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A RUNS-TEST ALGORITHM: CONTINGENT REINFORCEMENT AND
RESPONSE RUN STRUCTURES
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Four rats’ choices between two levers were differentially reinforced using a runs-test algorithm. On each
trial, a runs-test score was calculated based on the last 20 choices. In Experiment 1, the onset of stimulus
lights cued when the runs score was smaller than criterion. Following cuing, the correct choice was
occasionally reinforced with food, and the incorrect choice resulted in a blackout. Results indicated that
this contingency reduced sequential dependencies among successive choice responses. With one
exception, subjects’ choice rule was well described as biased coin flipping. In Experiment 2, cuing was
removed and the reinforcement criterion was changed to a percentile score based on the last 20
reinforced responses. The results replicated those of Experiment 1 in successfully eliminating first-order
dependencies in all subjects. For 2 subjects, choice allocation was approximately consistent with
nonbiased coin flipping. These results suggest that sequential dependencies may be a function of

reinforcement contingency.
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The variability of a series of responses,
distributed between some alternatives such as
left (L) and right (R) levers, has been defined
in terms of two properties from the concept of
randomness (Neuringer, 2002). First, variabil-
ity is high if each member of a set is as
frequent (overall) as any other member of the
set, that is, the relative frequencies (or
probabilities) of different response alterna-
tives are similar, as in a uniform probability
distribution. Second, variability is high if the
relative frequencies of all higher-order sequen-
tial combinations, such as dyads, triads, etc. are
also (over the long run) equal. The former
implies a property of equiprobability, and the
latter implies that of sequential independence.

Previous research aimed at producing highly
variable performance has used reinforcement
contingencies that are based on the relative
frequencies of the response alternatives. In
most studies, these contingencies have in-
volved frequency-dependent selection. For
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example, Page and Neuringer (1985) rein-
forced responses when they had not occurred
in the last N trials, whereas Machado (1992)
reduced reinforcer likelihood when the fre-
quency of a response increased. These and
other studies (Blough, 1966; Bryant & Church,
1974; Denney & Neuringer, 1998; Machado,
1989; Pryor, Haag, O’Reilly, 1969; Schoenfeld,
Harris, & Farmer, 1966; Shimp, 1967) all
reinforced response alternatives that had a
low (or zero) frequency in the recent past.

In many experiments, a single trial consisted
of the emission of a response unit, defined by
the reinforcement contingency, comprising a
four-response sequence of binary choices, such
as left (L) and right (R) responses. When
observed probabilities of the 16 (2*) possible
response combinations (e.g., RLRR) were
equal, the behavior was deemed to have
maximum variability. By definition, any bias
in the frequency distribution of the alterna-
tives indicates reduced variability, and exclu-
sive emission of any particular sequence
constitutes minimal variability. Thus, such
studies were concerned chiefly with the rela-
tive frequencies of response alternatives. They
attempted to control response bias by rein-
forcing response distributions that exhibit
maximum dispersion (Abreu-Rodrigues, Lat-
tal, dos Santos, & Matos, 2005; Cherot, Jones,
& Neuringer, 1996; Cohen, Neuringer, &
Rhodes, 1990; Denney & Neuringer, 1998;
Doughty & Lattal, 2001; Machado, 1989;
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McElIroy & Neuringer, 1990; Miller & Neur-
inger, 2000; Mook, Jeffrey, & Neuringer, 1993;
Morgan & Neuringer, 1990; Morris, 1987,
1989, 1990; Neuringer, 1991, 1992, 1993;
Neuringer, Deiss, & Imig, 2000; Neuringer &
Huntley, 1991; Odum, Ward, Barnes, & Burke,
2006; van Hest, van Haaren, & van de Poll,
1989).

Frequency-dependent reinforcement can be
used to create sequential independence as well
as equiprobability, although it may require a
set of more than eight response alternatives.
Machado (1992, 1993) systematically investi-
gated the necessary and sufficient conditions
of random-like performance. Using a set of
two response alternatives (L, R) as targets of a
frequency-dependent selection, he found pi-
geons had a significant tendency to alternate
responses: LRLRLR.... Next, using sequences
involving two successive responses as targets
(LL, LR, RL, RR), some, but not all, pigeons
performed double alternation patterns suc-
cessfully; however, when he used all possible
combinations of three-response sequences to
define target sets (i.e., LLL, LLR, LRL, LRR,
RLL, RLR, RRL, RRR), then all pigeons
performed randomly. The results suggest that
the last procedure suffices to engender ran-
dom-like behavior in that all of the possible
response sequences have the same strength. If
all are equiprobable, then sequential depen-
dencies cannot be present.

