-
tions (bottom panel). The mean correlation

over all four data subsets and fits was 20.34 for
the response rates and 20.32 for the time
allocations. Given that the fits of the classic
theory equations failed to describe these data
well, it is not surprising that they also showed
strong trends in their residuals. The correla-
tions for the modern theory fits varied around
zero, as is evident from the entries in Table 3.
The mean correlations across the four data
subsets are plotted in the right portions of
Figure 3 for each equation. The mean corre-
lation over all data subsets and fits was zero to
two decimal places for both response rates and
time allocations. Hence, there was no evidence
for systematic trends in the residuals left by fits
of the modern theory equations.

Averages Over a Quartile Grid

The modern theory of matching provided a
reasonable description of these boys’ verbal
behavior. In addition, fits of the equations
evidently left random residuals, which indicat-
ed that the boys’ verbal behavior conformed to
the equations’ specific function forms. A
disappointing feature of these analyses, how-
ever, was that the equations of modern
matching theory accounted for only about
half the variance in the response rate and time
allocation data. In laboratory experiments,
including experiments with human subjects,
at least 80% of the variance is typically
accounted for by matching theory equations,
and it is common to find 90% or more of the
variance accounted for (Baum, 1974, 1979;

Table 3

Correlations of standardized residuals with values predicted by ensemble fits of Equations 1–3
(the classic theory) and ensemble fits of Equations 4–6 (the modern theory).

Sample-Child

Classic Modern

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6

Responses

e5-Target 20.31 20.59 20.24 0.01 20.06 0.04
e5-Peer 20.32 20.58 20.30 0.07 20.06 20.02
n4-Target 20.26 20.53 20.28 0.04 0.00 20.10
n4-Peer 20.03 20.46 20.13 0.13 20.08 20.01
e5-Average 20.97 20.52 20.94 20.21 0.10 0.13
n4-Average 20.94 20.72 20.67 20.17 20.01 0.22

Time

e5-Target 20.18 20.49 20.30 0.00 20.08 0.03
e5-Peer 20.20 20.54 20.26 0.07 20.13 0.06
n4-Target 20.19 20.42 20.61 0.09 0.22 20.29
n4-Peer 0.03 20.51 20.21 0.18 20.13 20.02
e5-Average 20.94 20.75 20.85 20.29 0.28 0.14
n4-Average 20.91 20.83 20.55 0.31 20.26 0.32
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Davison & McCarthy, 1988; Wearden & Bur-
gess, 1982). An important difference between
these verbal behavior data and typical labora-
tory data is that the former are between-
subjects data whereas the latter are almost
always within-subject data. It may be that the
unaccounted-for variance in the boys’ data was
due to individual differences in the between-
subjects data sets. Indeed, fits to within-subject
data from laboratory experiments typically
produce at least slightly different parameter
estimates for different individuals, which
would add error variance to a between-subjects

data set that might be constructed from within-
subject data from multiple subjects.

One way to remove presumably random
individual differences from a data set is to
average across subjects. This is problematic in
the case of the present data because it entails
dependent variables that are functions of two
independent variables. This means that it is
not possible to average over simple indepen-
dent–dependent variable pairs. One approach
to averaging across subjects in this type of data
set is to divide the range of each of the two
independent variables into quartiles. This
produces a grid of 16 rectangles of varying
sizes on the reinforcement rate floors (of, e.g.,
plots of Equations 2, 3, 5, and 6). Each point
falling in a rectangle has associated with it
values of r1, r2, B1, B2, T1, and T2 for one
participant. Averaging each of these values
over all points that fall in a given rectangle
produces a single data record that is an
average over participants whose independent
variable values fall in that rectangle of the grid.
This method is preferable to using a grid with
equal-sized square cells because, for the
present data at least, the equal-grid method
produces cells with very different ns and leaves
many cells empty.

