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Abstract 
 
This paper discusses the concept of scaling and its biological and engineering applications. Scaling, in a 
scientific context, means proportional adjustment of the dimensions of an object so that the adjusted and 
original objects have similar shapes yet different dimensions. The paper provides an example of a hands-
on, minds-on activity on scaling that can be adapted to a middle school, high school, or even undergraduate 
science curriculum. The student activity is preceded by an introduction and followed by a summary 
discussion with possible suggestions on how a teacher might guide student exploration. 
 
A number of fundamental concepts in science fascinate students and teachers, yet the students 
require only basic algebra and very general science knowledge to understand them. As a result, 
these concepts can be studied at different levels and are well suited for middle or high school 
students, as well as college undergraduates. Moreover, the concepts often have fascinating 
applications connecting science to students’ everyday lives. Biological scaling is a good example 
of such a concept as it provides a great opportunity to teach interesting physics and to see how it 
applies to biological systems. Scaling, in this context, means the proportional adjustment of the 
dimensions of an object such that the adjusted and original objects have similar shapes, yet 
different dimensions. In other words, an object is scaled when each one of its dimensions is 
changed (increased or decreased) by the same factor, referred to as a scaling factor (S.F.). The 
concept of scaling can be also successfully applied to engineering, architecture, the film industry, 
and other fields. 
 
This paper presents a brief discussion of scaling and suggests a hands-on, minds-on activity that 
explores some of its interesting applications. A more in-depth discussion of scaling and its 
applications can be found elsewhere (Barnes, 1989; Fowlers, 1996; Goth, 2009; Haldane, 1970; 
Peterson, 2002; Thompson, 1992; Tretter, 2005; West & Brown, 2004). Having taught the topic of 
scaling to thousands of students over the years (from middle school to undergraduate non-science 
and science majors in college), I find it to be a topic that generates hot debates and raises students’ 
interest and excitement about science. 
 

Activity: Discovering Scaling 
 
Materials 
 
For each group: set of 27 or more small wooden or plastic cubes such as the ones used in 
elementary school mathematics classes, two or three metallic spheres of different sizes (wooden 
spheres do not sink in water and it is difficult to measure their volumes), a graduated cylinder 
large enough to fit the spheres and used to measure their volume, play dough, and a ruler. 
 
Student Independent Investigation 
 
Imagine a small cube with side 1 cm (Figure 1). The volume of such a cube is 1 cubic cm (1 cm3), 
while its surface area is 6 square cm (6 cm2) (a cube has six faces and each has an area of 1cm2). 
Notice that, if you double every edge of the cube (i.e., enlarge it by a factor of 2), the volume of 
the cube increases by a factor of 8, while the surface area only increases by a factor of 4: 
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Vsmall = 1 cm3; Vlarge = (1 cm x 2)3 = (2 cm)3 = 8 cm3 
 
Asmall = 1 cm2 x 6 = 6 cm2; Alarge = (1 cm x 2)2 x 6 = 4 cm2 x 6 = 24 cm2 

 
Stop and Think 
 
Q1: What will happen to the surface area and the volume of the 
original cube if every edge of the original cube triples? 
 
Definition of Scaling 
 
Two objects are said to be scaled if one object can be obtained 
from the other by increasing its every dimension by the same 
factor, called the scaling factor (S.F.). In other words, two 
objects are scaled if one can be obtained from the other by 
proportional adjustment of all its dimensions. Notice that the scaling factor is a pure number (i.e., 
it has no unit). In the example above, the scaling factor is 2 (i.e., S.F. = 2). 
 
Use the cubes provided to you to explore different scaling factors. Fill in your results in Table 1 
below. 
 
Table 1 
Exploration of Scaling With Different Scaling Factors: Finding the Pattern in the Data 
 

Length/m Surface area/m2 Volume/m3 Ratio of Surface 
Area to 

Volume/m-1 

Scaling factor 
(compared with 

the smallest cube) 

1     

2     

3     

10     

100     

1000     
 
Stop and Think 
 
Examine Table 1 carefully and answer the following questions: 
 
Q2: What interesting/surprising patterns have you observed in Table 1? Describe them. 
 