It is, however, important to underscore that
sequential independence can be achieved
even when individual response alternatives
are not equally probable (Nickerson, 2002).
To illustrate our rationale, consider a case
involving two mutually exclusive events, such
as heads (H) or tails (T) in a coin toss. An
alternation pattern of HTHTHT... shows that
the H and T are equiprobable, thereby
meeting one standard of randomness; howev-
er, it fails a second standard of unpredictability
because event order is perfectly predictable
based on first order conditional probability.
Conversely, sequential independence among
events H and T is possible when these two
events are not equiprobable [e.g., p(T) >
p(H), as when a coin is biased], but their
conditional probabilities may reveal indepen-
dence of a coin’s head and tail [i.e., p(HIT) =
pH) and p(TIH) = p(T)]. In a relevant
experiment, Machado (1994) used frequency-
dependent selection to shape molar response

proportions toward various equilibrium values
between 0 and 1, and examined sequential
dependencies in local response sequences.
The procedure successfully altered molar
response proportions, and at extreme values,
local performance fell midway between biased
randomness (sequential independence) and
stable sequences (which imply successive de-
pendence). That is, when molar response
proportions deviated from .5, stable local
patterns that were present at .5 broke down,
although not to the extent that they con-
formed to biased coin flipping.

A more direct approach to controlling
sequential dependencies might be more suc-
cessful in achieving sequential independence,
and hence, random-like behavior. One aim of
our research is to present an approach based
on the idea that run-length frequencies can
serve as a basis for contingent reinforcement.
Using such a contingency, we can ask whether
reinforcement of certain run-length distribu-
tions, expected from a putatively ‘“‘random”
source, leads to random-like behavior. To
ensure that a reinforcement contingency
targets sequential dependency per se, the
procedure must have an impact on the
sequential dependency of interest but leave
the relative frequencies of responses unaffect-
ed. That is, the ideal procedure must separate
the influence on sequential dependency from
any influence on relative frequencies of
responses. The procedure we developed here
is derived from the runs-test algorithm for
randomness from Siegel (1956). A run is
defined as an uninterrupted sequence of
identical elements delimited by different
elements. The number of runs in a sequence
equals the number of response alternations
plus one. Generally, when the observed num-
ber of runs is significantly different from the
expected number of runs, calculated accord-
ing to overall response proportion, the runs
test rejects the null hypothesis that the
sequence was independent. Plainly, when
alternation occurs either too infrequently or
too frequently in the sequence, this sequence
is regarded as including a certain regular
pattern, and the null hypothesis will likely be
rejected.

Our procedure reinforced, on each trial, a L
or R response possessing a score smaller than
the critical value of the runs test. When the
symbol K represents an observed number of
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runs, the expected number of runs (K) and its
variance (O’EQ) were computed according to
the following equations:
— 2ngpn
) RN,

= - 4,
ng + np

(1)

9 _ 2npnr(2nrn;, — ng — ng)
(ng + n.)*(ng + np — 1)

(2)

in which ngand n; represent the number of R
and L responses, respectively, in a sample
sequence. Then, the runs-test score, S, was
calculated as follows:

When ng and n,, are large, the distribution
approaches the normal distribution and
S (Equation 3) is a normal unit variable
(hence the familiar value of =1.96 for alpha
= .05). We discuss the relation between the
distribution and our procedure further in the
General Discussion.

Our procedure used an algorithm that
calculated S (from the last 20 responses) every
time a response was emitted, and compared it
with a critical value to determine whether
reinforcement would be delivered. With a
fixed sample size of 20, we needed only two
parameters for calculation: the proportion of
emitted responses [p(L) = 1 — p(R)], and
the number of runs. We initially set two
critical boundary values for §, =1.96. Over 20
responses, comprising Rs and Ls, observed §
values that fell within these boundaries were
eligible for reinforcement. Note that within
wide limits, the use of a runs-test score does
not require any given proportion of L and R
responses for reinforcement. For example,
suppose np and n; were 4 and 16, respec-
tively [p(L) = .8], and Kwas 4. In this case,
the score would be —2.52, the null hypoth-
esis would be rejected, and reinforcement
would not be given for the last response.
With the same frequencies for L. and R but
with K = 6, however, the score is —1.04 and
is eligible for reinforcement. As this case
illustrates, subjects could satisfy the contin-
gency even if the response proportion was
quite strongly biased.

=
=

S= (3)

In Experiment 1, we introduced the new
reinforcement contingency in a modest way,
that is, stimulus lights above levers were used
as a conditioned reinforcer, because a previous
study demonstrated that the effect of a
contingency on behavioral variability was
stronger under conditioned reinforcement
(Cherot et al., 1996), and was maintained in
a delayed-reinforcement situation (Odum et
al., 2006; Wagner & Neuringer, 2006). Accord-
ingly, stimulus lights were illuminated in
Experiment 1 when a subject’s performance
fell within the criterion range, and a primary
reinforcer was provided with p = .1 in that
state. Next, in Experiment 2, we removed the
conditioned reinforcers and examined the
effect of direct reinforcement with a more
sophisticated experimental design.

EXPERIMENT 1

In Experiment 1, we examined the effect of
the runs-test contingency with a conditioned
reinforcer. We reinforced responses that pro-
duced § scores within a required range, but
with low probability (.1). To help establish
responding that met criteria for sequential
independence, we used stimulus lights as a
conditioned reinforcer. Two stimulus lights,
one above each of two levers, were illuminated
when the score of the runs test was within a
criterion range, whereas they were extin-
guished when the score was outside this range.
Thus, if a response occurred that met the runs
criterion, and the stimulus lights were off, then
stimulus lights were turned on. If the lights
were already on, then they remained on for as
long as successive responses continued to meet
the criterion. If the lights were on and the
response did not meet criterion, then they
were turned off. If the lights were already off
and the response did not meet the criterion,
they remained off.