The quartile-grid method of averaging the
data was used on the total e5 sample and the
total n4 sample. In other words, for each
sample, data from the target boys and the peer
boys were pooled. The equations of classic and
modern matching theory were then fitted to
the averaged data using the ensemble method
described earlier. The %VAFs for these fits are
listed in Table 1 in the rows labeled e5-
Average and n4-Average. Evidently, averaging
the data did not rescue the classic theory. It
did, however, considerably improve the good-
ness of fit of the modern theory. For Equations
4–6, over both samples and both independent
variables, the %VAFs ranged from 72% to
97%, averaging 90%. These %VAFs are well
within the range typically obtained in labora-
tory experiments with animal and human
subjects (Baum, 1974, 1979; Davison &
McCarthy, 1988; Wearden & Burgess, 1982).
Parameter estimates from these fits are listed
in Table 2 in the rows labeled e5-Average and
n4-Average. The exponents, a, are slightly
lower than those obtained for the four subsets
of the data, but are nevertheless well within the
range typically found in laboratory experi-

Fig. 3. Correlations of standardized residuals with
response rates (top panel) and time allocations (bottom
panel) predicted by the equations of classic (left portions)
and modern (right portions) matching theory. Correla-
tions not equal to zero indicate linear trends in the
residuals. Error bars represent 6 1 standard error.
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ments. The bias parameters, c2e/c1e , for the
averaged data fell within the range of bias
parameters obtained for the four data subsets,
indicating, as for the data subsets, a strong bias
in favor of normative talk.

Figure 4 is a plot of the response rate and
time allocation data for the pooled, averaged
e5 data, along with the best ensemble fits of
Equations 4, 5, and 6. The improved %VAFs
are reflected in the greatly reduced scatter in
all plots in the figure. Notice, however, that
the same properties that characterized the
plots and fits for the separate data subsets also
can be seen in the plots of the averaged data.
These include y-intercepts ,0 in the left
panels, reflecting the strong bias in favor of
normative talk, generally higher levels of
normative talk than rule-break talk, shown in
the center and right panels of the figure, and a
contrast effect for both rule-break talk and
normative talk. Plots of the data and the
ensemble fits for the pooled, averaged n4

sample are similar to those shown in Figure 4,
and reflect all the response and time alloca-
tion properties described for the averaged e5
sample. Evidently, quartile-grid averaging
across subjects produces results that are
representative of the pooled individual-subject
data subsets, and that are as good as those
typically obtained from within-subject data
generated in the basic science laboratory.

Residuals from fits to the averaged data were
calculated and examined as described for the
data subsets. Correlations of the standardized
residuals with values predicted from the fitted
equations are listed in Table 3 in the rows
labeled e5-Average and n4-Average. Not sur-
prisingly, fits of the classic theory showed
strong linear trends in the residuals. All of
the large negative correlation coefficients for
these fits were statistically different from zero
(a 5 0.05, two tails). For fits of the modern
theory, the correlation coefficients across
samples, response rates, and time allocations

Fig. 4. Response rates (top panels) and time allocations (bottom panels) for the e5 target and peer boys, pooled and
then averaged over a quartile grid. The percentages of variance accounted for, parameter values, and residual analyses for
these fits are given in Tables 1, 2, and 3. Averaging considerably reduced the scatter about the fitted functions. Bias in
favor of and higher levels of normative talk are still evident in the averaged data, as are the lips on the rule-break surfaces
in the center panels.
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ranged from 20.29 to 0.32, averaging 0.05.
None of these correlation coefficients was
statistically different from zero (a 5 0.05, two
tails). These results indicate that the averaged
response rates and time allocations conformed
to the specific function forms required by the
equations of modern matching theory.

DISCUSSION

Dishion et al. (1996) analyzed these data in
a different way. They considered each pair of
boys to be a dyad that responded as a unit and
that reinforced its own behavior. Hence, for
example, a conversational rule-break exchange
that shifted back and forth between boys
constituted one instance of rule-break talk.
Similarly, a positive social response that might
shift back and forth between boys counted as
one reinforcer. Dishion et al. plotted the
proportion of dyadic rule-break responses
against the proportion of positive dyadic social
responses for rule-break talk, and found what
they described as a linear relationship between
the two proportions. The relationship, shown
in their Figure 1, was actually more interest-
ing—it was a sigmoidal relationship immedi-
ately recognizable as indicating a degree of
undermatching in the dyad’s responding. The
authors did not attempt to fit Equations 1 or 4
to their data. Dishion et al.’s analyses are
interesting, but they differ from the typical
behavior-analytic focus on the behavior of
individual organisms.

One issue with the analyses reported here is
that the positive social responses from the
target and peer boys for their partners’ verbal
behavior were only presumed to be reinforc-
ers. Although there is overwhelming evidence
that these kinds of social responses in fact act
as reinforcers (e.g., O’Leary & O’Leary, 1977),
it would nevertheless be ideal to demonstrate
that this was the case for each study of
naturally occurring behavior in an undis-
turbed environment. This could be accom-
plished after the naturalistic data were collect-
ed, by making the putative reinforcers
contingent on behavior in experiments with
a subset of subjects using, perhaps, a reversal
design to show control of behavior by the
putative reinforcer (Snyder & Patterson, 1995;
St. Peter et al., 2005).

