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Patterns from division

All common fractions can be written in
decimal form. In this Discovery article I

suggest that you ask your students to calculate
the decimals by actually doing the divisions
themselves, and later on they can use a calcu-
lator to check their answers. The article is based
on the research of Bolt (1982).

Start with the first five digits as denomina-
tors respectively (excluding unity) and only
consider proper fractions (p/q with p < q), not
those improper or vulgar ones where the
numerator is greater than the denominator.
Thus your students should produce:

The bar above a single digit indicates that it is
to be repeated forever. Note that some of these
decimals terminate but others go on forever and
are called recurring decimals.

Next ask your students to write to in
decimal form and comment on the results. They
should obtain

Here the whole sequence covered by the bar is
to be repeated forever. Note the permutation of
the six digits in each repeated decimal.

Your students can continue to investigate 
to (terminating), to (recurring), and to 

(terminating). So far they should have discov-
ered that the decimal expression of the fraction
in fundamental form will terminate when the
denominator is 2, 4, 5, 8 or 10. This could lead
them to conjecture that decimal fractions will
terminate if their denominator is any combina-
tion of powers of 2 and powers of 5.

To draw meaningful conclusions about
recurring decimals, further investigation is
needed. Now 

Students should next consider to .
For larger prime number denominators your

students could now use their calculators. With
13 as the denominator some fascinating results
emerge.

Here there are permutations of two separate
recurring sequences. One would certainly not
be able to predict this strange property.

To investigate the fractions with 14 as the
denominator there is no need to use the calcu-
lator except as a check on students’ division
ability. Some of your students should observe
that seven of the required results have already
been obtained (which ones?) and a further three
of the required results can be obtained by
dividing some earlier answers by 2. This just
leaves three to be calculated by long division or
by dividing , and respectively by 2. The
results are somewhat surprising. Similar short
cuts can be used for fractions with 15 and 16, with
15 adding further insight into the overall results.
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Now fractions with the prime number 17
pose a problem. The average calculator cannot
accurately produce the required number of
decimal places in the recurring decimal
sequence, and it appears that the sequences
seem to terminate. This is because there are
actually sixteen digits in the recurring sequence
and basic calculators usually only give the first
eleven significant figures and round off the
twelfth. See if your students can now discover
for themselves a way of finding the sixteen digits
using their calculators.

This is one method illustrated by tackling .
The calculator gives

and the decimal appears to terminate. Next
divide 6 000 000 by 17 and the calculator shows
352941.176471 as expected. Now multiply the
number in front of the decimal point by 17
yielding 

352 941 × 17 = 5 999 997
and subtracting this from 6 000 000 leaves a
remainder of 3. Now

Thus the extension of 

and the sixteen digit sequence has been
obtained, ending with …882. Some of this can
be checked using Excel, but students will have
to widen the cell width to reveal the first 14
digits of the sequence obtained by increasing
the number of decimal digits in the Excel menu
bar. Note that every digit appears at least once
in this sixteen-digit sequence. 

Composite denominators 18, 20, 21 and 22
add further information to the data collected,
while the primes 19 and 23 produce only one
sequence each respectively. The next most
interesting denominator will be 2 × 13 = 26,
because of the strange property shown by 13.
What about 13 × 13 = 169? That would require
a computer with double digit precision or a
special mathematical program such as Maple or
Mathematica.

So what should the investigations suggest so
far? Simply that proper fractions with N as
denominator, where N has factors other than 2
or 5, will produce repeating sequences of length
(N – 1) or less. Those with repeating sequences
of length (N – 1) will have N prime, but the
converse is not true (see 2, 3, 5, 11 and 13). 

The reverse operation of going from a decimal
fraction to a proper fraction is well known for
terminating decimals but not so for recurring
decimals. For terminating decimals one just
needs to write the terminating sequence as the
numerator with one followed by the same
number of zeroes as the length of the sequence
in the denominator. Thus

using prime factors to simplify to an equivalent
fraction.

For recurring decimals, the conversion is a
bit more complicated. Four examples will illus-
trate the method.

The rule for the numerator is to write down
the sequence of numbers after the decimal point
including the recurring sequence only once, and
then subtract the part of the sequence which
does not recur. The denominator consists of
nines for the number of recurring decimal digits
followed by zeroes for the number of non-recur-
ring decimal digits. Thus

The rule is based on the sum to infinity of a
geometric progression.

Happy discoveries!
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