Reinforcement occurred only for those re-
sponses that met the stipulated runs criteria.
Thus, responses that initiated or maintained
illumination (i.e. lights on) sometimes received
primary reinforcement. Although the aim was
to extinguish responses that did not meet the
runs criterion, it was necessary to reinforce
some of these responses early in the experi-
ment in order to prevent complete extinction
in subjects that exhibited low behavioral vari-
ability. Accordingly, responses that maintained
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the lights in the off state did receive some
reinforcement at the beginning of this exper-
iment, but the frequency of this reinforcement
was lower than for criterial responses.

METHOD
Subjects

Four male Wistar rats were maintained at
approximately 80% of their free-feeding body
weights. Water and sawdust were continuously
available in their home cages where a 12-hr
light-dark cycle was in effect. At the beginning
of the experiment, two 46-week-old subjects
(Rat 1 and Rat 3) had previous experience with
variability reinforcement schedules; one 48-
week-old subject (Rat 5) only had experience
with lever-press training; and the 4th subject
(Rat9), which was 32 weeks old, had experience
under a concurrent-chains schedule.

Apparatus

The experimental chamber was 210 mm
long by 280 mm wide by 270 mm high, and was
enclosed in a sound-dampening box. The
chamber had a ceiling and side walls con-
structed of Plexiglas and front and back walls
of metal. The front wall contained two
shielded stimulus lights (white 28-V bulbs),
120 mm above the floor and 100 mm apart.
Two response levers, requiring a force of 0.15
N to operate, were located 70 mm above the
floor and 80 mm apart measured center to
center. A pellet tray that received 45-mg food
pellets was centered between the levers 20 mm
above the floor. A shielded houselight (28-V
bulb) was on top of the back wall. A speaker
for presenting white noise and a ventilating
fan were attached on the outer box. All
experimental devices were controlled and
monitored by a MED-PC version 2.0 system.

Procedure

Because all rats had previous experimental
experience, they were placed immediately in
the runs-test procedure. A session consisted of
440 trials per day, and a trial consisted of a
single response, L or R. Responses could occur
freely except that each one turned off the
houselight for 0.2 s, during which further
responses had no effect.

After the first 20 responses of the session,
each response yielded an S score. If the
absolute value of the runs-test score fell within

stipulated boundaries, shown as the unshaded
cells in Figure 1, then stimulus lights were
turned on and a food pellet was delivered with
p = .1. At the beginning of the experiment,
none of the animals met the criterion. For
responses that maintained a lights-off state,
responses were reinforced also with p = .1 if
the current score was closer to zero than the
two previous scores (for responses that turned
off the light, this condition could not be met).

The criterion for receipt of a food pellet
became stricter as training progressed. In the
first experimental condition the critical value
on the runs test was set to |=1.96] and the
training continued until performances be-
came stable. After performance attained sta-
bility, food delivery on light-off trials was
terminated. Then, in the second condition
the critical value was changed from 1£1.96! to
[+1.391, and the training continued until
performances became stable.

Sessions continued until the relative fre-
quencies of R responses and the number of
alternations were judged to be stable under
the following criterion: the last nine sessions
were divided into three blocks and the largest
difference between the medians of the three
blocks was within 15% of the average of the last
nine sessions.

Data Analysis

Dealing with the sequential dependencies in
behavioral variability, the Markov chain model
is appropriate (see Machado, 1997). With our
contingency, we expect to observe an in-
creased frequency of intermediate numbers
of runs according to the proportion of L and
R, that is, no firstorder dependency. The &
values of the runs test is of limited value here
because it does not show whether there are
higher-order dependencies. Accordingly, an
additional analysis is needed to examine
sequential dependencies in greater detail.

There are several methods of tracking the
phenomenon, including the use of chi-square
goodness-of-fit tests, likelihood ratio tests and
an approach based on information theory.
Although these indices are related to each
other, and there is little to choose among
them for statistical analysis, the estimated
values of mutual uncertainties provide a valuable
visual aid to complement the significance tests
which depend on the validity of the chi-square
approximation (Attneave, 1959; Chatfield,
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0.05 01 015 02 025 03 035 04 045 05

2| 3| 37391 4 | -406|-4.09|-4.11|-4.13 | -4.13 | -4.14
3033 |-2.28(-296|-3.26 | -3.43 | -3.54 | -3.6 |-3.65 |-3.67 | -3.68