Q3: When the scaling factor increases, the surface area and the volume of the object also 

increase. Do they increase at the same rate? Explain. 
 
Q4: Any two cubes are always scaled. The same applies to any two spheres. Is it going to be true 

for any two rectangular prisms? Explain. (Hint: a cube is a rectangular prism, but is any 
rectangular prism a cube?) 

 

Figure 1. Two scaled cubes 
with a scaling factor of 2. 

 1 cm

  

  

  

  2 cm 
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Q5: In the SI system of measurement, 1 m = 10 dm = 100 cm = 1000 mm. What is the 
relationship between: 

 
a) 1 m2 and each of 1 dm2, 1 cm2, and 1 mm2? 
b) 1 m3 and each of 1 dm3, 1 cm3, and 1 mm3? 
c) How are these relationships related to the concept of scaling? 

 
Q6: For biological systems, surface area and volume play distinctively different roles: surface 

area (skin for example) is responsible for energy dissipation (or heat loss) while the volume 
is responsible for energy generation. How do you think the pattern you discovered in this 
activity might be relevant to biological systems? 

 
Q7: A cross-sectional area of an object represents its strength (object’s ability to withstand a 

load). For example, the larger the cross-sectional area of a bone is, the stronger is the bone. 
If the mass of an object is proportional to its volume, what can you say about the relative 
strengths of two scaled objects? 

 
Q8: You are asked to help resolve an argument between three of your friends. David claims that 

when you enlarge every side of a cube n times, its volume also increases n times, Jane says 
that the volume of a cube increases 3n times, and Anne is convinced that the volume 
increases n3 times. Who do you agree with and why? 

 
Q9: Scaling is widely used in map-making. A map of a certain town is produced to a scale of 
 1:10 000. The town has a circular shape, and the map is 0.5 m across. What are the town’s 

dimensions? What is the town’s area? What is the town’s area as represented on the map? 
 
Q10: Rachel and Daniel have been assigned the task of peeling potatoes for the entire summer 

camp. Rachel is given 60 kg of potatoes that average 1 kg in mass, while Daniel is given 30 
kg of potatoes that average 0.5 kg in mass (so Rachel’s potatoes are on average twice 
heavier than Daniel’s). Assuming that Rachel’s and Daniel’s peeling skills are equal, and if 
Rachel finishes her task in two hours, how long will it take Daniel to accomplish his task? 

 
Q11: How do you think the scaling phenomenon might be relevant to other aspects of everyday 

life?  
 

Activity Summary: Comments for the Teacher and Ideas for Class Discussion 
 
At first glance, Table 2 does not hold any particular significance. But let us take a closer look at 
the ratio of the surface area of an object to its volume: the larger the scaling factor, the smaller is 
the ratio of the surface area to volume. For very large objects, the amount of surface area (or for 
that matter, cross-sectional area) compared to their volume becomes relatively small. 
 
Galileo Galilei (1564-1642) noticed the phenomenon of scaling almost 400 years ago. In 1635, 
Galileo wrote in his Dialogs Concerning Two New Sciences: 
 

I am certain you both know that an oak two hundred cubits high would not be able to sustain 
its own branches if they were distributed as in a tree of ordinary size; and that nature cannot 
produce a horse as large as twenty ordinary horses or a giant ten times taller than an 
ordinary man unless by miracle or by greatly altering the proportions of his limbs and 
especially his bones, which would have to be considerably enlarged over the ordinary. 
(Galileo, 1635/2002, p. 402) 
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Table 2 
Exploration of Scaling With Different Scaling Factors: Finding the Pattern in the Data. (The 
table shows that the ratio of the surface area to volume of scaled cubes decreases as the scaling 
factor increases.) 
 

