
Some years ago there was a young woman who sat in the front of my calcu-
lus class who said little. It was only when I gave a challenging problem that

no one else could solve that she would say something. She consistently gave
me not only correct solutions to the questions, but also ingenious solutions! I
used to marvel at how ordinary she seemed on the outside, but how powerful
the mathematical ideas she generated were. Being a mathematician, I started
wondering, “Are there any theorems in mathematics that seem very ordinary
on the outside, but when applied, have surprisingly far reaching conse-
quences?” I thought about this for a while and came up with the following
unlikely candidate which follows immediately from the definition of the area
of a rectangle as length multiplied by width. I refer to this theorem as OT
(Ordinary Theorem).

Theorem
The area of a right triangle is half the product of the perpendicular sides.

Proof
Every right triangle with perpendicular sides a and b is half of a rectangle
whose sides are a and b. Hence, the area of a right triangle with perpendicu-
lar sides a and b is 1

2 ab. Simple!

You may wonder, “What is so wonderful about this?” Our plan here is to
show you the answer. In fact, we will guide you through what promises to be
an amazing journey into just how important this seemingly ordinary theorem
really is. As we will show, hidden in this theorem is a treasure trove of almost
all the familiar theorems we learn in high school, some of whose proofs are
elusive. 

The basic results

From OT, (rather than the other way around) we obtain the following:
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Theorem
The area of a triangle with base b and height h is 1

2 bh.

Proof
We start with triangle ABC where the altitude to the base is inside the trian-
gle, as shown in Figure 1.

Figure 1. Altitude BD inside triangle ABC.

The area of ABD is 1
2xh by OT, and similarly, the area of triangle DBC is 1

2yh.
The area of triangle ABC is the sum of these areas. Thus, the area of triangle
ABC is 

1
2xh + 1

2yh = 1
2(x + y)h = 1

2bh

If the altitude is outside the triangle, a similar proof is used, only this time we
need to subtract areas. We leave this to the reader or to the reader’s students!
So from OT we find the area of any triangle is 1

2 base × height.

An immediate consequence of this is:

Theorem
In a right triangle with perpendicular sides a and b and hypotenuse c, 
a 2 + b 2 = c 2.

Proof
The proof is the standard proof one often sees. We begin with four right trian-
gles with sides a and b and hypotenuse c, and position them as shown in
Figure 2. 

Figure 2.



Then the area of the square ABCD is the area of the square in the middle,
plus the sum of the areas of the four right triangles, that is, 

Squaring the left side and then subtracting 2ab from both sides, we imme-
diately obtain a 2 + b 2 = c 2. Voila! We have the Pythagorean Theorem, and we
all know how useful and practical that theorem is! 

Sine and cosine

When we define the cosine of an angle in standard position (where the initial
side is the positive x-axis), we pick any point (x, y) on the terminal side of the
angle, and define 

where r is the distance the point is from the origin. The first question that
arises is, “If we are choosing any point on the terminal side, how do we know
that we will get the same answer regardless of which point we use?” The usual
answer is, “We use similar triangles,” but our goal in this paper is ambitious.
We want to show you that all the results on congruence and similarity can
themselves be obtained from OT. So we cannot use similar triangles in our
development to prove that the sine and cosine are well defined or we will be
engaging in circular reasoning. We need to bypass similar triangles. How do
we do that? We do that using none other than the formula for the area of a
triangle, the first consequence of OT!

We need a lemma first.

Lemma
Given triangle ABC, suppose that a line segment is drawn from B to AC

—
, inter-

secting AC
—

at D (see Figure 3). Then the ratio of the areas of triangle ABD to
triangle CDB is the same as the ratio of AD to DC.

Proof
Figure 3 shows that both triangles ABD and DBC have the same height, h.
Thus, 
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Figure 3. Two triangles with height, h.

Corollary
Given a right triangle ABC with right angle at C, draw a line segment DE

—
paral-

lel to CB
—

where D is any point on AC
—

and E is on AB
—

(see Figure 4). Then 

That is, cos A is the same whether we take the ratio of the adjacent side to
hypotenuse in right triangle AED or right triangle ABC.

Proof
We begin with our diagram shown in Figure 4. 

Figure 4.

First, draw EC
—

. The triangle ACE is then divided by DE
—

into triangles I and II
as shown in Figure 5. 

Figure 5. Dividing triangle ACE into triangles I and II.

Now from our lemma applied to triangle AEC, we have

(1)

Now draw DB
—

in Figure 4, yielding the diagram as shown in Figure 6.
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Figure 6

Again by the lemma, only this time applying it to triangle ABD we have 

(2)

Finally, we note that both triangles II and III have base ED
—

and height DC
—

(since ED
—

is parallel to BC
—

and hence are the same distance from each other
everywhere). Thus, the areas of II and III are the same. Replacing Area III by
Area II in (2) we get that 

(3)

Comparing (1) and (3) we see that 

(4)

We are not quite there. Now, add the number 1 to both sides of (4) and
combine. This gives

(5)

Dividing (5) by (4) and simplifying,

Since AD + DC = AC and AE + EB = AB, this is just

(6)

From this proportion it follows that 

(7)

and we are done.
The importance of this lemma cannot be underestimated. It says that if A

is any angle, cosA is unique and well defined. We did not use similar triangles
to prove it, rather area, which is surprising! There is such a nice interplay here
between the algebra, geometry and trigonometry. 