4 085| -2 [-252|-2.81|-299| -3.1 [-3.17| 32 |-3.22

5 0.57 |-1.05 | -1.78 | -2.19 | -2.43 | -2.59 | -2.69 | -2.74 | -2.76

6 0.1 | -1.04 | -1.56 | -1.88 [ -2.08 [-2.21 | 2.28 | 2.3

7 0.86 | -0.3 | -0.94|-1.33|-1.57-1.73 | -1.81 | -1.84

2 | s 0.44 | -0.31|-0.77 | -1.07 | -1.25 | -1.35 | -1.38
é 9 1.19 | 031 |-0.22|-0.56 | -0.77 | -0.88 | -0.92
S |10 0.94 | 033 |-0.05|-0.29 | -0.42 | -0.46
_c:a 11 1.56 | 0.88 | 0.46 | 0.19 | 0.05 | ©
g |12 1.44 | 0.96 | 0.67 | 0.51 | 0.46
2 13 199 | 1.47 | 1.15 | 0.98 | 0.92
14 1.98 | 1.63 | 1.44 | 1.38

15 249 | 211 | 1.9 | 1.84

16 259 | 237 | 23

17 3.07 | 2.83 | 2.76

18 33 | 322

19 3.76 | 3.68

20 4.14

Fig. 1. All possible scores on the runs test in the number of sample = 20, calculated from Equation 3. Response
proportion is ny / (ng + ny), in which ny is the less-chosen response alternative. White cells signify data within the +/—

1.96 criterial range, while grey cells fall outside this range.
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1973; Chatfield & Lemon, 1970; Miller &
Frick, 1949; Pincus & Singer, 1996). Using
these values, we can track the changes in
performance as training progressed. We use
the mutual uncertainties (Ts) from informa-
tion theory as follows:

T, = H; — Ho, for first order dependency,
Ty = Hy — Hj, for second order dependency,

and

Ts = Hs — Hy, for third order dependency,

where H; = =) p; logs p;;

Hy = =) p(, j) logo p(i, )+ Xpi loge pi;

H; = =) p(i,j, k) log2 p(i, j, k) + Y p(i, j) logs
p(i, j); and

Hy, = =) p(,j kD log2 pGij, k1) +) p(Qj,
k) log2 p(i, j, k),

where i, j, k, ] are arbitrary successive responses
in a session. We transform Ts into chi-square
statistics for observing the variation of estimat-
ed values of mutual uncertainties, verifying the
statistical test at one time. The chi-square form
is as follows:

Chi® = 2 log, 2 N T,

df = ¢™ '(c — 1)?, where N is the length of
trial per session, and c is the number of
instances, that is, left or right response. The
subscript m reflects the order of a dependen-
cy, therefore, m is the value we test. Using
these indices, we observe the change of
sequential dependencies.

In addition to mutual uncertainties, we
utilize a lag analysis to examine the obtained
response patterns (Machado, 1992, 1993,
1994). If X,, is the response in trial »; then p
(Xntk = R1X,, = R) is the probability of a right
response in trial n + k, given a right response in
the current trial n. The lag analysis plots p (X;,.x
= R | X,, = R) against £, the lag value. Strong
deviation from the probability at lag 0 displays
sequential dependencies. For example, with
perfect alternation (RLRLR...), lag 0 is the
probability .5, lag 1 is 0, lag 2 is 1.0, lag 3 is 0,
and lag 4 is 1.0. When there are no sequential
patterns, all lags approximate the lag 0 value.

RESuLTS AND DiscussioNn

Because the first 20 trials in the sessions were
stored as samples for calculations and were

unaffected by the contingencies of reinforce-
ment, we used the data from the last 420 trials
per session to: (1) assess run structure; and (2)
examine sequential dependencies.

Runs Analyses

At every lever press, a runs test score, S, was
produced. Figure 2 plots proportions of the §
scores whose absolute values were smaller than
1, between 1 and 2, and larger than 2, in each
session. In the sessions before the vertical
dashed line (Area A), additional food deliver-
ies occurred when the stimulus lights turned
off. Sessions after this line (Area B) had no
additional food deliveries. In the sessions after
the vertical solid line (Area C), the critical
value was changed from [1.96l to 11.391.

At the beginning of Experiment 1, all subjects
showed low proportions of Sscores in the range
—1 to 1. Subjects 1 and 9 showed increases after
only a few sessions. Subject 3 initially showed a
large proportion of § scores whose absolute
values were greater than 2 (ineligible for
reinforcement). These decreased, and the
proportion between 1 and 2 increased, with
further training. Subject 5 showed little differ-
entiation of § scores. After removing additional
food deliveries, subjects’ performances deterio-
rated temporarily. When the criterial region
narrowed to [1.391, the performance of all
subjects improved in that the proportion of S
values in the range —1 to 1 increased, and more
extreme § values decreased, although these
changes were small for Subject 9.

If the rats responded perfectly according to
the reinforcement contingency, all responses
in a session would produce S scores in the
prescribed range and illuminate the cue lights.
Figure 3 plots the proportion of responses that
illuminated the cue lights, and hence were
eligible for primary reinforcement. Except for
Subject 9, whose performance was consistently
close to 1.0 after the first few sessions,
performances became more and more eligible
for reinforcement with extended exposure to
the contingency. Therefore, the results indi-
cate that differential reinforcement by the
runs-test criterion can modify the subjects’
performances.

