
As teachers of first-year college mathematics and science students, we are
constantly on the lookout for simple classroom exercises that improve

our students’ analytical and computational skills. One such project, Predicting
Precipitation in Darwin, is outlined below. In this project, students:

• analyze and manipulate raw precipitation data;
• build a prediction model using a Markov chain;
• predict the long term distribution of precipitation-free and rainy days

in Darwin, Northern Territory, Australia;
• use a chi-square test to evaluate the effectiveness of the model they have

constructed;
• improve their prediction model.
Beyond access to the Internet (to obtain the raw data) and a computer

spreadsheet program or calculator, no special equipment is required. If the
data is downloaded in advance, a well-prepared junior or senior high-school
mathematics (or science) class should be able to perform this exercise in
approximately 30–45 minutes of class time. 

Mathematical preliminaries: Markov chains

A Markov chain is a sequence of identical trials, each of which can result in
exactly one of a finite number of outcomes, called states. As the trials
progress, the probability of moving from one state to another depends only
on the state in which you are currently found.

In most applications, Markov chains are represented by a state transition
matrix, P. In this matrix, the entry in the (i,j)th position (row i, column j) is
the probability that you will move to state j in the next trial if you are currently
in state i. Properly constructed, the sum of each row in the matrix is one. 

Due to the properties of matrix multiplication, the (i,j)th entry in the
matrix P 2 is the probability that you will move from state i to state j over the
course of two trials; the (i,j)th entry in P 3 is the probability you will move
from state i to state j in three trials, and so on.
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If there is a positive integer n such that all the entries in the state transi-
tion matrix Pn are positive, the Markov chain is said to be regular. Regular
Markov chains have the property that the limit exists. Each row in the
limiting matrix represents the stable state vector of the system. The stable
state vector is used to determine the eventual distribution of the data among
each of the possible states.

A simple example

Let us consider the Markov chain whose state transition matrix is given by

and let us assume that each trial in this Markov chain results in our being in
either state i or state j. Since all the entries in this matrix are positive, the
Markov chain it describes is regular. There are two ways for us to determine

. 
The first approach is using a graphing calculator or computer to calculate

successively higher powers of the matrix Pn. At some point, the values
returned will no longer change. For example, using a TI-85 graphing calcu-
lator and rounding to four decimal places, we obtain:

Higher powers of P return the same values as those obtained when calculat-
ing P 10. Thus, 

A second approach is to use a theorem from Markov analysis that tells us
that the entries in the limiting matrix can be determined by solving the
following system of equations:

The solution of this system is i = 0.4, j = 0.6. Note that these are the same
values you obtain using the graphing calculator technique outlined above.

These values give us important information about the long-term behaviour
of our series of trials. If we allow the series to continue for a long enough
period of time, we expect 40% of the trials to end up residing in state i and
60% of the trials ending up in state j.
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Our experiment

We will study precipitation data from the Darwin airport for the years
1999–2008. We will assume that this information forms a Markov chain: each
day either has measurable precipitation or it does not, the probability of it
raining on a given day depends only if it rained on the previous day, and the
probability of moving between rainy and rain-free days remains constant over
the period under consideration.

We begin by obtaining daily precipitation data from the Darwin airport for
the years 1999–2008 from the Australian Weather News archive website:
www.australianweathernews.com/data/archive/14GA. A plot of these data is
shown in Figure 1.

Figure 1. Darwin airport, daily precipitation, 1999–2008. 

Exercise 1

We will determine if the daily precipitation data from 2008 can be used to
model the data for the entire period 1999–2008. For purposes of this experi-
ment, we assume that the data is representative for all ten years under
consideration. We begin by analysing the 2008 data, which reveals the following:

10

A
us

tr
al

ia
n 

S
en

io
r 

M
at

he
m

at
ic

s 
Jo

ur
na

l 2
3
 (

2
)

B
on

ce
k 

&
 H

ar
de

n

Table 1

Number of precipitation-free days 256

Number of days with precipitation 110



Comparing the precipitation level of each day in the year to its successor,
we determine the following about the paired data:

From this we compute the state transition matrix.

Thus, in 2008, if a given day was rain-free, there was an 87.5% chance the
next day would be rain-free as well. On the other hand, if the day was rainy,
there was a 70.64% chance the next day was rainy as well.

Long term analysis

Given the state-transition matrix above, the long-term behaviour of the
Markov chain it describes can be determined by solving the system of equa-
tions:

0.875i + 0.2936j = i
0.125i + 0.7064j = j

i + j = 1

or by calculating higher and higher powers of the state transition matrix
using a graphing calculator or computer program. In either case, we obtain
i = 0.7014 and j = 0.7014. Interpreting this result, we predict that over a long
period of time, 70.14% of all days at the Darwin airport will be precipitation-
free and 29.86% of them will see rain.