A second concern that may be raised about
these data and analyses bears on the ratio of

responses to reinforcers. Considering the
reciprocal nature of conversation, it seems
possible that the ratio of responses to rein-
forcers could be close to 1:1 for these data, in
which case there would be too few ‘‘extra’’
behaviors to be affected by reinforcement
allocation, and hence behavior could not stray
far from the matching relation. For example, if
every response was reinforced, a reinforce-
ment allocation of, say, 2:1 would be associated
with a response allocation of exactly 2:1. But
response allocation is a true dependent
variable only when it can vary from the
reinforcer allocation, and of course this is
possible only when there are more responses
than reinforcers. The additional responses
might or might not be allocated in a way that
is consistent with matching. To examine this
issue in the present data, the normative and
rule-break talk of the target and peer boys in
the e5 and n4 samples were combined. On
average, the boys in the combined sample,
across response categories, emitted 20 respons-
es for each reinforcer. This response/reinforc-
er ratio is comparable to ratios found in
laboratory experiments. For example, Dallery,
McDowell, and Lancaster (2000) studied the
lever pressing of 7 rats working on variable-
interval schedules of sweetened water. The rats
in their 0.32M condition, to take a relatively
high response-rate example, emitted an aver-
age of 12 responses for each sweet-water
reinforcer. Evidently, the verbal behavior of
the boys in the present study had ample leeway
to deviate from matching.

A third issue that might be raised about
these analyses is that the equations of classic
matching theory entail two free parameters
whereas the equations of modern matching
theory entail four free parameters. It might
seem that this gives the latter theory an
advantage and that the tradeoff between the
modern theory’s additional %VAF and the
additional parameters in its equations should
be assessed using an F-test or the Akaike
Information Criterion (Motulsky & Christopo-
lous, 2004). But as McDowell (2005) pointed
out, this sort of comparison is necessary only
when the competing theories both provide
reasonable descriptions of the data, that is,
when both account for a respectable amount
of data variance and leave random residuals.
When this is the case, the only issue that
remains is whether the additional variance
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accounted for by one of the theories is worth
the additional parameters it entails. But the
classic theory of matching accounted for no
variance and left systematic residuals. Hence
its account of these data cannot be correct
under any circumstance.

A fourth issue with these data is the
considerable amount of scatter around the
functions fitted to the four data subsets. This
produced %VAFs that were not as large as
those typically observed in laboratory experi-
ments. Averaging over subjects produced
much larger %VAFs, which suggested that
the scatter in the data subsets was likely due
to variance caused by individual differences in
the between-subjects data. But there is still a
chance that each boy’s verbal behavior was
only loosely governed by the equations of
modern matching theory, in which case within-
subject data would also exhibit considerable
scatter. The 20-minute conversations from
which the present data were obtained were
too short to permit calculating reliable within-
subject response rates and time allocations for
these boys, although obviously it would be
desirable to conduct naturalistic studies that
permitted the collection of within-subject data.
A different way to investigate whether the
scatter is due to individual differences is to ask
if within-subject data that showed minimal
scatter would show greater scatter when
pooled with other individual-subject data in a
constructed between-subjects data set.

Such an investigation was conducted by
compiling data from all laboratory studies of
concurrent schedules using human subjects
published through 1990 that reported at least
five response and time allocations for each
subject. This yielded 24 individual-subject data
sets from five experiments (Bradshaw, Szabadi,
& Bevan, 1979; Bradshaw, Szabadi, Bevan, &
Ruddle, 1979; Cliffe & Parry, 1980; Ruddle,
Bradshaw, & Szabadi, 1981; Ruddle, Bradshaw,
Szabadi, & Foster, 1982). The behavior of the
individual subjects in these experiments was
well governed by Equation 4, which accounted
for between 72% and 100% of the individual
subjects’ data variance, with a median of 98%
of the variance accounted for by the equation.
In other words, the data from these subjects
showed very little scatter around the best fit of
Equation 4. One data point was drawn at
random from each of the individual-subject
data sets, and these 24 data points were then

pooled to form a between-subjects data set to
which Equation 4 was fitted. This random
sampling from the individual within-subject
data sets was repeated a total of 20,000 times.
The resulting %VAFs for the 20,000 fits of
Equation 4 ranged from 15% to 89%, with a
median of 66%. By comparison, the %VAFs
shown in Table 1 for fits of Equation 4 to the
boys’ response rate and time allocation data
ranged from 44% to 61%, with a median of
50%, which are roughly comparable figures.
Plots of the constructed between-subjects data
sets that yielded the median %VAFs are shown
in Figure 5 for response and time allocation
data, along with the best fits of the log
transform of Equation 4. Clearly, these plots
are similar in appearance to the plots in the
left panels of Figure 2. It is not unreasonable
to suppose, then, that individual boys’ verbal
behavior in the present study was governed
closely by the equations of modern matching
theory.