Analyses of Sequential Dependencies

Runs data alone cannot provide complete
evidence for sequential dependencies. Accord-
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Fig. 2. Proportions of absolute values of Sin three ranges: smaller than 1, between 1 and 2, and larger than 2, in each
session of Experiment 1. In Area A, the criterial range for S scores was +/— 1.96, and there were additional food
deliveries when the stimulus lights were off. In Area B, there was no additional food. In Area C, the criterial range was

reduced to +/— 1.39.

ingly, we did not employ the runs test as a
statistical test and instead, we relied on mutual
uncertainties. This approach permitted us to
examine sequential dependencies in much
greater detail. We examined the way subjects
adapted the contingency, that is, whether they
developed high-order dependencies as first-
order dependency decreased, or whether se-
quential dependencies were removed altogether.

Figure 4 plots mutual uncertainties, T,,, for
m = 1, 2, and 3 (Equation 9). Each column in
Figure 4 shows a chisquare value associated,

respectively, with T, (first order), Ty (second
order), and Ts (third order) sequential de-
pendencies for each of the 65, 114, 111, and
57 sessions, respectively, for each subject. Note
the degree of sequential dependency cannot
be an all-or-none phenomenon; it is necessar-
ily a continuum. This is true even after chi-
square transformation. Horizontal lines indi-
cate 5% critical chi-square values. Observed
chi-square values below the horizontal lines
indicate performance that exhibits no sequen-
tial dependency. Sessions prior to the point
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Fig. 3. Proportions of responses that illuminated the cue lights in each session of Experiment 1. Areas A, B, and C are

the same as for Figure 2.

indicated by a vertical line had additional food
deliveries with stimulus lights off. These
indices are useful for investigating the trends
of the sequential-dependency data. Compar-
ing panels horizontally within subjects, the
lowest order tends to show the highest level of
dependency. Although large values in T; were
generated in the first sessions, for all subjects
T; decreased below the critical value as the
training progressed. Subjects 1, 3, and 5
approximated independence at all T,, al-
though after initially achieving sequential
independence, Subject 1 developed a slight
first-order dependency towards the end of the

experiment. Subject 9 continued to show
higher-order dependencies throughout.

A lag analysis was conducted to examine the
obtained response patterns. Figure 5 shows
results from lag zero to lag 6 in the first seven
sessions of Condition 11.96l, and in the last
seven sessions in Condition [1.391. Only the lag
profiles of right responses are shown. The
profiles of left responses had a similar tenden-
cy. Horizontal solid lines indicate uncondi-
tioned probability, that is, lag zero values, in
each session. If there were no sequential
dependencies, all lag values would be similar
to lag zero values.
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Fig. 4. Mutual uncertainties in Experiment 1. The difference (T,,) between successive uncertainty indices (H,,, and
H,,41) for each subject for each order of sequential dependency. Horizontal lines indicate critical values for chi square.
Data points below the critical value represent no significant difference between H,,, and H,,,;,. See text for calculations of
Hs, Ts and transformations to chi square.

In the first seven sessions Subjects 1, 3,and 5 seven sessions showed a simple alternation
show stable and consistent tendencies of pattern, RL. Subject 9 showed the pattern RLR
repetition, like RR or RRR, but Subjects 3 in first two sessions, which changed over the
and 5 do not show the same tendencies in the course of three to seven sessions (RLL, RLLR).
last seven sessions. This means that performance Its lag profiles seemed to be similar in pattern in
of these subjects approximated sequential inde- the last seven sessions of Condition [1.39;
pendence. The lag profile of Subject 1 in the last however, note that the lag-1 probability approx-
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Fig. 5. Conditional probability profiles of right responses for the first seven sessions with the criterion set at +/— 1.96

and the last seven sessions with it set at +/— 1.39, in Experiment 1. Each set of seven connected points, Lags 0 to 6,
correspond to one session. The horizontal dotted line represents p of .5. The first point of each profile is the relative
frequency of right responses (R/(R+L)). The next four points are the conditional probabilities at each lag.

imated that of lag zero. In other words, the first-
order dependency disappeared.

Because the lag zero probability coincided
with that of its elementary components (L or
R), lag zero also indicates response biases in
emitting L and R alternatives. In the first seven
sessions, most subjects revealed no striking
biases. However, in the last seven sessions,
some subjects showed a distinct bias for the left
lever (see Subjects 1 and 3).

Finally, Figure 6 plots the relative frequen-
cies of four-response sequences as units. Solid
lines show the expected values, calculated from

the relative frequencies of quadruplets of
instances (Jensen, Miller, & Neuringer, 2006).
For example, when p(R) = .25 and p(L) = .75,
p(LLLL) = .75 X .75 X .75 X .75 = 316 and
p(LRLR) = .75 X .25 X .75 X .25 = .035. These
are expected from a stochastic process. The first
column in Figure 6 shows that subjects’ perfor-
mances deviated from the expected distribu-
tion during the first session of the experiment.
However the middle and right columns show
that their performances changed, and for
Subjects 1, 3, and 5, approximated the expected
distribution. That is, what 3 of 4 subjects were
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Fig. 6. The relative distributions of four-response units in the first session of Experiment 1, the last session with the
criterion set at +/— 1.96, and the last session with it set at +/— 1.39, arranged in successive columns. Lines are expected
values from randomness.

effectively doing was approximately random. This experimentwas designed to demonstrate
The characteristic of Subject 9’s performance a new technique for controlling behavioral
was alternation pattern, that is, LLRL, LRLR, variability, using a runs-test criterion. Generally,
LRLL, RLLR, RLRL was emitted frequently. first-order dependency, thatis, T; in uncertainty



72 A CONTINGENCY ALGORITHM

indices, was controlled well in all subjects. In
addition, results showed that Subjects 1, 3 and 5
achieved sequentially independent behavior by
successfully excluding several orders (T;, To,
Ts); however, one (Subject 9) maintained
higher order dependency.