There were 3653 days during the period 1999–2008. Our model predicts
that 70.14% of them, or 2562 of them, should be precipitation-free and 1091
should have measurable precipitation. Here is how the forecast compares to
the actual data. 
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Table 3

Second day 
precipitation-free

Second day 
had precipitation

First day precipitation-free 0.875 0.125

First day had precipitation 0.2936 0.7064

Table 4

Forecast Actual

Number of precipitation-free days 2562 2416

Number of days with precipitation 1091 1237

Table 2

Second day 
precipitation-free

Second day 
had precipitation

First day precipitation-free 224 pairs 32 pairs

First day had precipitation 32 pairs 77 pairs
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Our model over-predicts the number of precipitation-free days and under-
predicts the number of rainy days. The question is: Is our model statistically
accurate?

Chi-square goodness of fit test

A standard statistical method used to see if observed data fit a mathematical
prediction is the chi-square goodness of fit test. We adopt the null hypothesis,
H0 = the observed data does not differ from the expected value versus the
hypothesis H1 = the observed data differs from the expected values. Using the
chi-square goodness of fit test with 1 degree of freedom, we find

The critical value for chi-square at the 95% confidence level is 3.8412, so
we reject the null hypothesis. By conventional statistical criteria, the differ-
ence between our forecast and the observed data is considered to be
significant.

What went wrong?

One of the assumptions in Markov analysis is that the probabilities in the state
transition matrix are constant for all time. Table 5 indicates that the precipi-
tation levels observed in Darwin in 2008 are not representative of the period
1999–2008.

The mean number of precipitation-free days per year over the ten-year period
is 241.6, with a standard deviation of 13.29. This indicates that 2008 was a
particularly dry year. It is not surprising, therefore, that our forecast over-
predicts the number of dry days during the period 1999–2008.

Table 5. Number of precipitation-free days per year.

Year Precipitation-free days

1999 224

2000 220

2001 238

2002 258

2003 252

2004 244

2005 250

2006 244

2007 230

2008 256



Exercise 2

The data in the previous table indicates that the average number of precipi-
tation-free days per year during the two year period 2007–2008 was 243. This
seems to be close to the average number of precipitation-free days per year
for the ten-year period. Use the data for the two-year period 2007–2008 and
repeat the forecast process completed in Exercise 1 and see if the results
improve.

Long term analysis
0.8498i + 0.2992j = i
0.1502i + 0.7008j = j

i + j = 1

yields i = 0.6658 and j = 0.3342; that is, we expect 66.58% of all days to be
precipitation-free and 33.42% of all days to have some amount of measurable
precipitation. This gives us a ten-year forecast of 2432 precipitation-free days
and 1221 rainy days.

Here is how the forecast compares to the actual data. 

While this forecast still over-predicts the number of dry days by 16, it is
obvious that our forecast is much closer to the actual data than the forecast
we obtained in Exercise 1. Moreover, this forecast passes the chi-square good-
ness of fit test:
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Table 6. Paired data.

Second day 
precipitation-free

Second day 
had precipitation

First day precipitation-free 413 pairs 73 pairs

First day had precipitation 73 pairs 171 pairs

Table 7. State-transition matrix.

Second day 
precipitation-free

Second day 
had precipitation

First day precipitation-free 0.8498 0.1502

First day had precipitation 0.2992 0.7008

Table 8

Forecast Actual

Number of precipitation-free days 2432 2416

Number of days with precipitation 1221 1237



This value is much less than the critical value of 3.4812. At a 95% level of
confidence, we cannot say that our forecast results are statistically different
from the observed data. In other words, this forecast model works, while the
forecast model obtained in Exercise 1 did not.

Observations and comments

The two exercises demonstrate the importance of knowing your data before
constructing a mathematical model. If we had known that 2008 was an unusu-
ally dry year before we used it to construct our Markov analysis, we would have
known (or at least suspected) that its state transition matrix would not be
representative for the ten-year period, and we would not have wasted our time
using it for that purpose. This could have been detected easily if we had
constructed a histogram or table of the yearly data, or inspected Figure 1
more closely.

Additional exercises can be constructed to determine if data from any of
the other nine years can be used to construct an even better (and statistically
acceptable) forecast than the one we obtained in Exercise 2.

Further reading
Lial, M. A. Greenwell, R. N. & Ritchey, N. P. (2008). Finite mathematics (9th ed.). Boston, MA:

Pearson Addison Wesley.

Triola, M. F. (1998). Elementary statistics (7th ed.). Reading MA: Addison Wesley Longman. 
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