A fifth issue that may be raised about these
analyses is that they apparently ignore the
interlocking nature of conversation between
individuals. The verbal behavior of one boy is
affected by the verbal behavior of the other
boy, which in turn affects the verbal behavior
of the first boy, and so on. Basic behavior
analysis deals with the interlocking nature of
behavior and environment by means of feed-
back functions (Baum, 1992; McDowell &
Wixted, 1986, 1988; Soto, McDowell, & Dal-
lery, 2006). In the laboratory, the organism’s
environment is arranged and presented by
machinery. In the case of naturally-occurring
conversation, however, each boy’s environ-
ment is ‘‘arranged’’ and presented by the
other boy’s social behavior. But these two
situations are not so different, for even in the
laboratory behavior and environment change
and are changed by each other, and hence are
engaged in an interlocking conversation of
sorts. Behavior–environment feedback in lab-
oratory experiments is far from completely
understood (e.g., Baum, 1992), and often it is
simply ignored. For example, feedback is
completely ignored in all the equations of
both classic and modern matching theory. The
independent variables in these equations are
rates of obtained reinforcement, which are not
known in advance, and which can be, and
often are, very different from their scheduled
rates. The reinforcement rates that are ob-
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tained depend on the organism’s behavior,
and yet that behavior is considered to depend
on the very reinforcement rates the behavior
itself generates. The ultimate solution to this
problem is to incorporate feedback functions
into the equations of matching theory that
specify how behavior produces obtained rein-
forcement rates from scheduled reinforce-
ment rates, thus restoring true independent
variables to the equations. The same must be
true in applications of the equations to social
behavior. There is no doubt that additional
research on how feedback works in both basic
and applied environments is needed.

The findings reported here add to the
literature showing that human behavior in
natural, unengineered environments is gov-
erned by matching theory, and hence lends
further support to the assertion that the
principles and processes that govern behavior
in laboratory environments also govern behav-
ior in undisturbed natural human environ-
ments. These findings are especially interesting
because they entail verbal behavior and social
reinforcement in reciprocal social interactions
where each person’s behavior is regulated by
consequences naturally provided by the other
person. This type of social exchange is the
hallmark of human social interaction.

These analyses also make use of contempo-
rary theoretical and analytic developments in

the basic science that may be of interest to
applied workers. If modern matching theory
supplants its classic version, as McDowell
(2005) contends it must, then the classic
Herrnstein (1970) hyperbola, the quantitative
law of effect, must be replaced by the more
complicated form derived from Equation 4:

B~
kr a

r az
r a
e

b

:

This is modern matching theory’s version of
the quantitative law of effect. McDowell (1986,
2005) explained how this single-alternative
form is derived from the power-function
matching equation (Equation 4), and how it
is related to Equations 5 and 6. McDowell and
Caron (2007) discussed some of the difficulties
that may be encountered when attempting to
fit this equation to data.

Another feature of the present analyses that
is novel in translational research is the simulta-
neous fitting of all three equations of matching
theory. As noted earlier, this is a much stronger
test of the theory than is usually undertaken
when only the relative response rate equation
(viz., Equation 1 or 4) is fitted to data. The
simultaneous fitting entails a new, ensemble,
method that minimizes a normalized total
residual sum of squares by adjusting parameters
that are shared by all the equations.