As discussed earlier, the runs test gauges the
number of runs observed in a performance
relative to the expected number. Because the
production of a run depends on whether
subjects repeat or alternate a response emitted
on the preceding trial, our runs-test algorithm
affected the level of repetition and alternation,
that is, first order dependency. The level of
repetition and alternation relates directly to the
first-order dependency, because both describe
the relation between responding on one trial
and that on the preceding trial. Therefore, our
procedure was successful in eliminating a first-
order sequential dependency, in spite of the
fact that higher-order dependencies were evi-
dent in Subject 9’s profile.

Having achieved sequential independence
under the runs-test contingency, Subject 1 later
developed first-order dependency. This is trivial
because the relative distribution of fourre-
sponse units showed that its behavior closely
approximated the expected distribution. We
believe that it was the result of an extreme bias
(.05:.95) toward one of the two responses. For
example, one sequence consisted of 10 consec-
utive Ls, one R, and nine Ls (i.e., LLLLLLLLLL
RLLLLLLLLL); this yields a runs score of 0.33,
based on three runs. Such an outcome can occur
if the less frequent response (e.g., here R) is not
first or last in a series. By contrast, a sequence
consisting of nine Ls, two Rs, and nine Ls (i.e.,
LLLLLLLLLRRLLLLLLLLL) yields a score of
—2.28, which is outside the criterial range. In the
case of extreme bias, the subject has to emit only
one response to the less-preferred lever and
return to more-preferred lever. The results of
the lag analysis were consistent with this
prediction. It was possible that subjects could
learn to use the light-off as a cue for switching to
the less-chosen lever. However, only 1 rat
(Subject 1) developed this and only after much
training, suggesting that such an usual discrim-
ination is generally difficult to acquire.

EXPERIMENT 2

In Experiment 2, we modified the proce-
dure in several ways. First, to make the effects

of the runs-test contingency clearer, we trained
subjects in a standard concurrent schedule for
several sessions before introducing the runs-
test contingency. Second, we no longer illumi-
nated the stimulus lights. If subjects had used
them as a discriminative stimulus in Experi-
ment 1, then this would permit them to emit
different patterns of responses, respectively, in
conditions with lights on versus off. Such a
discrimination may have contaminated the
effect of differential reinforcement. Third, we
held the probability of reinforcement con-
stant. Many studies indicate that behavioral
variability is influenced by variation of rein-
forcement frequency (Boren, Moershbaecher,
& Whyte, 1978; Gharib, Derby, & Roberts,
2001; Gharib, Gade, & Roberts, 2004; Grunow
& Neuringer, 2002; Tatam, Wanchisen, &
Hineline, 1993). In Experiment 1, it is possible
that the change from less frequent to more
frequent reinforcement, rather than the runs-
test contingency, was responsible for the
development of sequential independence. By
keeping reinforcement probability constant in
Experiment 2, we eliminated this factor as a
source of sequential independence.

Finally, in order to hold the probability of
reinforcement constant, we also adjusted the
runs-test criterion. Instead of using criterial
test values, such as 1.96 and 1.39, we relied
upon a percentile criterion (see Alleman &
Platt, 1973; Galbicka, 1988, 1994; Machado,
1989). After each response, the current Sscore
was compared against the scores in the last 19
trials. A food pellet was delivered with proba-
bility 2/3 if the current score was closer to zero
than at least 17 of the previous 19 scores. This
procedure can hold the probability of rein-
forcement constant.

METHOD
Subjects

Four male Wistar rats (Subjects A, B, C, D)
were maintained at approximately 80% of their
free-feeding body weights. They were experi-
mental naive and 40 weeks old at the start of the
experiment. Water and sawdust were continu-
ously available in their home cages where a 12-
hr light-dark cycle was in effect.

Apparatus

The apparatus was the same as in Experi-
ment 1 except all experimental devices were
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controlled by a computer using Visual Basic
2005 Express Edition software.

Procedure

After subjects were trained to press the lever
by hand shaping, they were exposed to a
continuous-reinforcement schedule, which
provided 100 food deliveries per session.
Either the left or right lever provided rein-
forcement in a given session, and the reinforc-
ing lever was switched after each training
session. After a few sessions, when all subjects
pressed both levers reliably, two-lever training
was initiated. In this procedure, a reinforcer
was assigned probabilistically to a particular
lever. No further assignments were made until
the reinforcer was delivered (Stubbs & Pliskoff,
1969). In the baseline, reinforcers were allo-
cated equally often for left and right respons-
es. Each session ended after 500 responses.
The probability of reinforcement was de-
creased gradually from 1.0 to .1. Once the
reinforcement probability had been reduced
to .1, it remained at that level until perfor-
mances stabilized. It is against this baseline
that we compare the results from the runs-test
phase, which was run next. Both the baseline
phase and the runs-test phase had the same
probability of reinforcement, but the baseline
phase had no runs-test contingency.

