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Abstract
 
Individuals who are self-regulated in their learning appear to achieve more positive academic 
outcomes than individuals who do not exhibit self-regulated learning behaviors. We suggest that 
distinct profiles of self-regulated learning behaviors exist across learners. In turn, these profiles 
appear to be associated with significantly different academic outcomes. The purpose of the 
current study was to examine whether profiles for self-regulated learning skills and strategies 
exist among learners. To achieve this purpose, we conducted two studies using two different 
samples. We administered the Online Self-Regulated Learning Questionnaire (OLSQ), a 24-item 
scale with a 5-point Likert-type response format, to students enrolled in online degree programs 
at a large, public university located in the Southwestern United States. The OSLQ consists of six 
subscale constructs, including environment structuring, goal setting, time management, help 
seeking, task strategies, and self-evaluation. Latent class analyses were performed with 
participant subscale scores from the OSLQ. 
 
Our results indicate the presence of five, distinct profiles of self-regulated learning replicated 
across both study samples: super self-regulators, competent self-regulators, forethought-endorsing 
self-regulators, performance/reflection self-regulators, and non- or minimal self-regulators. 
Results also indicate that individuals differ significantly in their academic achievement according 
to their profile membership; for example, minimal and disorganized profiles of self-regulated 
learning are both associated with similar, poorer academic outcomes (e.g., lower GPAs).  These 
profiles in self-regulated learning may be viewed as contributing to the development of theory by 
elucidating how exactly individuals are and are not self-regulated in their learning. The authors 
suggest future research directions. 
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Self-Regulated Learning 
 
Self-regulated learning refers to those active and volitional behaviors on the part of individuals to 
achieve in their learning. These behaviors include but are not limited to goal setting, time 
management, task strategies, environment structuring, and help-seeking. As skills and strategies 
that individuals perform, these self-regulated learning behaviors are a function of an individual’s 
desire to achieve in their learning. These skills and strategies of self-regulation have been 
proffered as being utilized in social relationships as well as in learning (Boekaerts & Cascallar, 
2006). Thus, self-regulated learning is both a function of the skill and the will on the part of 
individuals (Woolfolk, Winne, & Perry, 2000). In view of this conceptualization, “self-regulated 
learning is seen as a mechanism to help explain achievement differences among students and as a 
means to improve achievement” (Schunk, 2005, p. 85). Self-regulated learning skills and 
strategies appear to have a dual purpose in both differentiating among individuals with respect to 
academic achievement while also enhancing academic achievement outcomes.  
 
Self-regulated learning is based upon the assumption that individuals can act as causal agents in 
their own lives. Self-regulated learning would appear to center on the self as an agent who acts 
upon his or her environment: “agency is the capability of individual human beings to make 
choices and to act on these choices in ways that make a difference in their lives” (Martin, 2004, p. 
135).  However, agency is not only the capability of the individual to act upon the environment 
but also a requirement for the individual to achieve academically. This agentic perspective 
provides that individuals who become self-regulated in their learning can act both autonomously 
and causally to influence their outcomes and experiences. From this broad agentic perspective, 
the self-regulation of learning can be viewed from a variety of theoretical frameworks that 
support a self-deterministic perspective. For the purposes of the current study, self-regulated 
learning will be viewed from a social cognitive theoretical framework. 
 
From a social cognitive perspective, the development of self-regulated learning skills and 
strategies is a function of the bidirectional interaction of personal, behavioral, and environmental 
factors, which takes the form of triadic reciprocal causation (Bandura, 1986, 1997; Schunk, 2001; 
Zimmerman, 1994). Given the bidirectional interaction of factors, the process of developing self-
regulated learning skills and strategies appears to be cyclical (Schunk, 2001). The cyclical 
process in which self-regulated learning skills and strategies develop appears to be a function of 
personal, behavioral, and environmental factors adjusting, modifying, and changing as they 
interact with one another in each cycle or iteration. In a student’s learning process, these factors 
interact with each other in each cycle, which changes the student’s self-regulated learning skills 
and strategies (Bandura, 1986, 1997).We suggest that iterative may be a better way of describing 
the process in which self-regulated learning skills and strategies develop.  
 