Fig. 5. Human between-subjects data sets constructed by random sampling from 24 within-subject data sets that
showed little scatter around the best fits of Equation 4. The response rate and time allocation data shown are for the two
constructed between-subjects data sets out of 20,000 that yielded the median %VAFs for fits of the log transform of
Equation 4 (straight lines drawn through the plots). Evidently, the scatter in these plots is similar to that for plots of the
boys’ verbal response rates and time allocations (as shown, for example, in the left panels of Figure 2).
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And finally, these analyses are interesting
from a basic science perspective because they
add support to the assertion that the classic
theory of matching is false (McDowell, 2005).
It is safe to say that no basic scientist will be
surprised to learn that Equation 1 did not
describe the boys’ verbal behavior well. The
restricted applicability of this equation has
been known for at least 35 years (Baum, 1974,
1979; Davison & McCarthy, 1988; Wearden &
Burgess, 1982). But, upon reflection, it should
be surprising to basic scientists that Equations
2 and 3 did not describe the boys’ behavior
well or, in fact, at all. This is because, as noted
earlier, Equations 2 and 3 are forms of the
single-alternative hyperbola that has been
studied extensively in many experiments, and
that appears to describe the behavior of many
vertebrate species, including humans, quite
well. But McDowell (2005) showed that this
appearance can be deceiving; that is, the
hyperbola can appear to accurately describe
behavior when in fact it does not.

Further research on behavior in natural,
undisturbed environments may improve our
understanding of how important classes of
naturally-occurring human behavior are regu-
lated, and this in turn may lead to a wider and
fuller acceptance of the idea that basic princi-
ples and processes discovered in the laboratory
also govern human behavior in everyday life.
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APPENDIX

The ensemble method of simultaneously
fitting Equations 4–6 to a set of data using
shared parameters is illustrated in Figure A1.
Estimated values of the shared parameters, k,
a, c1e , and c2e are given in the top left of the
figure. The parameters are shared across the
three equations, also shown in the figure,
which means that each parameter is required
to have the same value in every equation in
which it appears. The ratio of the c parameters,
shown to the right of the four estimated
parameters, is not itself estimated by the fitting
procedure; instead, it is calculated from the
estimated values of the two c parameters.

The block beneath each equation contains
information pertaining to the least-squares fit
of that equation. The vertical ellipses indicate
data that were omitted to save space in the
figure. The total sum of squares, SS, is
calculated for the three dependent variables,
B1, B2, and B1/B2. The SS for B1 is indicated in
the figure by a label and an arrow. The third
column in each block contains the value of the
dependent variable predicted by the applica-
ble equation, using the parameter values listed
in the top left of the figure. In an actual
spreadsheet, this column contains the formula
for the applicable equation, where the inde-
pendent variables and parameter values of the
equation are represented by appropriate cell

references. The fourth column in each block
contains the residuals, which are the differ-
ences between observed and predicted values
of the dependent variable. The residuals are
squared and then summed to obtain the
residual sum of squares, RSS, which is identi-
fied in the figure for B1 by a label and an
arrow. The percentage of variance accounted
for (%VAF) by each equation, also identified
in the figure for B1, is given by

%VAF~ 1{
RSS

SS

� �
100:

The %VAF values shown in the figure can be
verified using the RSS and SS values given in
each block.

The quantity in the bold box in the lower
right of Figure A1 is the normalized total
residual sum of squares, calculated from
Equation 7. Its value in the figure can be
verified by substituting the RSS and SS given
for each block into Equation 7. The normal-
ized total residual sum of squares is the
quantity that a fitting algorithm must mini-
mize by iteratively adjusting the four parame-
ters entailed by Equations 4–6. Every iteration
(i.e., change) of the parameter values causes
the predicted values of the dependent vari-
ables in the three blocks to change, and hence
also causes the residuals and RSSs in the three
blocks to change. As a consequence, all three

Fig. A1. Example of fitting Equations 5, 6, and 4 simultaneously as an ensemble with parameters, k, a, c1e and c2e,
shared across all equations. The total sum of squares (SS), residual sum of squares (RSS), and percentage of variance
accounted for (%VAF) are identified for the first data block. The value in the bold box in the lower right is the sum of the
three RSS/SS ratios and is the quantity that is minimized by adjusting the four parameters. The quantity underneath the
bold box is the ensemble %VAF.
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equations are fitted simultaneously by mini-
mizing the single quantity in the bold box. A
variety of optimization algorithms can be used
to carry out this ensemble fit. The most
convenient is the generalized reduced gradi-
ent algorithm developed by Lasdon and
Waren (1978) and implemented by Microsoft
Excel’s Solver tool, for which extensive help is

available. The quantity beneath the bold box
in Figure A1 is the %VAF for the entire
ensemble, and is calculated from Equation 8.
Again, this quantity can be verified using the
RSS and SS values given in the figure.

The three equations of classic matching
theory are fitted as an ensemble in the same
way, using the shared parameters, k and re.
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