In the runs-test contingency phase, the score
on each trial was compared against the
previous 19. If the current one was closer to
zero than at least 17 of previous 19 scores, then
a reinforcer was delivered with p = .667. Once
the runs test score reached criterion, several
trials would be likely to deliver a reinforcer in
some cases. Except for the absence of stimulus
lights, the remaining procedures and analyses
were the same as in Experiment 1.

REsuLTs AND DiscussioN

Again we examine the runs structure of
subjects’ behavior first, and then the data on
sequential dependencies among successive
responses.

Runs Analyses

Figure 7 plots proportions of S scores whose
absolute values were smaller than 1, between 1
and 2, and larger than 2, in each session. The
sessions before the vertical line are from the
baseline phase, where the probability of

reinforcement was .1, whereas those after the
vertical line indicate differential reinforce-
ment by the runs-test phase with the same
probability. In the baseline phase, Subject A
showed similar proportions of § scores smaller
than 1 and between 1 and 2. Only Subject D
showed an increase in the proportion that
were smaller than 1. On transition to the test
phase, all subjects improved their proportions
in this range. Scores for Subjects B and C
improved rapidly, while Subject A improved
gradually. Comparing the last five sessions
between baseline and the runs test phases, all
subjects improved their scores. Thus, Figure 7
reveals that in Experiment 2, as in Experiment
1, behavior of all subjects was sensitive to the
runs test contingency.

Sequential Dependency Analyses

Mutual uncertainties are plotted in Figure 8
for the last five sessions. Results from both
baseline and the runs-test phases are shown,
separated by a vertical line. Successive columns
give chi-square values of T, Ty, and Ts.
Horizontal lines indicate 5% critical values of
the chi square; values below the horizontal
lines indicate that performance showed no
sequential dependency. The first column (T})
shows that except for Subject D, first-order
sequential dependency was present in base-
line, but this decreased under the runs-test
contingency. Columns for Ty and Tg show that
sequential independence was achieved in the
higher orders for Subjects A and D, whereas
some dependencies remained in Subjects B
and C. These results are in broad agreement
with those of Experiment 1.

Figure 9 presents a lag analysis for the last
five sessions of both phases. Lag profiles
showed all subjects favored some response
sequence patterns in the baseline phase.
Typical patterns were RR (Subjects B and C),
or RRL (Subjects A and D). However, in the
runs-test phase, such patterns gradually disap-
peared. For all subjects lag-1 probability was
similar to lag 0, that is, the first order
dependency disappeared. Moreover, Subjects
A and D showed almost no pattern. Subject B
retained the same pattern as in baseline,
although it became less conspicuous, and
Subject C tended to emit L in Lag 2. In
comparing these data with lag data of Exper-
iment 1, we see that these subjects exhibit no



74

A CONTINGENCY ALGORITHM

SubjectA SubjectB
1.0
*
0.8
0.6 1
L :: ] 044 N
x *= 7 024}
*3!-* ** * k
*H ,,g'@“ e *
z »" * o004 W sk
o T T T T T T T T T
= 0 10 20 30 40 0 10 20 30
g fi] SubjectC SubjectD
& — 18/<1 '
o o 1<) <2 *
& 08 - . 0.8 -
0.6
04 I
BB g ¥
* ¥ # * . *6:* 4:* " * % #H‘*
oo * ® e R 2 o KOk x
T I T I I T T T |
0 10 20 30 0 10 20 30 40
SESSIONS

Fig. 7. Proportions of absolute values of Sin three ranges: smaller than 1, between 1 and 2, and larger than 2 in each
session of Experiment 2. The area before the vertical line is baseline and that after it is the runs-test phase.

biases for either other lever; instead, response
probabilities were near .5.

Finally, Figure 10 plots the relative frequen-
cies of four-response sequences as units. At the
start of the experiment (left column), all
subjects tended to repeat responses, that is,
LLLL and RRRR are high. Through baseline
sessions, their performance was modified
somewhat. By the end of baseline training
(middle column), for all 4 rats, a common
pattern is evident in that the frequency
of double-alternation pattern—LLRR and
RRLL—increased, and high alternation pat-
terns—LLRL, LRLL, LRLR, RLRL, RLRR—
remained low. This pattern was lost by the end

of the runs-test phase (right column), and
profiles approximated the expected values
derived by assuming randomness.