The term cyclical implies that individuals must be involved in a prescribed cycle of personal, 
behavioral, and environmental events before self-regulated learning skills and strategies may 
develop. We suggest that individuals can also adjust, modify, or change their self-regulated 
learning skills and strategies by the interaction of two of these factors, such as personal and 
behavioral factors or personal and environmental factors alone. For instance, an individual can 
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engage in the classic study technique of cramming the night before a test. The individual wakes 
up very tired for his/her examination. Without environmental feedback (e.g., a test score), the 
individual may then decide that the behavior of cramming is non-advantageous. Some 
individuals, however, may require their environment to reinforce that this behavior of cramming 
is non-advantageous. As the development of self-regulated learning skills and strategies can be 
considered to be a dynamic process, where some skills and strategies develop before others 
(Pintrich, 2000), the term iterative may depict this process better.  
 
In theorizing about the development of self-regulated learning skills and strategies, Zimmerman 
(1998) proposed a three-phase model. The first phase, forethought, refers to the skilled and 
strategic processes that precede and set the stage for performance in learning. These processes 
would include but are not limited to goal-setting, attribution, self-efficacy of eminent tasks, and 
the intrinsic motivation to perform the learning task. This forethought phase may be thought of as 
consisting of those self-regulated learning skills and strategies that are at the intersection of the 
cognitive and motivational factors that typically occur prior to or as the student enters the 
learning process. Self-regulated learning skills and strategies such as environment structuring and 
goal setting may be associated with the forethought phase.  
 
The second phase, the performance control or volitional phase, consists of the skilled and 
strategic processes that occur during the learning process. These skilled and strategic processes 
include but are not limited to attention, affect, and monitoring of action. Self-regulated learning 
skills and strategies, such as time management, task strategies, and help seeking, are associated 
with the performance control phase.  In the third and final phase, the self-reflection phase, 
individuals react and respond to their self-regulated efforts in the learning process by evaluating 
the outcomes of their performance. During the final self-reflection phase, the individual will self-
evaluate based upon social comparisons and adjust the implementation of skills and strategies in 
the forethought and performance control phases for the next learning task. Self-regulated learning 
skills and strategies such as self-evaluation may be associated with the self-reflection phase.  
 
The purpose of the current study was to examine whether profiles or types of self-regulated 
learning skills and strategies exist. No research has yet to examine the presence of profiles in self-
regulated learning skills and strategies except to acknowledge that there are differences according 
to the self-regulated learning skills and strategies characterized by students (Greene & Azevedo, 
2007). While acknowledging that student characteristics do play a part in self-regulated learning 
skills and strategies, Greene and Azevedo (2007) have noted the lack of clarity as to how we can 
account for these differences. We suggest that the demarcations of theory presenting the 
development of self-regulated learning as a cyclical or iterative process may have limited the 
mindscape of researchers, preventing them from considering profiles or types of self-regulation 
among learners as they develop these self-regulated learning skills and strategies. To achieve the 
purpose of the current study, we conducted two studies using two different samples in the online 
learning environment. Examining self-regulated learning skills and strategies in the online 
learning environment is especially important given that this environment has been noted as 
requiring individuals to be more autonomous in their learning, the prerequisite of which is being 
able to self-regulate (Ally, 2004). We employed latent class analysis techniques to discern 
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whether any such profiles for self-regulated learning skills and strategies existed. We conducted 
our analyses across two study samples to cross-validate our findings with regard to any profiles 
for self-regulated learning discerned. In the second study, we examined additionally the 
association of an individual exhibiting a certain self-regulated learning profile (as discerned by 
latent class membership) with academic achievement as measured by grade point average (GPA).  
The method and results of each study according to each sample are reported consecutively.  
 

Study One 

Participants

Study 1 consisted of students enrolled in online degree programs at a large, public university 
located in the Southwestern United States. Of the students taking online courses, 279 self-selected 
to complete the survey online by responding to a recruitment e-mail message. Approximately 
42% of the participants identified themselves as male (n = 117) while 58% identified themselves 
as female (n = 162). With regard to ethnicity, approximately 76% of the participants identified 
themselves as white (n = 212) while approximately 14% identified themselves as Hispanic (n = 
39), 6% as Asian American (n = 17), and 4% as African American (n = 11). The student gender 
distribution (117 males vs. 162 females) in this study may be considered representative of those 
enrolling in distance education courses across the nation (Kamarae, 2001). The student 
ethnic/racial distribution in this study was representative of the student population of the 
university studied. With values for age ranging from 20 to 65 years old, the mean age of 
participants was 34 with a standard deviation of 9.10.  A total of 19 different academic degree 
programs and a total of 134 different U.S. postal zip codes were represented. The average number 
of courses taken at a distance was 9.52 with a standard deviation of 8.64. 