If we have two right triangles, ABC and AED, both containing an angle
whose measure is that of A, then we can just overlay them to get Figure 4 and
work from there.

Now that we know that the sine and cosine are well defined, we can accom-
plish our goal. We begin with the standard high school theorems.

51

A
n ordinary but surprisingly pow

erful theorem
A
ustralian S

enior M
athem

atics Journal 2
3
 (2

)



The law of cosines

From OT, we obtained the Pythagorean theorem. Using the Pythagorean
theorem, we easily derive the formula for the distance, D, between two points,
(x1, y1) and (x2, y2), in the plane: 

Furthermore, using the Pythagorean theorem, we can derive, in the standard
manner, the formula that sin2θ + cos2θ = 1. From this we immediately obtain:

Theorem (the law of cosines)
In any triangle ABC with sides a, b, c, c 2 = a 2 + b 2 – 2ab cosC.

Proof
The proof we give here is for all triangles. We start with a triangle ABC and
place the triangle on a coordinate plane as shown in Figure 7. Let the coor-
dinates of A be (x, y). Using the definition of cosine and sine, we have 

So x = b cosC and y = b sinC.

Figure 7. Triangle ABC on a coordinate plane.

Thus, the coordinates of A are (x, y) = (b cosC, b sinC). Now the distance from
A to B is c and can be computed by the distance formula. 

(8)

Squaring both sides of (8) expanding and simplifying using the fact that 
sin2θ + cos2θ = 1 gives us 

c 2 = b 2 – 2ab cosC + a 2

Now we just rearrange our terms to obtain 

c 2 = a 2 + b 2 – 2ab cosC (9)

What a nice interplay between algebra, Cartesian coordinates, geometry,
and trigonometry! 
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Law of sines

We now know that the sine of an angle is well defined. If we draw an altitude
to side AC

—
of a triangle ABC, we divide the triangle into two right triangles

(see Figure 1). This altitude’s length, h, can be expressed in either of two
ways: h = a sinC (from triangle BDC in Figure 1) or h = c sinA (from triangle
ADB in Figure 1). Setting these two expressions equal to each other, we find
that a sinC = c sinA, or that

(When the altitude is outside of the triangle, one will need to use the fact that
sin(180° – A) = sinA to prove the result, and this easily follows from the defi-
nition of the sine of an angle.) If we draw an altitude to side AB

—
and proceed

similarly, we obtain 

Combining our two proportions, 

This is the law of sines, which has great practical use. Now, let us turn to geometry.

The relationship to geometry

Congruence

We are taught in geometry that two triangles can be congruent under various
conditions; for example, if SSS = SSS or if SAS = SAS or if ASA = ASA and so
on, where S represents a side of the triangle and A an angle. Many books write
one or more of these results as axioms and then derive the others. In fact, we can
derive all of them from what we have done so far. Thus all the congruence results
are (indirectly) a result of OT. Let us give the reader the flavour of how one of
these is done by corroborating that if SSS = SSS for a pair of triangles, then the
two triangles are congruent. Similar verifications can be done for SAS and ASA
using the laws of sines and cosines. We encourage the reader to try some of these.

Theorem
If three sides of one triangle are congruent to three sides of another triangle
then the triangles are congruent.

Proof
In two triangles ABC with side lengths a, b, c and DEF with side lenghts d, e, f,
let us assume that BC

—
is congruent to EF

—
, AC

—
is congruent to DF

—
, and AB

—
is

congruent to DE
—

, as shown in Figure 8.
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Figure 8. A pair of congruent triangles.

So a = d, b = e and c = f. From the law of cosines, (9), we have that 

(10)

and using the same law in triangle DEF with the corresponding sides, we have 

(11)

Since a = d, b = e and c = f, we can substitute them in (10) to get 

(12)

and we see from (11) and (12) that cosC = cosF.
It follows that ∠C ≅ ∠F since ∠C and ∠F are less than 180 degrees. In a

similar manner using the other versions of the law of cosines, we find that 
∠A ≅ ∠D, and that ∠B ≅ ∠E. Thus, if three sides of one triangle are congru-
ent to three sides of another triangle, then the corresponding angles are
congruent, and so the triangles are congruent. Congruence theorems are the
basis of most theorems one proves in geometry. 

Another important concept used in obtaining practical geometric results
is similarity. 

Similarity of triangles

We now show that OT gives us all the similarity results we learn in high school
as well! The main result in similarity is the following:

Theorem
If two angles of one triangle are congruent to two angles of another triangle,
then the lengths of the corresponding sides of the two triangles are in propor-
tion.