Length/m Surface area/m2 Volume/m3 Ratio of Surface 
Area to 

Volume/m-1 

Scaling factor 
(compared with 

the smallest cube) 

1 6 1 6 1 

2 24 8 3 2 

3 54 27 2 3 

10 600 1000 0.6 10 

100 60 000 1 000 000 0.06 100 

1000 6 000 000 10 000 000 000 0.0006 1000 
 
The reason for this trend in surface area to volume ratio is that the mass of an object is 
proportional to its volume (considering that the scaled objects have similar densities), while the 
cross-sectional area of a bone or a tree branch, which is responsible for an object’s strength, is 
proportional to the square of the scaling factor. As a result, when one scales the object up, its mass 
increases more than does its surface and cross-sectional area (see solution to Q10 earlier). A 
cross-sectional area influences the strength of an animal’s bones (large animals have 
disproportionally large legs to support their weight, unless they live in water!). On the other hand, 
the surface area for many animals (their skin) has many important bodily functions: one of them is 
to help warm-blooded animals keep their temperature via heat exchange with the environment. 
When it is too hot, the animals sweat or pant to lose heat. And what happens if a large animal 
does not have enough surface area? 
 
Nature came up with many interesting solutions. For example, elephants have very large ears that 
provide additional surface area and help them to cool down by losing heat (the size of elephants’ 
ears depends on the climate they live in). More interesting is that the laws of scaling tell us that 
one cannot scale up living organisms (humans, plants, and animals), without modifying their 
shape. There is no way of making a chicken 1 meter tall without changing its shape! 
Unfortunately it also applies to Hollywood famous giants, such as Mighty-Joe-Young or King-
Kong. A 15-foot-tall gorilla cannot have the same shape as a 6-foot-tall gorilla. 
 
Scaling down has similar limitations, as exemplified by bonsai trees. Although they look very 
much like a reduced replica of the larger trees, the looks can be deceiving. If one makes a careful 
comparison, the differences between the trees’ structure will be apparent (Barnes, 1989): 
 

The physics of things that we can only imagine is often more interesting and exciting than 
the physics of things that are real. However, when entering the world of imagination one 
must be careful. Although physics is an experimental science, in the imaginary world, it is 
impossible to verify ones’ theories. So we must not let our imaginations carry us too far. (p. 
234.) 

 
Following Barnes’ observation, it is pedagogically valuable to remind the students about the value 
of experiment in testing scientific theories. A valid scientific theory must be able to generate 
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predictions that can be verified (Etkina & Van Heuvelen, 2001; Etkina, Van Heuvelen, Brookes, 
& Mills, 2002; Kalman, 2008). The following two testing experiments can serve this purpose. 
 
Testing Experiment 1 
 
Measure the diameters of your spheres. Calculate the scaling factor. Predict the volume of the 
larger sphere based on the diameter of the smaller sphere and the scaling factor. Conduct an 
experiment to test your prediction. (The volume of the metal sphere can be measured by 
submerging it in water and measuring the volume of the displaced liquid.) Do your experimental 
results confirm your prediction? 
 
Testing Experiment 2 
 
Use play dough to build three scaled rectangular 
prisms (Figure 2): a small prism, a medium prism 
(S.F. = 2) and a large prism (S.F. = 3). Before 
building the larger prisms, hold the smallest prism 
by its base and make sure you can hold it 
horizontally (as a cantilever). If you cannot hold it 
(i.e., the unsupported end of the prism falls), make 
it a little shorter. Now build the other two prisms. 
Predict if it is going to be easier to hold the other 
two prisms horizontally by their bases and use 
them as cantilevers compared to the smallest 
prism. Test your predictions. How might what 
you found be relevant to architectural designs? 
 
In addition to Barnes (1989), a very interesting explanation of scaling laws and their applications 
can be found in the following references: Fowlers (1996), Haldane (1970), Peterson (2002), and 
West and Brown (2004). Scaling plays a central role in our lives; in its biological  applications 
(Ahlborn, 2004), as well as in engineering, architecture, geography (Wiegand, 2006), art, and 
design. 
 

Answers to Some of the Stop and Think Questions From the Student Activity 
 
Q3: When the scaling factor increases, the surface area and the volume of the object also 

increase. Do they increase at the same rate? Explain. 
 