Measures 
 
The Online Self-Regulated Learning Questionnaire (OSLQ; Barnard, Lan, & Paton, 2008; 
Barnard, Lan, To, Paton, & Lai, 2009) is a 24-item scale with a 5-point Likert-type response 
format having values ranging from strongly agree (5) to strongly disagree (1). As self-regulated 
learning skills and strategies appear to be “highly context dependent” (Schunk, 2001, p. 125), the 
development of an instrument contextualized to the online and distributed learning environments 
is requisite. Thus, the current study examines self-regulated learning skills and strategies in view 
of the online learning environment. Though research has indicated that self-reported measures of 
self-regulation have been unreliable as over-estimates of self-regulated learning (Winne & 
Jamieson-Noel, 2002), the OSLQ has revealed satisfactory psychometric properties being 
validated across two samples of learners in the online and blended learning environments 
respectively (Barnard, Lan, To, Paton, & Lai, 2009), despite this bias being reported. As such, 
data obtained from the OSLQ has also revealed acceptable psychometric properties and statistical 
significance when examined in relation to epistemological beliefs and academic achievement 
(Barnard, Lan, Crooks, & Paton, 2008) and across time (Barnard-Brak, Lan, & Paton, in press). 
Additionally, self-regulated learning skills and strategies appear to be associated with perceptions 
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of online course communications and collaboration (Barnard, Paton, & Rose, 2007), and this 
relationship has been examined with data obtained from the OSLQ, which revealed again 
acceptable and consistent psychometric properties and statistical significance (Barnard, Paton, & 
Lan, 2008).  
 
The OSLQ consists of six subscale constructs, including environment structuring, goal setting, 
time management, help seeking, task strategies, and self-evaluation. The scores obtained from the 
measure demonstrated adequate internal consistency of scores with � = .90. Nunnally (1978) has 
suggested that score reliability of .70 or better is acceptable when used in basic social science 
research, such as in this study. When examining the internal consistency of scores by subscale, 
values for Cronbach alpha ranged from .85 to .92, revealing sufficient score reliability on the 
subscale level. Table 1 contains internal consistencies for scores obtained from each of the 
subscales (See the appendix for a complete copy of the instrument, including subscale construct 
designation.)  
 
Table 1 
 
Study One Internal Consistencies for each Subscale 
 
Subscale � 
Environment structuring .92 
Goal setting .88 
Time management .91 
Help seeking .92 
Task strategies .85 
Self-evaluation  .89 

 
Procedure
 
The OSLQ was administered online to a sampling frame of 516 students, indicating an 
approximately 54% response rate. After data were collected, some items were recoded and 
reversed per instrument instructions. No modifications were made to the instrument. All 
participants were assured that their responses would remain anonymous and confidential. Data 
were imported from the Web into MS Excel format and then imported into SPSS (v. 16.0).  Data 
analyses were performed in MPlus (v. 5.20; Muthén & Muthén, 2008) and SPSS (v. 16.0). Values 
for missing data were handled using multiple imputation techniques (e.g., Bayesian estimation). 
These multiple imputation techniques were employed upon the analysis recommendations of 
Widaman (2006) when facing a complex model with many parameters to be estimated, such as in 
the current study. 

Analyses
 
Latent class analyses were performed with participant subscale scores from the OSLQ. Latent 
class analyses may be considered a structural equation modeling approach to estimating 
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unobserved heterogeneity via categorical latent variables (Muthén, 2002). In contrast to factor 
analyses and multiple regression techniques, latent class analyses may be considered a person-
centered over a variable-centered approach (Muthén & Muthén, 2000). Thus, person-centered 
approaches may be considered as answering different research questions by identifying how 
persons may be classified according to a set of variables (e.g., cluster analyses, discriminant 
function analyses, and latent class analyses). In contrast, variable-centered approaches may be 
considered as identifying how variables may be related according to a sample or sub-sample of 
persons (e.g. factor analyses & multiple regression techniques). As the purpose of the current 
study was to identify how persons may possibly belong to certain profiles of self-regulated 
learning, a person-centered approach may be considered more applicable to our purpose. The 
greater suitability of the latent class analyses does not imply that other methods and techniques 
are inferior but rather reflects different research questions. 
 