Proof
The third angles of the triangles are also congruent since the sum of the
measures of the angles in a triangle is 180 degrees. We will use Figure 8 to give
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the proof. We will assume that ∠A ≅ ∠D, ∠B ≅ ∠E and ∠C ≅ ∠F. Then by the
law of sines, applied to triangle ABC we have 

which can be written as 

(13)

Using the law of sines in triangle DEF we have in a similar manner that

(14)

However, since ∠A ≅ ∠D and ∠B ≅ ∠E, we can substitute A and B for D and
E in (14) respectively, and we get 

(15)

Since the right hand sides of (13) and (15) are the same, the left hand sides
are also, so we have that 

Rewriting this as 

we have part of our result. In a similar manner you can show that 

So, with your work and ours, we get 

which says the lengths of the corresponding sides of the two triangles are in
proportion.

Let us give another illustration:

Theorem
If the lengths of two sides of one triangle are proportional to the lengths of
two sides of another triangle, and the angle between the proportional sides of
these triangles are congruent, then the lengths of the third sides are in the
same proportion as the lengths of the other corresponding sides.
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Proof
Again, we use Figure 8. We may suppose that the two sides of triangle ABC we
are talking about are AC

—
and AB

—
and that the lengths of these sides are

proportional respectively to the lengths of DF
—

and DE
—

. We also assume that
∠A ≅ ∠D. Saying that these side lengths are proportional in our diagram
means that 

(16)

for some real number k. To prove our result, we will show that the lengths of
the third sides are also in the same proportion. That is, we will show is also k.
Now, using the law of cosines in triangle ABC we have that 

a 2 = b 2 + c 2 – 2bc cosA (17)

Using the law of cosines in triangle DEF we have 

d 2 = e 2 + f 2 – 2ef cosD (18)

From (16) we have b = ke and c = kf, and we were given that ∠A ≅ ∠D.
Replacing b by ke, c by kf and A by D in (17) we get 

This string of equalities shows that a 2 = k 2d 2; hence, a = kd. It follows that is
also k and using (16) we see that 

So, we have shown that the lengths of all three corresponding sides are in
proportion which is what we wanted to prove. The approach taken to these
proofs can help the teacher better understand how mathematical ideas inter-
connect and build on one another.

The circle

As a final illustration of the power of our ordinary theorem, let us now turn
to the circle, only this time we examine its circumference and area, topics that
are ordinarily discussed in calculus.

Before we begin, let us observe some things. If we let Pn represent a regular
polygon of n sides inscribed in a circle of radius r, and pn represent its perime-
ter and an the length of its apothem. (An apothem is a perpendicular segment
from the centre of a regular polygon to one of its sides.) Then it is clear that
as the number n of sides of the polygon increases, the apothems get closer
and closer to the radius of the circle and the perimeters of the polygons get
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close to the circumference of the circle. In symbols, 

(19)

and

(20)

We are now ready to proceed. The next theorem uses the following conse-
quence of OT which follows from our results on similarity: the perimeters of
two similar polygons are in the same ratio as their side lengths. A proof of this
is rarely seen by high school teachers.

Theorem
The ratio of the circumference of a circle to its diameter is constant for all circles.

Proof
Begin with two circles, C 1 and C 2 where the radius of C 1 is smaller than the
radius of C 2. Place circle C 1 inside C 2 circle so that their centres coincide.
Inscribe a regular polygon P1n with n sides inside circle 1 and draw “spokes”
from the centre of the circle C 1 through the vertices of P1n until they intersect
C 2 forming a polygon P2n with n sides. We get the figure shown in Figure 9.

Figure 9.

Now P1n and P2n are similar, so the ratio of their perimeters is in the same
ratio as the lengths of their corresponding sides, which in turn are in the
same ratios as the lengths of their apothems, a1 and a 2; that is 

(21)

Now let the number of sides of P1n and P2n increase and approach infinity.
Then a1 approaches r 1 the radius of C 1, and a 2 approaches r 2 the radius of C 2.
If the circumferences of C 1 and C 2 are c 1 and c 2, the left side of (21)
approaches

while the right side approaches 

(Here is where we are using limits.) 
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It follows that

This can be rewritten as

Dividing both sides by 2 we get

Since 2r 1 = d 1, the diameter of circle 1, and 2r2 = d 2, the diameter of circle 2,
we have that

and we are done! [Editor: This is clearly equal to the well-known constant π.]

We can go further with this. We know that from the area of a triangle,
(OT’s first corollary,) we can find the area of a regular polygon, and that it is
equal to 1

2 ap where a is the length of the apothem and p is the perimeter. It
is also intuitively clear that we can find the area of a circle by expressing it as
the limit of the areas of inscribed regular polygons of larger and larger
number of sides. Thus we have as a corollary:

Corollary
The area of a circle is πr 2.

Proof
If we denote the areas of the typical inscribed regular polygon with n sides An

and the area of the circle A of circumference C, then using (19) and (20) we
have 

and we are done. [Editor: This, of course, assumes you have derived C = 2πr
from the result of the previous theorem.]

Thus, from yet another consequence of OT follows the result that the area
of a circle is πr 2. Our ordinary theorem has shown us a side we have never
expected to see and makes us wonder, “Should the area of a right triangle be
taught as a fundamental concept in high school?” We leave this for you to
ponder.
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