The results in Experiment 2 replicated those
of Experiment 1. All subjects were susceptible
to a reinforcement contingency that used the
runs-test algorithm (Figure 7). In addition to
showing their sensitivity to this contingency,
subjects’ performance came to eliminate se-
quential dependencies (Figure 8). This ten-
dency was not different between Experiments
1 and 2 in spite of the fact that conditioned
reinforcers were removed and primary rein-
forcement was more strictly controlled in the
latter.
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Our differential reinforcement procedures
were designed to have no effect on response
bias. Subjects in Experiment 1 showed a strong
bias to the left lever (Figure 5) whereas in
Experiment 2 they showed almost no bias. In
consequence, they attained uniform distribu-
tion of choice between response alternatives
(Figures 9 and 10). Thus, our results showed
we could control variability, producing a

sequentially independent pattern, regardless
of whatever bias existed; it was not a byproduct
of differentially reinforcing equiprobable out-
comes.

GENERAL DISCUSSION

The present work aimed to demonstrate a
new reinforcement contingency based on run-
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structure analyses of successive responses in a
choice task. By using the runs-test algorithm as
a criterion for differential reinforcement, we
show that first-order response dependencies
can be successfully removed. Higher-order
dependencies were sometimes present early
in training also, and these were often reduced
with extended exposure to the contingency.
Thus, the new contingency appeared to be
effective in modifying the structure of re-
sponse runs in almost all subjects.

A possible criticism involves our use of the
runs test. This test was designed as a test for
randomness. Equation 3 is appropriate for
cases where at least one of the response
alternatives occurred more than 20 times, that
is, for large numbers (Siegel, 1956), whereas in
our experiment, the sum of both response
alternatives is 20. However, we used the runs
test not as a statistical test for randomness, but
rather as a criterion for differential reinforce-
ment. Thus, the issue becomes whether or not
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are expected values from randomness.

our conclusions about the effects of contin-
gency are reliable in this context. To assess
this, we relied upon a nonparametric method,
for which Siegel (1956) and Swed and Eisen-
hart (1943) prepared tables of expected runs

based on small samples. These tables provided
appropriate critical values in the case of small
samples. Thus, if we compare data in Figure 1,
calculated from Equation 3, with test-score
statistics for this nonparametric test, the latter
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decreases the risk of Type 1 error (ie.,
rejecting a true null hypothesis of no depen-
dency), whereas it increases the risk of Type 2
error. In other words, our use penalizes Type 2
errors more than predicted by the nonpara-
metric test tables. In effect, this means we may
have imposed a more severe criterion than
required by the runs test. This possibility does
not present a problem for our conclusions.
Rather we mnote that the procedure for
differential reinforcement requires a sample
size that is not so large as to dilute the
differential nature of the contingency (Alle-
man & Platt, 1973; Galbicka, 1988, 1994).

Our procedure involved an interlocking
schedule with which two experimental dimen-
sions (K, response proportion) are related. In
previous investigations, either the proportion
of responses to an alternative, or the number
of runs, has been used as the basis for
differential reinforcement (Bryant & Church,
1974; Machado, 1997; Neuringer, 1986). By
contrast, we attempted to combine these
dimensions and to contrive a procedure of
differential reinforcement for sequential de-
pendencies. It was different from differential
reinforcement of response alternatives with
lower frequency in that it permits one
response alternative to have high frequency.
However, performance approached an equi-
probable state and some subjects performed
randomly in Experiment 2. Such findings
suggest there may be various procedures that
will yield highly variable or random behavior.
If so, it remains to be determined what the
necessary and sufficient conditions are for
producing this behavior.

We note two different views on reinforced
sequential dependencies, according to differ-
ent epistemological attitudes, that is, molar
and molecular. From the molar standpoint,
molar behavioral phenomena, say, allocations
of behavior, response rates, and behavioral
variability, are regarded as individuals or
concrete particulars, as species were (Baum,
2002; Glenn & Field, 1994). From the molec-
ular standpoint, such phenomena are regard-
ed as abstractions or derived things. Glenn
(2003) discussed them from the analogy of
organic evolutionary theory, in which Maynard
Smith (1994) characterized the increases in
complexity during evolution of the organic
world as resulting from a succession of
processes that became possible only when a

previous level of complexity had been reached.
With behavior, complex behavioral phenome-
na are regarded as a result of repeated rounds
of selection acting on phenomena resulting
from earlier rounds of selection. If we regard
the phenomena as derived things, we would
seek the cause of variation of the behavioral
variability in earlier rounds of selection. On
the other hand, if we regard them as concrete
particulars, we would focus on the effect of the
behavioral phenomena at the higher-complex-
ity level. With behavioral variability, Machado
(1992, 1997) claimed that dispersion of
response alternatives might have been a
derivative of more fundamental processes.
This claim is reasonable because the process
of differential reinforcement of response
alternatives with lower frequency produced
the behavioral variability. On the other hand,
some researchers focused on the effect of
variation and repetition as a concrete particu-
lar in choice, delayed reinforcement, resis-
tance to change, and so on (Abreu-Rodrigues
et al., 2005; Doughty & Lattal, 2001; Neur-
inger, 1992; Odum, et al, 2006; Wagner &
Neuringer, 2006). These studies also bring
some fruitful knowledge. Whereas our exper-
iment showed the runs-test contingency effects
on sequential dependencies, studies that re-
veal the effect of sequential patterns on
complex behavioral phenomena remain for
the future.
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