Four statistics reflecting fit were assessed: Bayesian Information Criterion (BIC); Akaike 
Information Criterion (AIC); entropy; and the Lo-Mendel-Rubin Likelihood Ratio Test (LMR-
LRT). BIC is a measure of goodness of fit that penalizes for model complexity (D’Unger, Land, 
McCall, & Nagin, 1998; Nagin, 2005). Smaller values of BIC are indicative of better fit. BIC has 
been viewed as a conservative measure of fit compared to the AIC. Values of AIC may be 
interpreted in a similar manner to that of BIC, where smaller values indicate better fit. In making 
model comparisons, differences in BIC (and AIC) of 10 or more were considered to be very 
strong evidence of model fit corresponding to the odds of 150:1 (Raftery, 1995, p. 115). Entropy 
values indicate the degree to which classes may be considered distinguishable from one another 
with standardized values ranging from 0 to 1 (Muthén, 2000). An entropy value closer to 1 
indicates the presence of clear, distinct classes and greater power to predict class membership 
(Muthén & Muthén, 2001). The LMR-LRT is a test of statistical significance, where the null 
hypothesis is the number of classes, c, estimated minus one (e.g.,   H0: c - 1 model fits) (Lo, 
Mendel, & Rubin, 2001). For instance, in testing a three-class solution (e.g. c = 3), we would 
reject or fail to reject a two-class solution (e.g., c -1 = 3 -1 = 2) using the LMR-LRT statistic. 
Additionally, the number of free parameters was also reported for each c-class model estimated. 

Results
 
In performing our latent class analysis, our results indicate support for a five-class solution as 
compared to the other c-class solutions estimated. Of the models tested, the five-class solution 
model contained the lowest estimated values of BIC (= 1,256.773) and AIC (= 1,156.339) and the 
highest entropy value (= .85), indicating the best model for the data. In evaluating the LMR-LRT 
statistic, results indicate that the one- through four-class solutions may be rejected, p < .01, while 
we failed to reject a five-class solution, p = .30. Table 2 contains the number of free parameters 
along with values for BIC, AIC, entropy, and the LMR-LRT statistic for each latent class solution 
tested. Values for the best-fitting five-class solution are also in bold in Table 2. 
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Table 2 
 
Study One Summary Statistics for Model Fit of Latent Class Solutions 
 
Classes # of free 

parameters 
BIC AIC Entropy LMR-LRT  

(H0: c – 1 model fits) 
1 12 1,346.459   1,316.329 NA NA
2 19 1,294.699 1,246.992 0.76 Reject 1-class solution, p < .01 
3 26 1,283.172 1,217.890 0.80 Reject 2-class solution, p < .01 
4 33 1,275.567 1,172.708 0.82 Reject 3-class solution, p < .01 
5 40 1,256.773 1,156.339 0.85 Reject 4-class solution, p < .01 

6 47 1,264.836 1,163.826 0.83 Do not reject 5-class solution, p = .30 

7  No Convergence 
 
In examining our five-class solution, approximately 22% (n = 61) of the sample was estimated to 
belong to the first class of the five classes or profiles of self-regulation revealed. For the purposes 
of the current study, we refer to this first class or profile as class 1 and all other classes 
respectively. Approximately 16% (n = 46) was estimated to belong to the second class (e.g., class 
2); 12% (n = 33) was estimated to belong to the third class (e.g., class 3); 9% (n = 25) was 
estimated to belong to the fourth class (e.g., class 4); and the remaining 41% (n = 114) was 
estimated to belong to the fifth and final class (e.g., class 5). As a result of our latent class 
analyses, all classes were significantly different from one another in terms of standardized mean 
subscale scores. Figure 1 displays the standardized means for each subscale according to class. 
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 Figure 1. Study 1 standardized subscale means by class. 