Answer. The volume increases faster than the surface area. This can be illustrated using small 
cubes to build bigger ones. While stacking small cubes together, some of the faces of the smaller 
cubes will become internal, decreasing the surface area. For example, if you stack 27 small black 
cubes together to create a larger cube and paint the surface area of the larger cube in red and then 
take the 27 small cubes apart, you will see that 1 of the 27 cubes will be completely black, 6 cubes 
will have one red face and five black faces, 12 cubes will have two red faces and four black faces, 
and 8 of the cubes will have three red faces and three black faces. Since the red faces represent the 
surface area of the larger cube, one can see that smaller cubes, when considered separately, have 
more surface area compared to when they are stacked together. 
 
Q4: Any two cubes are always scaled. The same applies to any two spheres. Is it going to be true 

for any two rectangular prisms? Explain. (Hint: a cube is a rectangular prism, but is any 
rectangular prism a cube?) 
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Figure 2. Three scaled rectangular prisms. 
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Answer. By definition, all the dimensions of a cube (width, 
length, and height) must be equal. Therefore, if the ratio of two 
sides of any two cubes is found, the ratio between any two other 
sides of the two cubes must be the same. The same applies to 
any two spheres. However, when considering two arbitrary 
rectangular prisms, the ratios of their corresponding edges might 
be different, as shown in Figure 3. The ratio of the heights of 
these prisms is 3:2, yet the ratios of their lengths and widths are 
2:1 and 1:1 respectively. So, when you enlarge or reduce 
different dimensions of an object by different factors, the 
original and enlarged/reduced objects are not scaled. 
 
Q5: In the SI system of measurement, 1 m = 10 dm = 100 cm = 

1000 mm. What is the relationship between: 
 

a) 1 m2 and each of 1 dm2, 1 cm2, and 1 mm2? 
b) 1 m3 and each of 1 dm3, 1 cm3, and 1 mm3? 
c) How are these relationships related to the concept of scaling? 

 
Answer. a) 1 m2 = (10 dm)2 = 100 dm2 = 102 dm2 (S.F. = 10) 
  1 m2 = (100 cm)2 = 10 000 cm2 = 104 cm2 (S.F. = 100 or 102) 
  1 m2 = (1000 mm)2 = 1 000 000 mm2 = 106 mm2 (S.F. = 1000 or 103) 
 
 b) 1 m3 = (10 dm)3 = 1000 dm3 = 103 dm3 (S.F. = 10) 
  1 m3 = (100 cm)3 = 1 000 000 cm3 = 106 cm2 (S.F. = 100 or 102) 
  1 m3 = (1000 mm)3 = 1 000 000 000 mm3 = 109 mm3 (S.F. = 1000 or 103) 
 
Q6: Answered in the text of the paper. 
 
Q7: A cross-sectional area of an object represents its strength (object’s ability to withstand a 

load). For example, the larger the cross-sectional area of a bone is, the stronger is the bone. 
If the mass of an object is proportional to its volume, what can you say about the relative 
strengths of two scaled objects? 

 
Answer. If two objects are entirely scaled, a larger object is going to be weaker and will have less 
surface area per unit of mass than a smaller object. This is especially important in architecture and 
engineering science, while building models and testing the effects of wind, air ventilation, and 
load. If an engineer tested a small model of a bridge and found that the model of the bridge can 
support its weight, it does not mean that a real bridge will be able to support its weight! 
 
Q8: You are asked to help resolve an argument between three of your friends. David claims that 

when you enlarge every side of a cube n times, its volume also increases n times, Jane says 
that the volume of a cube increases 3n times, and Anne is convinced that the volume 
increases n3 times. Who do you agree with and why? 

 
Answer. Anne is right. The reasoning is described earlier in the paper. 
 
Q9: Scaling is widely used in map-making. A map of a certain town is produced to a scale of 
 1:10 000. The town has a circular shape, and the map is 0.5 m across. What is the town’s 

real dimension? What is the town’s area? What is the town’s area as represented on the 
map? 

