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ecently there have been several news items about possible cancer clusters
Rin the Australian media. The term “cancer cluster” is used when an
unusually large number of people in one geographic area, often a workplace,
are diagnosed with cancer in a short space of time. For example, a large
number of staff working in one school might be diagnosed with cancer in a
given year. In this paper we explore this important health issue using proba-
bility theory and in particular the binomial distribution.

Binomial model

The binomial distribution is a standard part of the curriculum in senior math-
ematics in high school and in first year courses on statistics at university; see,
for example, Moore (2007, chap. 13) and Nolan et al. (2006, chap. 11). The
key elements of the binomial model are trial, outcome, and experiment. We
review these elements in terms of coin tossing.

* A trial consists of tossing a coin.

* The outcome of a trial can be one of two possibilities: heads or tails.

* Let p denote the probability that the outcome of a trial is heads. We
assume that this probability is constant and does not vary from trial to
trial. We do not assume that the coin is fair; that is, p may have any value
between 0 and 1. This allows us to apply the model more broadly.

® The outcome of one trial is independent of the outcome of any other
trial. In other words, the result of one toss does not influence the result
of another toss.

¢ An experiment consists of # trials.

* Let X denote the number of trials in the experiment that results in
heads. So X could take any of the values 0, 1, 2, ... n.

Then Xis a random variable, and the probability distribution of Xis given by:

P(th):[?)pt(l—p)"‘t, (=0, 1, ... n) (1)



We say that X has a binomial distribution with parameters n and p.

Application to the incidence of cancer

Let us apply this model to the diagnosis of cancer. We will focus on Australians
in a given age group in a given year.

* A trial consists of observing a person in the given age group for the
given year.

® There are two possible outcomes of the trial: either this person is diag-
nosed with cancer during the year, or not.

* For any trial, assume that the probability that a person is diagnosed with
cancer during the year is p, and this probability does not vary from
person to person.

e Since cancer is not an infectious disease, we assume that the outcome
of one trial is independent of the outcome of any other trial.

* The experiment consists of observing n persons in the given age group
over the given year.

¢ Let Xdenote the number of persons observed who are diagnosed with
cancer during the year.

Since the binomial model seems to fit the situation, X would have a bino-
mial distribution with parameters n and p. Hence, we could calculate the
probability function for X using the above formula (1).

Suppose that we are interested in Australians who were between the ages
of 25 and 54 in the year 2004. (The ages of members of staff in a school are
likely to fall in this range.) There were 8 671 721 persons in Australia between
the ages of 24 and 54 in 2004. Of these, 19 572 were diagnosed with some
form of cancer in that year. These figures were obtained from the Australian
Institute of Health and Welfare (2007). Thus, the probability that a person,
who was between 24 and 54 in Australia in 2004, was diagnosed with cancer
in that year was 19 572 + 8 671 721 = 0.2257 x 107 = 0.0023.

Consider a particular school that has 60 members of staff between the ages
of 25 and 54. Suppose that three or more members of staff were diagnosed
with cancer during 2004. Using the binomial formula (1), with n; = 60 and
1 =0.2257 x 10~ we can show that in 2004, the probability that three or more
of these staff would be diagnosed with cancer in 2004 is 0.3573 x 107" =
0.0004. This is a very small probability and indicates a very rare event. We
might wonder about environmental issues pertaining to that school.

On the other hand, suppose that in Australia in 2004, there were n, = 700
schools each with 60 members of staff between the ages of 25 and 54. As we
saw above, the probability that in any given school, three or more of these
staff were diagnosed with cancer is p, = 0.3573 x 10~ Therefore, the proba-
bility that in no school were three or more staff diagnosed with cancer in 2004
is (1 — p,)700 = 0.7787. Thus, the probability that, in at least one of the 700
schools, three or more staff were diagnosed with cancer is 1 — 0.7787 = 0.2213.
This is not such a small probability.

So, in a particular school with 60 members of staff, it would be surprising
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if three or more staff were diagnosed with cancer in 2004. However, across all
700 schools with 60 members of staff, it is not surprising that one school
should have this experience. Realistic data for such calculations can be based
on statistics from Australian schools from ABS (2008).

These calculations can be performed using the inbuilt functions of spread-
sheets (e.g., BINOMDIST in Excel) and graphing calculators. For example,
the TI-83/84 has builtin the cumulative probability distribution function,
“binomcdf.” Values of n, p and k (separated by commas), can be supplied to
obtain the probability P(X =< k). The probability P(X = k) is found using
“binompdf.”

Conclusion

We are not suggesting that cancer clusters ought to be ignored by authorities
on the basis of an argument from probability. Indeed, they should be investi-
gated thoroughly because the issues associated with such clusters are serious
and “complicated” (Schinazi, 2000). The recent report by the Australian
Institute of Health and Welfare (2009) is an example of an investigation into
mortality and incidence of cancer for certain aircraft maintenance workers.
However, the simple model in this paper illustrates a number of points.

In a news item about a cancer cluster at a hospital in New South Wales, a
member of the expert panel investigating the situation, Professor Bruce
Armstrong, pointed out that this cluster was either caused by some environ-
mental factor, or it “simply occurred by chance” (Kerrin, 2007). The above
calculations use the binomial distribution to explain why such a cluster could
occur by chance with a reasonable probability.

Similar arguments would apply when considering traffic accidents. If there
were a spate of serious accidents at a particular place over a short time period,
there would be widespread concern that drastic action should be done about
this potential “black spot.” Just as a cancer cluster may be due to chance, so
too the occurrence of an unusually large number of accidents at one place
over a short time may be due to chance.

A goal of the national mathematics curriculum is to enable Australians “to
interpret quantitative aspects” of important social issues (National
Curriculum Board, 2008). This paper illustrates how students can use the
binomial distribution to gain a more thoughtful approach to cancer clusters.
It provides a link between senior mathematics and epidemiology, and points
the reader to a source of cancer data from AIHW which could be used in the
classroom for a variety of exercises or modelling.

Probability theory is a subtle branch of mathematics. To make the above
example more concrete, consider this example: if one tosses a fair coin 10
times (p= 0.5, n=10), then the probability of obtaining 10 heads is very small
(1/1024). However, if 1000 people tossed a coin 10 times, then the probabil-
ity that someone obtains 10 heads is about 0.62. Although the person who
obtained 10 heads would be amazed, it is not amazing that someone obtained
10 heads. This calculation requires careful reflection.



Although coin tossing may appear to be a boring context for teaching and
learning, it has the advantage of containing the key aspects of the binomial
model without any complicating distractions. Simple models aid our under-
standing of the essential features of the model. The example shows the
importance of coin tossing as a model.

Finally, the paper demonstrates how mathematics should be applied in
practice. One starts with a clearly defined model and a good understanding
of the assumptions in the model. When putting the model into practice, one
has to match the parameters of the model with data in the application. One
must check whether the assumptions of the model are reasonable in the
circumstances. Fitting a model to a problem in society is one of the exciting
parts of applied mathematics.
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