Study Two  
 
Participants

Study 2 consisted of students enrolled in online degree programs at a large, public university 
located in the Southwestern United States. Of the students taking online courses, 197 self-selected 
to complete the survey online by responding to a recruitment e-mail message. Approximately 
43% of the participants identified themselves as male (n = 84) while approximately 57% (n = 
113) identified themselves as female. With regard to ethnicity, approximately 78% of the 
participants identified themselves as white (n = 154) while approximately 12% identified 
themselves as Hispanic (n = 23), 7% as Asian American (n = 12), and 3% as African American (n 
= 8). The student gender distribution (84 males vs. 113 females) in this study may be considered 
representative of those enrolling in distance education courses across the nation (Kamarae, 2001). 
The student ethnic/racial distribution in this study was representative of the student population of 
the university studied. With values for age ranging from 22 to 65 years old, the mean age of 
participants was 38 with a standard deviation of 9.93.  A total of 22 different academic degree 
programs and a total of 136 different U.S. postal zip codes were represented, which is similar to 
that of the study 1 sample. The average number of courses taken at a distance was statistically 
similar to that of participants in study 1 with a mean of 10.21 and a standard deviation of 8.70. In 
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contrast to study 1, data for GPA was also collected, which revealed a mean of 3.53 and a 
standard deviation of .41. 

Measures 
 
The same measure employed in study 1 was utilized in study 2. For study 2, the scores obtained 
from the measure demonstrated an adequate internal consistency of scores with � = .92. When 
examining the internal consistency of scores by subscale, values for Cronbach alpha ranged from 
.88 to .95, revealing sufficient score reliability on the subscale level. Table 3 contains the internal 
consistencies for scores obtained for each subscale. 

Table 3 
 
Study 2 Internal Consistencies for each Subscale 
 
Subscale � 
Environment structuring .92 
Goal setting .95 
Time management .89 
Help seeking .88 
Task strategies .92 
Self-evaluation  .94 

 
Procedure

Study 2 consisted of the same procedure as study 1. The OSLQ was administered to a sampling 
frame of 434 students, indicating an approximately 45.4% response rate.

Analyses

Study 2 consisted of the same procedures as study 1 with regard to latent class analysis 
techniques. Additionally, however, we analyzed how latent class or profile of self-regulated 
learning membership was associated with GPA by performing a one-way univariate analysis of 
variance (ANOVA) with GPA as our dependent variable. This GPA data is the actual cumulative 
grade point average of students retrieved from the university with the consent of the participant. 
After conducting our omnibus ANOVA, we then conducted post hoc tests. Cohen’s d was 
calculated as the measure of effect size. Cohen’s d values of .20, .50, and .80 or larger indicate 
small, medium, and large effect sizes respectively (Cohen, 1988). 

Results
 
In performing our latent class analysis, our results indicate support for a five-class solution as 
compared to the other c-class solutions estimated. Of the models tested, the five-class solution 
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model contained the lowest estimated values of BIC (= 2,580.964) and AIC (= 2,455.064) and the 
highest entropy value (= .89), indicating the best model for the data. In evaluating the LMR-LRT 
statistic, results indicate that the one- through four-class solutions may be rejected, p < .001, 
while we failed to reject a five-class solution, p = 0.17. Table 4 contains the number of free 
parameters along with values for BIC, AIC, entropy, and the LMR-LRT statistic for each latent 
class solution tested. Values for the best-fitting five-class solution are also in bold on Table 4. 
 
Table 4 
 
Study 2 Summary Statistics for Model Fit of Latent Class Solutions 
 
Classes # of free 

parameters 
BIC AIC Entropy LMR-LRT  

(H0: c – 1 model fits) 
1 12 2,910.656 2,872.886 NA NA
2 19 2,659.007 2,599.204 0.74 Reject 1-class solution, p < .01 
3 26 2,615.781 2,533.946 0.79 Reject 2-class solution, p < .01 
4 33 2,591.909 2,480.042 0.82 Reject 3-class solution, p < .01 
5 40 2,580.964 2,455.064 0.89 Reject 4-class solution, p < .01 

6 47 2,593.235 2,581.052 0.86 Do not reject 5-class solution, p = .17 

7  No Convergence 
 
In examining our five-class solution, approximately 19% (n = 38) of the sample was estimated to 
belong to the first class of the five classes or profiles of self-regulation revealed. For the purposes 
of the current study, we refer to this first class or profile as class 1 and all other classes 
respectively. Approximately 15% (n = 31) was estimated to belong to the second class (e.g., class 
2), 6% (n = 12) was estimated to belong to the third class (e.g., class 3), 20% (n = 39) was 
estimated to belong to the fourth class (e.g., class 4), and the remaining 39% (n = 77) was 
estimated to belong to the fifth and final class (e.g., class 5). As a result of our latent class 
analyses, all classes were significantly different from one another in terms of standardized mean 
subscale scores. Figure 2 displays the standardized means for each subscale according to class. 
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Figure 2. Study 2 standardized subscale means by class. 
 
