
Aproblem given in the Australian Mathematics Competition for the
Westpac Awards was stated as follows:

With how many zeros does 2008! end?

In this article, we will solve this problem, and provide further discussion on
the related problems.

Getting started 

To solve this problem, we rephrase the question as follows:

Given a positive integer k, how many zeros are at the end of the factorial k

value?

This is the same as finding the exponent of the biggest power of 10 that can
divide k!. The next step is the key. Instead of the biggest power of 10, we use
the biggest power of 5. So why can we make such a big transition? Those who
have seen this know that it is because 10 = 2 × 5 and there are more twos divid-
ing k! than fives. Therefore, the power of 5 leads us to the solution. In fact,
there exists a nice formula (see Halmos, 1991, pp. 171–173) for calculating
the exponent of this power, which is 

(1)

where the notation [ ] stands for the greatest integer function. In this
formula, the first term [k/5] gives us the number of the multiples of 5
between the integers 1 and k. Then we add [k/52] to it because the multiples
of 52, which are also the multiples of 5, have to be counted one more time.
Similarly, the multiples of 53 are also the multiples of 52 so they have to be
counted again, and so on. This is how the entire formula is built up. Hence,
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to solve our posed problem, we set k = 2008 in Formula (1). Therefore, there
are 

zeros at the end of 2008!. 

An application of the formula 

We have solved our original problem, but is there more to learn? One appli-
cation of the formula (1) is finding the prime factorisation of a “big” factorial.
According to the Fundamental Theorem of Arithmetic (Rosen, 2000), every posi-
tive integer greater than 1 can be written as a product of powers of distinct
primes. For example: what is the prime factorisation of 180? Since 

180 = 18 × 10 = (3 × 6) × (2 × 5) = 3 × (2 × 3) × 2 × 5

the prime factorisation of 180 is 22 × 32 × 5 after we collect the common
factors. Next, what is the prime factorisation of 7!? By the similar calculation,
we have

7! = 1 × 2 × 3 × 4 × 5 × 6 × 7   by definition
= 2 × 3 × (2 × 2) × 5 × (2 × 3) × 7   since 1 is not prime
= 24 × 32 × 5 × 7

However, how do we find the prime factorisation of a bigger factorial, say
14!? Of course, we can use the above method to obtain the answer, but is there
a more effective way to find it? Note that the only primes appearing in 14! are
the ones less than 14. So the main question is: How do we find the exact power of
each prime? The only clue here is Formula (1) which gives us the exponent of
the power of 5 in the prime factorisation of k!. So, by similar argument, we
can use other primes instead of 5 in this formula. In other words, the sum

(2)

is the exponent of the power of a prime p in the prime factorisation of k!. For
example, [14/2] + [14/22] + [14/23] = 11 means that the power 211 exactly
divides 14!. To figure out the powers of other primes, we set p = 3, 5, 7, 11,
and 13 in Formula (2), respectively. Therefore, the prime factorisation of 14!
is 211 × 35 × 52 × 72 × 11 × 13 and this is how we find the prime factorisation
of a “big” factorial. 
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A generalisation 

A further related question is the following:

Given a positive integer k, how many zeros are at the end of k! to a different

base?

For instance, how do we find the number of zeros at the end of 14! in base
504? According to the fact that 504 = 23 × 32 × 7 we need one 23 one 32 and
one 7 multiplied together to get one zero in base 504. So how many 23s, 32s
and sevens are there in 14!? Here we need to use the prime factorization of
14!, which is 211 × 35 × 52 × 72 × 11 × 13 shown in the previous section. Since
there are eleven twos in 14!, the number of 23s in 14! is [11/3]. Similarly, the
numbers of 32s and sevens in 14! are [5/2] and [2/1] respectively. After we
obtain the numbers of 23s, 32s and sevens, we are able to calculate the number
of 504s in 14!. With the calculation min{[11/3],[5/2],[2/1]} = min{3,2,2} = 2,
we have two 504s. Therefore, there are two zeros at the end of 14! in base 504.

These problems form a good model that helps students develop a logical
thinking process toward problem solving when they encounter a mathemati-
cal problem that they have never seen before. Moreover, the best part is that
students can understand these problems and their solution methods without
any advanced mathematics. 
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