 

 

 

 

 

 

 

 

Figure 3. Two prisms that 
are not scaled. 
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Answer. The real dimension of the town is 0.5 m x 10 000 = 5000 m, or 5 km across. Therefore, 
the area of the town is πD2/4 = 3.14 x 25 km2/4 ≈ 20 km2. The area of the town, as represented on 
the map, is πD2/4 = 3.14 x 0.25 m2/4 ≈ 0.2 m2, which is also 20 km2/100 000 000 or 20 
km2/(S.F.)2. 
 
Q10: Rachel and Daniel have been assigned the task of peeling potatoes for the entire summer 

camp. Rachel is given 60 kg of potatoes that average 1 kg in mass, while Daniel is given 30 
kg of potatoes that average 0.5 kg in mass (so Rachel’s potatoes are on average twice 
heavier than Daniel’s). Assuming that Rachel’s and Daniel’s peeling skills are equal, and if 
Rachel finishes her task in 2 hours, how long will it take Daniel to accomplish his task? 

 
Answer. Although Rachel and Daniel have, on average, the same number of potatoes (60) to peel, 
the surface areas of these potatoes (the area of potato skin) are not equal. Let us compare the 
surface areas (the area of the potato skin) of Rachel’s and Daniel’s potatoes. Since an average 
Rachel’s potato has a mass of 1 kg and an average Daniel’s potato has a mass of 0.5 kg, the 
volume of an average Rachel’s potato must be twice the volume of an average Daniel’s potato 
(assuming the potatoes have the same densities, ρ). 
 
From the earlier discussion on scaling, we saw that if we assume that Rachel’s (R) potatoes are a 
scaled version of Daniel’s (D) potatoes, then the ratio of their volumes (V) is equal to the cube of 
the scaling factor (see Table 2). Therefore, the scaling factor can be found as follows: 
 

VR_potato/VD_potato = 2 = (S.F.) 3      Hence, S.F. = 3 2  
 
On the other hand, we saw (see Table 2) that the ratio of the surface areas (A) of two scaled 
objects equals the square of the scaling factor. Therefore, the ratio of the area of the skin (surface 
areas) of Rachel’s potato to the area of the skin of Daniel’s potato can be calculated as the square 
of the scaling factor:  
 

AR_potato/AD_potato = (S.F.)2 = ( 3 2 )2 ≈ 1.59 
 
Finally, since peeling time (t) will be proportional to surface area, and Rachel’s peeling time is 2 
hours, Daniel’s peeling time can be calculated as follows: 
 

tR/tD = 1.59      So, if tR = 2 hours, tD = 2 hours/1.59 = 1.26 hours 
 
Notice that, even though the mass of each of Rachel’s potatoes is twice as much as the mass of 
each of Daniel’s potatoes, it will take Rachel only 1.59 times longer than Daniel to peel her 
potatoes! 
 
Q11: How do you think the scaling phenomenon might be relevant to other aspects of everyday 
life? 
 
Answer. See earlier discussion and the references at the end of this paragraph. In addition, the 
topic of sound generation by musical instruments is another great application of the law of 
scaling. Larger instruments produce lowers sounds, but how is the ratio of produced tones related 
to the ratio of the sizes of these instruments? And what about the sounds produced by human 
vocal cords; how are they scaled? Think of the voices of kids versus the voices of adults, or males 
compared with females. These and many other interesting questions can be discussed qualitatively 
and quantitatively with more advanced students. A good start for the discussion of the 
applications of scaling to music can be found in Hoon and Tanner (1981) and Jeans (1968). 
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Conclusion 
 
We hope that this paper will whet the appetite of readers for considering scaling phenomena in 
science classrooms. We have shown how the concept of scaling can be illustrated visually, as well 
as mathematically, and offered relevant hands-on and minds-on activities, as well as additional 
questions to think about. We have also shown that, when an object is scaled, its surface and cross-
sectional areas change more slowly than its volume. Despite its straightforward formulation, 
scaling has profound effects on many aspects of our lives. The sources mentioned earlier, as well 
as Hewitt (1997), Levy and Salvadori (1994), and Salvadori (1980) will provide curious and 
creative science teachers and students with many additional scaling examples from the arts, 
science, engineering, and architecture. We hope that the discussion in this paper will help science 
teachers come up with exciting and unexpected activities for students of different ages and 
interests. 
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