As we collected GPA data in Study 2, we next examined whether there were any significant 
differences in academic achievement according to class or profile membership. Results indicated 
that participants differed significantly in their GPA according to their class or profile of self-
regulated learning membership, F(4, 196) =15.69 , p < .01, f = .65. As a measure of effect size, 
Cohen’s f values of .10, .25, and .40 or larger indicate small, medium, and large effect sizes 
respectively (Cohen, 1988). Thus, a Cohen’s f value of .65 indicates a large effect suggesting 
overall substantial differences in GPA according to class or profile of self-regulated learning 
membership. Table 5 contains the means and standard deviations for GPA according to each 
class. 
 
Table 5 
 
Descriptive Statistics according to Class 
 
Class M & SD 
Class 1  M = 3.37, SD = .63 
Class 2  M = 3.58, SD = .34 
Class 3 M = 3.55, SD = .38 
Class 4 M = 3.91, SD = .20 
Class 5 M = 3.91, SD = .18 
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After conducting our omnibus ANOVA, we proceeded to conduct post hoc tests. As the 
assumption of the homogeneity of variances was not met, Levene’s F (4,196) = 19.16, p < .05, we 
conducted post hoc tests using the Games-Howell procedure (Field, 2005; Kirk, 1995). These 
post hoc test results indicate that differences among individuals belonging to classes 1, 2, and 3 
were statistically non-significant as with differences between individuals belonging to classes 4 
and 5.  Individuals belonging to classes 4 and 5 revealed significantly higher academic 
achievement than individuals belonging to classes 1, 2, and 3 with values of Cohen’s d ranging 
from -1.16 to 1.21 for these statistically significant differences. Table 6 contains a summary of 
these post hoc test results including values of Cohen’s d for all significant contrasts. 
 
Table 6 
 
Summary for Significant Post Hoc Tests 
 
Contrast Significance Cohen’s d 
Class 1 vs. class 4 p < .001 d = -1.15 
Class 1 vs. class 5 p < .001 d = -1.16 
Class 2 vs. class 4 p < .001 d = -1.18 
Class 2 vs. class 5 p < .001 d = -1.21 
Class 3 vs. class 4 p = .03 d = -1.19 
Class 3 vs. class 5 p = .04 d = -1.21 

 
Discussion

 
In the current study, we examined whether profiles of self-regulated learning skills exist, which 
revealed the presence of five classes or profiles of self-regulated learning strategies or skills 
invoked by individuals across two samples. In both study 1 and study 2, individuals belonging to 
the first class or profile of self-regulated learning skills endorsed the skills and associated with 
self-regulated learning the least. In study 1, approximately 22% of the sample belonged to this 
least self-regulated learning class while approximately 19% of the sample in study 2 belonged to 
this class. We term this class as depicting the profile of individuals who are non-self-regulators or 
minimal self-regulators in their learning. At the other end of the spectrum, individuals belonging 
to the fourth class appeared to be composed of super self-regulators as endorsing the skills and 
strategies of self-regulated learning highly across all subscales. In both study 1 and study 2
respectively, 20% and 9% belonged to the class that depicts the profile of individuals who are 
highly self-regulated in their learning.  
 
Individuals belonging to class 5 appeared to be moderately to highly endorsing skills and 
strategies of self-regulated learning but not to the same extent as those individuals who may be 
considered super self-regulators. We consider individuals belonging to this class as exhibiting the 
profile of competent self-regulators. We hypothesize that these competent self-regulators ‘do 
what it takes’ in terms of invoking self-regulated learning strategies and skills to achieve well in 
their learning but they don’t do much more. In study 1, approximately 39% of the sample 
belonged to the class that profiles competent self-regulators while approximately 41% of the 
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sample in study 2 belonged to this class. Competent self-regulators appear to be the largest class 
of self-regulators with the highest percent in each sample belonging to class 5 depicting this 
profile.  
 
The remaining two classes (e.g., classes 2 and 3) were more difficult profiles of self-regulated 
learning to interpret. Individuals belonging to class 2 appeared to more highly endorse goal 
setting and environment structuring as self-regulated learning strategies and skills while 
endorsing task strategies, time management, help seeking, and self-evaluation to much lesser 
extents. As goal setting and environment structuring typically occur in the forethought phase of 
the development of self-regulated learning skills and strategies (Zimmerman, 1998; Zimmerman 
& Schunk, 2001), we suggest that these learners may be best described as belonging to a profile 
of forethought-endorsing self-regulators. We consider individuals belonging to this profile of self-
regulated learning skills and strategies to be concerned with self-regulation in the a priori or 
proactive sense, but they are not necessarily concerned with following through with the use of 
task strategies, time management, help seeking, or self-evaluation in their learning. 
Approximately 16% and 15% appeared to belong to this class depicting this profile of 
forethought-endorsing self-regulated learning in study 1 and study 2 respectively. 
 
Individuals belonging to class 3 appeared to more highly endorse task strategies, time 
management, help seeking, and self-evaluation as self-regulated learning skills and strategies 
compared to goal setting and environment structuring. As task strategies, time management, help 
seeking, and self-evaluation are behaviors more typically associated with the performance control 
and self-reflection phases in the development of self-regulated learning strategies and skills, we 
suggest that these learners may be best described as belonging to a profile of performance control
or self-reflection-endorsing self-regulators. As self-regulated learning skills and strategies 
pertaining to both the performance control and self-reflection phases were highly endorsed in this 
class, we will term individuals belonging to class 3 as performance/reflection-endorsing self-
regulators. We consider individuals belonging to this profile of performance/reflection-endorsing 
self-regulators as being more concerned with self-regulation in the post hoc or reactive sense; 
they are not necessarily concerned with behaving proactively by goal setting or structuring their 
environment appropriately to achieve in their learning. Approximately 12% and 6% appeared to 
belong to this class, depicting this profile of self-regulated learning in study 1 and study 2 
respectively. 
 
We term individuals belonging to both class 2 and 3, which profiles forethought- and 
performance/reflection-endorsing self-regulators respectively, as being disorganized in the 
manner that they invoke skills and strategies associated with self-regulated learning. These 
learners would appear to need assistance in connecting different, less endorsed strategies and 
skills of self-regulated learning as being equally instrumental to them in achieving in their 
learning. Forethought- and performance/reflection-endorsing self-regulators, as disorganized self-
regulators, may simply view that their current self-regulated learning strategies and skills are 
either the only or perhaps the best mechanisms to achieve in their learning. These individuals 
would appear to be more amenable to intervention on their behalf because these learners already 
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endorse some self-regulated learning skills and strategies as compared to non- or minimal self-
regulators as depicted by class 1. 
 
In the second study, we additionally examined the association of self-regulated learning profile 
membership as exhibited by latent class analyses with GPA.  Our results indicated statistically 
significant differences in academic achievement (e.g., GPA) according to the class or profile of 
self-regulated learning that an individual belonged to. Super and competent self-regulators (e.g., 
classes 4 and 5 respectively) had the highest GPAs and were not significantly different from each 
other in GPA. Our results indicate that while being or becoming a super self-regulator would 
appear to be preferable, competent self-regulators do just as well in terms of academic 
achievement by most likely navigating and figuring out their learning environment enough to 
achieve well. Non-self-regulators (or minimal self-regulators) along with forethought- and 
performance/reflection-endorsing self-regulators had the lowest GPAs and were not significantly 
different from each other in GPA. These results would indicate that minimal and disorganized 
profiles of self-regulated learning are both associated with similar, poorer academic outcomes 
(e.g., lower GPAs). Our results appear to indicate that disorganization in self-regulated learning 
strategies and skills is as non-advantageous to a learner as non-existent or minimal self-
regulation.  
 
We suggest that these profiles in self-regulated learning may be viewed as contributing to the 
development of theory by elucidating how exactly individuals are and are not self-regulated in 
their learning in view of the development of self-regulated learning. The results of the current 
study suggest that individuals may not only be different in the quantitative level or amount in 
which they are self-regulated in their learning but also as to the form that this difference takes. 
For instance, in examining total self-regulated learning scale scores, our results indicated no 
significant differences between individuals belonging to classes 2 (e.g., forethought-endorsing 
self-regulators) and 3 (e.g., performance/reflection-endorsing self-regulators). Thus, in examining 
aggregate self-regulated learning scores, we would not be able to distinguish individuals 
belonging to classes 2 and 3 nor be able to term these individuals as disorganized in their self-
regulation as we would not observe the form of these differences by specific skill or strategy. It is 
only through examining the subscale scores for the individual skills and strategies of self-
regulated learning (e.g., goal setting, task strategies, etc.) that we would be able to discern the 
form of these differences in self-regulated learning for these disorganized self-regulators.  
 
While the results of the current study provide insight into how learners are and are not self-
regulated in view of theory, there are certain limitations that accompany the interpretation of our 
findings. For the samples in both study 1 and study 2, the mean values for GPA may be 
considered high as compared to the population of college students at large.  Students with higher 
GPAs may enroll in online courses at higher rates as a result of having higher degrees of self-
efficacy, the belief that they can achieve in courses delivered at a distance or in other non-
traditional formats. Due to this possible bias in our samples, we suggest that future research be 
performed that represents a better range or diversity of learners in terms of academic 
achievement. Additionally, the results of the current study may be exclusive in their application to 
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online learners as learners in other learning environments may reveal different profiles of self-
regulated learning according to discipline or domain.   
 
Future research should consider replicating the results of the current study with respect to learners 
in other domains and learning environments. The context of learning has been noted as 
influencing the way students approach their learning (Severiens, Ten Dam, & Wolters, 2001). As 
such, Schunk (2001) has noted that self-regulated learning behaviors are “highly context 
dependent” (p. 125), thus future research will be required to replicate the results of the current 
study across several domains in order to cross-validate our findings for these five, distinct self-
regulated learning profiles. Additionally, future research should also examine other cognitive 
factors, such as epistemological beliefs (e.g. Barnard, Lan, Crooks, & Paton, 2008; Pintrich & 
Zusho, 2002), which may be associated with the profile of self-regulated learning to which an 
individual belongs.  We suggest that individuals with more sophisticated or constructivist-
oriented epistemological beliefs would more likely be profiled as super or competent self-
regulators. For instance, in another study of online learners, Barnard, Lan, Crooks, and Paton 
(2008) found a statistically significant and highly positive relationship between epistemological 
beliefs and self-regulated learning skills. 
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Appendix

Item Subscale 
1. I set standards for my assignments in online courses. Goal Setting 
2. I set short-term (daily or weekly) goals as well as long-term goals (monthly or for the 

semester). 
 

3. I keep a high standard for my learning in my online courses.  
4. I set goals to help me manage studying time for my online courses.  
5. I don’t compromise the quality of my work because it is online.  
6. I choose the location where I study to avoid too much distraction. Environment 

Structuring 
7. I find a comfortable place to study.  
8. I know where I can study most efficiently for online courses.   
9. I choose a time with few distractions for studying for my online courses.   
10. I try to take more thorough notes for my online courses because notes are even more important 

for learning online than in a regular classroom. 
Task Strategies 

11. I read aloud instructional materials posted online to fight against distractions.  
12. I prepare my questions before joining in the chat room and discussion.  
13. I work extra problems in my online courses in addition to the assigned ones to master the 

course content. 
 

 

14. I allocate extra studying time for my online courses because I know it is time-demanding. Time 
Management 

15. I try to schedule the same time every day or every week to study for my online courses, and I 
observe the schedule. 

 

16. Although we don’t have to attend daily classes, I still try to distribute my studying time evenly 
across days.  

 

17. I find someone who is knowledgeable in course content so that I can consult with him or her 
when I need help. 

Help Seeking 

18. I share my problems with my classmates online so we know what we are struggling with and 
how to solve our problems. 

 

19. If needed, I try to meet my classmates face-to-face.  
20. I am persistent in getting help from the instructor through e-mail.  
21. I summarize my learning in online courses to examine my understanding of what I have 

learned. 
Self-Evaluation 

22. I ask myself a lot of questions about the course material when studying for an online course.  
23. I communicate with my classmates to find out how I am doing in my online classes.  
24. I communicate with my classmates to find out what I am learning that is different from what 

they are learning. 
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